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Human dexterity and brains evolved hand
in hand

Check for updates

Joanna Baker 1,2 , Robert A. Barton 3 & Chris Venditti 1

Large brains and dexterous hands are considered pivotal in human evolution, together making
possible technology, culture and colonisation of diverse environments. Despite suggestions that
hands and brains coevolved, evidence remains circumstantial. Here, we reveal a significant
relationship between relatively longer thumbs – a key feature of precision grasping - and larger brains
across 95 fossil and extant primates using Bayesian phylogenetic methods. Most hominins, including
Homo sapiens, have uniquely long thumbs, yet they and other tool-using primates conform to the
broader primate relationship with brain size. Within the brain, we surprisingly find no link with
cerebellum size, but a strong relationship with neocortex size, perhaps reflecting the role of motor and
parietal cortices in sensorimotor skills associated with fine manipulation. Our results emphasise the
role of manipulative abilities in brain evolution and reveal how neural and bodily adaptations are
interconnected in primate evolution.

Manual dexterity has long been celebrated as a cornerstone of our own
evolutionary success, facilitating technological innovation, cumulative cul-
ture, and rapid cultural adaptation to variable environments e.g., see refs.
1–4. While numerous suggestions have been made about the potential link
between manual dexterity and cognition1,5, the ways in which natural
selection acted to shape the human hand and its coevolution with the brain
remain poorly understood. Here we set out to examine how the coevolution
of complexmanipulative behaviours and brain size1 in primates is reflected
in morphology – the traits that change in response to natural selection in
order to facilitate such behaviour. Using a Bayesian phylogenetic com-
parative approach to studying behaviour-correlatedmorphological features,
we candirectly test for relationships in extinct species like our ownancestors
– in which the behaviours and brain mechanisms themselves are
unobservable.

Beyondhominins, tool use is observed inmany species6–13, and is in fact
but one manifestation of skills related to extractive foraging14,15 – which are
even more widespread. Previous work has found that manipulation beha-
viors co-evolved with brain size in primates1,16 Here we ask how thismay be
related to variation in hand morphology, which allows us also to examine
fossil species in a phylogenetic context. A variety of anatomical factors17,18

affect manipulative ability including thumb robusticity4 and relative thumb
length18,19, as well as more complex aspects of hand proportions20. Here, we
focus on relative thumb length. Whilst we recognise the additional role of
other features of the hand, an increased ability tomanipulate small objects is
enhanced by long thumbs19,21,22 – particularly relative to the index finger23.
Longer relative thumbs facilitate greater opposability24 – andHomo sapiens

is noted to have both longer thumbs comparedwith other apes25,26 as well as
enhanced manipulative ability2,17,24. However, while H. sapiens possesses a
uniquely refined precision grasp24,27, there are varying degrees of opposa-
bility across primates23 and precision grasping behaviours are found within
other species with only pseudo-opposability such as capuchins21,26. If fine
manipulative abilities require enhanced sensorimotor control with an
associated neural processing cost, then we would expect to see a general co-
evolutionary relationship between thumb length and brain size across the
primate order (Fig. 1A). Indeed, this may explain some of the marked
variation in relative brain size among primates and the trend for this to
increase through time28.

However, if long thumbs are a hominin-specific adaptation associated
with refined precision grasping18,21,27 and/or the advent of tool culture17,18,29,
then we would expect to observe a relationship only amongst hominins –
along with an increase in thumb length (Fig. 1B). A third possibility is that
long thumbs were advantageous for tool use in other clades too, predicting
an increase in thumb length in hominins associated with habitual tool use
and in other tool-using primates (Fig. 1B). In this case, a primary link
between brain size and dexterity is driven by sensorimotor specialisation
specifically for tool use. Finally, if increased thumb length in tool users or
hominins arose alongside a more general relationship with manipulative
abilities and brain size across all other primates (Fig. 1C), this implies a need
for longer thumbs that requires no additional neural processing. In this
scenario, this implies that alternative factors may have driven the evolution
of both traits – or that some element of overall brain size has been otherwise
reduced.
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Here, we conduct the first empirical test of the hypothesis that brain
size and hand morphology were linked during primate evolution, using
comparative phylogenetic analysis and a dataset of 95 fossil and con-
temporary primate species spanning all primate diversity (Fig. 1D, Sup-
plementary Data 1). We test the hypothesis that selection for sensorimotor
control ofmanually dextrous behavioursmodified the thumbs of tool-using
primates and had an associated neural cost reflected inwhole brain size.We
additionally test whether thumb lengthmay have differentially evolvedwith
respect to brain size amongst H. sapiens and our extinct ancestors using
phylogenetic outlier tests30.

Results
Results from our Bayesian phylogenetic generalized least squares (PGLS)
regression models implemented in BayesTraits31 and accounting for phy-
logenetic uncertainty byusing a sample of dated trees (seeMethods) support
the expectation that thumb length and finger length are strongly linked
across all primates (Fig. 2A, n = 95, finger-only models). The relationship is
significant in 100% of our tree sample (see Methods), with a median slope
parameter ranging between 0.87 and 0.89 across the sample. There is high
phylogenetic signal, with amedian λ of 0.81–0.89. Full parameter ranges are
reported in Supplementary Table 1. Results are qualitatively identical (i.e.,
we draw the same fundamental conclusions basedon statistical significance)

using alternative bones and digits (Supplementary Note 1, Supplementary
Tables 2–7).

Using a phylogenetic imputationprocedure30, we then identifiedwhich
hominins had longer thumbs than expected given intrinsic hand propor-
tions across primates. Given the finger-onlymodel estimated across all non-
hominin primates, we find that all but one hominin species (Aus-
tralopithecus africanus) are significant outliers compared to non-hominin
primates (Fig. 2B, see methods). As expected26, hominin thumbs are sig-
nificantly longer than those of other primates. The general primate-wide
relationshippredicts hominin species tohavemuch shorter thumbs than are
actually observed.

We then conducted an additional set of PGLS models to test whether
variation in thumb length is associated with brain size after accounting for
allometry (using intrinsic hand proportions i.e. finger length). In these
whole-brain models (n = 95), we find that the relationship between thumb
length and finger length is maintained, with similar significance to that
found in our finger-only models (median β[finger] = 0.69–0.72, px < 0.05 in
100% of trees, Fig. 3A). This model also retrieves a significant positive
association between thumb length and brain size (median β[brain] = 0.11-
0.13, px < 0.05 in 100%of trees, Fig. 3B). There is high phylogenetic signal in
this model (median λ = 0.78–0.87) and the results are qualitatively identical
excluding all hominins (n = 6). We find that there is still a significantly
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Fig. 1 | Data and potential scenarios for the coevolutionary relationship between
thumb length and brain size across primates. A In this (expected) scenario, relative
brain size and thumb length co-evolved across all primates (solid line). If these two
traits are unlinked, we would observe no relationship (dashed line). BAlternatively,
we may see a scenario in which a relationship exists only for hominins and/or tool-
users. C Finally, it is possible that brain size and thumb length coevolved across all
primates, but there is a shift in the intercept of the relationship between hominins
and/or other tool-using species, which might be the case if there was some reorga-
nization of the neuro-behavioural basis of manipulation.D Phylogenetic tree of the
95 species used in the main analyses. Manual dexterity is measured using the

relationship between the length of the first metacarpal (MC1, green) and the second
metacarpal (MC2, blue) – the length of both bones is shown by the bars at the tips of
the tree (shorter bone superimposed on top). Whole brain size is represented by red
circles at the tips of the tree, with species with documented tool-use outlined in black.
Species for which we have both cerebellum and neocortex volumes are indicated by
purple branches. Silhouettes represent major primate clades and are for illustrative
purposes only: Adapiformes (n= 2, red); Lorisiformes (n= 11, green); Lemur-
iformes (n= 16, blue); Tarsiiformes (n= 2, purple); Platyrrhini (n= 13, orange);
apes (n= 13, yellow); Colobinae (n= 12, brown); Cercopithecinae (n= 26, pink).
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positive relationship between relative thumb length and brain size (median
β[brain] = 0.08–0.11, px < 0.05 in 100% of trees) as well as thumb length and
finger length (median β[finger] = 0.74–0.78, px < 0.05 in 100% of trees) across
all non-hominin primates. That is, hominins are not driving the observed
association between thumb length and brain size (Supplementary Table 1).

We then repeated the phylogenetic imputation procedure using our
whole-brain model estimated across all non-hominin primates. After
accounting for brain size, no hominin species (except Australopithecus
sediba) is identified as an outlier to the thumb length and brain size rela-
tionship across all other non-hominin primates (Fig. 3). In all butA. sediba,
the posterior distribution of estimated thumb lengths overlaps the true value
by more than 5%, in more than 95% of trees.

The hypothesis that longer thumbs are specifically advantageous with
regards to tool use predicts a difference in thumb length between tool-using
primates and those never observed to use tools. To test this prediction, we
assessed the relationship between thumb length and tool use - defined as the
non-social use of external objects to alter the properties of a target object or
medium32,33. Using a comprehensive compilation of observed tool-use
across the animal kingdom32 to identify tool-using primates, we ran an
additional PGLS analysis that included thumb length as a response variable
and finger length, brain size and tool use as covariates. In these tool-use
models, we find no significant difference in the slope of the relationship
between thumb length and brain size for n = 28 extant primates that have
been observed to use tools (px > 0.05 for both the intercept and slope dif-
ference in 99% of trees). Additionally, there is no mean difference in the
thumb lengths of tool-using species either before or after accounting for
brain size (see SupplementaryNote 2). The inclusion ofH. sapiensmakesno
qualitative difference to the results, and the overall relationships are quali-
tatively identical to those in our whole-brain models.

We additionally tested two alternative ways of defining tool use, all
obtained from the same source32. We find the same results for species who
exhibit “true tool use”, where objects are explicitly manipulated out of their
original context33,34 as well as for species observed to explicitly manufacture
or modify objects prior to use32,35. Finally, we ran two additional versions of
each tool-use model excluding (i) species where either only a single indi-
vidual has been observed using or making tools, or (ii) where observations
came only from captive animals32. All alternative definitions and exclusions
resulted in qualitatively identical conclusions.

Note that all the variables we include in our models are significantly
associatedwithbody sizeand thuswedidnot includebody size as a covariate
to avoid issueswithmulticollinearity. All analyses still account for size in the
form of intrinsic hand proportions – by including the length of the second
digit (MC2). However, when we tested models that additionally incorpo-
rated body size, we found it to be non-significant in 98% of topologies. As

our results remain qualitatively identicalwhenbody size is included, herewe
present our results without body size.

The above results are all presentedwherefinger length is representedby
the seconddigit–which is generally considered to be an important indicator
of manual dexterity23,36. However, other papers have demonstrated and
highlighted the importance of other digits in grasping abilities and dextrous
behaviours18. From a clinical perspective, the first and third digits are often
used toderive functional dexteritymetrics inhumans e.g., see ref. 37wherein
precision handling is generally referred to asmanipulation using the thumb
and second or third digits38. Both third and fourth metacarpals have also
previously been used to explicitly study hand size and proportions amongst
hominins and other apes e.g., see refs. 26,39,40. More recently, it has been
demonstrated that the fifth digit is likely to have played a key role in pre-
cision grips associated with hominin tool use and production41–43. For this
reason, we also conducted our finger-only and whole-brain models (both
with and without hominins and body size) using the metacarpals of each of
the other digits (MC3-MC5) as ourmeasure of finger length – as well as the
proximal phalanges of all digits where available. In these models (presented
in full in Supplementary Tables 2–7), we reach the same qualitative con-
clusions as those made using the second metacarpal – that there is a sig-
nificant and strong relationship between brain size and thumb length.

Discussion
Thumb length and dexterity
Our results imply a robust association between brain size and manual
dexterity. One of the advantages of using anatomical data such as bone
length as an indicator of behaviour is that it is subject to much less error in
measurement than behavioural observations44. Furthermore, anatomical
features aremuchmore likely to be directly subject to selective pressure and
thus are directly related to the neural processes that control them in order to
produce adaptive behaviours. However, whilst having longer relative
thumbs clearly represents a key component of enhanced manipulation
ability19,21,22, it does not fully capture the complexity of primate variation in
dextrous behaviour and ability. A range of morphological traits have been
demonstrated to influence thumb dexterity beyond relative thumb
length4,18,20, including (among others) relative proportions andmorphology
of other digits20,41, bone shape and structure4,45,46, and bone traits associated
with soft tissues such as muscle attachment sites (entheses)42,47,48. Primate
dexterity is clearly facilitated by more than just thumb length alone; whilst
thumb length can provide us with some general insights, detailed muscu-
loskeletal and biomechanical modelling studies can provide us with critical
insights into the various other factors driving dexterity and mobility4,23,43,49.

The multifactorial nature of primate and, more specifically, hominin,
dexteritymaymean that having a long thumb or even high jointmobility in

Fig. 2 | The relationship between finger length and
thumb length across primates. AA random sample
(n = 25) of fitted slopes from our finger-only model
(MC1 ~MC2) are plotted across a random sample
of n = 50 trees. The median fitted relationship is
superimposed. B The hominin phylogeny (using a
single representative from the sample) is plotted
along with the posterior distributions of imputed
thumb lengths from the finger-only model. There
are 100 distributions for each hominin for each
model – one for each of the topologies in the sample.
Outliers are identified when the posterior distribu-
tion of estimated thumb lengths overlaps the true
value by less than 5%. The real thumb length of each
species is indicated by the green line. Silhouettes are
shown for representative purposes only and are not
to scale. Silhouettes are shown for representative
purposes only and are not to scale but are coloured
according to whether they are identified as an outlier
(grey = non-outlier, blue = outlier).
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isolation is not sufficient for high manipulation capability from a bio-
mechanical standpoint23. However, it does not mean that thumb length is
not still linked to manual dexterity. In line with this, here we demonstrate
that relative thumb length is strongly and significantly linked tomeasures of
dexterity derived from biomechanical and kinematic models (Supplemen-
tary Note 3). In a sample of 41 primate species, we tested the relationship
between peak manipulation workspace – a biomechanical measure of dex-
terity that defines the range of motion a small object can be freely moved
between the thumb and index finger - and thumb length. We find that
thumb length significantly predicts peak manipulation workspace
(β[workspace] = 0.57–0.61, px < 0.05 in 100% of topologies) – an association
that is unaffected by the inclusion of H. sapiens or optimum object size.

In order to further strengthen our interpretation of our results as
evidence for coevolution of brain size andmanual dexterity (as indicated by
thumb length),we then tested for anassociationbetweenbrain sizeandpeak
workspace running phylogenetic regressionmodels in exactly the sameway
as we did for thumb length in our main analyses (replacing thumb length
with peakworkspace). In linewithourmain results, we find that brain size is
a significant predictor of peak workspace (β[brain] = 0.090, px < 0.05 in 100%
of topologies). The result is qualitatively identical when H. sapiens are
excluded (β[brain] = 0.09–0.11, px < 0.05 in 100% of topologies).

Therefore, on the basis of both our thumb length and workspace
analyses, we interpret our results to indicate sustainedhistorical coevolution
between brain size and dexterity across the primate order, reflecting sig-
nificant neural costs of manipulation behaviours and helping to explain the
rapid increases in brain size observed in hominins e.g., see ref. 50.

Hominin dexterity in context
Hominins have much greater relative thumb length compared to other
primates (Fig. 2) – and even other apes25,26. This has specifically been linked
to refined precision grasping18,21,27 and used as an indicator for tool
culture18,29 (reviewed in ref. 17), but the timing of the emergence of these
behaviours and associated morphologies are highly contested19,36,51–53. We,
however, find a primate-wide association between brain size and thumb
length, indicating that thumb length is a more general measure of dexterity
not specific to hominins. This is in line with suggestions that features of the
homininhand, including long thumbs, pre-date the origin of systematic tool
production26,36,51. Our results provide no support for the idea that thumb
lengths are sufficient morphological indicators of tool-use –either in
hominins or across all primates. We therefore cannot make any inferences

about tool-use in hominins from our results. However, our analysis does
provide a framework in which future research may be able to identify
outliers amongst hominin species (and others) in any measurable mor-
phological feature involved in manual dexterity and –more importantly –
how these have evolved in relation to brain size. For example, whilst thumb
length in Au. afarensis has previously been debated in the context of pre-
cision grasping54,55, recent biomechanical analyses have revealed that this
species was most likely unable to make stone tools based on the carpome-
tocarpal joint of the fifth digit43. Therefore, testing a combination of simple
morphological proxies (such as thumb length) along with metrics revealed
in critical biomechanical modelling analyses4,23,43,49 reveal clear nuances in
hominin hand evolution.What remains to be tested is how any of these link
to brain size – which is becoming more plausible as data and model avail-
ability become increasingly more available.

Regardless, our results demonstrate coordinated change in both hands
and brains and therefore confirm the prediction outlined in Fig. 1A. This is
striking: whilst hominin thumbs are outliers amongst primates in terms of
length (Fig. 2B), this is almost entirely explained by a general relationship
across primates (Fig. 3). For example, although A. africanus does not have
significantly long thumbs relative to finger length (Fig. 2B), it still conforms
to the whole-brain relationship observed across all primates (Fig. 3C). That
is, the combination of brain size and thumb lengths in this taxon leads to
manipulative ability comparable to other hominins – as suggested by other
studies23,36. In the absence of finger-length data for other hominins, we can
only make robust statistical inferences for those species included in our
dataset. However, it seems likely that most hominins will conform to the
patterns observed in these species and across all other primates. For
example, even though taxa like H. floresiensis have been noted to have
particularly small brains56,57, they also conform to the patterns of brain size
evolution observed across other species50. Regardless of this, whilst it is
possible new data for other species may reveal individual outliers to the
pattern, the overall evolutionary relationship between brain size and thumb
length is unlikely to be impacted.

Notably, the only hominin that does not conform to the general rela-
tionship across primates is A. sediba, a species previously noted to have an
unusually long thumb23. The thumb length of A. sediba remains an outlier
amongst primates even after accounting for brain size (Fig. 3).Whilst at face
value, such a long thumb would imply that A. sediba possessed greater
dexterous abilities than other hominins, its deviation from the expected
relationship with brain size reveals that this interpretation may not be so
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Fig. 3 | The relationship between thumb length, finger length, and brain size
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ships from our whole-brainmodel (MC1 ~MC2+whole-brain) are plotted across a
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plotted along with the posterior distributions of imputed thumb lengths from the
whole-brain model. There are 100 distributions for each hominin for each model –
one for each of the topologies in the sample. Outliers are identified when the pos-
terior distribution of estimated thumb lengths overlaps the true value by less than
5%. The real thumb length of each species is indicated by the green line. Silhouettes
are shown for representative purposes only and are not to scale but are coloured
according to themodels inwhich they are identified as an outlier (grey = none, blue =
finger-only, red = whole-brain).
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simple. Like Au. sediba, H. naledi has also been noted to have long thumbs
e.g58. and relatively small brains falling within the range of
Australopithecus59. However, we find no evidence thatH.naledi is an outlier
to the overall primate relationship. This likely reflects thedifferences inhand
use between the two species – both in terms of manipulative ability and
climbing strategy60. It is clear that Au. sediba possessed a repertoire of
adaptations linked to both ape-like locomotion along with some form of
dexterous manipulation25,61–63. Simply possessing a long thumb without
additional neural processing costs is not likely to have supported some
inherently spectacular manipulation ability. This is supported by bio-
mechanical models revealing relatively inefficient thumb opposition in A.
sediba compared tomembers of the genusHomo4 and estimatedworkspaces
not exceeding the range of modernH. sapiens23. We speculate that the long
thumbs of Au. sediba may therefore represent a combination of selective
pressures on relative hand proportions – along with the possibility that
different regions of the brainmayhave reduced in order to accommodate an
increase neural processing associatedwith sensorimotor ability (and thus no
overall increase in brain size).

Brain size versus structural reorganization
The evolution of tool use has often been linked to morphologies associated
both with improved dexterity17,18,29 alongside broader sensorimotor and
cognitive changes11,29. However, there is also evidence to suggest that –
alongside generalized patterns of brain size increase50 – functional brain
reorganization was also important in primate and hominin evolution64–68.
For example, reorganization in the frontal and/or parietal brain regionshave
been implicated in both dexterous behaviour69 and technological
innovation64 amongst hominin species. Recent evidence has even demon-
strated possible functional and anatomical overlap in brain activation pat-
terns involved in both tool-use and language processing70.

Given the importance of brain reorganization and functional overlap
between neural networks, it is possible, then, that we might observe more
nuanced relationships between indicators of manual dexterity (such as
thumb length) and neuroanatomy of individual brain functions or regions.
Improvements in fine-grained visuo-motor processes such as visually

guided manipulation are expected to be associated with expansion of brain
regions mediating these processes. Substantial areas of the primate neo-
cortex and cerebellumare involved in visuo-motor control, and coordinated
expansion of these structures explains much of the variation in brain size
among primates71.Wewould therefore expect these regions to be associated
with the co-evolution of manual dexterity and brain size71.

To test this idea, we used a reduced sample (n = 49, Fig. 1D) of primate
species for which data were available, to determine the relationship between
two brain regions (neocortex and cerebellum) and thumb length. In our
brain-regions models – in which we test the effects of both regions simul-
taneously –wefind a significant positive relationship between thumb length
and both finger length (median β[finger] = 0.72–0.76, px < 0.05 in 100% of
trees) and neocortex (Fig. 4, median β[neocortex] = 0.16–0.20, px < 0.05 in
100% of trees). However, there is no such association found for the cere-
bellum (Fig. 4, β[cerebellum], px < 0.05 in 0% of trees). The results are quali-
tatively identical when each brain region is considered in isolation
(Supplementary Table 8).

We also find no link with an anatomical measure of binocular vision,
convergence of the orbits (Supplementary Note 4). Our results are quali-
tatively identical withoutH. sapiens (Supplementary Table 1), and echoing
our whole-brain model results, we find that modern H. sapiens are not
outliers to the thumb-neocortex relationship in our brain-region models
(Fig. 4, inset).

The lack of an association between cerebellum volume, binocularity,
and thumb length is surprising, especially given the established role of the
cerebellum and cortico-cerebellar networks in fine visuo-motor control and
management of complex behavioural sequences71,72. Our brain-region
relationships are more variable than those observed for the whole-brain
(Fig. 4) and are potentially affected by smaller sample sizes. However, the
conclusions are not affected by the exclusion of the apes, which exhibit rapid
cerebellar expansion73, nor do the relationships diverge between haplor-
rhines and strepsirrhines despite differences in the sizes of their relative
brain regions74. We therefore reveal the intriguing possibility that neural
processes implicated in the evolution of manual dexterity across primates
primarily involve neocortical regions75, such as frontal, motor and parietal
cortices76. Although we did not predict this dissociation, a cortical con-
tribution is in line with experimental evidence from modern H. sapiens,
suggesting that motor cortex functioning and grey matter volume are both
linked withmanual dexterity and hand control77–79, and with fossil evidence
for parietal cortex expansion in hominins76. Our finding thatH. sapiens are
not outliers (Fig. 4, inset) indicates that suchobservationsmaynotbe limited
to our own species. An exciting avenue of future research would be to test
this idea further as more data becomes available for other species.

Given the observed primate-wide relationship between neocortex and
thumb length – and the fact that all extinct homininswould likely have been
capable of some form of tool use (at least comparable to that observed in
other primates), we would expect them to conform to similar patterns. We
therefore refrain from drawing conclusions on our extinct relatives on the
bases of our analyses. However recent years have begun to reveal the neural
mechanisms of manual dexterity80 and tool-making behaviour81. These
advances, combined with increasing availability of new modelling
approaches82 and detailed data for fossil endocasts e.g83. may afford the
opportunity to untangle exactly what neural mechanisms gave rise to
modern dexterity. For example, studying markers for manual dexterity
alongside brain regions undergoing structural reorganization in early
Homo83 (includingH. habilis84)may allowus to further understandwhether
a relationship exists for specific cerebellar regions connected to the motor
cortex – and potentially distinguish between different types of dexterous
behaviour.

Concluding remarks
It is important to note that our analysis does not depend on the idea that
brain size is a proxy for ‘general cognitive ability’, an idea that has been
criticised85. Instead, we simply assume that variation in brain size – beyond
that predicted by allometry – reflects selection on some aspect of neural
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cerebellum) using n = 49 extant primates. The fitted slopes are calculated holding the
finger length, neocortex volume (for the cerebellum slopes), and cerebellum volume
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processing, and that the sensorimotor control mechanisms associated with
visually guided fine bimanual manipulation, and perhaps also action
sequence planning, are expected to have neural processing costs8,77,78,80,81.
The evolution of manipulative abilities may well have had far-reaching
implications for cognition14,15,70,86 beyond the direct control of hand-
movements per se. Such processes are likely to be reflected in neural pro-
cessing costs and hence overall brain size. We are agnostic about what
exactly those implications were and do not draw any strict distinction
between sensorimotor control and cognition, regarding themas continuous
with one another (see ref. 87).Wealso donot assume that all aspects of brain
evolution involved simple changes in brain size, recognising that there are
likely also to have been changes to neural mechanisms associated with
manipulation that are not necessarily directly related to brain size, such as
frontal and parietal cortex reorganization64,83.

As proponents of embodied cognition have suggested86,87, appreciating
the links between bodily and brain adaptations is key to understanding
neuro-cognitive evolution. Our results highlight the important role of the
ability to manipulate food items or other objects in brain size evolution and
emphasise the neocortical contribution to these behaviours. The results we
present here go some way to explaining the uniquely hominin condition of
having long thumbs. However, in isolation, no feature, including thumb
length, should be considered as evidence for tool-use or tool-making
behaviours18. A more complete picture might emerge with the increasing
availability of more data for other, particularly earlier, hominins. Unco-
vering links between cognition and additional morphological features
associated with dexterity e.g.17,18 may allow us to untangle the nuanced
picture regarding the suites of traits associatedwithhominin tool use18,23 and
their origins.

Materials and Methods
Primate phylogeny
All of our analyses are conducted in a phylogenetic context in order to
account for the non-independence amongst species data points that can be
attributed to shared evolutionaryhistory88.All of our analyses are performed
on a random sample of 100 of the most-parsimonious topologies obtained
from the recently published comprehensive Euarchonta phylogeny
including 894 fossil and extant primates89. As the original sample of trees is
not time-calibrated, we dated these topologies using a tip-dating procedure
adapted from the original paper89 and implemented in BEAST v2.790. For
full details onour tip-datingprocedure, see the supplementarymaterial91.As
BEAST is implemented in a Bayesian framework, it gives a posterior dis-
tribution of dated trees for each of the 100 topologies in our sample. We
created a single representative phylogeny for each topology by calculating a
median tree basedon theKendall-Colijn distancemetric92.Wedid this using
the treespace library93 in R v.4.094. All our analyses are performed on this
sample of 100mediandated treeswhichare provided as supplementary data
to this paper (Supplementary Data 2).

Phenotypic data
We collected data onmetacarpalmeasurements (lengths inmillimetres) for
primate species from the literature. We only included species found in the
phylogeny89. We preferred compilation estimates (i.e., species-level data)
but where specimen level data were included, we took a weighted average
across all specimens (weighted, where possible, by number of specimens
measured). Where individual specimens were measured by multiple sour-
ces, we preferred, arbitrarily, the most recently published source for each
specimen. Our final dataset included finger bone measurements spanning
168 primate species, including 8 hominins (Figure S1). A full list of mea-
surements and their sources can be found in the supporting information
(Supplementary Data 1). Here, we use the length of the first metacarpal
(MC1) and second metacarpal (MC2) as proxies for thumb and finger
length respectively to measure relative thumb length and intrinsic hand
proportions. However, our results remain qualitatively identical when
proximal phalanges are used instead – or if we use any other digit instead of
the 2nd digit Supplementary Tables 2–7). Additionally, metacarpals are a

robust and reliable indicator of overall digit length in our sample (Supple-
mentary Note 1, Supplementary Figs. 2, 3) and are highly correlated with
other bone measurements (Supplementary Fig. 4). We prefer to use bone
length over recently proposed kinematic models23 for measuring manip-
ulative ability as these are directly measurable quantities which are likely to
face direct selection pressure from the environment, although our conclu-
sions remain robust evenwhenusing thesemetrics (SupplementaryNote 2).
Whilst we do not have enough data to test associations for the distal or
intermediate phalanges it is likely we would find similar associations.

We then collected brain mass data for these species. Brain masses or
volumes were taken from the literature (see supporting information for full
list of sources). In some cases –mostly for fossil taxa – we converted endo-
cranial volumes to masses. Whilst endocranial volume is often converted to
brain mass using the specific gravity of brain mass (1.036 g/mL)95–97, the
majority of our extant data sample comes from a paper which uses a con-
version of 1 g to 1 cm3 – and does not record which values were volume
conversions98. For consistency, therefore, we use this conversion where
necessary. The species forwhich thiswas done are recorded in the supporting
information.

Tool-use data was taken from a published and comprehensive
compilation32.Any speciesnot included in this compilationwere assumed to
have not been observed using tools. This data is limited to only extant taxa.
Whilst hominins would likely have been capable of tool-use to varying
degrees, here we rely exclusively on observational data (testing hominins
separately asdescribed above).Ourfinal dataset is graphically represented in
Fig. 1. All continuously varying traits (brain size, metacarpal length, etc.)
were logged before analysis.

Statistics and reproducibility
Owing to the non-independence of species-level data attributable to shared
ancestry88, we implemented all comparative analyses in a phylogenetic
context. We used phylogenetic generalized least squares (PGLS) multi-
variate regression models implemented within a Bayesian Markov Chain
Monte-Carlo (MCMC) framework to test for an association between
manual dexterity and cognitive ability. Each analysis was conducted over a
sample of 100 trees (see above). All models were run for a total of 1,000,000
iterations after convergence, sampling every 10,000 iterations. A wide
uninformative prior was placed on all regression parameters (normal dis-
tribution with a mean of 0 and standard deviation of 5). We estimated the
strengthofphylogenetic signal using lambda99 in allmodels.Allmodelswere
repeated multiple times (minimum n = 3) to ensure results were identical
across replicates.

Phylogenetic comparative analysis
Our first set of models (finger-only models, n = 95) tested the relationship
between the lengths of MC1 and MC2. To assess the effect of brain size on
relative thumb length, we included brain mass as an additional covariate –
whilst also still including MC2 as a predictor to measure intrinsic relative
thumb length and thus account for size. This model set is referred to as our
whole-brain models (n = 95). We repeated both analyses excluding all
hominins (n = 89, Supplementary Table 1). All analyses are conducted over
all primates as a single group.

To identify which hominins (if any) were outliers in terms of their
intrinsic hand proportions, we conducted a phylogenetic outlier test e.g., see
ref. 30 using a phylogenetic imputation procedure31 to predict hominin
thumb lengths. This predictive modelling approach simultaneously incor-
porates the parameters of a regression model as well as the phylogenetic
positionof each taxon.Aswith all our analyses, the imputations are calculated
using PGLS regression models implemented within a Bayesian MCMC fra-
mework. We estimate the thumb length for each hominin given the para-
meters of each of our regression analyses (finger-only and whole-brain
models) calculated across the rest of primates. We then assess whether each
hominin species is an outlier using the full distribution of predicted values for
thumb length–where the distribution overlaps the true value by less than 5%
in more than 95% of trees, it can be considered a phylogenetic outlier.
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To determine whether the relationship between brain size and thumb
length is being driven by or affected by tool use, we ran an additional set of
models (tool-use models) including the following predictors: MC2, a binary
(dummy-coded) variable defining whether each species has been observed
to use tools, and an interaction between the two variables. This explicitly
tests for a different intercept and slope in the relationship between thumb
length and brain size in species that have never been observed using tools
compared to those which have. Note that we use three alternative ways of
defining tool use, all obtained from the same source32. We additionally ran
models excluding species where either only a single individual has been
observed using or making tools, or where observations came only from
captive animals32. All alternative definitions and exclusions resulted in
identical conclusions (Supplementary Note 3).

To determine whether individual brain regions affected thumb
length independently (brain-regions models, n = 49), we included both
neocortex volume and cerebellum volume in a single model – along with
MC2. Separating the effects of the neocortex and the cerebellum can be
complicated owing to their strong correlation. We additionally repeated
the model excluding H. sapiens (n = 48, Supplementary Table 1). Here,
we included both regions in the same model here since together, the
neocortex and cerebellum comprise a ‘unit’ responsible for the mediation
of visuo-motor and sequential action control100. However, we find qua-
litatively similar results when each of the regions were studied in isola-
tion: without H. sapiens, only the neocortex shows any significant
association (Supplementary Table 8).

For allmodels, results are summarised across the sample of treeswhere
the model is run separately for each tree. We assess significance of the
parameters using two criteria: Firstly, the proportion of the posterior dis-
tribution that crosses zero (px); where this proportion ≤ 0.05, we consider a
variable to be significantly different from zero. Secondly, the first criterion
must be met in at least 95% of topologies for us to consider a variable as
significant. For comparison, we summarise parameter estimates using
median values – and then to summarise across all trees, we report the range
of observed medians.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data are available in themain text or the supplementarymaterials, along
with the sources fromwhich they are obtained (Supplementary Data 1). All
strepsirrhine hand and foot measurements were provided with permission
to use in publication by Pierre Lemelin. Permission and access to this data
can be obtained by contacting Pierre Lemelin directly.
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