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understanding patterns of seasonal lake
dynamics across sub-Sahelian Africa
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M. Amadori 1 , A. J. Greife 1,2, L. Carrea3, M. Pinardi 1, R. Caroni1, E. Calamita 4,5, L. Serrao 6,
R. Maidment3, S. Bordoni6, C. Giardino 1, M. Bresciani1, F. P. Fava 2, M. Schmid 7,
M. Ndebele-Murisa 8, T. Nhiwatiwa9, J-F. Crétaux 10, C. J. Merchant 3,11, X. Liu12, S. Simis12,
D. Lomeo 12,13, H. Yesou14, C. Albergel15 & R. I. Woolway 16

Lakes in sub-Sahelian Africa are facing growing ecological threats from climate change and human,
yet most research has focused on a handful of well-known large lakes. This study analyses 137 lakes,
many previously understudied, and identifies consistent seasonal co-variability patterns across
meteorological variables, satellite-derived lake physical and biogeochemical variables, and
morphological and anthropogenic characteristics. We identify four distinct clusters of lakes, shaped
by the atmospheric variability and its synchrony with water temperature seasonality. Within each
cluster, we observe three seasonal patterns of chlorophyll-a concentration tied to wet and dry
seasons. These patterns align with regional climatic threats in Africa, such as shifts in rainfall
seasonality, altered frequency of tropical cyclones and wildfires, thus positioning our study as a
framework to assess lake vulnerability across the sub-Sahelian region.

Inland water bodies are complex components of the hydrological, energy
and carbon cycles1 and respond to climate and human activities2,3. Natural
lakes and artificial reservoirs, further referred to as “lakes”, stand out as
critical hotspots of biodiversity4 and provide a diverse range of ecosystem
services5,6 to human communities7. This is particularly true for the sub-
Sahelian region, where lakes are vital for supporting the livelihoods of local
communities8–10.However, various processes compromise both thequantity
and quality of the lake’s waters11,12 and threaten the long-standing and
natural connection between humans and the water environment they rely
on. According to the latest Intergovernmental Panel on Climate Change
(IPCC) report13, five out of nine key risks for Africa are related to freshwater
resource deterioration, increasing demand and sensitivity to climate-related
extreme events. Fast-growing human settlements in the proximity of lakes
have resulted in an increase in water demand for a variety of activities,
including industrial, agricultural, and energy-related uses14, which

eventually widens the disparity in water access among different social
groups15. At the same time, a lack of adequate wastewater treatment
infrastructure16,17 and subsequent uncontrolled wastewater inflows have
caused a notable decline in water quality in many lakes18, endangering the
food security and health of millions of people19. In addition to the direct
impact of human populations, sub-Sahelian lakes are threatened by climate
change20,21. Projections by the IPCC indicate that rising temperatures and
altered precipitation patterns will affect lake ecosystems and, consequently,
all water-dependent sectors. This is already evidenced by climate-induced
ecological transitions, including reduced fish abundance and diversity in
many lakes in this region22,23. Another example is presented by lake surface
warming and increased thermal stability24 impacting nutrient and oxygen
availability25 and, consequently, phytoplankton dynamics26. Tropical lakes
might be particularly vulnerable, with the forced signal expected to emerge
from natural variability at a faster rate than lakes in other climatic regions27.
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These challenges are further worsened by a severe disparity in research
funding. Less than 4% of the global budget for climate change research has
been allocated to Africa, with 78% going to institutions in North America
and Europe, versus a mere 14.5% for African institutions28. Moreover,
according to the IPCC AR629, climate finance commitments in Africa dis-
proportionately support mitigation (61.4%) over adaptation (33.1%), with
few exceptions such as Chad, Sudan and Gabon, where adaptation is tar-
geted more strongly.

Formost of the last century, traditional limnological research in Africa
has heavily relied on fieldwork, with a relatively small fraction of lakes
subjected to extensive, in-depth investigations (e.g., Lake Victoria and other
African Great Lakes30,31). Aside from peer-reviewed science, technical
reports produced by local governmental and non-governmental authorities
provide a significant source of knowledge, which, however, is frequently
inaccessible and limited in terms of both temporal and spatial coverage32.

Recentwork has demonstrated the potential for upscaling limnological
investigations from single-lake to global scale by exploiting the synoptic-
scale coverage and long-term availability of remote sensing products33,34.
Continental-scale monitoring of water quantity (i.e., lake level, volume,
surface extent) in Africa has already yielded relevant insights on current
trends in water availability35, especially in relation to clusters of rainfall
patterns36. However, water quality monitoring has so far only been
approached at the scale of individual lakes37 or across relatively small
regions38, where the use of remote sensing has proven vital for prioritising
freshwater systems for conservation8. This represents amajor constraint for
understanding emerging risks and implementing effective response
strategies.

Identifying the precise controls of lake behaviour in terms of water
quality and quantity is one of the most challenging and urgent issues in
water-related research. In most cases, the answer does not lie in a single
factor, but in an array of conditions or events favourably nested in either a
short or long temporal chain39. If the level of complexity is reduced, lakes can
be used as sentinels of climate change40 and environmental risk. It then
becomes crucial to gain a synoptic understanding of how anthropogenic
pressures and climate drivers affect lakes’ biophysical and biochemical
properties and whether emerging relationships exist among geographical
regions or clusters of lakes. In this study, we provide the first synoptic
assessment of 137 natural lakes and reservoirs in the sub-Sahelian region.
Given the relevance of reservoirs to sub-Sahelian water resources, our study
includes them in the analysis and compares seasonal patterns across similar
climatic zones, exploring the role of morphology and catchment size. We
utilise satellite-derived lake variables from the global “lakes_cci” database
provided by the European Space Agency (ESA) under the Climate Change
Initiative framework (CCI)34. We integrate the CCI dataset on lake water
quality and quantity with multiple datasets on key atmospheric variables
and proxies of anthropogenic pressures such as land use, land cover and
population density. We classify lakes based on the seasonal co-variability
between atmospheric drivers and lake responses and deliver analogy maps
along with a catalogue of per-lake results. By providing a broader under-
standing of the typical seasonal synchrony between lake variables and
external forcing, we facilitate the identification of otherwise undetected
patterns. This knowledge is critical to guide future policy planning and
operational monitoring efforts, while at the same time providing data that
will support future sub-continental scale research.

Results and discussion
Lakes of sub-Sahelian Africa
The 137 lakes in our sub-Sahelian sample examined in this study exhibit
diverse morphological characteristics (Fig. 1a–c). The majority (75%) are
under 500 km² in size, with 32% smaller than 50 km². The remaining 25%
range from 500 to 67,000 km², with 16% between 500–3000 km², such as
lakes Natron and Kivu. Only the largest lakes, Malawi, Tanganyika, and
Victoria, exceed 10,000 km². Most large lakes are located between 5°N and
5°S, within the East African Rift Valley, except for West African reservoirs
like Lake Volta and Lake Kainji. Among the largest, lakes Malawi and

Tanganyika are also the deepest, with average depths of 261m and 577m,
respectively. Shallow lakes (0.1–7m, e.g., Lake Natron) make up 45%,
medium-depth lakes (7–15m, e.g., Lake Tana) 30%, and deep lakes (>15m)
25%, with only lakes Tanganyika, Malawi, and Kivu exceeding 100m in
average depth. The majority of lakes (69%) are at elevations below 1000m,
including two below sea level (lakes Afrera and Assal, at−112m and−154
m), and 17 lakes (11%) are located above 1400m, mainly within Ethiopia,
followed by Rwanda and Kenya.

The Köppen-Geiger41 climate zonation classifies sub-Sahelian lakes as
62% tropical, 25% arid and 13% temperate climates, with a clear alignment
with land cover class (see Fig. 1d, f). Tropical climates span nearly the entire
continent. The “tropical, savannah” subclass is the most dominant, found
for 77 out of 85 lakes. Tropical lakes are characterized by the surrounding
dense vegetation (23% of all lakes, 22.5% tropical lakes), mostly deciduous
(17% of all lakes, 27% of tropical lakes). Croplands are present in the lake
watersheds in all climate zones (39% of all lakes) and are found in 37 out of
85 tropical lakes. Arid climates host 34 of the lakes mainly in the “arid,
steppe, hot” subclass. These lakes are located in the countries surrounding
the Horn of Africa as well as in the southwestern part ofMadagascar and in
the countries poleward of 16°S latitude. The watershed area of lakes located
in arid climate zones are characterised by sparse shrublands (4.3% of all
lakes, 18% of arid lakes), grasslands (3% of all lakes, 12% of arid lakes), and
croplands (9.4%of all lakes, 38%of arid lakes) reflecting their dry conditions
and need for irrigation. Temperate climates characterise the lakes in the
eastern parts of South Africa, central Madagascar, Angola, Zambia, Zim-
babwe and Mozambique. There, croplands, tree cover, grass- and shrub-
lands are the most common land cover classes. Croplands, making up 22%
of the watershed of temperate lakes (3% of all lakes) in the temperate
climates, concentrate around thenorth-western andnorthern boundaries of
the region (i.e., Sierra Leone, Côte d’Ivoire, Nigeria, Burkina Faso, Chad), as
well as around the north-eastern African Great Lakes (Victoria, Albert,
Edward, Kivu). In the south, croplands are most prominent in Zimbabwe,
south of LakeKariba. Tropical and temperate climate areas are also themost
densely populated in sub-Sahelian Africa (Fig. 1g), containing the largest
natural lakes and 32% of reservoirs (e.g., Lake Volta, see Fig.1e). The
remaining 68% of artificial reservoirs are located in arid and dry climatic
zones characterised by limited vegetation classes, like bare ground, shrub-
lands, grasslands and deciduous tree cover. Thirty percent of lakes in our
dataset are artificial andwere built between the 1960’s and 1990’s41 for water
abstraction, irrigation, flood control and hydropower purposes.

Lakes in themost densely populated areas have been the target ofmost
frequent research (Fig. 1g, h). Based on our literature screening, there are
either no studies in the scientific literature (23%) or less than 10 scientific
publications (27%) for half of the lakes considered here. Most unstudied
lakes are of natural origin and show a population density of less than 60
persons per km² in the upstream catchment. Forty percent of lakes are the
direct subject of 10-200 research articles spanning a wide range of topics.
Among these, reservoirs are primarily the target of climate- and water-
related research (e.g., Chomen, Lagdo, Tiga reservoirs), often supported by
remote sensing technology, while natural lakes (e.g., Mweru, Bangweulu)
are preferentially case studies for biological, paleolimnological and geolo-
gical investigations.

Withmore exposure in the literature (correlated with the lake size and
populationdensity), the range of disciplines studied in connection to awater
body also widens to social and political sciences, epidemiology, and eco-
nomics. Twelve lakes (9%) have been the subject of intensive research (with
more than 200 studies each). They are the East African Great Lakes, the
WestAfrican lakesChad andVolta, and the SouthernAfrican lakes St. Lucia
and Kariba. All of them are of natural origin except for the two large
reservoirs, Kariba and Volta.

Lake water colour reflects the climatic region, anthropogenic
pressure, and morphological characteristics
Land use and cover in the upstream catchment are tightly connected to lake
water colour, as inflows from the surrounding territory impact optically
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Fig. 1 | Sub-Sahelian lakes considered in this study clustered based on natural
and human features.Distribution of lake a surface area81 in km²; b average depth81

in m; c elevation81 in m a.s.l.; d climatic zones after the modified Köppen-Geiger
classification41; e origin of water bodies; clusters of lakes based on f land use and land

cover82 in the upstream catchment; g population density94 in the upstream catch-
ment; h number of publications per lake across all subjects from a Scopus95 search
performed in this study. Maps of all considered features and tables containing per-
lake information are provided Table S1 in the Supplementary Materials.
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active constituents such as dissolved organic matter, suspended particles
and algae. These constituents interact with sunlight to produce a dominant
wavelength detectable by satellites and attributable to colour, which is
therefore an aggregated indicator of water quality.

The most common water colour across sub-Sahelian African lakes
(Fig. 2a) is yellow (54% e.g., Lake Turkana, Lake T’ana), followed by green
(29%, Lake Kariba, Lake Kivu) and blue (9%, e.g., Lake Malawi, Lake
Tanganyika). A few lakes show orange observations on a daily basis (e.g.,
LakeZimbamboandAmbussel). Some lakesdisplay transient colour classes,
e.g., green-yellow (4%, as Tiga Dam and Lake Langano), blue-green (2%,
Goronyo Dam, Lake Zimbambo), blue-yellow (Lake Mweru Wantipa), or
yellow-orange (LakeAmbussel). Blue lakesmainly reside in tropical regions
(monsoon, forest and savannah), typically between 10°S and 5°N latitude
andwest of 10° longitude in Gabon, Congo and theDemocratic Republic of
Congo.Greenandyellow lakes aremore evenlydistributedacross latitudinal
and longitudinal gradients. Green lakes are found in arid, temperate and
tropical climate zones, while yellow lakes are mostly in tropical and arid
regions. Croplands (rainfed and irrigated) characterise the catchments of
lakes of each colour classificationwith the highest contribution in the yellow
category (blue: 31% over 13 lakes, green: 33% over 40, yellow: 39% over 74,
see Fig. 2b). In contrast, tree cover (broadleaved evergreen or deciduous) is
distributedmostly in the tropical zones, leading to the highest contributions
to blue lakes’ catchments (blue: 38%, green: 35%, yellow: 20%). The
catchments of blue lakes are further constituted by 15%offlooded tree cover
(fresh or brackish). Shrublands, typical of arid climate zones, comprise 11%
of yellow lakes’ catchments, while grasslands contribute 10% to the catch-
ments of green lakes. Blue lakes are found exclusively in areas of low
population density and are entirely absent once population increases over
50–150 p/km2 (Fig. 2c). Green lakes are found in all population density
brackets but are most persistent in medium densities. Yellow lakes are
present in every population density bracket and peak in number at the

threshold density of 50–150 p/km2. This indicates that once an anthro-
pogenic pressure point is reached in terms of population density, clear, blue
oligotrophic systems canno longer be sustained as eutrophication increases.
Including observations of lake area and average depth into these con-
siderations it appears that the blue lakes Tanganyika andMalawi, persisting
at moderate population densities, not only cover an extensive area
(>29,000 km2) but also show high average depths (577 and 261m respec-
tively). These blue lakes also have long hydraulic residence times and
respond slowly to nutrient inputs. Thus, theirmaintained claritymay reflect
a delayed response to high anthropogenic pressure rather than equilibrium
with nutrient loads and true resilience. Lakes Victoria and Kivu are
examples of persistent green lakes in areas of high population density
(>600 p/km2). While Lake Victoria is comparatively shallow (41m), it covers
an area of 67,000 km2. Lake Kivu, while 12 times smaller than Lake Victoria
(2400 km2), resembles Lake Malawi in average depth (237m). The yellow
lakes in this dataset do not exceed average depths of 35m and, on average,
comprise smaller areas. The shallowest and smallest lakes can appear yellow
even at low population densities. Lake size and depth can therefore be
considered important features buffering potential anthropogenic stressors.

Large-scale climate variability shapes the seasonality of atmo-
spheric variables
Sub-Sahelian lakes are influenced by overlapping climate patterns. We
consider the climatological year of spatially averaged atmospheric variables
from reanalysis (ERA5-Land42) and satellite-derived precipitation within
the immediate catchment from CHIRPS43 and TAMSAT44 datasets (only
TAMSAT is shown). The seasonal variability of most climatic factors
depends strongly on geographic location, especially latitude (Fig. 3a–f),
while longitudinal patterns mainly impact rainfall and relative humidity
(not shown). The magnitude and timing of seasonal maxima and minima
vary across different climatic variables and latitudes. The Intertropical

Fig. 2 | Lake water colour and catchment features. a Overview of the unique
colours expressed throughout the year by each lake. b Distribution of predominant
land cover in upstream catchment classes per each lake water colour class (only solid

colour classes are displayed, with respect to the total number of lakes per class).
cAbundance of lake colour classes per population density classes (normalised by the
total number of lakes per population density class).
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Convergence Zone (ITCZ) is the main mode of intra-annual climate var-
iations across the continent and follows the seasonal path of the sun45.
However, regional factors, such as topography and oceanic modes of
variability (such as ENSO and the Indian Ocean Dipole) also play an
important role46–48.

Consistent with recent advances in the theoretical understanding of
monsoon systems49, lakes located in the proximity of the ITCZ (20°S-5°N)
show a clear seasonal pattern. In these lakes increases in surface air tem-
perature, which follows the solar radiation cycles, (Fig. 3a, c) precede the
development of convection and precipitating storm systems (Fig. 3b). As a
result, warmer air temperatures are associatedwith higher precipitation and
lower surface air pressure (Fig. 3e). Conversely, away from the ITCZ (north
of 5°N, south of 20°S), air masses tend to sink, inhibiting cloud formation
and increasing surface air pressure. Lakes in those regions experience low-
to-no precipitation and higher surface air pressure when air temperatures
are cooler. Seasonal patterns of relative humidity (Fig. 3d) closely follow
those of precipitation.The seasonality ofwind speed (Fig. 3f) is less apparent
and instead associated with the Northeast and Southeast trade winds across
Northern and SouthernAfrica, respectively (as well as local features, such as
the West Africa Monsoon winds).

Temperate and arid lakes in the Northern regions (10°N to 0°S, e.g.,
Lake Chad) show a single rainy season, while wind climatology shows a
bimodal distribution. A long, windy period coincides with the dry season
due to North-Easterly winds from the Sahara Desert, and a shorter peak is
observed during the wet summer season (from July to September). Tropical
equatorial lakes (0 to 10°S, e.g., Lake Victoria) exhibit two rainy seasons.
Among these, in some East African lakes, wind speed clearly reflects the
Somali jet, which develops as part of the Indian SummerMonsoon,with the
highest peak from June toAugust50. Southward, lakes at 10 to 20°S (e.g., Lake
Kariba) show a unimodal rainy season, while South-African lakes (20 to

30°S) show a flat rainfall distribution, signifying persistent arid conditions.
Here thewindpeak shifts towards September-November andcoincideswith
the driest conditions associated with South-Easterly winds caused by the
Atlantic Ocean high-pressure system.

The interplaybetweenwet,dry andwindyseasondefines regions
of analogous climate drivers
As large-scale atmospheric processes regulate the climatological annual
cycle of different atmospheric variables, many of them exhibit similar sea-
sonal evolution. These groupings depend mostly on the geographical
location of the lakes, with factors such as lake surface area and altitude also
influencing the variations. To identify clusters of climate regulators (Fig. 3g),
we apply a Principal Component Analysis (PCA) to reduce six atmospheric
variables (Fig. 3a–f) into two Principal Components (PCs) that capture the
most variance.

In East and Central African lakes (countries coloured in blue), the first
and the second PC resemble the seasonality of either the hydrological cycle
(representedby rainfall andhumidity) or insolation (expressed as shortwave
solar radiation, “swdown” for brevity). In 51 lakes (37%)PC1associateswith
the hydrological cycle, while PC2 with solar radiation (40 lakes) or wind/air
pressure (11 lakes). PCA results for these lakes are similar to those of Lake
Tanganyika shown in Fig. 3h. These lakes are primarily tropical (e.g., Lake
Victoria, Tanganyika, Malawi, Kivu), while fewer classify as arid (e.g., lakes
Turkana, Eyasi, Sua-Pan) or temperate (e.g., Alaotra, Mutanda, Burera),
with a clear distinction between the dry andwet seasons, driven by the ITCZ
migration and monsoonal rains. In a smaller but considerable number of
lakes (32, i.e., 22%), shortwave radiation holds most of the explained var-
iance of PC1 (from47% to 73%), and rainfall is well alignedwith PC2. These
lakes are primarily tropical lakes located at the Equator and spanning all
longitudes fromCôteD’Ivoire (e.g., KossourReservoir, lakes Buyo andAby,

Fig. 3 | Seasonality and Principal Components of atmospheric variables.
a–f Climatological year showing the average seasonal evolution of atmospheric
variables in lakes across latitudes (colorbar). Each line represents the climatological
data, with the annual mean removed, and averaged across lakes within the same
latitude range. Climatologies for all variables considered in this study for each lake
are available in Table S.2 in the Supplementary Materials. g Lake clusters based on
climate variables predominantly explained by the first two principal components

(PCs). The colour fraction in each circle indicates the proportion of variance
explained by each PC (i.e., PC1 corresponds to the larger, PC2 to the smaller
fraction). Background colour blue, green, pink and orange identify countries with
common main climatic factors. Inset h displays an example from Lake Tanganyika
of per-lake PCA results that were used to create the map in g). Similar plots for all
lakes are available in Table S.3 in the Supplementary Materials.
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Ebrie Lagoon) to Kenya and Ethiopia (e.g., lakes Baringo, Bogoria, Awasa).
Further arid (e.g., Kariba) and temperate (e.g., Naivasha) lakes spread in
extratropical latitudes but mostly along a longitudinal slice between 26 to
36°E. All these lakes are characterised by net wet and dry seasons, but they
are located at the edges of the seasonal migration of the ITCZ in Africa51.

In lakes located outside 5°N and 20°S, rainfall and solar radiation both
contribute to PC1, while PC2 generally follows wind and/or air pressure
seasonality. The fact that rainfall and solar radiation contribute to the same
PC means that they are either correlated or anti-correlated, and can
therefore be explained by the same seasonal process. 23 of these lakes are
located at the northernmost latitudes (e.g., lakes Volta, Kainji, Lagdo,
Bankim and Chomen, countries coloured in green), marking the transition
between the dry Sahel’s climate and the humid tropical region, and the
development of North-Easterly trade winds. In these regions, the rainy
season (June-September) coincides with the arrival of the West African
Monsoon, which brings persistent cloud cover blocking shortwave radia-
tion. For this reason, rainfall peaks exactly when shortwave radiation is at its
minimum, e.g., in August. The remaining lakes are located in the temperate
Eastern areas of South-Africa (countries coloured in pink), where the
interplay between the ITCZ migration and subtropical high-pressure sys-
tems regulates local climate. In these lakes (e.g.,Gariepdam,LakeVaaldam),
shortwave and rainfall both peak during the austral summer (November to
March), which coincides with the rainy season. The reason is that pre-
cipitation in this area is mainly of convective origin, thus it is caused by
surface heating, which is at its maximum in summer.

Rainfall does not contribute to any principal component in 16 lakes
(12%, in countries coloured in orange). In these lakes, rainfall indeed shows
minimal seasonal variation compared to other atmospheric variables like
solar radiation and wind speed. The lakes classified in this group include
Lakes Hayala, Melka Wakena, Abayata, Abbe (Ethiopia), Assal (Djibuti),
Natron, Jipe (at the border between Tanzania and Kenya), Kinkony, Ihotri
(western Madagascar), Hardap, Etosha Pan (Namibia), Nkokwane Pan
(Botswana), Quiminha (Angola), Kiri, Zobe (Nigeria), Mantanali (Mali).
These lakes are located in arid or semi-arid climatic zones or in areas subject
to pronounced dry seasons, leading to very extreme conditions. In fact,
many of these lakes are endorheic, like Etosha Pan, Assal, Natron, Abbe,
Kinkony, with high evaporation rates leading to saline or alkaline water.
Lakes Ihotry and Kinkony also fall in this class, reflecting the significantly
drier climate of western Madagascar compared to the east, where heavy
rainfalls from moist Indian Ocean air lead to a different classification for
lakes Alaotra and Itasy.

Climate drivers regulate lake water quality and quantity on a
seasonal scale
The response of lakes to climate drivers varies by latitude, morphology,
hydrology and ecology. Here we examine whether satellite-derived lake
variables, namely Lake Surface Water Temperature (LSWT), Lake Water
Level (LWL), Chlorophyll-a concentration (chlorophyll-a) and turbidity
(TURB), correlate with principal climate components. The Pearson corre-
lation coefficient r between their climatologies and the PCs is considered for
single lakes (see Fig. 4a for Lake Tanganyika), while the absolute value is
considered to cluster multiple lakes (Fig. 4b, d–f). Full results from these
analyses are shown in the supplementary material (Table S.1–S.3).

LSWT strongly correlates with major climatic drivers (|rj> 0.9 and
p-value < 0.01 in 52% of cases). Using jrj> 0.5 as a “strong” correlation
threshold, 66% of lakes strongly correlate with PC1 (with a left-skewed
distribution across lakes and median value 0.86), and 30% with PC2
(median value 0.55), while 4% show negligible correlation. Tropical lakes
like Tanganyika display positive LSWT-rainfall correlations (Fig. 4d) with
almost no lag (Fig. 4c), as the wet season coincides with the predominantly
cloud-covered warmest period of the year. These lakes indeed experience
wind-driven cooling during the dry season52. Strong positive correlation
between LSWT and dry season is instead found in 28 lakes (20%) where
temperate (e.g., Lake Naivasha) or arid (e.g., Lake Kariba) climates enhance
surface warming through the shortwave radiation penetration53.

Chlorophyll-a and turbidity correlate less strongly than LSWT to the
primary climatic drivers, with higher median correlations to PC1 (median
jrj = 0.80 and 0.44 for turbidity and chlorophyll-a, respectively, and a left-
skewed distribution) than PC2 (0.46 and 0.48, with a uniform distribution).
In 18% of lakes chlorophyll-a and turbidity are aligned with a correlation
jrj>0.2 to the same PCs. These lakes show a clear signature of rainfall season
in both chlorophyll-a and turbidity climatology (Fig. 4e, f), such as lakes in
the tropical and subtropical region (e.g., Victoria, Kyoga, Kivu, Kariba), a
few coastal West African lakes (e.g., Buyo, Togo) and two lakes in Mada-
gascar (Alaotra, Itasy). Turbidity often respondsquickly to rainfall (less than
one month), while chlorophyll-a lags by 40–55 days (Fig. 4c), probably
reflecting nutrient-driven phytoplankton growth. In 60% of lakes (e.g.,
Tanganyika, Chad, Volta, Mweru), turbidity correlates with rainfall, while
chlorophyll-a reflects radiative and wind-driven hydrodynamic processes
(e.g., Tanganyika and Volta).

The primary difference between natural and artificial lakes revealed by
our analysis is the correlationbetween rainfall andLWLvariations.Of the54
lakes for which LWL is available, 68% exhibit a positive correlation (i.e.,
r > 0:2) with rainfall-driven PCs. Notably, 29 of these water bodies show an
optimal lag of over 3 months (over 90 days), 11 of which (38%) are reser-
voirs, and the remaining 18 (62%) are natural lakes.Within the natural lakes
exhibiting this delay, seven are very large (>1000 km²), such as Tanganyika,
Malawi, Turkana, Kivu, Bangweulu and Rukwa. The other 11 are still
substantial in size (100–800 km²) and have upstream catchments up to 100
times larger than their surface area. For instance, Lake Kisale is 300 km² in
size with an upstream catchment of 36000 km². Additionally, two of these
are wetlands (i.e., Alaotra and Bangweulu) characterized by very slow flow
in their upstream largefloodplains and relativelyminor climatologicalwater
level variations.

These findings indicate that reservoirs show a weaker or delayed
response to rainfall, likely due to artificial regulation. Similarly, the natural
lakes with delayed responses tend to share morphological characteristics -
particularly large surface areas and extensive catchments - which influence
the timing of their response to rainfall. For what relates to water quality
variables, in lakes and reservoirs located in close proximity or within the
same latitudinal range, the principal components of atmospheric variability
and LSWT seasonality are often similar. However, the seasonal dynamics of
water quality variables, particularly chlorophyll-a, can vary. For example, in
the arid regions of South-Eastern Africa (latitude >20°S), Lake Bambene
(Mozambique) and Loskop reservoir (South Africa) exhibit similar PCs, as
well as comparable LSWT, chlorophyll-a and turbidity seasonality. At
latitudes between 5°S and 20°S in East Africa (Tanzania), Lake Sulunga and
Mtera Reservoir share similar PCs and seasonality in LSWT and turbidity,
yet chlorophyll-a dynamics slightly differ. The shallowLake Sulunga reaches
itsfirst chlorophyll-a peak less than onemonth (21 days) after the end of the
rainy season, whereas in the deeperMtera reservoir, the peak occurs during
the dry season. A similar pattern is observed in West-Central Africa
(Angola) at comparable latitudes, where the shallow Lake Quilunda
responds more quickly and synchronously to rainfall with earlier
chlorophyll-a peaks compared to the deeper Quiminha reservoir. These
variations are not limited to a specific region or lake type, but occur across
latitudes and between natural lakes and reservoirs alike. Generally, shallow
water bodies tend to exhibit more frequent chlorophyll-a peaks and to react
more rapidly to rainfall than deeper lakes or reservoirs. This suggests that
basin morphology, rather than lake origin, plays a more significant role in
shaping ecological responseswhenother factors (i.e., local climate, upstream
catchment characteristics) are the same.

Clusters of lake functioning match regions of analogous vulner-
ability to climate change
Climatology similarities among atmospheric and lake variables highlight
regional patterns in sub-Sahelian lake responses to climatic factors. In Fig. 5
we define four main clusters (A, B, C, D) of lakes based on similar main
climatic drivers and on the co-variability of LSWT and turbidity. Each
cluster is subdivided into three subcategories (1,2,3), which assign the
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seasonality of algal blooms for each cluster either in the dry, wet, or both
seasons, respectively. These clusters partially follow a regional distribution
and can be directly related to known heterogeneity of climate vulnerability
across Africa as reported by the latest IPCC report29 and by the Joint
Research Commission (JRC) World Atlas of Desertification54.

Cluster A comprises 14 lakes where rainfall contributes little to the
atmospheric variance, with shortwave radiation and wind representing the
main seasonal signatures visible in LSWT. These lakes are predominantly
located along the eastern margin of North East Africa (NEAF) in tropical/
savanna climate regions and in the arid/desert zones of West South Africa
(WSAF), regions characterized by consistently low annual rainfall. Despite
limited precipitation, the rainfall season is still visible in the turbidity and
chlorophyll-a seasonality of these lakes. In class A1, three lakes show algal

blooms typically occurring during the dry season, e.g., Koka Reservoir,
where cyanobacteria dominance peaks during the dry and minor rain
season55. Class A2 comprises five lakes in which chlorophyll-a concentra-
tions generally peak during the wet season, e.g., lake Abayata, which is
phosphorus-limited in the dry season and was found to be an exception in
Ethiopian lakes, where the rainy season normally causes reduced trans-
parency and inhibits the development of algal blooms56. We classify the
remaining three lakes as A3. In these lakes, chlorophyll-a peaks occur
throughout the year, like in Etosha Pan and the Hardap reservoir in
Namibia. According to the latest IPCC report29, lakes of class A located in
NEAF are experiencing an increase in temperature extremes and heavy
precipitation events. Changes in rainfall seasonality are projected for the
short rain season, which is expected to become longer, and confidence is

Fig. 4 | Correlations between atmospheric PCs and lake variables. a Example of
correlation plot for Lake Tanganyika (similar plots for all lakes are available in Table
S.3 in the Supplementary Materials). The coloured shadowed bands represent the
areas where the lake variables are weakly or not correlated with PC1 (vertical band)
or PC2 (horizontal band). In the example for Lake Tanganyika, if a dot falls in the
blue band, the lake variable is well correlated (or anti-correlated) with PC1 (asso-
ciated with rainfall in this lake) and weakly or not correlated with PC2 (associated
with shortwave radiation); if in the orange band, it is well correlated (or anti-
correlated) with PC2 and weakly or not correlated with PC1; if in white corners, it is
correlated or anticorrelated with both PCs; if in the central grey box, it is not
correlated or weakly correlated with any PCs. b distribution of correlations between
lake variables (in absolute values) and PC1; c distribution of optimal lags

maximising correlation between lake variables and rainfall PCs; d–f lake clusters
representing the PCs showing the largest correlation (either positive or negative)
with the variable displayed in each panel: d Lake Surface Water Temperature
(LSWT), e Chlorophyll-a (CHLA), f Turbidity (TURB). The dots are coloured
depending on the climate variable explained by the PC with whom lake variables
show the largest significant correlation (p-value > 0.05). The radius of each single-
coloured dot equals the correlation. Double-coloured dots are reported for those
lakeswhere lake variables show significant correlation (or anticorrelation)with both
PC1 and PC2. The radius of double-coloured dots is given as the mean of the two
correlations (in absolute values). Small white circles indicate that the p-value is
larger than 0.05 or that the correlation is lower than 0.2 in absolute values.
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high on decreasing aridity in the eastern areas of NEAF. This might lead to
prolonged blooming periods in lakes of classes A2 and A3, and potential
shifts inphytoplanktonproductivity in lakes of classA1due to themismatch
in nutrient-timing. For the two lakes in WSAF, projections predict
decreasing rainfall and rising frequency of fire-conducive weather. Such a
combination, in the context of lake vulnerability, can be translated to a
change in the origin of nutrients from runoff to wind resuspension and
nutrient deposition,whichmight affect phytoplankton composition and the
timing of algal blooms.

Cluster B groups 75 lakes where atmospheric variance is mostly
associatedwith rainfall, relative humidity, and shortwave radiation. In these
lakes, the rain season signature is clearly visible in LSWT and turbidity.
Almost all tropical lakes of South East Africa (SEAF) reside in this class,
together with tropical and temperate lakes in the northernmost ESAF (East
South Africa) and NEAF (North East Africa). Tropical lakes in Ethiopia
(e.g., Langano), Kenya (e.g., Bogoria) and Zambia (e.g., Mweru) show
greater influence of shortwave radiation on seasonal chlorophyll-a peaks
(B1, 29 lakes, 39%). A similar proportion of lakes in this class show that
chlorophyll-a peaks during the wet season (27, e.g., Malawi, Kyoga, 36%) or
during both wet and dry season (B3, e.g., Victoria, Cabora Bassa, Kivu, 19
lakes, 25%).The large, deep andoligotrophic lakesTanganyika (B1),Malawi
(B2) and Kivu (B3) are interesting representatives of the three sub-clusters.
Literature for these lakes reports reduced transparency during the wet
season (Lake Malawi57; Kivu58; Tanganyika59) and phytoplankton maxima
associated with diatom blooms during the dry season (June–September)
induced by wind-driven mixing of the water column60. During the wet
climate characterising the rest of the year, thermal stratification limits
nutrient exchange across the epilimnion and pico-cyanobacteria dominate
with lower concentrations. It seems that our climatology for lakes Malawi
and Kivu captures the chlorophyll-a peak concurrent with rainfall58,61 and
underestimates the peak during the dry season in Lake Kivu26, albeit
detecting its existence. In Tanganyika, our chlorophyll-a results align with
established lake seasonality62, where wind-driven hydrodynamics regulate
nutrient availability and chlorophyll-a63 during the dry season.According to
the latest IPCCreport29, the regionswhere clusterB lakes aremore abundant
are experiencing an increase in temperature extremes and heavy pre-
cipitation events. Similar to cluster A, the IPCC predicts changes in rainfall

seasonality and decreasing aridity in the eastern areas for NEAF and SEAF
(mainly Ethiopia, Kenya and Uganda). As a result, lakes in this region are
vulnerable to longer periods of reduced water clarity, increased nutrient
loading, stronger thermal stratification, and shifts in phytoplankton
dynamics.

Clusters C and D include the remaining lakes where atmospheric
variance is strongly impacted by wind seasonality and its interaction with
the wet and dry seasons. Cluster C includes 29 lakes located in western
extra-tropical regions close to the border with Sahel (WAF), along the
equatorial western coast (CAF), and in the western countries of NEAF
(Sudan, South Sudan), where rainfall and shortwave radiation are anti-
correlated. Here, the alternation of North-East trade winds and the West
African monsoon determines the alternation of wet and dry seasons. In
this cluster wind speed anticorrelates with LSWT, such that cooler water
temperatures occur during windy seasons. Differences related to the
timingof algal blooms and reduced clarity lead to a further distinction into
clusters C1 (15 lakes, 47%, e.g., Chad), C2 (5, 25%, e.g., T’ana, Lagdo,
Natron) and C3 (9, 28%, e.g., Buyo, Chomen). The majority of lakes in
cluster C show visible correlationwith wind seasonality in the climatology
of chlorophyll-a and turbidity. This is the case, for example, formostWest
African lakes (from Ghana to Gabon). In Lake Volta, two main peaks in
LSWT and chlorophyll-a directly correlate with the two windy seasons,
the wet southerly monsoon (peaking in June to August) and the dry
northerly “Harmattan” winds (November to March)64. Turbidity instead
peaks with rainfall in August, when LSWT and chlorophyll-a decline
slightly, consistent with existing knowledge in terms of timing65 and range
of concentrations66 of algal blooms. The regions south of the Sahel belt,
particularly West Africa, are expected to experience an increase in mean
wind speed and in the frequency of heavy rainfalls, while precipitation
trends remain uncertain29. These areas have undergone alternating mul-
tidecadal wet and dry periods, with severe droughts causing dramatic
reductions in water bodies, such as Lake Chad67, followed by increased
annual precipitation partially compensating for the water loss (since
1980s). Additionally, frequent burning in these regions has been corre-
lated to higher turbidity and algal blooms in certain lakes, including Chad
and Volta68. The IPCC predicts a rising frequency of fire-conducive
weather, which, combined with stronger winds and heavy rainfall,

Fig. 5 | Clusters of lake functioning based on PCA
results and correlation analysis with lake vari-
ables. Acronyms indicate regions defined in the
IPCC29 report (Chapter 9, Figure 9.14): North East
Africa (NEAF), South East Africa (SEAF), Mada-
gascar (MDG), East South Africa (ESAF), West
South Africa (WSAF), Central Africa (CAF) and
West Africa (WAF). Icons depict the climate change
vulnerability in the African regions as projected by
the IPCC report and by the JRC World Atlas of
Desertification54.
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enhances the risk of deteriorating water quality due to terrestrial nutrient
inputs in these lakes.

Cluster D includes 19 lakes where rainfall and shortwave radiation are
well correlated.These lakes are typically located inEast SouthAfrica (ESAF),
westernMadagascar (MDG), and two lakes located in SEAF (Manyara and
Ambussel, in Tanzania). These lakes are sensitive to South-Easterly trade
winds that carry moisture from the ocean during the austral summer from
November to March. Temperate inland and tropical coastal lakes show
LSWT following shortwave radiation seasonality, which shows the same
shape as rainfall and impacts chlorophyll-a and turbidity. Lakes further
distribute across clusters D1 (3,16%, i.e., lakes Ihotry and Kosi), D2 (6, 31%,
e.g., Kinkony, Vaaldam, Bambene), D3 (10,53%, e.g., Manyara, Hartbee-
spoort dam). In Lake Vaaldam, both turbidity and chlorophyll-a are cor-
related with the rainfall and shortwave radiation driver, and anticorrelated
with wind speed. Wind peaks during the dry season (between September
and November), while turbid and nutrient-rich inputs are normally asso-
ciated with phytoplankton summer blooms during storms occurring
between January and March. These regions are classified as vulnerable to
hydrological droughts and to tropical cyclones69, with a projected increase of
mean wind speed and a decrease in mean precipitation29. These risks
associated with climate change can be translated into lake-specific impacts
such as enhanced wind-driven mixing and prolonged residence times,
which, when combined with nutrient pulses from extreme events, may
amplify turbidity and alter phytoplankton dynamics.

We note that the clusters we observe are well aligned with the findings
of Sogno et al.36, who evaluated dynamic and causal similarities among the
African lakes basedon climatic variables,water availability andvegetation. If
our Fig.5 is comparedwith the results by Sogno et al., it is straightforward to
note that their cluster E andM closely replicate the groups of West African
lakes (e.g., Volta, Chad, Buyo and Kainji, our class C) and Ethiopian rift
valley lakes (e.g., Abhe-Bid, Afrera, our class A). We also see an interesting
connection between South African lakes (mainly reservoirs) and the two
lakes along thewestern coast ofMadagascar, largely through the influenceof
windandoceanmoisture climatic drivers and the lower impactof rainfall on
the overall water quality in south-western Madagascar (class C1). Our
findings expand on Sogno et al. by showing that climate patterns shaping
water availability across spatial and temporal scales also resemble lake
physical and ecological behaviour. As such, lakes located in regions with
similar climate change vulnerability face comparable risks to their water
quality and availability.

Challenges and opportunities of an up-scaled approach over
sub-Sahelian African lakes
Expanding research from a single well-studied lake to numerous, largely
unexplored lakes at a sub-continental scale offers the opportunity to identify
broader patterns but requires streamlined approaches. Despite clear
advantages, there are three main limitations of global lake-climate studies
like ours: (i) use of multiple global datasets for statistical analysis, which
requires evaluation of their uncertainties when applied at individual-lake
scales; (ii) reliance on spatially averaged atmospheric and satellite-derived
data for test sites where spatial heterogeneity might be relevant; (iii) eva-
luation of a climatological year, with potential issues such as gaps in time-
series, bias-correction needs, and variable complexities like chlorophyll-a
concentration and turbidity.

In relation to (i), the uncertainty in global datasets arises frommultiple
sources: random errors in the assimilated observations (ERA5-Land and
CHIRPS), inaccuracies in model parameterizations (ERA5-Land), retrieval
algorithm errors (CHIRPS, TAMAT, ESA CCI), limitations in spatial and
temporal resolution, and inhomogeneous data availability. In the African
context, the lack of in-situ validation data is a structural limitation that
cannot be resolved in thiswork.However, algorithmic uncertainties, such as
random errors, can be mitigated through averaging, as these errors tend to
cancel outwhen aggregated across time and/or space. In contrast, systematic
biases may persist. For physical variables, such as water temperature, level
and atmospheric data, the uncertainty is small compared to the natural

interannual variability and has a slight seasonal dependence. In contrast, the
uncertainty of biogeochemical variables does not exhibit a strong seasonal
variability, suggesting that seasonal pattern detection remains reliable
despite potential biases in the absolute value, which can exceed 50% in some
lakes. We note, however, that in data-scarce environments, the quantifica-
tion of uncertainty itself can be rather uncertain. Observations of surface
water temperature and atmospheric variables are more abundant for the
assessment of ERA5 and LSWTproducts thanmeasurements of bio-optical
water properties. Therefore, we deemed it more robust to use the best
available datasets, acknowledging their inherent limitations, rather than
discarding valuable signals potentially obscured by high and at times
exaggerated, uncertainty.Overall, our results are onlymarginally affected by
the uncertainty in the used datasets, as they are primarily based on spatial
and temporal patterns rather than on absolute values.

As for (ii), we examined lakes of various sizes and shapes, where spatial
variability in water quality variables, such as LSWT, chlorophyll-a, or tur-
bidity is high. In large lakes, this variability is influenced by factors such as
proximity to settlements or agricultural areas (e.g., inLakeVolta66), tributary
inflows (e.g., Koka reservoir70), or three-dimensional flow dynamics
affecting vertical and horizontal nutrient transport (e.g., in Lake
Tanganyika71). Spatial averaging often dilutes this heterogeneity or can
generate outliers under cloud cover. Many lakes in our sample feature
multiple sub-basins or dendritic shapes, especially in reservoirs like Lake
Kariba, where upstream areas exhibit riverine characteristics and down-
stream areas lacustrine characteristics72. This issue also applies to semi-
enclosed regions, such as the Winam Gulf in Lake Victoria, which shows
dramatically different water colour dynamics and correlations with pre-
cipitation compared to the rest of the lake73. While these complexities pose
challenges for spatial averaging, they also present opportunities. The large-
scale approach applied in this study is adequate to detect regionally repre-
sentative patterns. Complementary analyses of spatial variability at daily or
climatological scales could complement our findings, highlighting where
spatial variability alters a lake’s response to climatic and anthropogenic
drivers.

Concerning (iii), the use of climatological means is crucial for studying
climate-driven shifts or extremes in lake ecosystems74. The first step in such
analyses is to define the average seasonal behaviour of the relevant geo-
physical or geochemical variables. These long-term averages are a necessary
baseline againstwhich trends, anomalies, and shifts canbe identified relative
to what is considered “normal” or representative of past conditions. A well-
defined climatology is also critical for distinguishing between natural
variability from true extremes. We applied bias correction where evidently
necessary (e.g., LSWT, LWL), while keeping most other time series
unbiased, assuming that a seasonal pattern exists in all lake variables.
However, interconnected variables, shifting lake surface extent67, phyto-
plankton abundance changes26 and alteredmixing regimes23 complicate this
analysis. Some lakes, like Turkana and Naivasha, exhibit fluctuating water
level seasonality, or no yearly cycle at all (e.g., Lake Bogoria), or too sparse
data to detect one (e.g., Lake Baringo). These outliers point to larger-scale
changes that warrant further investigation.

Identifying a climatology for chlorophyll-a and turbidity is uncommon
in limnology, which typically focuses on direct trends. Using logarithmic
scales for these variables, a climatology for turbidity is relatively easy to
detect. This is because turbidity variations are primarily driven by physical
processes such as sediment resuspension and inputs from the catchment,
with only occasional contributions from biological activity. By contrast,
chlorophyll-a peaks are favoured by light availability, nutrients, tempera-
ture, water mixing, and biotic factors, complicating attribution to climatic
drivers. For most lakes, we provide annual patterns for turbidity and
chlorophyll-a as a reference to identify dynamic lakes or deviations indi-
cating sensitivity to extremes.

Conclusions
Understanding a lake’s typical behaviour is essential for tracking and
interpreting its changes over time.

https://doi.org/10.1038/s43247-025-02684-5 Article

Communications Earth & Environment |           (2025) 6:681 9

www.nature.com/commsenv


In this study, we identify coherent seasonal patterns among atmo-
spheric variables and examine how these patterns are reflected in lake
responses. This provides a first-order understanding of how large-scale
climatic regimes influence lake behaviour on a seasonal scale.

Using principal component analysis (PCA), we cluster lakes based on
the seasonal co-variation of atmospheric variables. While these clusters
show some correspondence with established climate zones, they go beyond
that traditional classification by capturing the synchronicity of seasonal
atmospheric dynamics. By linking these atmospheric clusters to lake-
specific variables, such as water temperature, biogeochemistry, and water
level, we explore how broad-scale climatic forcing is imprinted on lake
systems. Although this approach does not establish causality, it highlights
meaningful temporal synchrony between atmospheric patterns and lake
responses.

Our regional framework groups lakes that experience similar climatic
and anthropogenic pressures, which manifest in consistent physical (i.e.,
water temperature and level) and geochemical (i.e., chlorophyll-a con-
centration, turbidity, colour) responses and potential vulnerabilities. These
climate and ecological analogues can critically inform future monitoring
strategies. Insights from a well-monitored and extensively studied lake can
offer predictive guidance for other, less-studied lakes within the same
cluster, and help to prioritize key variables for monitoring, especially when
direct measurements are unavailable. This is especially crucial in sub-
Sahelian Africa, where significant knowledge gaps remain, and there is an
urgent need for harmonizedmonitoring data, continued long-term remote
sensing efforts, large-scale coordination at both political and scientific
levels62, and research questions grounded in existing local knowledge.

Where long-term in-situ records are unavailable, the climatologies
developed in this study offer a foundational reference. These baselines,
validated where possible through local and scientific knowledge, are now
publicly available as supporting materials. They represent a significant step
toward addressing long-standing data gaps for many understudied lakes.
Ultimately, this study establishes a solid base upon which future research
andmonitoring strategies in such vulnerable regions can build and expand.

Methods
Global open-source datasets
Lake-specific variables. Data from the European Space Agency (ESA)
Lakes Climate Change Initiative (CCI) project for the “Lakes” Essential
Climate Variable (ECV) are exploited to obtain time series of lake vari-
ables derived from satellite imagery. Lakes in this dataset were selected to
be globally representative of the largest inland waters and to cover a wide
range of ecological settings and characteristics34. The criteria for lake
selection were based on lake area (starting from the largest) and on
distance from the nearest land (stretch of open water at least 2 km from
land). Additional lakes were then considered because of their in-situ data
availability or because theywere investigated under Copernicus activities.
Among the 2024 lakes included in the dataset (version 2.1), we first
selected all lakes located in sub-Sahelian Africa (including those in
Madagascar), for a total of 140 study cases. We discarded Lake Ist’ifanos
(Ethiopia), Pool Malebo (Republic of the Congo and the Democratic
Republic of the Congo), and theWest Ngalabalab swamp (Sudan) as they
displayed almost no water occurrence in the period observed75.

For the selected 137 lakes, we extract the full time series ofmaps of Lake
SurfaceWater Temperature (LSWT, in K), chlorophyll-a concentration (in
mg/m3), turbidity (in NTU), Lake water Leaving Reflectances (LWLR,
normalised), with a pixel size resolution of ~1 km. In addition, the time
series of Lake Water Level (LWL, in m a.s.l.) is obtained for 54 lakes. The
temporal coverage of the different thematic variables is the following: LSWT
from 1995 to 2022; chlorophyll-a, turbidity and LWLR from 2002 to 2022
(with a gap between 2012 and 2016 for all lakes but Lake Victoria, Cahora
Bassa Reservoir and Lake Kivu); LWL from 1992 to 2022.

Meteorological variables from ERA5-Land reanalysis. Atmospheric
forcing is obtained from model reanalysis products provided by the

European Centre for Medium-Range Weather Forecasts (ECMWF). We
extract data from the ERA5-Land42 reanalysismodel, which combines the
ERA5 reanalysis forcing with a higher resolution land model and pro-
vides data at hourly resolutionwith a grid cell size of (0.1°x0.1°).We note,
however, that 43% of the lakes considered in this study have surface
extensions smaller than the model grid size (approximately 100 km2).
ERA5-Land variables are downloaded from the Google Earth Engine
(GEE) daily aggregated collection (ECMWF_ERA5_LAND_DAILY_
AGGR) for each lake by considering the lake mask available in the
Lakes_cci dataset76).We extracted data from1992 to 2022 to cover the full
range of availability of CCI products. We consider air temperature at 2 m
above ground (t2m, in K), shortwave downward solar radiation (ssrd, in
J/m2), dew point temperature at 2 m a.s.l. (d2m, in K), wind speed at 10 m
above ground (w, inm/s), precipitation (tp, inm), air pressure (sp, in Pa),
Relative humidity (RH) is computed from d2m following Lawrence
200577.

Satellite-derived precipitation. For a better characterization of pre-
cipitation, the TAMSAT44 v3.1 and CHIRPS43 v2.0 satellite-derived
rainfall datasets are included, alongside rainfall estimates from ERA5-
Land. The use of multiple datasets can help quantify observational
uncertainty, which can be substantially large in places over Africa with
scarce in situ observations78. For example, ERA5 reanalysis has been
shown to allow for a better closure of the water balance of Lake Tanga-
nyika than CHIRPS, IMERG or other rainfall datasets79. The TAMSAT
and CHIRPS products, which are widely used in both operational and
research applications across Africa, are based on thermal-infrared (TIR)
satellite imagery to identify the cold cloud tops of precipitating convective
storm systems. In turn, the satellite imagery is used to derive cold cloud
duration (CCD) maps, which acts as a proxy for rainfall. CCD maps are
then calibrated using rainfall from either rain gauges (in the case of
TAMSAT) or microwave-based satellite rainfall estimates (in the case of
CHIRPS). CHIRPS includes an additional step of merging con-
temporaneous rain gauge measurements with the TIR-based satellite
estimate to improve skill within the vicinity of the rain gauge. TAMSAT
andCHIRPS both provide rainfall estimates since the early 1980s-present
at the daily timestep.

For each lake, the precipitation from each dataset was extracted using
lake catchment shapefiles provided by the Lake-TopoCat80 dataset - a global
lake drainage topology and catchment database. Precipitation can be sorted
in three categories: (i) direct rainfall into the lake; (ii) rainfall that falls over
the immediate catchment and drains directly into the lake; (iii) rainfall that
has fallen over upstream lakes and catchments that then eventually flows
downstream into the lake via rivers or streams, and/or groundwater flow
(e.g., aquifers). While all important, these precipitation sources operate on
different time-scales, which vary for each lake. For this study, we extracted
only the precipitation that fell over the immediate catchment of each lake, as
this provides an indication of the precipitation variability on seasonal time-
scales relevant for this study. Precipitation from upstream areas (for lakes
within such networks) typically influences timescales longer (i.e., over
12 months) than intra-annual or intra-seasonal patterns, making it less
critical for our focus.

Ancillary information. Lake morphological characteristics are extracted
from further open datasets. Lake area, average depth, and elevation are
obtained from HydroLAKES81. The climatic zones were extracted from
high-resolution (1 km) Köppen-Geiger maps for 1991-202041. Land use
land cover (LULC) data from a reanalysis based on the CCI_LC maps
ranging from 1992-2015 was obtained from Digital Earth Africa82, and
extracted on a catchment level leveraging the TopoCat80 dataset. Infor-
mation on the origin of waterbodies is obtained from the Lakes_cci
metadata. Population counts were obtained from the constrained
population density estimate for 202083, at 3 arc second resolution
(approx. 100 m at the equator), from which population density was
calculated per catchment. Additionally, the Joint Research Commission
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(JRC) Water Occurrence tool for Africa75 is used to verify the existence
and extent of water surface in the lakes of our sample.

A literature search on Scopus is performed to obtain an overview of the
volume of scientific research carried out in the lakes across various dis-
ciplines. Papers mentioning the lake name and the country in the title,
keywords and abstract are searched with the following query: (Lake OR
Reservoir OR Lac OR Lagoon OR Lagune OR Dam OR Pool OR
Pond OR Wetland OR Lagoa OR Crique) Lakename OR AND
(Country). This allows avoiding the exclusion of results for those lakes in
East Africa whose names are homonymous to lakes in Australia, the United
States, and Canada (e.g., Lake Albert, George, Victoria, respectively). The
query also comprises additional documented names and countries (for
transboundary lakes) by adding an “OR” after Lakename and after Country
keys. For example, the query for Lake Malawi is: (Lake OR Reservoir
OR Lac OR Lagoon OR Lagune OR Dam OR Pool OR Pond OR
Wetland OR Lagoa OR Crique) Malawi OR Niassa OR Nyasa
AND (Malawi OR Mozambique OR Tanzania). Such search terms
therefore exclude those scientific contributions that do not explicitly men-
tion one of the lakes in our sample. This applies for example to those studies
that mentioned the name of the lakes in the materials andmethods section.
We are also aware that the method might also inadvertently assign studies
on different lakes within the same country, such as Chad orMalawi, to lakes
named after the country, leading to potential overestimation of the scientific
studies associated with those lakes. However, as this might apply to a little
number of lakes, we believe the method provides an indication of how well
each lake has been studied, without demanding the level of detail and
accuracy required for a literature review.

Multivariate analysis
Estimation of climatological year. For each variable, we evaluate the
climatological year to assess its average seasonal evolution and the
standard deviation from 20 years of observations. From now on, “cli-
matology” refers to the annual time series obtained by considering the
climatological mean of each day of the year (doy). The climatology is
computed based on the statistical properties and temporal availability of
the variables involved in the multivariate analysis.

The climatology for the TAMSAT and CHIRPS rainfall is computed
for each doy after logarithmic transformation of the rainfall data, which can
have a large variance. Moreover, the distribution of rainfall is typically
skewed. The log-transformation makes the distribution as ‘normal’ as
possible so that the calculation of the mean and the standard deviation are
statistically valid. Themean and the standard deviation are calculated on the
doy using a smoothing window of ±7 days and the maximum likelihood
estimator is foundmore suitable than a simplemean: x ¼ expðmx þ 0:5s2xÞ
wheremx and s

2
x are the sample mean and variance of the log transformed

data46. The climatologies are computed over the period 2002-2022. Despite
considerable uncertainties, rainfall estimated from ERA5-Land, CHIRPS
and TAMSAT show consistent annual variability both in terms of order of
magnitude and timing of the rainy season(s) (as reported in the climatology
plots provided in Table 2 of Supplementary materials).

The climatologyof theESACCILakes v2.1LSWTis computed for each
day of the year (doy) as the mean of the available LSWTs of quality levels
>=3 between 1995 and 2022 on the doy ± 7 days in order to obtain a smooth
curve. The standard deviation is also computed to capture the variability of
the LSWT within the period considered.

The climatology of the ESA CCI Lakes v2.1 chlorophyll-a and turbidity
is computed for each day of the year with three different methods: (1) as the
meanof theavailable values, (2) as themeanof the log-transformedvalues, (3)
maximum likelihood estimator (as for the rainfall) of values. The climatology
has been computed between 2002 and 2022 on the doy ± 15 days to obtain a
smooth curve. Themean of the log-transformed data has been chosen for the
analysis as the most representative of the log-normal distribution of
chlorophyll-a and turbidity. We point out that, for the majority of the lakes,
chlorophyll-a and turbidityhaveagapbetween2012and2016(see the section
on the lake-specific data) which can influence the climatology.

The climatology of the ESA CCI Lakes v2.1 LWL is computed for doy
as themean of the available LWL after removing the annual mean from the
timeseries. Such detrending is performed in order to avoid that significant
changes in the average annual LWL (as registered in many lakes and
reservoirs in our sample, e.g., Lake Chad) impact the shape of climatology.
We point out that for a few lakes the climatology could still be affected by
long term changes impacting the overall seasonality of LWL variations (e.g.,
Lake Naivasha and Baringo, see also Supplementary Materials).

The climatology of atmospheric variables from ERA5-Land is com-
puted from the daily time series of the spatially averaged values downloaded
fromGEE. Themean and the standard deviation therefore refer to the value
that the single variable has had in each doy from 1992 to 2022.

Estimation of water colour. Water colour, as the dominant wavelength,
is derived from daily spatially averaged LWLR using the hue angle
algorithm by Van der Woerd and Wernand, 201884, supplemented with
coefficients for Sentinel-3 by Ye and Sun, 202285. First, daily time series of
dominant wavelengths are evaluated for each lake. Frequency and dis-
tribution of these daily observations across all lakes are evaluated using a
histogram (see Fig. S16). We define 10 colour classes following Lehmann
et al., 86 with a subtle adaptation of the threshold values to our dataset,
which presents sparser observations in green and blue and a few orange
observations. First, daily dominant wavelength (λdom) observations are
classified as solid colours, with threshold values as blue (λdom < 495 nm);
green (495 nm ≤ λdom < 560 nm); yellow (560 nm ≤ λdom < 590 nm); and
orange (λdom ≥ 590 nm). Solid colours (blue, green, yellow, orange) are
assigned to a month when ≥ 60% of observations in that month are
classified as the respective solid colour. Transient colours are then
assigned based on the percentage of observations between solid colour
classes in a month. For example, the class green-yellow was assigned
when in a month ≥ 30% of observations were green and ≥ 40% of
observations were yellow. All binning criteria are listed in Table S.4 in the
Supplementary Information. We refer to “colour climatology” as the
result of suchmonthly grouping based on the prevailing colour. Lakes are
then clustered based on the predominant colour and the number of
unique colours expressed throughout the year.

Estimation of uncertainty for reanalysis and remote sensing global
datasets. The global datasets used for estimating the climatological year
of atmospheric variables, rainfall and lake-specific variables provide an
estimation of the uncertainty at the daily scale.

For the ERA5-Land reanalysis products, ECMWF recommends eval-
uating the Ensemble of Data Assimilations (EDA) system products for
ERA542, based on the ten-member ensemble data assimilation system87 at
3-hourly resolution and at half the ERA5 horizontal resolution. From this,
the ensemble mean and spread can be calculated and used to estimate the
reanalysis uncertainty. The ensemble spread includes the random uncer-
tainties in assimilated observations and uncertainties in the physical para-
meterizations. We therefore downloaded the EDA ensemble members for
t2m, ssrd, d2m, w, tp, sp from the ERA5 daily aggregated reanalysis
(derived-era5-single-levels-daily-statistics) from 1992 to 2022. For each
variable we calculated the daily ensemble mean and standard deviation and
aggregated them on a monthly basis. Maps of monthly ensemble standard
deviation88 are provided in Supplementary Materials. A direct use of
uncertainty values in each pixel is not recommended by ECMWF, however
the obtainedmaps efficiently deliver an ideaofwhere reanalysis products are
more or less accurate and how uncertainties follow large-scale atmospheric
dynamics across Africa on a climatological basis.

In satellite-based rainfall estimates such as those from TAMSAT and
CHIRPS the main source of uncertainty is from the indirect relationship
between cloud top temperature and rainfall at the surface, which can be
further exacerbated by sparse and unevenly distributed rain gauge data used
for calibration and bias correction, as well as challenges in capturing
localised rainfall climates that can complicate the cold cloud-rainfall
relationship. However, while both TAMSAT and CHIRPS do not
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operationally provide uncertainty estimates, both datasets have been
extensively evaluated across Africa and demonstrate typically good to
very good skill across Africa, indicating they can be used as a reliable
indicator of rainfall variability on multiple time and spatial scales. Such
studies include Dinku et al. 89 (East Africa), Houngnibo et al. 90 (West
Africa), Bamweyana et al. 91 (Uganda), Bagiliko et al. 92 (Ghana and
Zambia) and Maidment et al. 44 (Mozambique, Niger, Nigeria, Uganda,
and Zambia). Consequently, such datasets are widely used in many
operational applications across multiple sectors across Africa (for
example, climate, agriculture and finance).

The ESA CCI Lakes v2.1 provides detailed documentation93 on the
uncertainty associated with the variables included in the dataset, which
have been thoroughly validated through comparison with in-situ
measurements34. Uncertainties come along with lake variables as pixel-
by-pixel quantities for each lake at up to a daily scale. The uncertainty in
LSWT is estimated by accounting for propagated, retrieval, and sampling
uncertainties and it includes all sources of uncertainty (sensor errors,
modelling errors, prior errors, retrieval indeterminacy and data sampling
for gridding) expected for a valid retrieval of LSWT. The propagated
uncertainty reflects how errors in satellite observations are amplified
during the retrieval process. Retrieval uncertainty represents the range of
LSWT values that could reasonably match the satellite observations, due to
ambiguity introduced by the atmosphere between the lake surface and the
satellite sensor. This component also includes the effect of the prior value
used in the retrieval process (optimal estimation). Sampling uncertainty,
relevant during the gridding process, occurs when only a portion of the
lake within a grid cell is visible or measurable. Further, quality levels are
associated with per-pixel LSWT and they are an indication of the con-
fidence of the retrieved value of LSWT and its uncertainty estimation.

Uncertainty for chlorophyll-a and turbidity is determined for each
algorithm underlying the dynamic weighted blending of algorithms based
on optical water types pre-classification. The characterisation of uncertainty
of each algorithm and optical water type is carried out against in situ bio-
optical data sets as part of Lakes_cci product development. The per-pixel
uncertainty estimates included with the Lakes_cci dataset extrapolate from
these uncertainty models and are, therefore, not specific to the observation
conditionsor a specific lake - theyonly describe the anticipatedperformance
for the specific combination of algorithm weights determined for each
observation. It is possible for lake-specific observation bias to be under- or
over-stated in this estimate. Such biases are expected to be relatively sys-
tematic within the confines of a single water body, thus supporting trend
analysis even if uncertainty estimates are of the same order of magnitude as
the trend. Typically, algorithm selections perform worse in the vicinity of
lake shores and thesemaybe observed tohave higher per-pixel uncertainties
based on the abovementioned global uncertainty patterns, linked with
specific optical water types and associated algorithm performance. This
should not be confused with observation-specific uncertainties, as these are
not presently reported. Algorithms associated with different concentration
ranges may also be associated with different degrees of uncertainty.
Therefore, to avoid introducing sampling bias (e.g., seasonal), data filtering
basedonuncertainty estimates is not recommended,whereas several quality
flags associated with observation conditions and algorithms operating
outside of their training scope, should be observed.

LWL uncertainty is quantified as the standard deviation of the data
used to derive LWL for each satellite overpass, reflecting the variability
associated with the altimetric retrieval. This uncertainty largely depends on
the size of the lake and the transect of the satellite pass and typically ranges
from a few centimetres to a few decimetres, with higher values observed for
narrow or complex-shaped lakes. Intercomparison with some available
in situ lake level in North and South America and in Europe, for small to
large lakes, have shown that the uncertainty provided in the CCI dataset are
in good agreement with the uncertainty of ground measurements, with no
identified seasonal variability. Although uncertainty can vary on a lake-by-
lake basis, the validation of the dataset as provided and commented in

Carrea et al. 34makes us relatively confident that uncertainty on this variable
generally remains within negligible to the purpose of this study.

We extracted uncertainty values for sub-Sahelian lakes on a monthly
basis for LSWT, Chlorophyll-a and Turbidity. Maps of monthly median
values (reported in the Supplementary Materials, Figs. S11-S13) show that
the uncertainties are approximately 0.5-1 K for LSWT, 60–70% for Tur-
bidity, 40-50% for Chlorophyll-a. LSWTuncertainty clearly depends on the
season, with larger values during the rainy season due to cloud cover, while
uncertainty of water quality variables shows limited seasonal variation.
When compared with the interannual variability of each parameter,
quantified as the standarddeviation aroundmonthlymeans (Fig. S14), these
uncertainties generally fall within or below the expected natural
variability range.

Principal component analysis. A Principal Component Analysis
(PCA) is performed across all climatic variables to gather a standardised
description of the seasons and dominant weather features in each lake.
The PCA is performed on each lake singularly. The features xi are the
climatologies of four ERA5-Land variables (air temperature andpressure,
shortwave radiation and relative humidity, see the above section for a
detailed description of the variables) and rainfall from either ERA5-Land,
TAMSAT or CHIRPS datasets. The contribution of rainfall from,
TAMSAT and CHIRPS are evaluated in three different PCAs, such that
the number of features p = 5 for each test. Only results including TAM-
SAT are reported in the results section.

Each feature xi is a time-series composed by n = 365 samples (29th of
February is removed from the computation) and is normalised by removing
its mean value μi and dividing by its standard deviation σ i over the n values
as in Eq. 1.

x0i ¼
xi � μi

σ i
ð1Þ

ThedatamatrixX for thePCA is therefore composedbyappending the
normalised features in a matrix with i ¼ 1; :::; p columns (features) and
t ¼ 1; :::; n rows (samples), as in Eq. (2).

X ¼ x01; :::; x
0
i; :::; x

0
p

h i
ð2Þ

The covariancematrix C is then computed as in Eq. (3) as amatrix p x
p. Its eigenvectorswi are p vectorswith p values representing the direction of
the i-th principal component, while its eigenvalues λi are scalars quantifying
the amount of variance explained by the i-th principal component.

C ¼ 1
n�1X

TX

Cwi ¼ λiwi

ð3Þ

A matrix W is constructed by appending the eigenvectors wi in des-
cending order according to the value of their respective eigenvalue λi (Eq. 4).
As for almost all lakes the variance explained by the first two components
(λ1 + λ2) exceeds 80% of the total variance, only two principal components
are retained.

W ¼ wi;1; wi;2

� �
ð4Þ

From now on, we will refer to the principal components with the
index j ¼ 1; 2.

The amount of variance of the i-th feature explained by the j-th
principal components (e.g., displayed for all involved features in panel h in
Fig. 3) is carried by the termswi;j stored in the eigenvector’s matrixW (also
known with the term loadings).

The time series of PC1 and PC2 are obtained by projecting the original
datamatrixX on the principal component spaceW as in Eq. (5). Thus, PC1
and PC2 represent the transformed data into the directions of maximum
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variance.

PC ¼ X �W ð5Þ
To obtain comparable results across the different lake PCAs, we first

identify what PCj holds the most variance of each feature. To this aim, we
compute a score ai;j based on the loading of the i-th feature on the j-th
principal components as in Eq. (6):

ai;j ¼
wi;j

���
���

wi;1

�� ��þ wi;2

�� �� ðwith j ¼ 1; 2Þ ð6Þ

where wi;1 þ wi;2 is the total variance of the feature explained by PC1
and PC2. Themodule is applied to the loadings in order to account for their
arbitrary sign on PC1 and PC2.

We consider one variable to be well described by the j-th principal
component when more than 55% of its total explained variance is captured
by PCj (ai;j > 0.55). We then list the variables satisfying the above criterion
and classify the main meteorological variable to be associated to each PC.
Since in each lake features can group differently along PC1 and PC2, our
classification is based on afirst distinction between variables associatedwith
the rainy season (rainfall, relative humidity) and those associated with the
dry season (shortwave radiation mostly, representative of the radiative
energy coming from the sun). A third group of variables (air pressure,
temperature, wind speed) can both align with one of the two seasons-
definingPCsor be completely independent on that anddefine their ownPC.
The class assignment logic is therefore based on the definition of four main
classes: (1) rain, (2) swdown (abbreviation for shortwave solar radiation), (3)
rain and swdown, (4) wind, where the:
1. “rain” class is attributed to PCj when the list of variables with score

ai;j > 0.55 does not include shortwave radiation and includes rainfall or
relative humidity;

2. “swdown” class is attributed toPCj when the list of variables with score
ai;j > 0.55 does not include rainfall but includes shortwave radiation or
air temperature or air pressure;

3. “rain and swdown” class is attributed to PCj when the list of variables
with score ai;j > 0.55 includes both rainfall and shortwave radiation.

4. “wind” class is attributed to PCj when the list of variables with score
ai;j > 0.55 does not include rain nor shortwave radiation and includes
wind or atmospheric pressure.

Correlation analysis between water quality variables and PCs
Once the complexity of weather variables interacting with one-another is
reduced to two main climatic drivers, we compute the linear correlation
between the obtained PCs and the climatologies of the lake variables (i.e.,
LSWT, chlorophyll-a, turbidity, LWL). The value of the Pearson correlation
coefficient r is plotted in the vector space of PC1 andPC2 to visually identify
which of the two eigenvectors shows the largest similarity with the lake
variables (see e.g., Fig. 4a). We search for the optimal lag that maximises jr|
between lake variables and thePCs and allowamaximum lagof 120days for
LWL, 60 days for all other variables. The p-value is also computed, and
results with p-value > 0.05 are ignored.

We cluster the lakes based on what PC shows the largest correlation
with each lake variable.When jrj;kj>0.5, we consider PCj as correlated with
the lake variable k. We set 0.2 as the minimum threshold for significant
(albeit weak) correlation. Correlationwith bothPC1 andPC2 is allowed and
displayed in Fig. 4d–f) as bi-colour dots.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used in this work have been downloaded from publicly available
datasets. Lakes_cci: https://catalogue.ceda.ac.uk/uuid/7fc9df8070d34cacab

8092e45ef276f1/ ERA5-LAND: https://developers.google.com/earth-
engine/datasets/catalogue/ECMWF_ERA5_LAND_DAILY_AGGR?hl=it
Hydrolakes: https://www.hydrosheds.org/products/hydrolakes TAMSAT:
https://research.reading.ac.uk/tamsat/data-access/ CHIRPS: https://www.
chc.ucsb.edu/data Lake-TopoCat: https://doi.org/10.5281/zenodo.7916729
Population density: https://hub.worldpop.org/geodata/listing?id=78 JRC
Africa Knowledge Platform: https://africa-knowledge-platform.ec.europa.
eu/explore_maps JRC World Atlas of Desertification: https://wad.jrc.ec.
europa.eu/ Per-lake results obtained via post-processing of public data can
be found at the following links: https://gws-access.jasmin.ac.uk/public/cds_
c3s_lakes/CCI_African_lakes_paper/htmltab1/African_Lakes_List_Tab1.
html https://gws-access.jasmin.ac.uk/public/cds_c3s_lakes/CCI_African_
lakes_paper/htmltab2_climatologies/African_Lakes_List_Tab2.html
https://gws-access.jasmin.ac.uk/public/cds_c3s_lakes/CCI_African_lakes_
paper/htmltab3_results/African_Lakes_List_Tab3.html.
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