
Neural correlates of human fear 
conditioning and sources of variability in 
2199 individuals 
Article 

Published Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Open Access 

Radua, J. ORCID: https://orcid.org/0000-0003-1240-5438, 
Savage, H. S., Vilajosana, E. ORCID: https://orcid.org/0009-
0007-6057-1795, Jamieson, A. ORCID: https://orcid.org/0000-
0002-5598-0240, Abler, B., Åhs, F., Beckers, T. ORCID: 
https://orcid.org/0000-0002-9581-1505, Cardoner, N., Cisler, J.
M., Diniz, J. B., Bach, D. R. ORCID: https://orcid.org/0000-
0003-3717-2036, Elsenbruch, S. ORCID: 
https://orcid.org/0000-0002-6528-2665, Greening, S. G. 
ORCID: https://orcid.org/0000-0003-4578-4139, Holt, D. J., 
Kaczkurkin, A. N. ORCID: https://orcid.org/0000-0002-0943-
3094, Keil, A. ORCID: https://orcid.org/0000-0002-4064-1924, 
Kindt, M. ORCID: https://orcid.org/0000-0001-7989-3195, 
Koch, K. ORCID: https://orcid.org/0000-0003-4664-8016, 
LaBar, K. S. ORCID: https://orcid.org/0000-0002-8253-5417, 
Lam, C. L., Larson, C. L. ORCID: https://orcid.org/0000-0002-
1359-6080, Lonsdorf, T. B. ORCID: https://orcid.org/0000-
0003-1501-4846, Merz, C. J. ORCID: https://orcid.org/0000-
0001-5679-6595, McLaughlin, K. A. ORCID: 
https://orcid.org/0000-0002-1362-2410, Neria, Y., Pine, D. S., 
Van Reekum, C. M. ORCID: https://orcid.org/0000-0002-1516-
1101, Shackman, A. J. ORCID: https://orcid.org/0000-0002-



3629-4704, Soriano-Mas, C. ORCID: https://orcid.org/0000-
0003-4574-6597, Spoormaker, V. I., Stout, D. M., Straube, B. 
ORCID: https://orcid.org/0000-0002-9837-0944, Straube, T., 
Tuominen, L., Visser, R. M. ORCID: https://orcid.org/0000-
0003-0376-8165, Ahumada, L. ORCID: https://orcid.org/0000-
0002-9353-2457, Arolt, V. ORCID: https://orcid.org/0000-0002-
2445-9778, Batistuzzo, M. C. ORCID: https://orcid.org/0000-
0003-1347-8241, Bazán, P. R. ORCID: https://orcid.org/0000-
0003-2202-0494, Biggs, E. E., Cano, M. ORCID: 
https://orcid.org/0000-0003-0675-9483, Chavarría-Elizondo, P. 
ORCID: https://orcid.org/0000-0002-8177-3771, Cooper, S. E. 
ORCID: https://orcid.org/0000-0001-9563-1750, Dannlowski, 
U., de la Peña-Arteaga, V. ORCID: https://orcid.org/0000-
0001-8627-2653, DeCross, S. N. ORCID: 
https://orcid.org/0000-0001-8993-4413, Domschke, K. ORCID: 
https://orcid.org/0000-0002-2550-9132, Ehlers, M. R., Graner, 
J. L. ORCID: https://orcid.org/0000-0002-5465-7193, Hamm, 
A. O., Herrmann, M. J. ORCID: https://orcid.org/0000-0001-
9970-2122, Huggins, A. A. ORCID: https://orcid.org/0000-
0001-7936-2116, Icenhour, A., Juaneda-Seguí, A., Junghoefer,
M. ORCID: https://orcid.org/0000-0002-8532-2986, Kircher, T. 
ORCID: https://orcid.org/0000-0002-2514-2625, Koelkebeck, 
K., Kuhn, M., Labrenz, F. ORCID: https://orcid.org/0000-0001-
7284-3451, Lissek, S. M., Lotze, M. ORCID: 
https://orcid.org/0000-0003-4519-4956, Lueken, U. ORCID: 
https://orcid.org/0000-0003-1564-4012, Margraf, J. ORCID: 
https://orcid.org/0000-0001-5207-7016, Martínez-Zalacaín, I. 
ORCID: https://orcid.org/0000-0002-4036-0284, Moeck, R., 
Morriss, J., Ortuño, M. ORCID: https://orcid.org/0000-0002-
7730-6054, Pittig, A. ORCID: https://orcid.org/0000-0003-
3787-9576, Porta-Casteras, D. ORCID: https://orcid.org/0000-
0002-3921-3607, Richter, J. ORCID: https://orcid.org/0000-
0002-7127-6990, Ridderbusch, I. C., Rief, W., Roesmann, K. 
ORCID: https://orcid.org/0000-0001-6940-3551, Rosén, J., 
Rußmann, A. N. ORCID: https://orcid.org/0009-0003-2155-
6833, Sjouwerman, R., Spohrs, J., Ströhle, A., Suarez-
Jimenez, B., Ulrich, M. ORCID: https://orcid.org/0000-0002-



1237-0426, Wittchen, H.-U. ORCID: https://orcid.org/0000-
0002-6311-7711, Zhu, X., Waller, L. ORCID: 
https://orcid.org/0000-0002-3239-6957, Walter, H. ORCID: 
https://orcid.org/0000-0002-9403-6121, Thompson, P. M., Bas-
Hoogendam, J. M. ORCID: https://orcid.org/0000-0001-8982-
1670, Groenewold, N. A. ORCID: https://orcid.org/0000-0002-
0865-8427, J. Stein, D. ORCID: https://orcid.org/0000-0001-
7218-7810, Van der Wee, N. J., Dunsmoor, J. E. ORCID: 
https://orcid.org/0000-0002-5448-6873, Marquand, A. F. 
ORCID: https://orcid.org/0000-0001-5903-203X, J. Harrison, 
B. and Fullana, M. A. ORCID: https://orcid.org/0000-0003-
3863-5223 (2025) Neural correlates of human fear 
conditioning and sources of variability in 2199 individuals. 
Nature Communications, 16. 7869. ISSN 2041-1723 doi: 
10.1038/s41467-025-63078-x Available at 
https://centaur.reading.ac.uk/124081/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: https://doi.org/10.1038/s41467-025-63078-x 
To link to this article DOI: http://dx.doi.org/10.1038/s41467-025-63078-x 

Publisher: Nature 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Article https://doi.org/10.1038/s41467-025-63078-x

Neural correlates of human fear conditioning
and sources of variability in 2199 individuals

A list of authors and their affiliations appears at the end of the paper

Pavlovian fear conditioning is a fundamental process in both health and dis-
ease. We investigate its neural correlates and sources of variability using har-
monized functional magnetic resonance imaging data from 2199 individuals
across nine countries, including 1888 healthy individuals and 311 with anxiety-
related or depressive disorders. Usingmega-analysis and normativemodeling,
we show that fear conditioning consistently engages brain regions within the
“central autonomic–interoceptive” or “salience” network. Several task vari-
ables strongly modulate activity in these regions, contributing to variability in
neural responses. Additionally, brain activation patterns differ between heal-
thy individuals and those with anxiety-related or depressive disorders, with
distinct profiles characterizing specific disorders such as post-traumatic stress
disorder and obsessive-compulsive disorder. While the neural correlates of
fear conditioning are highly generalizable at the population level, variability
arises from differences in task design and clinical status, highlighting the
importance of methodological diversity in capturing fear learning
mechanisms.

Fear conditioning, also known as threat conditioning, is a psycholo-
gical paradigm developed over a century ago to study associative
learning mechanisms. It remains one of the most widely used and
productive experimental models for investigating both normal and
pathological fear and anxiety in humans1. Fear conditioning models
how the association between an initially neutral stimulus (conditioned
stimulus (CS)) and an innately aversive stimulus (unconditioned sti-
mulus, US) is learned. The success of learning in fear conditioning is
typically assessed by comparing responses to the fear cue (CS+, paired
with the US) and the safety cue (CS-, not paired with the US) across
subjective, autonomic, or neural domains. Successful conditioning is
indicated by greater responses to theCS+ than to the CS-2. In the brain,
this involves activity changes within a “central
autonomic–interoceptive” or “salience” network, which in humans
includes functionally and anatomically connected regions like the
dorsal anterior cingulate cortex (dACC) and the anterior insular cortex
(AIC)3. Additionally, fear conditioning has been linked to decreased
activity in regions like the ventromedial prefrontal cortex (vmPFC),
although suchdecreases have been less extensively studied3. Although
the amygdala plays a crucial role in fear conditioning in rodents4–6, and

classical lesion studies have implicated the amygdala in human fear
conditioning7, this relationship has not been consistently identified in
human fMRI studies3,8–12.

Limitations in prior research on the neural correlates of human
fear conditioning include the use of small sample sizes (typically
n < 30) and the reliance on heterogeneous neuroimaging processing
and analytical methods3,13. While group-level meta-analyses can par-
tially address the sample size issue3, individual-level mega-analyses
offer additional advantages. These include enhanced statistical power,
more precise effect size estimation, standardized preprocessing and
analysis techniques, and substantially improved power to detect
whether activation is modulated by individual variability -one of the
primary goals of the current study14–16.

Individual differences, such as sociodemographic factors (e.g.,
age) and trait variables (e.g., trait anxiety), are likely to modulate the
neural correlates of fear conditioning, potentially affecting the gen-
eralizability of findings across groups, such as younger versus older
adults or individuals with high versus low anxiety13. However, existing
research on individual differences has been inconsistent and often
hampered by limited sample sizes (n < 5013) or sampling biases17.
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Moreover, task-specific variables, such as task instructions or char-
acteristics of the US, may also influence conditioning at the behavioral
or neural level2,13,18,19. For example, compared to other USs, a tactile
electric shockmay elicit greater activation in the dACC and the ventral
supplementary motor area3. A primary challenge in this field is inte-
grating prior data to accurately assess how individual differences and
task variables affect neural outcomes. This complexity arises from
variations in adjustable factors and sampling across studies and par-
ticipants, highlighting the need for methods that can account for and
isolate specific sources of variation—such as the normative modeling
approach used here. Normative modeling allows us to integrate mul-
tiple smaller-scale studies into a common reference space—a standar-
dised baseline against which to statistically quantify individual
variations. This approach allows for meaningful comparisons across
diverse studies by controlling for multiple sources of variation. As a
result, the variance associated with specific variables and individuals
can be isolated, quantified, and systematically analysed20. (For details
on the underlying mathematics, see refs. 21–23; for applications, see
refs. 24–29).

Fear conditioning has also been used to study the development
and persistence of mental health disorders marked by pathological
fear, such as anxiety-related disorders1,30–33, which are highly prevalent
and rank among the leading causes of disability worldwide33. However,
there is ongoing debate over whether anxiety-related disorders con-
sistently show abnormal fear conditioning at behavioral or neural
levels34,35 or if these abnormalities are specific to certain clinical groups
—such as post-traumatic stress disorder (PTSD36) but not others, like
social anxiety disorder (SAD)37. Inconsistencies maybe due in part to
small sample sizes (ns < 100 for anxiety-related disorders as a group,
ns < 25 for comparisons among clinical groups). Furthermore, most
research in this area has relied on case-control designs and traditional
analysis techniques, both of which have limitations that could be
addressed through normative modeling. This framework enables sta-
tistical inference for individual subjects relative to an expected
population pattern, providing a more detailed examination of the
heterogeneity underlying group-level analyses20.

In this study with pre-registered hypotheses and analyses (cf.
Materials and Methods), we used both mega-analysis and normative
modelling to analyse individual-level, harmonized fMRI data acquired
during fear-conditioning from 43 samples from 21 laboratories across
nine countries (total n = 2199), including both healthy participants and
individuals diagnosed with anxiety-related and depressive disorders.
First, we assessed the overall neural correlates of fear conditioning in
healthy participants to provide a comprehensive delineation of the
brain regions underlying human fear conditioning. Based on previous
studies, we hypothesized that during fear conditioning, the CS + >CS-
contrastwould be associatedwith robust activations in regions such as
the dACC, AIC, pre/supplementary motor areas (SMA), and dorso-
lateral prefrontal cortex (dlPFC), whereas the CS + <CS- contrast
would be associated with deactivations in the vmPFC and hippo-
campus. We expected the mega-analysis to be more sensitive than
previous studies in detecting subtle effects in other brain regions not
previously (or not consistently) identified. Second, we assessed varia-
tion among healthy participants. Given their role in mediating sub-
jective arousal and autonomic expression of fear38, we hypothesised
that regions including the vmPFC and the anterior-to-mid cingulate
cortex would show the greatest between-subject heterogeneity. Third,
we examined how individual differences (e.g., age, trait anxiety) and
task variables (e.g., task instructions) influenced this variation. Finally,
we explored differences in the neural correlates of fear conditioning
between individuals with anxiety-related and depressive disorders and
healthy controls, as well as among clinical subgroups (e.g., PTSD, SAD).
We show that fear conditioning is consistently associated with brain
activation in regions of the central autonomic-interoceptive network,
despite methodological variations. However, specific task variables

also influence the responses of these regions during conditioning.
Additionally, brain activation patterns during conditioning differ
between healthy individuals and those with anxiety-related or
depressive disorders, with certain groups displaying distinct activation
profiles.

Results
All results -including effect sizes for the linearmodels- are available in a
free open-access repository (see Data availability statement).

Conditioning is associated with extensive brain (de)activations
In the mega-analysis (Fig. 1a), we included data from 1888 healthy
individuals (42 experiment samples) and used linear mixed-effect
models (LMMs) to perform a mega-analysis of whole-brain activation
during fear conditioning (CS + >CS− contrast). We observed sig-
nificant activation encompassing clusters within the bilateral anterior
and mid insular cortices; the secondary somatosensory cortices (SII);
the dlPFC; the lateral premotor cortices; and the dorsal and lateral
cerebellum (Fig. 1b). Significant activation was also observed in mul-
tiple regions across the corticalmidline, including the dACCextending
to the pre-supplementary and SMA, ventral posterior cingulate cortex
(PCC), and dorsal precuneus (dPrec).

Additionally, the CS + >CS- mega-analysis revealed the broad
activation of subcortical regions, particularly the thalamus and basal
ganglia. The largest of these activation patterns were observed in the
dorsal striatum, specifically the caudate nucleus (CN); the globus palli-
dus extending to the striatum; the ventral tegmental area extending to
the habenula; the mediodorsal thalamus (Thal); and the midbrain teg-
mentum. Activation of the midbrain was noted generally across the
dorsal midbrain ( ~ substantia nigra/red nucleus and pretectal nuclei)
(Supplementary Fig. S1). To specifically assess the role of the amygdala,
we conducted a Region of Interest (ROI) mega-analysis focusing on this
region (seeMaterials andMethods),which indicated that neither the left
(t = 1.93, p =0.054, Cohen’s d =0.129, 95% CI [–0.002, 0.260]) nor the
right amygdala (t = 1.57, p =0.116, Cohen’s d=0.117, 95% CI [–0.029,
0.264]) showed significant activation during fear conditioning.

We also observed significant deactivations (CS + <CS- contrast)
during fear conditioning, predominantly in regions of the default
mode network (Fig. 1c). This included the PCC and precuneus; the
vmPFC extending to the mPFC and subgenual cingulate cortex medi-
ally, as well as the left dorsal prefrontal cortex (dPFC); the bilateral
angular gyri; and the parahippocampi and hippocampi (Hipp). Addi-
tional deactivationwasobserved in the lateral orbitofrontal cortex; the
primary somatosensory cortex (SI); as well as the left temporal (TG)
and fusiform gyri (see Supplementary Fig. S2 for detailed activation
and deactivation across axial, sagittal, and coronal slices).

Heterogeneity in the neural correlates of conditioning
We estimated voxel-wise normative models of fear-conditioning rela-
ted activation using the CS + >CS- contrast from894 controls (training
sample), and specifying age, biological sex, sample, and task variables
as covariates (see Materials and Methods for all variables. The nor-
mative modeling sample is smaller than the mega-analysis due to the
requirement for participants to have data on all covariates used in
model construction). Testing thesemodels with a held-out test sample
(n = 646) showed good model fit with explained variance reaching 0.3
in regions that showed activation during fear conditioning (Fig. 1b),
and skew and kurtosis within acceptable limits (Supplementary
Fig. S3). For each participant in our held-out test sample, we then
calculated a deviation score (z-score) within each voxel. In other
words, for each participant, we quantified the distance from the pre-
dicted mean activation of each voxel, relative to the normative refer-
ence distribution for that voxel (Fig. 1d). While almost every voxel had
at least 5 participants with large deviations (deviations > ±2.6),
including areas, such as the bilateral insula and expanses of the
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cingulate cortex extending to the medial prefrontal cortex (Supple-
mentary Fig. S4), controls most frequently had large deviations (both
positive andnegative)within themost ventral regionof the vmPFCand
inferior temporal pole. As this ventral region is notoriously prone to
signal dropout, we interpret this result asmost likely reflecting varying
signal intensity rather than individual differences, and thus chose to
interpret deviations within this region with caution (Fig. 1e).

Individual differences have small associations with conditioning
We examined the role of the following individual differences variables
using LMMs and normative models (Fig. 1a): age, biological sex, and
self-reported trait anxiety and depressive symptoms. In normative
models, we analyzed both regression coefficients, reflecting each
variable’s contribution to the regression equation, and structure
coefficients, indicating the direct bivariate relationship between a
variable and brain activity without accounting for other predictors.

In LMMs, age (n = 1884 controls) and biological sex (n = 1888
controls) showed a significant association with brain activation or
deactivation during fear conditioning (Supplementary Fig. S5). How-
ever, the effect sizes were small (Supplementary Discussion). Addi-
tionally, the age range was restricted (see Table 1). Regression and
structure coefficients also showed minimal effects of age and biolo-
gical sex (n = 646 controls) (Supplementary Fig. S5). Neither trait
anxiety (n = 1402 controls), using either harmonised or non-
harmonised scores (Supplementary Methods), nor depressive symp-
toms (n = 213 controls) were significantly associated with brain acti-
vation or deactivation during fear conditioning in LMMs. Similarly,
elastic net regressions showed that whole-brain deviation scores

derived from normative models could not explain the variance in
individual levels of trait anxiety (n = 751 controls and cases; r2 = –0.095,
p =0.459), nor depressive symptoms (n = 152 controls and cases;
r2 = –0.257,p =0.605). SeeMethods for a noteonnegative r2 values and
Supplementary Table S1 for trait anxiety and depressive symptoms
scores.

Task variables have a robust effect on conditioning
The influence of task variables on brain activation during fear con-
ditioning was also examined using LMMs and structure coefficients
fromnormativemodels in healthy controls. Several task variables were
associated with robust effects across individuals, showing at least
moderate effect sizes in LMMs and reaching significance in normative
modeling analyses. These included instructions given to the partici-
pant about contingency prior to the task, the type of US, the use of a
paradigm with multiple CSs (i.e., more than one CS+ or CS-), the
pairing rate (i.e., percentage of CS+ followedby aUS), and potentialUS
confounding (i.e. whether trials followed by the US were included in
the CS+ vs CS- contrast, and therefore the effects of the US may con-
found the effects of the CS+).

Partial instructions about CS-US contingency (n = 1388) were
associatedwith significantly increased activation in the supplementary
motor area and superior parietal lobule compared to no instructions
about contingency (n = 500) in LMMs. Structure coefficients from the
normative models (n = 646) showed that partial instructions (as com-
pared to no instructions) produced a model predicting more activa-
tion in the bilateral anterior insula, the thalamus, the left caudate,
clusters within the dorsomedial prefrontal cortex, the dorsolateral

Fig. 1 | Neural correlates and individual-level heterogeneity in human fear
conditioning. Schematic indicating the levels of analysis (a). Significant brain
functional activation (b) and deactivation (c) to the CS+ versus CS− determined by
mega-analysis (n = 1888 healthy controls). Schematic of normative modelling fra-
mework (d). Normative probabilitymaps illustrate the percentage of participants in
the healthy control test sample who had positive (hot colours -right) or negative
deviations (cool colours - left) >±2.6 within each voxel. Circle highlights frequent
large deviations (both positive and negative) within the most ventral region of the

vmPFC (e). AIC anterior insular cortex, AG angular gyrus, CN caudate nucleus,
dACC dorsal anterior cingulate cortex, dlPFC dorsolateral prefrontal cortex, dPFC
dorsal prefrontal cortex, dPons dorsal pons, dPrec dorsal precuneus, Hipp hippo-
campus, HYP hypothalamus, lOFC lateral orbitofrontal cortex, PCC posterior cin-
gulate cortex, SI primary somatosensory cortex, SII secondary somatosensory
cortex, SMA supplementarymotor area, TG temporal gyrus, Thal thalamus, vmPFC
ventromedial prefrontal cortex. Source data are provided as a Source Data file.
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precuneus, and in the posterior region of the vmPFC. The model also
predicted less activation within the bilateral visual cortex, the anterior
medial temporal gyrus, and in the anterior vmPFC with the use of
partial instructions (Fig. 2a). Note that we excluded instructed con-
ditioning studies (Materials and Methods).

Compared with an auditory US (n = 337), a tactile electric shock
US (n = 1472) produced significantly greater activation in bilateral
dorsal mid-insula, dorsal medial thalamus, and pre-supplementary
motor area, extending to the dACC (n = 337) in LMMs. In normative

modelling analyses, a tactile electric shock US predicted increased
activation within the dACC extending to the pre-supplementarymotor
area, the dorsal precuneus, secondary somatosensory cortex, the
bilateral dorsal mid- to- posterior insula, the midbrain and pons, and
the superior cerebellum, and less activation (i.e., more deactivation)
within an expanse of the vmPFC, and SI. Moreover, the use of an
auditory US was significantly associated with increased activation in
the left auditory cortex and was predictive of increased activation in
the bilateral auditory cortex (superior temporal lobe) and less

Table 1 | Descriptive statistics for all samples (N = 43) included in the analyses

Sample Country N Sex
(%females)

Healthy Con-
trols (n)

Patients
(n)

Age
M (SD) | Range (min-max)

Years of education
M (SD) | Range (min-max)

Amsterdam_Visser/Kindt__sample_1 NL 18 72 18 0 22.06 (3.35) | 18–31 not available

Amsterdam_Visser/Kindt__sample_2 NL 41 73 41 0 20.56 (1.79) | 18–24 not available

Amsterdam_Visser/Kindt__sample_3 NL 12 75 12 0 21 (1.35) | 19-23 not available

Amsterdam_Visser/Kindt__sample_4 NL 10 80 10 0 22.8 (2.04) | 20–26 not available

Amsterdam_Visser/Kindt__sample_5 NL 13 85 13 0 22.23 (4.07) | 19–35 not available

Amsterdam_Visser/Kindt__sample_6 NL 14 79 14 0 23.43 (2.71) | 18–29 not available

Amsterdam_Visser/Kindt__sample_7 NL 16 44 16 0 24.06 (3.36) | 18–29 not available

Amsterdam_Visser/Kindt__sample_8 NL 9 100 9 0 20.33 (1.41) | 18–22 not available

Amsterdam_Visser/Kindt__sample_9 NL 38 58 38 0 23.66 (3.78) | 18–33 not available

Austin_Cisler US 61 100 0 61 33.72 (8.48) | 21–50 15.46 (2.64) | 10–22

Barcelona_Cardoner SP 71 66 45 26 22.66 (4.67) | 18–-40 14.49 (2.15) | 12–20

Barcelona_Soriano_sample_1 SP 35 51 17 18 37.43 (10.54) | 19–58 14.69 (3.72) | 6-18

Barcelona_Soriano_sample_2 SP 147 50 122 25 24.76 (4.22) | 19–36 18.63 (3.95) | 13–26

Bielefeld_Lonsdorf_sample_1 GE 116 66 116 0 24.61 (3.61) | 18–34 15.26 (2.14) | 1-16

Bielefeld_Lonsdorf_sample_2 GE 80 56 80 0 24.88 (3.51) | 19–34 not available

Bielefeld_Lonsdorf_sample_3 GE 28 64 28 0 24.68 (4.95) | 18–39 13.36 (1.75) | 11–20

Bochum_Elsenbruch GE 29 48 29 0 26.45 (3.59) | 19–33 17.45 (4.02) | 3-23

Bochum_Merz_sample_1 GE 59 49 59 0 23.88 (4.17) | 18–34 16.07 (3.4) | 9-26

Bochum_Merz_sample_2 GE 59 47 59 0 24.39 (3.83) | 18–35 15.86 (3.72) | 5-23

Bochum_Merz_sample_3 GE 47 49 47 0 22.87 (2.61) | 19–30 not available

Bochum_Merz_sample_4 GE 29 0 29 0 24.21 (3.62) | 19–33 not available

Bochum_Merz_sample_5 GE 31 0 31 0 24.71 (3.87) | 20–34 not available

Bochum_Merz_sample_6 GE 60 50 60 0 23.57 (2.95) | 18–33 not available

Columbia_Neria US 95 46 65 30 35.65 (12.26) | 18–60 15.11 (2.45) | 10–24

Duke_LaBar_sample_1 US 38 47 38 0 24.68 (4.2) | 19–35 not available

Duke_LaBar_sample_2 US 37 49 37 0 29.16 (11.07) | 19–66 not available

Florida_Keil US 14 36 14 0 19.79 (2.08) | 18–26 14 (0) | 14–14

Harvard_McLaughlin US 89 55 75 14 13.06 (2.6) | 8–17 7.04 (2.32) | 2–10

Manitoba_Greening_sample_1 CA 13 38 13 0 24 (5.07) | 19–36 17.15 (3.02) | 14–23

Manitoba_Greening_sample_2 CA 31 55 31 0 24.23 (4.56) | 17–33 not available

Melbourne_Harrison AU 112 61 75 37 20.88 (2.34) | 16–25 15.02 (2.21) | 11–21

Munich_Koch GE 45 56 23 22 34.47 (12.39) | 20-63 not available

Munster_Moeck_sample_1 GE 42 69 42 0 26.02 (6.22) | 19–51 12.33 (1.37) | 7-15

Munster_Moeck_sample_2 GE 29 52 29 0 15.79 (0.98) | 14–17 10.64 (0.99) | 8-12

Reading_Reekum_sample_1 UK 21 57 21 0 24 (2.59) | 21–31 not available

Reading_Reekum_sample_2 UK 50 60 50 0 17.8 (3.46) | 12–25 11.34 (1.82) | 8–14

MGH_Tuominen_sample_1 US 14 0 14 0 36.36 (9.61) | 22–49 15.69 (1.84) | 12–19

MGH_Tuominen_sample_2 US 37 43 37 0 28.51 (5.81) | 19–42 17.08 (2.27) | 12–23

USP_Diniz BR 55 58 27 28 35.56 (10.97) | 19–63 13.13 (4.1) | 1–17

Texas_Dunsmoor US 45 64 23 22 23.47 (4.51) | 18–37 NA

Ulm_Abler GE 50 0 50 0 22.6 (2.92) | 18–29 NA

Uppsala_Ahs SW 278 58 278 0 33.87 (10) | 20–58 14.16 (1.65) | 9–15

Vanderbilt_Kaczkurkin US 81 0 53 28 33.47 (9.7) | 19–61 15.74 (2.18) | 13–20

Total n/Mean (SD)/Range 2199 52.69 1888 311 25.26 (5.47) |8–66 14.53 (2.56) | 1–26

AUAustralia, BRBrazil,CACanada,GEGermany,NANot available,NLTheNetherlands,SPSpain,SWSweden,UKUnited Kingdom,USUnitedStates. Note: To be included in the normativemodelling
analysis each participant had to have all essential data (age, sex) available, samples had to have control participants and larger samples required both genders available. These reasons lead to the
exclusion of the entire Austin_Cisler and Vanderbilt_Kaczkurkin datasets, as well as 7 additional participants. The Bielefeld_Lonsdorf_sample_3 was not approved for inclusion in the normative
modelling analysis. Thus, a total of 177 fewer participants were included in the normative modelling analys.
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deactivation (i.e.,moredifferential activation)within an expanse of the
vmPFC extending to the dorsomedial prefrontal cortex, PCC, angular
gyrus, and SI (Fig. 2b).

In LMMs, compared to paradigms with a single CS+ (n = 1283),
paradigms with multiple CS+ (n = 605) produced increased activation
in the left supplementary motor area (SMA) and left dorsal precuneus
and widespread increased deactivation in regions including the

bilateral temporal poles, the right parahippocampal gyrus extending
to the fusiform gyrus, the left visual association cortex extending to
the angular gyrus, and the right primary motor and somatosensory
cortex. Comparing paradigms with multiple CS- (n = 302) and those
with a single CS- (n = 1586) revealed identical regions with increased
activation to paradigms with multiple CS + . Conversely, increased
deactivation was shown in the bilateral anterior hippocampus, ventral
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PCC, primary motor and somatosensory cortex, precuneus, and right
mid-insula. In normativemodels, thiswasmodelled using two variables
(multiple CS+ andmultiple CS-).Multiple CS+ predicted less activation
within the bilateral amygdala, a bilateral expanse of SI the angular
gyrus, the PCC, the bilateral putamen and caudate, and the lingual
gyrus. Similarly, multiple CS- predicted decreased activation within a
bilateral expanse of SI and the lingual gyrus (Fig. 2c).

Pairing rate, treated as a continuous variable, did not relate to
brain activation during conditioning in LMMs. However, due to the
non-normal distributionof pairing rates across studies and individuals,
we categorized pairing rates (e.g., 30, 50, and 100%) and conducted
ANOVA-like LLMs followed by pairwise comparisons with Holm-
Bonferroni correction, which revealed significant effects (Fig. 2d). In
particular, the comparisons involving the 50% pairing rate category
was the category where significant differences between categories
occurred most frequently. The significant differences between the
pairing rate categories occurred both with (Supplementary Fig. S6)
and without (Supplementary Fig. S7) US confounding. The structure
coefficients for pairing rate (as a linear association) showed that a
higher pairing rate predicted greater activation within visual regions
(calcarine, lingual gyrus and cuneus), the precuneus, the left dorso-
lateral prefrontal cortex, the superior gyrus of the temporal lobe, and
(less deactivation of) an anterior region of the vmPFC. Conversely, a
higher pairing rate predicted less activation within the mid-cingulate
cortex, the bilateral anterior insula, a posterior region of the vmPFC as
well as the thalamus and caudate (Fig. 2d).

Finally, potential US confounding (n = 997), compared to no
confounding (n = 891), was associated with significantly increased
widespread activation during fear conditioning (CS + >CS- contrast).
This activation was observed across the bilateral fusiform and lingual
gyri, temporal poles, angular gyri, posterior insula, primary motor
cortex, retrosplenial cortex (extending to the posterior hippocampus),
and right amygdala, predominantly in the superficial amygdala, in
linear mixedmodels (LMMs). Similarly, structure coefficients from the
normativemodels showed that themodel predicted greater activation
within the bilateral mid-cingulate cortex extending to the dorsomedial
prefrontal cortex and pre-supplementary motor area, angular gyri,
mid-to-posterior insula, superior temporal gyrus and temporal poles,
fusiform gyri and lateral mid-occipital gyrus, amygdala, caudate, dor-
sal thalamus, and dorsolateral cerebellum with potential US con-
founding (Fig. 2e).

None of the above results were affected by excessive multi-
collinearity, except for the association between pairing rate and the
potential US confound (Supplementary Tables S5–S8). We identified
six small clusters where the effects of both variables overlapped. To
further disentangle their contributions, we conducted mixed-effects
models within these clusters, including both variables as predictors.
Results indicated that both variables exerted statistically significant
effects in all clusters except for one small cluster in the right middle
occipital region, where the effect of the US confound was no longer
significant. Given the absence of multicollinearity (Variance Inflation
Factor = 1.8), we concluded that activation in this region is specifically
modulated by the pairing rate, rather than by the US confound.

The remaining task variables (for example, the number of trials
during preconditioning) showed weaker effects or were not sig-
nificantly associated with brain (de)activation during conditioning in
the mega-analysis or normative modelling analyses (Supplementary
Figs. S8 and S9 and Supplementary Discussion).

Cases and controls show differences in conditioning
In the mega-analysis, individuals with anxiety-related and depressive
disorders (cases, n = 311) showed significantly increased activation in
the right ventrolateral prefrontal cortex (anterior pars orbitalis), dorsal
frontal pole, PCC, left temporal pole, and bilateral primarymotor areas
compared to controls (n = 1888) (Fig. 3a). Similar results were found
when comparing individuals with anxiety-related disorders (i.e.,
excludingmajor depressive disorder; remaining n = 297) and controls,
with additional clusters observed in the dorsal prefrontal cortex, visual
association cortex, and primary somatosensory cortex (Supplemen-
tary Fig. S10). After excluding individuals who were taking medication
at the time of the scan, those with anxiety-related and depressive
disorders (n = 221) still showed significantly increased activation in the
dorsal medial prefrontal cortex, dorsal PCC extending to the superior
parietal lobule, left medial TG and bilateral ventrolateral prefrontal
cortex compared to controls (Supplementary Fig. S11).

In normative modelling, we tested our clinical test sample (260
controls + 222 cases) against our reference normative models. This
analysis compared the individuals’ deviation scores (z-score) within
each voxel, and quantified, as a percentage of the sample, the fre-
quency of participants with large positive or large negative deviations
(Fig. 3b). We compared the frequency of extreme deviations
throughout the whole brain (Normative Probability Maps thresholded
at > ±2.6), and found that cases had, on average, a greater frequency of
extreme deviations than controls (Mann–Whitney U test = 111,167.5,
p =0.014; Fig. 3c). Qualitatively, cases showed a different pattern of
deviation frequency than controls. Large deviations (i.e., more activity
than would be predicted by the model) were common across cases
within the dorsomedial prefrontal cortex, the primary somatomotor
cortex, precuneus, the bilateral primary visual cortex (medial occipital
lobe extending to the inferior medial and inferior lateral lobe)
extending to the lingual and fusiform gyrus. As with controls, cases
frequently had largenegative deviationswithin themost ventral region
of the vmPFC.

PTSD and OCD show distinct activation patterns and deviations
We divided our patient sample by primary diagnosis (PTSD, n = 141;
OCD, n = 68; GAD, n = 48; and SAD, n = 31; other diagnoses were not
included due to small sample size). ANOVA-like LMMs indicated that
there were significant differences in brain activation during con-
ditioning among patient groups. Post-hoc pairwise comparisons cor-
rected for multiple comparisons showed that the most significant
differences occurred between individuals with PTSD and OCD with
respect to individuals with GAD and SAD (Supplementary Fig. S12).

Similarly, normative modelling analyses identified a significant
difference in the frequency of large deviations among patient groups
(Kruskal–Wallis H test = 71.529, p = 1.98 × 10−13; Fig. 3c). Follow-up

Fig. 2 | Robust influence of task variables on brain activation during fear
conditioning.Maps show the influence of pre-task instructions about CS-US con-
tingency (a), type ofUS (b), numberofCS used inparadigm (i.e.multiple CS+ or CS-
or singleCS+orCS-) (c), pairing rate (d), andpotential US confounding inCS + >CS-
contrast (e) on mean activation (left; mega-analysis linear mixed-effects models)
and relation to predicted activation (right; normativemodel structure coefficients).
For the mega-analysis, warm colours indicate positive correlations (i.e., higher
variable values associated with greater activation), while cool colours indicate
negative correlations (i.e., higher variable values associated with reduced activa-
tion). For normative modeling, structure coefficient maps show the correlation
coefficients (rho) thresholded by their respective coefficients of determination

(rho2 > 0.3) of selected task variables. This can be interpreted as showing how
predicted activation to the CS + >CS- contrast relates to the task variables included
in the building of the normative models. Positive correlations (warm colours)
indicate greater activation for higher values of the input variable and negative
correlations (cool colours) greater activation for lower values of the input variable
(note that some variables are dummy coded, e.g., pre-task instructions, type of US).
CS Conditioned Stimulus; US Unconditioned Stimulus. For Pairing Rate (RR) in
linear mixed-effects models, the figure shows significant results in the ANOVA
comparing four categories (RR30, RR50, RR62, RR100). For the results of post-hoc
tests, see Supplementary Figs. S6 and S7. Source data are provided as a Source
Data file.
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Mann-Whitney U tests (FDR corrected for multiple comparisons)
clarified, for example, that extreme deviations occurred most fre-
quently in individuals with PTSD, as compared to other disorders,
followed by OCD. We then illustrated the location of these extreme
deviations at the voxel level to determine whether they were spatially
overlapping within and between patient groups (Fig. 3d and Supple-
mentary Fig. S13). Individuals with PTSD showed frequent large posi-
tive deviations within the bilateral medial occipital lobe extending to
the inferior temporal lobe and lingual gyrus, bilateral vlPFC, an
expanse of the dmPFC, precuneus, and bilateral amygdala. They also
showed frequent large negative deviations within an expanse of the
vmPFC (posterior vmPFC focus), precuneus, and a focus of the lingual
gyrus and fusiform gyrus. There were very few regions wherein indi-
viduals with GAD showed overlapping large deviations, and similarly
for SAD except for a small region of the bilateral lingual gyrus

frequently found to have large positive deviations. Individuals with
OCD showed frequent large deviations within the inferior parietal
cortex, and temporal pole. A support vectormachine couldnot classify
cases from controls better than chance using whole-brain deviation
maps (meanAUC=0.44, p = 1.0, 95%CI [0.30, 0.58]). However, amulti-
class support vector classifier confirmed auniquepattern of deviations
among cases (Fig. 3e). More specifically, PTSD, on average, was accu-
rately classified 54.55% of the time (mean F1 score = 0.58;
p = 2.06 × 10−23; balanced accuracy = 0.43, where chance level across
four classes = 0.25). Interestingly, despite fewer overlapping extreme
deviations within the OCD group, the classifier was able to accurately
label individuals with OCD 73.74% of the time (mean F1 score: 0.57;
p = 1.71 × 10−7, 95% CI [0.54, 0.60]). GAD and SAD were only accurately
classified 31.78% (mean F1 score: 0.35) and 13.33% (mean F1 score: 0.17)
of the time, respectively, and were often misclassified as OCD. The

Fig. 3 | Differences between individuals with anxiety-related and depressive
disorders and healthy controls in human fear conditioning. Regions wherein
individuals with anxiety-related and depressive disorders (n = 311) showed sig-
nificantly increased functional activation to the CS+ versus CS− , as compared to
healthy controls (a). Normative probability maps illustrate the percentage of par-
ticipants in the sample (test controls – top; individuals with anxiety-related and
depressive disorders – bottom) who had positive (hot colours – right) or negative
deviations (cool colours – left) > ±2.6 within each voxel (b). Box plots show the
distribution of the total number of large deviations (> ±2.6) per group. The centre
line indicates the median; box bounds represent the 25 and 75th percentiles
(interquartile range, IQR); whiskers extend to the smallest and largest values within
1.5 × IQR from the lower and upper quartiles. Sample sizes: control group n = 646;

PTSD n = 55; OCD n = 68; GAD n = 48; SAD n = 31; total clinical group n = 202 (c).
Normative probability maps illustrate the percentage of each clinical group who
had positive (hot colours – right) or negative deviations (cool colours – left) > ±2.6
within each voxel (d). Confusion matrix for multi-class support vector machine
differentiating patterns of deviations among clinical groups (e). ARDD anxiety-
related and depressive disorders, GAD Generalised Anxiety Disorder, OCD Obses-
sive Compulsive Disorder, PTSD Post-traumatic Stress Disorder, SAD Social Anxiety
Disorder. * = p <0.05, ** = p <0.01, *** = p <0.0001. Kruskal–Wallis H-tests were
used to test for main group effects (cases vs controls), with follow-up
Mann–WhitneyU tests false discovery rate (FDR) corrected at α =0.05. Source data
are provided as a Source Data file.
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mean voxel-wise coefficient weights and frequency of contribution (in
penalised permutations) to this classification are displayed in Sup-
plementary Fig. S14.

Sample size for future studies
We conducted a series of sample size analyses to guide the design of
future fMRI fear-conditioning studies (Supplementary Methods). To
detect activation or deactivation in 50% of the brain regions identified
in themega-analysis (basedon theAAL atlas39), a sample size of 122was
required, while detecting 80% of these regions required 243 partici-
pants (Supplementary Fig. S15).When considering activations only, the
required sample sizes were slightly smaller: 100 participants to detect
50% and 199participants to detect 80%of themega-analyticalfindings.
In contrast, substantially larger samples were needed to detect deac-
tivations: 263 for 50% detection and 522 for 80%. The overall false
positive rate was 9, 8, and 3% when activations and deactivations were
assessed separately, averaging 5%. Additional sample sizes results are
presented in Supplementary Figs. S16–S18.

Early and late conditioning
Given the importance of accounting for temporal dynamics in brain
activity during human fear conditioning8, we compared neural
activation during the early and late phases of conditioning in a
subset of participants (n = 634 controls; Supplementary Table S2).
Consistent with the effects observed across the entire task, both
phases showed significant activation in the CS + > CS- contrast
across several brain regions. These included the insular cortices, SII,
dlPFC, lateral premotor cortices, dorsal and lateral cerebellum,
dACC extending to the pre-supplementarymotor area and SMA, and
the dPrec (Supplementary Fig. S19). Notably, there were several
significant differences between the phases. The early phase showed
greater activation in the bilateral fusiform gyrus, SMA, right amyg-
dala, left frontal eye fields, and left motor cortex compared to the
late phase (Supplementary Fig. S19). Additionally, significant dif-
ferences were also observed in the left angular gyrus; dorsal, medial,
and ventral anterior prefrontal cortices; and lateral orbitofrontal
cortex. However, as these regions were implicated in the CS + < CS-
contrast, this suggests that they exhibited reduced deactivation
during the late phase.

Discussion
We compiled the largest (n = 2199) sample of individual-level fear
conditioning fMRI data to date to comprehensively delineate the
neural correlates of human fear conditioning, to assess the influence of
several relevant sources of variation - including individual differences
and task variables- and to evaluate potential differences in fear con-
ditioning at the neural level between individuals with anxiety-related
and depressive disorders and controls.

Our individual-level mega-analysis mapped fear conditioning
activation to the “central autonomic–interoceptive” or “salience” net-
work. As hypothesised, fear conditioning was associated with robust
activations in the anterior insula, ventral striatum, pre-supplementary
/supplementary motor areas, dorsal anterior cingulate cortex, and
dorsolateral prefrontal cortex. It was also associated with activation in
several subcortical regions, particularly the thalamus and basal gang-
lia. While many of the observed effects replicated previous findings3,
the increased statistical power provided by our analyses suggests that
peak effects in the dorsal midbrain may originate in the substantia
nigra/red nucleus and pretectal nuclei. Future work with a specific
focus on these nuclei may aid in disentangling their specific con-
tributions to fear conditioning. Also, as hypothesised, fear condition-
ing was associated with robust deactivations in the ventromedial
prefrontal cortex and hippocampus. Other brain regions that were
deactivated during conditioning included primarily regions of the
default mode network (e.g., PCC and precuneus).

By incorporating a large sample from multiple laboratories
worldwide, our study underscores the generalizability of the neural
correlates of conditioning at the population level. At the same time,
the methodological diversity across laboratories and studies suggests
that our findings extend beyond specific experimental conditions,
reinforcing their relevance to the broader fear conditioning process.
Notably, at a time when neuroimaging research is increasingly
emphasizing sample sizes in the thousands40, our analyses show that
studies with 100 participants can still reliably detect the neural cor-
relates of fear conditioning, at least when considering activations only.
Furthermore, our findings highlight that a significant source of varia-
bility in neural responses during fear conditioning stems from differ-
ences in task design. This insight is crucial for future human fMRI
studies, as it enables researchers to anticipate the expected effects of
various task and contrast design choices, along with their magnitudes,
at the neural level. By making these adjustments in advance,
researchers can strike a balance between the advantages of large,
standardized studies and those of smaller studies with greater meth-
odological diversity. Moreover, our normative modeling results
underscore the potential of fear conditioning paradigms for informing
the development of targeted interventions. Specifically, normative
models can identify brain regions with atypical activation during
conditioning, providing valuable guidance for interventions, such as
neuromodulatory treatments aimed at these regions41. Additionally, by
pinpointing abnormal activation patterns, normative models enable
clinicians to tailor treatments more precisely to address these specific
neural deviations.

The amygdala was not robustly activated during fear conditioning
in either ourmega-analysis or ROI-basedmega-analysis for the contrast
averaging across all trials, consistent with our previous group-level
meta-analysis3. However, and in line with a recent study by Wen and
colleagues8 (n = 601, including individuals with anxiety-related dis-
orders and controls), our analysis of early versus late trials in a large
subsample of participants (n = 634 controls) revealed significantly
greater activation in the right amygdala during early compared to late
trials.

Inconsistencies regarding amygdala involvement in human fMRI
conditioning studies have been attributed to several factors, including
small sample sizes and limited anatomical specificity. The amygdala
consists of distinct subregions, such as the basolateral (BLA) and
centromedial (CMA) amygdala, and averaging responses may mask
specific activations8,10. Moreover, the amygdala’s subcortical and ven-
tral location, its small size, and the susceptibility artifacts and low
signal-to-noise ratio associated with traditional imaging techniques
can further hinder detection of significant effects42. Ultra-high field
imaging has been shown to reduce these limitations and allows for
more precise investigation of amygdala subnuclei43,44, making it a
valuable tool for future human fear conditioning studies.

Taken together with the findings of Wen and colleagues, our
results highlight the importance of considering temporal dynamics
when assessing amygdala activity during fear conditioning8. Specifi-
cally, they confirm that amygdala activation is strongest during early
trials andhabituates thereafter45,46, suggesting that averaging across all
conditioning trials may obscure these effects. In the current study, we
also identified specific task features- such as the use of paradigms with
multiple CS+ stimuli or US-related confounds- and diagnostic cate-
gories (e.g., PTSD; see also ref. 36) that modulate amygdala activity
during conditioning. These findings underscore that both clinical and
task-related variables may also contribute to the inconsistencies
observed in the literature.

Biological sex had only minor effects, suggesting that fear con-
ditioning mechanisms are relatively stable at the neural level between
sexes. Additionally, none of our analyses found significant associations
betweenbrain activationduring conditioning and levels of trait anxiety
or depressive symptoms. While some mental health frameworks
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suggest that dimensional constructs of psychopathology, like trait
anxiety, may better reflect neural activation patterns47, the variability
and complexity in the neural states underlying these constructs and
their lack of direct mapping to neural processes makes it challenging
to identify clear linear relationships48,49.

The brain activation differences during conditioning between
individuals with anxiety-related and depressive disorders and healthy
controls, observed in the mega-analysis, aligned with normative
modeling results, showing a higher frequency of large deviations in
cases. Importantly, these differences remained significant even after
excluding medicated cases, suggesting that the observed effects are
not due to medication. This is crucial, as commonly used treatments
like selective serotonin reuptake inhibitors (SSRIs) can influence brain
activation patterns observed with fMRI50. When the analysis was lim-
ited to anxiety-related disorders, significant differences in brain acti-
vation persisted, indicating that individuals with pathological anxiety
are characterized by abnormal neural responses during fear con-
ditioning. These findings suggest that such abnormalities could
eventually serve as neural markers for anxiety-related disorders51,52.

Among individuals with anxiety-related disorders, those with
PTSD and OCD showed distinct patterns of brain activation and had
distinct patterns of voxel-wise deviations that can be used to distin-
guish them from other anxiety-related disorders. This provides neu-
robiological support for the decision of current diagnostic
classifications to separate these conditions53. In addition, it may pro-
vide valuable insights into the underlying mechanisms of psycho-
pathology. The sample of individuals with PTSD was still relatively
heterogeneous, with data from three independent samples, and yet
there were often overlapping extreme positive deviations. Further-
more, using the derived deviation scores we were able to differentiate
and classify individuals with PTSD and OCD with striking precision,
compared to GAD and SAD. This is consistent with the previous lit-
erature that usedmeanaveragingmethods and reporteddifferences in
activation levels between groups of individuals with PTSD, compared
to controls36,54. Taken together, this suggests that the neural mechan-
isms engaged during a fear conditioning paradigm are specifically
relevant to the psychopathology of, and to some extent, similarly
altered across individuals with PTSD; reinforcing the notion that fear
conditioning is a foundational process in PTSD psychopathology, and
as such, related tasks are a useful clinical model31. The accurate dif-
ferentiation of OCD, despite few regions of overlapping large devia-
tions, appeared to be driven by consistent coefficient weights with a
region of the bilateral superior temporal gyrus and right vlPFC. Com-
bined with no strong behavioural evidence55, mixed imaging evidence
of differences in fear conditioning tasks in this population56–59, and
evidence of altered baseline activity within the superior temporal
region60, this finding may be interpreted as capturing compensatory
mechanisms that individuals with OCD engage to overcome obses-
sions and achieve the same behavioural output55,60,61. Despite sig-
nificant differences in the frequency of extreme deviations between
individuals with GAD and SAD compared to controls, their limited
spatial overlap and less accurate classifications, suggest that there is
significant heterogeneity in fear conditioning among individuals with
these diagnoses. Thus, while we suggest that the psychopathology of
PTSD is uniquely related to fear or threat processing as captured by
fear conditioning tasks, we propose that other anxiety-related dis-
orders, particularly GAD and SAD are less so.

Our study has several limitations. First, despite using harmonized
pre-processing pipelines and statistical models to account for site
differences, variations in diagnostic routines and imaging acquisition
contributed to sample heterogeneity, particularly among individuals
with anxiety and depressive disorders (a label that includes already
heterogenous disorders). Second, mega-analyses may have limited
power to detect effects in small subgroups (e.g., SAD patients). Third,
for participants with amental health diagnosis, we focused on primary

diagnoses and we could not assess (or control for) comorbidity.
Fourth, while our normative models adjusted for site, age, biological
sex, and task influences onbrain activity, future studies should explore
the impact of adding more variables in the model construction. It is
possible that alternative model structures could have increased the
explained variance in the relatively noisy BOLD activation (where other
literature has explained up to 51.3% of the variance25). However, care
must be taken not to overfit or reduce the generalisability ofmodels to
ensure their wider utility. Fifth, we were unable to include other
individual-level measures of conditioning (e.g., psychophysiological
data) in our analyses, as this would have required separate collection
and harmonization procedures. Finally, cross-sectional data on brain
activation during fear conditioning raises concerns about the relia-
bility of outcome measures. Although fMRI-based fear conditioning
shows limited test-retest reliability at the whole-brain level, significant
within-subject similarity across repeated time points has been
observed62, suggesting that large test-retest samples could help fur-
ther validate the normative modeling approach, as demonstrated in
other tasks25.

With this work, we provide the largest analysis of the neural cor-
relates of human fear conditioning and potential sources of variation
to date. Our results confirm that human fear conditioning is a robust
phenomenon at the neural level, consistently engaging multiple brain
regions within the central autonomic-interoceptive or salience net-
work. Our comprehensive review of the influence of task design
choices on elicited and predicted brain activation can be used to help
interpret differences in the previous literature and should remind
researchers of the potentially significant influence of task design
choices. Finally, we found that there are overall differences in fear
conditioning at the neural level between individuals with anxiety-
related and depressive disorders and controls, and that a unique
mechanism of PTSD psychopathology is well captured by fear con-
ditioning paradigms, supporting the use of these models to study this
disorder.

Methods
The current manuscript combines two pre-registered analyses of
individual-level fear conditioning fMRI data (https://osf.io/7n953;
https://osf.io/w74bt). Data were collated from 43 samples originating
from 23 sites in nine countries. Collation was coordinated by the lead
group (IDIBAPS Barcelona). ENIGMA Fear Conditioning is part of the
larger ENIGMA-Anxiety Working Group63. Table 1 summarizes the
descriptive information on the samples. Informed consent was
obtained from all participants by the sites providing their data. Some
site-specific data have been reported previously, but no reports have
examined all individual data together.

Inclusion and ethics
This study involved secondary analyses of previously collected human
neuroimaging datasets. No new data were acquired specifically for the
purposes of this study. All original studies received approval from their
respective institutional ethics committees and were conducted in
accordance with the Declaration of Helsinki. Informed consent was
obtained from all participants in the original studies. The following
Ethics Committees approved the individual studies: Ethics Committee
of Ulm University, Ulm, Germany; Regional Ethics Review Board in
Uppsala; Institutional Review Board of University Hospital of Bellvitge,
Barcelona, Spain and Institutional Review Board of Hospital del Mar,
Barcelona, Spain; Institutional Review Board University of Wisconsin;
InstitutionalReviewBoardUniversity of Arkansas forMedical Sciences;
Comissão de Análise de Projetos de Pesquisa do Hospital das Clínicas
da Faculdade de Medicina da Universidade de São Paulo (CAPPesq);
Institutional Review Board University of Texas at Austin; Ethics Com-
mittee of the University Hospital Essen, Germany; University of
Southern California Institutional Review Board; Louisiana State
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University Institutional Review Board; The University of Melbourne
Human Research Ethics Committee; Institutional Review Board Uni-
versity of Minnesota; Institutional Review Board University of Florida;
Ethics Committee of Klinikum Rechts der Isar, Technische Universität
München; Duke University Health System Institutional Review Board;
EthicsCommittee of the GeneralMedical Council Hamburg; University
of Washington and Harvard University Institutional Review Boards;
Ethics Committee of the Faculty of Medicine of the Ruhr University
Bochum; Ethics Committee of the Faculty of Psychology and Sport
Science, University of Giessen; University Research Ethics Committee
of the University of Reading, UK; Clinical Research Ethics Committee
(CEIC) of the Bellvitge University Hospital; Ethics Committee of the
German Psychological Society; Partners HealthCare Institutional
Review Board; Ethics Review Board (ERB) University of Amsterdam;
Institutional Review Board, New York State Psychiatric Institute.

Inclusion and exclusion criteria were pre-specified within each
dataset and were applied consistently during data aggregation.
Sex was either self-reported by participants or recorded as sex
assigned at birth, depending on the protocol of the original
study. Sex was considered in the study design and used for
descriptive statistics and group-level comparisons. Gender identity
was not systematically collected across datasets and was therefore
not analysed.

Fear conditioning task
We included data from participants who completed a fear condition-
ing experiment during an fMRI scan. There are several human fear
conditioning paradigms, which vary based on the time elapsed
between the CS and the US (e.g., delay, trace, simultaneous, or back-
ward conditioning), the use of one (single-cue) versus two or more
(differential-cue) CSs, and the instructions given to participants2: 1) No
instructions: For example, “During this experiment, youwill see various
images and might experience mild electric shocks at certain times”; 2)
Partial instructions: For example, “During this experiment, youmay see
a particular image sometimes followed by a mild electric shock.
However, the shock won’t happen every time you see the image, and
sometimes it might not appear at all. Pay attention to the images, as
they might give you some indication of when the shock could occur”;
3) Full instructions (instructed conditioning): For example, “During this
experiment, you will see the image X, which is always followed by a
mild electric shock.Whenever this image appears, it will be followedby
the shock shortly afterward. No other images will be associated with
the shock”.

We focused ondelaydifferential cue-conditioning paradigmswith
no or partial instructions (i.e., excluded instructed conditioning stu-
dies), and focused our analysis on comparing the response to a CS+
compared to a CS-. Table 2 summarises information on the fear con-
ditioning tasks included in this manuscript.

Non-imaging data: sociodemographics and individual
differences
All sites were asked to provide information regarding socio-
demographics (age, biological sex) and individual differences: trait
anxiety, assessed with the Trait subscale of the State-Trait Anxiety
Inventory (STAI-T)64; and depressive symptoms, assessed with the
Beck Depression Inventory (BDI)65 (Supplementary Table S1). For
individuals with anxiety-related and depressive disorders, sites were
asked about principal mental health diagnosis and psychotropic
medication use at the time of the scan (Supplementary Table S3).
Previous normative studies of trait anxiety (STAI-T) have shown addi-
tive and multiplicative differences across countries, for which we
harmonised trait anxiety scores across countries using ComBat14

(Supplementary Methods) and conducted subsequent analyses twice:
once with the raw scores and once with the country-harmonised
scores.

Non-imaging data: task-related variables
We collected information about the following task variables: instruc-
tions given to the participant about contingency prior to the task
(partial versus no information); type of US (e.g., electric shock versus
aversive sound); number of trials during pre-conditioning; use of a
paradigm with multiple CSs (i.e., more than one CS+ or CS-) during
conditioning; type of CS (e.g. geometrical figures, faces, etc); number
of CS+ and CS- trials during conditioning; average ITI (inter-trial
interval); average ISI (inter-stimulus interval, i.e., between the CS+ and
theUS); pairing rate (percentageofCS+ followedby aUS); potentialUS
confounding; and the number of CS+ trials and CS- trials included in
the fMRI contrast. For studies assessing awareness (conscious recog-
nition of the association between the CS+ and the US, after the task),
we also asked about participant´s contingency awareness (yes vs. no).
Task variables were not explicitly listed in the pre-registration. The
decision to include these variables was based on previous research2,13.

Processing of neuroimaging data
We included only neuroimaging data acquired with whole-brain cov-
erage. Individual-level raw task-based fMRI data were processed using
the Harmonized Analysis of Functional MRI pipeline (HALFpipe, ver-
sion 1.2.2)66, a tool developed within the ENIGMA consortium to har-
monise fMRI analyses across sites and facilitate reproducible analyses.
HALFpipe provides a standardised workflow that extends fMRIprep67

with several additional preprocessing steps, including spatial
smoothing, grand mean scaling, temporal filtering, and confound
regression. Moreover, HALFpipe generates a standardised quality
assessment of the preprocessing outputs and imaging raw data (Sup-
plementary Table S4). We used HALFPIPE default parameters
(smoothing using 6mm FWHM; confound removals using ICA-
AROMA; and a high-pass filter of 125 s).

For the current study, each site was provided with a compre-
hensive manual to perform image pre-processing and quality control
with HALFpipe in a fully harmonised manner, and each group shared
the HALFPIPE output files for each individual along with the non-
imaging data for each individual. The lead group (IDIBAPS-Barcelona)
processed five sites, aggregated all the data, and carried out additional
quality control procedures and measures to ensure the comparability
of the data, as described in the Supplementary Methods).

Statistical analyses
We conducted two types of statistical analyses: mega-analyses and
normative modelling analyses.

Mega-analyses
Participants. We included data from 2199 participants (M Age = 25.26,
SD = 5.47; 57.2% female) comprising 1888 healthy controls (M Age =
25.85, SD = 8.51; 51.53% female) and 311 individuals with a primary
diagnosis of an anxiety-related or depressive disorder (M Age = 29.91,
SD = 10.75; 58.84% female) (Table 1 and Table 3). Diagnoses were
established with structured clinical interviews.

Pre-scaling. Although we used the exact same processing protocol
and conducted extensive quality control (see above), we observed
differences in the BOLD response between samples, most likely due to
varying units of measurement (note that MRI scans are acquired in
arbitrary units68. To address these differences, we pre-scaled the ima-
ges for healthy controls so that, for each sample, the voxel-wise-
median standard deviation (after removing the effects of covariates)
was 1 (see Supplementary Methods). We then applied the pre-scaling
parameters obtained from the healthy controls to the cases (indivi-
duals with a primary diagnosis of an anxiety-related or depressive
disorder). This approach differs from using the individual z-statistic
images (i.e., dividing the BOLD response by its standard error), which
we didnot adopt for themega-analysis. The reason is that the standard
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errormay differ between cases and controls, and thus, differences in z-
statistics between groups could reflect differences in the standard
error rather than in the BOLD response (for more details, see
Supplementary Methods).

Analyses. Differences inbrain coverage across sites preventedus from
using the standard ComBat method, which determines the harmoni-
sation parameters using all voxels14. Additionally, there was no need to
remove differences in scaling because we had already pre-scaled the
images as described above. Thus, we used LMMs (with the sample as a
random intercept) to investigate: 1st the pattern of brain activation
during fear conditioning in healthy controls and in cases (individuals
with anxiety-related and depressive disorders), which tested whether
the mean activation in each voxel was non-null; 2nd the pattern of
differences in brain activation during fear conditioning between cases
and controls, which tested whether activation in each voxel was dif-
ferent between cases and controls; 3rd the pattern of differences in
brain activation during fear conditioning amongpatient groups (PTSD,
OCD, GAD, SAD), testing whether activation in each voxel differed
among patient groups; 4th the potential influence of individual dif-
ferences and task variables (see above) on brain activation during fear
conditioning in healthy controls, which tested whether activation in
each voxel was significantly associated with each individual differ-
ences or task variable. In all models, we incorporated age and sex as
covariates. Significant LMMs comparing three or more groups (analog
to ANOVAs) were followed by pairwise comparisons with Holm-
Bonferroni correction.

We also conducted an ROI mega-analysis focusing on the amyg-
dala. For this analysis, we extracted the pre-scaled BOLD response in
the left and right amygdala based on the Automated Anatomical
Labeling atlas39. We used an LMM, with age and sex as covariates, to
test whether the mean activation significantly differed from zero.
Potential differences between early and late conditioning were also
analyzed using an LMM, with age and sex as covariates in a subsample
of controls (n = 679; Supplementary Table S2).

We fitted the LMMs using custom functions (included in ‘com-
bat.enigma’ R package) that call the ‘nlme’ R package voxel-wise and
address voxel-specific details (e.g., varying collinearity due to differing
brain coverage; see Supplementary Methods). FSL was then used to
derive cluster-based corrected p-values using Gaussian Random Field
(GRF) theory.

Analyses of multicollinearity. Given the diverse range of variables
examined in this study—many of which may be influenced by metho-
dological factors (e.g., pairing rate, type of conditioned stimuli) or
sample characteristics (e.g., patient vs. control group)—there is a
potential risk of confounding. That is, the observed effects attributed
to one task variable may partially or wholly reflect the influence of
another. To address this possibility, we systematically assessed inter-
relationships among all methodological and clinical variables using
correlation analysis and evaluated multicollinearity using variance
inflation factors (VIF)(Supplementary Tables S5-S8). For pairs of vari-
ables with correlation coefficients exceeding 0.5 (or η and Cramér’s V
when involving categorical variables), we further examined whether
their associated activationmaps exhibited spatial overlap. Overlapwas
defined as clusters of at least 10 contiguous voxels showing significant
activation for both task contrasts. This approach was guided by the
rationale that classical confounding requires both variables to be
associated with activation in the same brain region. For any pair of
correlated variables with overlapping activation, we re-estimated the
mixed-effects linear models within the overlapping clusters, this time
including both variables as predictors, to determine whether their
effects remained statistically significant. A reduction to non-
significance upon joint inclusion could indicate either collinearity (as
suggested by the VIF) or potential confounding.Ta
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Effect sizes. To compare the effect sizes of different variables and to
exclude findingswith negligible or very small effects, we converted the
regression coefficients of the peaks into correlation coefficients
(Pearson r). For variables comparing two groups (e.g., cases vs. con-
trols), we also calculated the corresponding standardised mean dif-
ferences (Cohen’s d). We considered effects with r <0.2 (roughly
equivalent to d < 0.4 for balanced binary variables) to be small, and
only highlighted larger effects (i.e., r >0.2, i.e., at leastmoderate) in the
main text. It is important to note that peak effect sizes should be
interpretedwith caution, as they correspond to the peaks of clusters of
statistical significance and are, therefore, larger than thoseobtainedby
other methods. Effect sizes for all the LMMs can be found at https://
figshare.com/s/d44cc1390711bad3c147

Normative modelling analyses
Participants. We included data from 2022 participants; 1800 healthy
controls (age range 8–66 years,M Age: 25.66 ± 8.4, 53.05% female) and
222 individuals with anxiety-related and depressive disorders (age
range 9–63, M Age: 28.27 ± 11.06, 54.95% female) to build and test the
normative models. See Table 1 note to explain discrepancy in partici-
pant numbers from mega-analysis.

Generating Normative Models of Activation to the CS + >CS- con-
trast. The z-statistic maps (files) from the CS + >CS- contrast for each
participant were used as inputs (response variables) for the normative
models. We created a normative model of fear-related activation per
voxel, as a functionof age, sex, and task variables (the same reported in
the Non-imaging data: task-related variables section, except con-
tingency awareness) by training a Gaussian Bayesian Linear Regression
(BLR) model to predict activation for the CS + >CS- contrast22. We
included dummy-coded site-related variables (sample, and MR
strength) and a b-spline basis expansion as additional covariates of no-
interest. This was performed in the Predictive Clinical Neuroscience
toolkit (PCNtoolkit) softwarev0.26 (https://pcntoolkit.readthedocs.io/
en/latest) implemented in Python 3.8. Generalisability was assessed by
using a stratified train-test sample (train: 894, control test sam-
ple: 646).

Quantifying voxel-wise deviations from the normative model. To
estimate a pattern of regional deviations from typical brain function
for each participant in the control test sample (n = 646, mean age:
25.45 ± 7.19 years, 52.16% female), we derived a normative probability
map (NPM) that quantifies the voxel-wise deviation from the norma-
tive model. The subject-specific Z-score indicates the difference
between the predicted activation and true activation scaled by the
prediction variance. This was repeated for the clinical test sample
(n = 482, 260 controls + 222 cases, mean age: 26.76 ± 10.94 years,
54.97% female). We thresholded participants’ NPM at Z = ± 2.6 (i.e.,
p <0.005) as in previous work69–71 and summed the number of sig-
nificantly deviating voxels for each participant. Kruskal-Wallis H-tests
were used to test for group (cases or controls) and diagnosis effects
and, when applicable, follow-up Mann–Whitney U tests were False
Discovery Rate (FDR) corrected at α = 0.0572.

Normative models: individual differences and task variables
Model Coefficients. To probe the magnitude of the influence of
individual differences (sociodemographics) and task variables on the
predicted brain activation, we examined both the regression coeffi-
cients and the structure coefficients (correlation coefficients) of all
sociodemographic and task variables input variables. Structure coef-
ficients are preferable to regression coefficients when variables are
collinear73. Note that negative r2 values(“negative” explained variance)
are a possible outcome when the model fails to generalize effectively
to new data, despite in-sample performance yielding non-negative
explained variance (which is always positive or zero by construction).

This phenomenon is not uncommon and arises when the model’s
predictions result in a residual sum of squares that exceeds the var-
iance of the true values.

Linear Regression (Elastic Net) and Support Vector Classification
(SVC). We applied an elastic net linear regression as implemented in
the scikit-learn package (version 1.0.2)74 with 10 repeats of nested
5-fold cross validation [alphas = 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1;
90% train, 10% test split] to predict trait anxiety as measured by the
STAI-T (n = 751), or depressive symptoms as measured by the BDI
(n = 440) from participants’ whole brain (unthresholded) deviation
maps. The mean coefficient values and the frequency of the voxel’s
contribution (in other words, how many of the cross-folds split found
this voxel to be important) indicate which voxel contributed to the
prediction. The statistical significance of these results was tested
against a 1000-fold nested 5-fold test for each variable. To classify
participants (n = 703) who were contingency aware from those who
were not based on their unthresholded whole-brain deviation maps,
we used an SVC model with a linear kernel, regularisation parameter
set to 1.0, and balanced class weights as implemented in the scikit-
learn package (version 1.0.2).

Quantifying patterns of deviations between cases and controls. To
classify individuals with anxiety-related or mood disorders and con-
trols based on their whole brain unthresholded deviation maps, we
used a SVC model with a linear kernel, regularisation parameter set to
1.0, as is common in neuroimaging, and balanced class weights (i.e.
adjusted inversely proportional to class frequencies in the input data)
as implemented in the scikit-learn package (version 1.0.2)74. The eva-
luationmetric for the classification is area under the receiving operator
curve (AUC) averaged across all folds within a 10-fold cross validation
framework.

Quantifying patterns of deviations among patient groups. We used
a one versus rest support vector classifier (SVC OvR) model as
implemented in the scikit-learn package (sklearn.multiclass.O-
neVsRestClassifier version 1.0.2) to determine if there were quanti-
fiably differentiable patterns within the whole brain unthresholded
deviation maps among patient groups. Due to the small number of
individuals with major depressive disorder (n = 11), specific phobia
(n = 7), and panic disorder (n = 2), this analysis only included indi-
viduals diagnosed with PTSD (n = 55), OCD (n = 68), GAD (n = 48),
and SAD (n = 31) (total n = 202). The model classes corresponded to
the participants’ diagnoses. Themodel classes were the participants’
diagnosis. The evaluation metric for the classification was the F1-
metric (the harmonicmean of precision and recall, also known as the
balanced F-score, where values closer to 1 indicate greater classifi-
cation success) per class within a 5-fold cross-validation framework,
and the statistical significance was tested against a 1000-fold nested
5-fold test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The results data generated in this study have been deposited at:
https://doi.org/10.6084/m9.figshare.28540580.v1 The individual-level
fMRI processed data (HALFIPE results files) are available for secondary
data analysis. Access can be obtained by submitting an analysis plan to
the ENIGMA-Anxiety Working Group (http://enigma.ini.usc.edu/
ongoing/enigma-anxiety/). Data access is contingent on approval by
PIs from contributing samples. The raw individual fMRI data are pro-
tected and are not available due to data privacy laws. Source data are
provided with this paper.
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Code availability
All code to reproduce the analyses in this manuscript is available at:
https://doi.org/10.6084/m9.figshare.28540580.v1 The functions nee-
ded to conduct the mega-analysis are also included in the ‘combat.e-
nigma’ R package.
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