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Abstract

This paper presents the outcomes of the PETS2025 chal-
lenge, held in conjunction with AVSS 2025 and sponsored
by the EU-funded EURMARS project. The challenge in-
troduces a novel maritime surveillance dataset comprising
image sequences captured by diverse multi-altitude, mul-
timodal sensors, reflecting the real-world multi-authority
environment. The key tasks include: (1) object detection
using various sensors across different platforms (ground-
based and low-altitude aerial) and spectral ranges (visible,
thermal, ultraviolet (UV), and short-wave infrared (SWIR));
(2) long-term tracking of targets in maritime environments
spanning both sea and land; and (3) approximating target
geolocations by using sensor imagery and telemetry data.
Performance evaluations of results submitted by 12 inter-
national participants are discussed. The results show the
effectiveness of these submissions and highlight ongoing
challenges posed by heterogeneous sensors and complex en-
vironments. These challenges emphasise the need to further
improve detection, tracking, and geolocation approximation
for maritime and coastal surveillance.

1. Introduction

There has been a notable rise in irregular migration in
recent years, accompanied by escalating instances of hu-
man trafficking and smuggling [5]. Other illicit activities,
such as drug and arms trafficking; and illegal, unreported,
and unregulated (IUU) fishing, have also intensified. These
evolving challenges call for more coordinated efforts and
enhanced surveillance measures among different authori-
ties, particularly through the deployment of various ad-
vanced sensing technologies to support wide-area surveil-
lance across maritime and land domains.

Despite advancements in maritime surveillance research,
significant challenges remain in developing effective multi-
authority, multi-sensor surveillance platforms. A primary
challenge arises from the nature of maritime and coastal
environments, which span vast and dynamic areas of both
land and sea. These settings pose substantial difficulties
for surveillance systems due to factors such as fluctuating
sea states, variable weather conditions, occlusions from ter-
rain or vessels, and the complexity of tracking multiple tar-
get types across heterogeneous landscapes. An additional
challenge lies in the multi-authority dimension of the task,
which requires coordination among different stakeholders



operating a wide range of sensor technologies. In particular,
this includes the integration of sensors deployed at various
operational levels (e.g., ground-based systems and UAVs)
and across diverse spectral ranges (e.g., visible, thermal, ul-
traviolet (UV), and short-wave infrared (SWIR)). Ensuring
interoperability and consistent data integration across vari-
ous sensor platforms and modalities is inherently complex.
Collectively, these challenges underscore the difficulty of
designing a robust solution capable of seamlessly integrat-
ing a broad array of sensors under a unified surveillance
system.

The PETS2025 Challenge is introduced to foster in-
novation in the development of surveillance systems that
integrate multi-authority, multi-sensor capabilities. The
challenge focuses on the analytical tasks of detecting and
tracking humans, vessels, and vehicles and approximating
their geolocations in real-world coordination within multi-
authority maritime border surveillance scenarios. These
tasks have received relatively little attention in the computer
vision community due to the lack of suitable datasets. This
initiative aims to raise awareness of these pressing chal-
lenges and promote the development of innovative solu-
tions. It will provide border authorities worldwide with ad-
vanced tools to enhance cooperation and improve security
in multi-authority coastal and maritime border regions.

2. Challenges

Challenge 1: Target detection and classification in mar-
itime and coastal areas using multi-platform and multi-
spectral sensors This challenge focuses on detecting and
classifying key objects, namely persons (including individ-
uals on deck, on the shore, and a floating mannequin or
dummy in the water), vessels, and vehicles, in image se-
quences. The data consists of image sequences captured
from multiple sensor types, simulating a multi-authority
maritime surveillance scenario. These sensors include both
ground-based cameras and UAVs. Ground-based cameras
comprise visible (RGB), thermal, UV, and SWIR modali-
ties, while UAVs provide visible (RGB) and thermal im-
agery. Figure 1 shows examples of images from different
sensors with examples of three object classes: person, ves-
sel, and vehicle.

Challenge 2: Long-term (LT) target tracking across di-
verse terrains using multi-platform and multispectral
sensors This challenge focuses on long-term target track-
ing, where the objective is to continuously track persons,
vessels, and vehicles across image sequences. Each object
must first be detected and classified as a person, vessel, or
vehicle, and then assigned a unique identifier (track ID) that
remains consistent throughout the sequence. If an object
disappears temporarily (due to occlusion or movement), it

(e) Visible UAV (f) Thermal UAV

Figure 1: Challenge 1 examples: Images from different sen-
sors, including visible, thermal, UV, and SWIR ground sen-
sors, as well as visible and thermal UAVs, with examples of
three object classes: person, vessel, and vehicle.

should be reassigned the same ID when it reappears. Ex-
amples of image sequence segments from Challenge 2 are
illustrated in Figures 2 and 3.

Challenge 3: Geolocating objects in images captured by
amoving sensor This challenge focuses on estimating the
geolocations, specifically the longitude and latitude coordi-
nates, of specified objects, either persons or vessels, across
sequences of thermal UAV images. Each image sequence is
accompanied by ground-truth bounding boxes identifying
the objects whose geolocations need to be approximated.
For each image, telemetry data of the UAV recorded at the
time of capture are provided. These include key parameters
useful for the task, such as focal length, digital zoom ratio,
latitude, longitude, relative altitude, absolute altitude, gim-
bal yaw, gimbal pitch, gimbal roll, and the corresponding
timestamp.

2.1. Datasets

The dataset provided for this challenge is derived from
the EU project EURMARS!. It simulates multi-authority

"https://eurmars-project.eu/



(a) (b)

Figure 2: Challenge 2 examples: A thermal ground sensor
image sequence (starting from (a) to (d)) showing the track-
ing of vessels, where “vessel (ID: 4)” is occluded by “vessel
(ID: 5)” in (b) and reappears in (c) and (d).

A
vehicle (ID: 36)

©) ()

Figure 3: Challenge 2 examples: A visible ground sensor
image sequence (starting from (a) to (d)) showing the track-
ing of vessels and persons across different terrains, particu-
larly “person (ID: 34)” from the boat to the shore.

maritime and coastal border scenarios such as vessels nav-
igating coastal waters, individuals on board approaching
shorelines, and people disembarking vessels and heading
toward vehicles on adjacent land areas. To reflect multi-
authority situations, this dataset includes image sequences
obtained from various types of sensors at different levels
and across the spectral ranges mentioned above.

For Challenges 1 and 2, the dataset consists of 11 train-
ing scenarios and 4 test scenarios. Each scenario comprises

Figure 4: Challenge 3 example images showing a detected
vessel from a UAV (left) and its ground-truth GNSS data
over time, projected onto a map (right).

a varying number of sequences from different sensor types.
The training and test sequences are summarised in Tables 1
and 2, respectively. The training set comprises 22,086 im-
ages, including 112,755 person annotations, 44,540 vessel
annotations, and 903 vehicle annotations, with a total of 678
unique track IDs across all object classes. The test set con-
sists of 14,782 images, containing 77,101 person annota-
tions, 42,971 vessel annotations, and 558 vehicle annota-
tions, along with 311 unique track IDs.

For Challenge 3, the provided dataset contains only ther-
mal UAV image sequences. There are 8 sequences for train-
ing and 5 sequences for testing. Sequences “rd1”—*“rd7”
are from controlled scenarios designed with known con-
ditions for trials and calibration, where the UAV deploy-
ment position and the object of interest were at the same
altitude, both above sea level. Sequence “bg7” represents
a real-world scenario in which the UAV deployment posi-
tion and the object of interest were also at the same altitude,
both at sea level. Sequences “cyl”, “cy2”, and “cy4”—“cy6”
are real-world scenarios where the UAV deployment posi-
tion and the object of interest were at different altitudes:
the UAV was above sea level, while the object was at sea
level. Alongside the sequences: telemetry data, including
focal length, digital zoom ratio, latitude, longitude, relative
altitude, absolute altitude, gimbal yaw, gimbal pitch, gim-
bal roll, and timestamps corresponding to each image in the
image sequence, are also provided. Ground-truth detection
(bounding boxes) of objects for which the participant is re-
quired to approximate their geolocations is provided.

For all challenges, RGB ground sensor images are
Full HD (1920x1080), SWIR images are 1280x1024,
UV images are 1416x1420, visible UAV images are 4K
(3840x2160), and thermal UAV images are 640x480, all in
JPEG format.

3. Challenge Submission

3.1. Requirements

For Challenge 1, participants should provide bounding
boxes and class labels for detected objects in the speci-
fied format. For Challenge 2, submissions should include



Table 1: Training data for Challenges 1 and 2

Table 2: Test data for Challenges 1 and 2

Scenario  Sensor #images #persons f#vessels #vehicles #tracks

Scenario  Sensor #images #persons f#vessels #vehicles #tracks

GS-RGB 378 3141 769 76 24
bl GSSWIR 385 2288 822 X 15
S GS-Therm 386 2675 778 . 25
GS-UV 386 2479 897 - 15
GS-RGB 728 6791 1523 - 16

bey  GS-SWIR 800 6693 1846 . 14
g GS-Therm 742 6183 1485 - 19
GS-UV 702 5117 1657 - 16

GS-RGB 589 4148 1367 162 42

beq  OSSWIR 754 6591 2001 13 32
s GS-Therm 635 4145 1471 - 26
GS-UV 746 6669 2204 17 30
GS-RGB 486 1792 676 - 17

bes  OSSWIR 583 1751 1165 - 9
s GS-Therm 499 450 861 . 12
GS-UV 530 879 995 - 6
GS-RGB 756 2758 1009 69 24

bg7  GS-Therm 810 1165 1869 - 13
UAV-Therm 808 8801 1395 408 44

GS-RGB 357 1060 611 14 14

by OSSWIR 386 581 1094 - 7
s GS-Therm 391 1037 685 - 8
GS-UV 387 600 1250 . 7
GS-RGB 459 1798 1051 144 17

belo  GS-SWIR 449 1297 1559 - 9
S GS-Therm 454 1192 972 . 6
GS-UV 387 986 1340 - 11

GS-RGB 391 5203 1255 - 30

bel]  GSSWIR 409 4085 1325 - 30
S GS-Therm 406 4217 1102 . 33
GS-UV 410 3771 1356 - 30
GS-RGB 263 776 958 - 9

bely  GS-SWIR 300 753 306 . 7
s GS-Therm 297 652 36 - 5
GS-UV 301 790 416 - 7

o1  UAV-RGB 970 2115 399 - 10
Y UAV-Therm 969 1795 906 - 5
oy  UAV-RGB 1204 1569 888 - 12
¥ UAV-Therm 1193 3962 2151 . 2
Total 22086 112755 44540 903 678

the track ID, along with the bounding box and class la-
bel for each detected object, following the specified format.
For Challenge 3, the geolocation coordinates of specified
objects in each image should be submitted as (longitude,
latitude) pairs, using the provided format. Challenge 1 is
mandatory, while Challenges 2 and 3 are optional. For each
challenge, results should be submitted for all test sequences
(if possible, for comprehensive evaluation) or at least two
test sequences from different sensor types. For example,
one sequence could be from the RGB ground sensor in sce-
nario “bg2” and another from the thermal UAV in scenario
“cy3”. The submission to the challenge consists of the gen-
erated XML files (in the provided format) and a brief de-
scription (less than 500 words) of the methods used.

3.2. Submissions

In total, 12 teams participated in Challenge 1 (Table 5),
and 4 teams participated in Challenge 2 (Table 6). For Chal-

GS-RGB 871 8233 2506 - 26
GS-SWIR 846 6069 2197 . 14
b2 GS-Therm 845 5679 1723 - 20
GS-UV 845 5131 2318 . 18
UAV-Therm 842 6780 1947 - 17
GS-RGB 628 3536 1485 133 28
e OSSWIR 569 3531 2116 - 14
s GS-Therm 565 3851 1823 - 15
GS-UV 571 3818 2038 - 16
GS-RGB 1526 7434 5345 - 24
g OSSWIR 1515 5093 4609 . 25
s GS-Therm 1515 6337 4046 . 2
UAV-Therm 1513 0455 7426 425 47
o3  UAV-RGB 1072 440 1552 . 16
¥ UAV-Therm 1059 1714 1840 - 9
Total 14782 77101 42971 558 311

Table 3: Training set for Table 4: Test set for Chal-

Challenge 3 lenge 3
Scenario #images #GNSS Scenario #images #GNSS
data data
points points
cyl 969 906 bg7 808 697
cy2 1193 1134 cy4 351 343
rdl 514 415 cyS 225 225
rd2 588 527 cy6 201 201
rd3 1388 1388 rd7 561 464
rd4 322 322
wd5 305 337 Total 2146 1930
rd6 589 529
Total 5958 5558

lenge 3, there is only one submission from the PETS2025
organisers. Details on the approaches used by each team are
provided in the following sections.

3.2.1 University of Reading, UK (UoR)

As the challenge organisers, UoR provided baseline results
for all sequences. Several models were employed for object
detection: YOLOVS [9], YOLOvS [10], YOLOvI11 [11],
and RT-DETR [23]. In addition, a YOLOv11 model was re-
trained using the thermal UAV training set to better handle
thermal images. For Challenge 2, UoR also provided track-
ing baselines using three existing trackers: DeepSORT [21],
ByteTrack [22], and BoT-SORT [1]. Each tracker used de-
tections from RT-DETR as input for generating tracks.

For Challenge 3, geolocations were estimated using a
method based on geometric projection and homography
transformation. Specifically, the UAV’s field of view (FOV)
was projected onto the ground using its altitude, pitch, and
FOV angles. Ground distances to the image centre, front,
and back were computed, followed by slant ranges and hori-
zontal extents. These were combined with the UAV’s global
position and yaw to derive the ground-projected image cor-



Table 5: Challenge 1 submissions (bracketed numbers indicate the count of separate submissions per sequence; absence

implies a single submission.)

Participant GS-RGB GS-SWIR GS-Therm GS-UV | UAV-RGB UAV-Therm

bg2 bgb bg8 | bg2 bgb bg8 | bg2 bgb bg8 | bg2 bgbd cy3 bg2 bg8 «cy3

UoR v v v v v v v v v v v v v v v

AIT v v v v v

SKYLD v v v

UWIPL_ETRI v v v v v v v v v v

Toho U. v v v v v v v v v v

UIT v v v v v v v v v v v v v v v

NYCU v v v v v v v v v v v v v v v

NECTEC v v v v v v v v v v v v v v v

DGA v v v v v v

JU & U. Surrey v v v v v v v v v v v v v v v

GE Aerospace v (2) v (2)

ETRI-Vision v v v v v v v v v v v v v v v

Table 6: Challenge 2 submissions
Participant GS-RGB GS-SWIR GS-Therm ‘ GS-UV ‘ UAV-RGB ‘ UAV-Therm

bg2 bgb bg8 | bg2 bgb bg8 | bg2 bgb bg8 | bg2 bgbd cy3 bg2 bg8 cy3

UoR v v v v v v v v v v v v v v v

AIT v v v v v v

JU& U. Surrey Vv v v v v v v v v v v v v v v

ETRI-Vision v v v v v v v v v v v v v v v

ners, from which a homography matrix was calculated to
map image pixels to geospatial coordinates. To address low-
pitch scenarios where the image may contain sky, a horizon-
aware correction was applied. If the pitch exceeded a cer-
tain threshold, the front ground distance was capped, and
the horizon line in the image was estimated. A new ho-
mography was then computed using only the region below
the horizon. Additionally, vertical pixel scaling was applied
to mitigate distortion in oblique views: upper pixels were
compressed and lower pixels were stretched, improving lo-
calisation accuracy near the horizon.

3.2.2 Austrian Institute of Technology, Austria (AIT)

AIT provided comprehensive results covering all GS-SWIR
and GS-Therm sequences for both Challenge 1 and Chal-
lenge 2. In Challenge 1, their detection method utilised an
enhanced YOLO-based algorithm, specifically adapted to
the unique environmental conditions and task requirements.
They developed two distinct detection pipelines for each
sensor: one for land-based targets and another for maritime
targets. The land-based detector focused on identifying per-
sons and vehicles, while the maritime detector focused on
detecting ships and smaller vessels.

For Challenge 2, AIT implemented a detect-and-track
framework for object tracking. In this approach, tracked
objects were initialised directly from the outputs of a de-

tection model, as opposed to methods that require man-
ual bounding box initialisation. Their tracking approach
leveraged a YOLO-X backbone [7] for robust object de-
tection, which provided the initial detections used to start
tracks in the first frame. In subsequent frames, tracking
was accomplished by associating new detections with exist-
ing tracks. This association was performed by computing a
matrix of Euclidean distances between detected objects and
active tracks. The optimal assignment between tracks and
detections was then determined using the Hungarian algo-
rithm, a well-established method for solving global assign-
ment problems efficiently.

3.2.3 SKYLD Security And Defence LTD, Cyprus
(SKYLD)

This submission includes results for both UAV-RGB and
GS-RGB sequences in Challenge 1. SKYLD utilised the
SSD-MobileNet v2 architecture. This approach combined
the speed and accuracy of the Single Shot MultiBox Detec-
tor (SSD) with the efficiency of the lightweight MobileNet
v2 backbone, enabling real-time inference on the NVIDIA
Jetson Orin platform. The model was integrated through
NVIDIA’s real-time vision DNN library tailored for Jetson
devices. Execution was optimised using TensorRT, pro-
viding high-performance GPU-accelerated inference acces-
sible from both C++ and Python environments, achieving



more than 200 frames per second with very good accuracy.
Model training was conducted in PyTorch on a UAV-RGB
dataset. Although trained specifically for object detection
on UAV-RGB images, the model was also applied to the GS-
RGB test sequences to explore its performance in detecting
objects from different perspectives (ground-based instead of
aerial) within the same modality.

3.2.4 University of Washington, USA & Electron-
ics and Telecommunications Research Insti-
tute, Republic of Korea & National Cen-
ter of High-performance Computing, Taiwan
(UWIPL_ETRI)

This submission is a collaboration between researchers
from the University of Washington, the Electronics and
Telecommunications Research Institute (ETRI), and the Na-
tional Center for High-performance Computing as partici-
pants in Challenge 1. The submission consists of results
across all sequences from the GS-RGB, GS-SWIR, GS-
Therm, UAV-RGB, and UAV-Therm sensors. The proposed
approach used a YOLOv11 object detector, trained on each
modality, to perform object detection and classification.

3.2.5 Toho University, Japan (Toho U.)

The team from Toho University participated in Challenge 1,
submitting results across all test scenarios for the GS-RGB,
GS-Thermal, UAV-RGB, and UAV-Thermal sequences.
They proposed a YOLOVI1 In-based system with an auxil-
iary detection module. YOLOvI11n was pre-trained on the
COCO dataset and then fine-tuned for each sensor using the
PET2025 training dataset. The auxiliary detection module
detected objects whose training data did not cover enough
appearance variations, resulting in YOLOv11n false nega-
tives. This module first semantically segmented the image
using the Segment Anything Model 2 (SAM?2), then classi-
fied each segment into the target classes or none according
to the bounding-box (BBox) parameters.

Based on preliminary experiments using the PET2025
training dataset, they modelled the BBox parameters (width,
height) for each sensor as a Gaussian Mixture Model
(GMM). The number of components in the GMM was de-
termined such that all classes were assigned to at least one
cluster, and the increase in log-likelihood fell below a pre-
defined threshold. They also applied class-specific weights
using the ratio of the number of training samples for class
imbalance correction. Each GMM cluster was associated
with a class that had the maximum number of training sam-
ples and the highest likelihood. For multi-class classifica-
tion using the GMM, they assigned each input to the class
corresponding to the cluster with the highest likelihood. Af-
ter eliminating BBoxes that did not belong to any object
class, the result of the auxiliary detection module was fused

with the result of the YOLOv11n module. They obtained
the fused result by comparing the sets of BBoxes from each
module, adopting the auxiliary detection result only when
the IoU was below 0.5. Otherwise, they treated the detec-
tion as overlapping.

In their proposed auxiliary module, a class was assigned
based solely on the similarity of the BBox size, regardless of
the texture within the BBox detected by SAM2. This mod-
ule was partially effective, especially on UAV RGB, since
SAM?2 could cover many objects that YOLOv11n missed.
Howeyver, this resulted in incorrect classifications when dif-
ferent classes had the same BBox size. To solve these prob-
lems, they planned to introduce a classifier based on an el-
ement distribution model that also incorporated texture in-
formation in a future challenge.

3.2.6 University of Information Technology, Vietnam
(UIT)

This submission includes results for all sequences of Chal-
lenge 1. The proposed method employs three YOLO mod-
els: YOLOv8m [12], YOLOv8m-SA [3], and YOLOv8m-
ResCBAM [3]. For each sensor type, the training datasets
were randomly split into two subsets with a ratio of 8:2;
these subsets were used for training these models. All mod-
els were trained from scratch for 300 epochs with an image
size of 640. After the training process, for each sensor type,
the best model was selected based on the mAP50 metric
and used later for inference on the test set. For the GS-RGB
sensor, YOLOv8m-SA was selected, while YOLOv8m was
used for the remaining sensors. To improve the detection
results, the inference process used an image size of 960 in-
stead of 640 in the training process.

3.2.7 National Yang Ming Chiao Tung University, Tai-
wan (NYCU)

The team from NYCU participated in Challenge 1 and
submitted results for all sequences in the challenge.
The proposed approach employed the Parallel Resid-
ual Bi-Fusion Feature Pyramid Network (PRB-FPN) de-
tector, implemented as per https://github.com/
pingyangll17/PRBNet_PyTorch. The model was
trained on the provided dataset, with the last 10% of each
sequence reserved as a validation set to select the best
weights based on validation performance. Training data
from all sensor types (Visible, Thermal, UV, SWIR for
ground sensors; Visible, Thermal for UAV sensors) were
combined to enhance robustness across diverse conditions.
The PRB-FPNG6-MSP architecture, initialised with MS-
COCO pretrained weights, was trained for 100 epochs at an
image resolution of 1280x1280 pixels. Training was per-
formed on a single NVIDIA V100 GPU with a batch size of



8. The best-performing weights were used for inference on
test sequences.

3.2.8 National Electronics and Computer Technology
Center, Thailand (NECTEC)

NECTEC’s submission includes results for all sequences
across all sensors in Challenge 1. They fine-tuned the RT-
DETR (Large) model [23] using only the provided dataset,
starting from COCO-pretrained weights. Initially, they ex-
perimented with lightweight models, such as YOLOv8 and
YOLOV12 [20], but these models struggled with detecting
small objects in this dataset. Therefore, they switched to
a transformer-based model, RT-DETR, which is known to
perform well on small object detection tasks. Its atten-
tion mechanism helps capture fine details and global con-
text much more effectively than traditional CNNs. For data
augmentation, they applied both colour space and geomet-
ric techniques, such as HSV adjustments, rotation, transla-
tion, scaling, shearing, perspective transformation, and mo-
saic augmentation. These helped improve the model’s ro-
bustness. The model was trained using the AdamW opti-
miser with a learning rate of le-3 for 60 epochs (including
5 warmup epochs) and a batch size of 16.

3.2.9 Digital Government Development Agency, Thai-
land (DGA)

The participant conducted an evaluation of two YOLOvVS8
models on the GS-RGB and UAV-Therm datasets as part
of Challenge 1. The models tested were YOLOVSx, an
extra-large version pretrained on the COCO dataset, and
YOLOVSs, a smaller variant also pretrained on COCO but
further fine-tuned on data from all sensor types. Despite
the additional fine-tuning, the YOLOvV8s model was consis-
tently outperformed by the off-the-shelf YOLOvV8x across
both sensor modalities. Based on these results, the par-
ticipant selected the YOLOv8x model to generate the final
outputs for the test sequences from the GS-RGB and UAV-
Therm sensors.

3.2.10 Jiangnan University, China & University of
Surrey, UK (JU & U. Surrey)

This submission includes results for all sequences of Chal-
lenges 1 and 2. Using the MOTIP framework [6], they fine-
tuned the deformable_detr [24] (initialised with COCO pre-
trained weights) for 10 epochs to perform end-to-end multi-
object tracking on each modality. The training was based
solely on the data of each individual modality within the
dataset, without incorporating any additional datasets.

3.2.11 GE Aerospace Research, USA (GE Aerospace)

GE Aerospace Research submitted two submissions for
Challenge 1. Each submission contains results for scenar-
ios “bg6” and “bg8”, from GS-RGB and GS-SWIR sensors,
respectively. In this challenge, GE Aerospace Research in-
vestigated the utility of applying Visual Language Models
(VLMs) for the purpose of object detection with respect to
people, vessels and vehicles using different sensing modal-
ities. They considered two VLMs, a large state-of-the-art
private VLM (Gemini 2.5) [8] and a smaller open-source
VLM (pali-gemma) [2]. While the size of Gemini 2.5 is
not publicly known, the size of pali-gemma is on the order
of 28 billion parameters. They considered both RGB and
SWIR imagery. No training was performed in advance, so
the results of these experiments represent a zero-shot anal-
ysis of the testing data. The testing data was composed
of two scenarios. For the first scenario, they used RGB
data, resulting in 628 images that were processed by both
VLMs. The second scenario had 1515 images, and they
focused on the SWIR sensing modality. They considered
each image in isolation; no tracking was attempted. Analy-
sis by the VLMs was based on a text-based prompt request-
ing bounding boxes for the three object classes along with
the raw image under consideration, which was either RGB
or SWIR. They observed that the large private VLM signif-
icantly outperformed the smaller publicly available VLM.
However, due to computational limitations, they were only
able to process the first 1103 images of the second scenario
using the large private VLM. They considered this effort as
a benchmarking exercise so that they could better under-
stand the capacity of VLMs for basic object detection on an
independent frame-by-frame basis.

3.2.12 Electronics and Telecommunications Research
Institute, Republic of Korea (ETRI-Vision)

ETRI-Vision proposed an approach called Target Percep-
tion in Multi-Sensor Surveillance: A Coarse-to-Fine Track-
ing Framework for both Challenges 1 and 2. This approach
was applied to all sequences from all sensors in both chal-
lenges. They proposed a three-stage pipeline for robust
target detection and tracking. Their method was designed
to handle visually ambiguous scenes with small-scale ob-
jects, heavy occlusions, and diverse modalities by combin-
ing coarse-to-fine localisation, contextual classification, and
appearance-based tracking.

Stage 1 Multi-Scale Class-Agnostic Detection with
Co-DETR + WBF: They first trained Co-DETR [25] as a
class-agnostic detector, labelling all targets as a single “ob-
ject” class. This simplification allowed the model to fo-
cus purely on accurate localisation without early misclas-
sification. To improve the detection of small and large ob-
jects simultaneously, they ran inference on multiple input



scales (e.g., 640x640 and 2048x1280). The outputs were
then fused using Weighted Boxes Fusion (WBF), enhanc-
ing precision and recall by combining complementary box
predictions across resolutions. From these fused detections,
region-of-interest (Rol) crops were extracted for the next
stage.

Stage 2 Fine-Grained Rol Classification with Con-
textual Fusion: Given the low resolution and strong inter-
class confusion (e.g., vessel vs. vehicle), fine-grained clas-
sification was non-trivial. For each detected Rol, they ex-
tracted two views: 1. A cropped view tightly centred on
the detected object, and 2. A global scene view for contex-
tual information. Both views were passed through a shared
backbone (e.g., Swin Transformer [14]), and their features
were combined using a gated attention fusion module. This
helped the model leverage both fine details and global spa-
tial cues. They adopted a HERBS-style [4] classification
pipeline to enhance performance in this fine-grained, low-
resolution regime.

Stage 3 Appearance-Based Tracking with DINO Fea-
tures: To ensure temporal consistency across frames, they
employed an appearance-based tracker built on top of fea-
tures extracted from a DINO [13] backbone. By leverag-
ing visual embeddings rather than relying solely on spatial
proximity, the tracker achieved robust association even in
scenes with occlusion, dense object clusters, or abrupt cam-
era motion. This component stabilised identity assignments
and complemented their detection—classification pipeline
effectively.

4. Results and Analysis

For Challenges 1 and 2, evaluation was performed sepa-
rately for each sensor type. All submitted sequences were
grouped according to sensor type, and evaluation metrics
were calculated using all sequences within each group.
Each submission was ranked for every metric within its re-
spective sensor group. An average of these ranks across
all metrics was then computed to produce a single overall
rank for each submission. To ensure fairness when submis-
sions included different numbers of sequences, the number
of submitted sequences was also ranked and factored into
the final average.

4.1. Evaluation Metrics

For Challenge 1, standard object detection metrics were
used: these include the number of true positives (TP),
false positives (FP), false negatives (FN), false negative rate
(FNR), precision, recall, and F1-score (F1). Moreover, the
quality of true positive detections was evaluated by adopting
the Multiple Object Tracking Precision (MOTP), computed
as the average bounding box overlap between all correctly
matched hypotheses and their respective ground-truth ob-

jects [16, 18]. Although often used for tracking evaluation,
it mainly reflects detector localisation accuracy. Thus, it
was included in Challenge 1 alongside standard detection
metrics. To summarise the overall performance across all
object classes: sums of TP, FP and FN across all classes
were used together with mean values of FNR, precision, re-
call, Fl-score, and MOTP.

For Challenge 2, the metrics used in MOTChallenge [16]
to assess both localisation accuracy and identity preserva-
tion were adopted including: ID switches (IDSW) [16],
ID F1-Score (IDF1) [19], Multiple Object Tracking Ac-
curacy (MOTA) [16], Multiple Object Tracking Preci-
sion (MOTP) [16], and Higher Order Tracking Accuracy
(HOTA) [15]. For each sensor group: the sum of IDSWs
and mean values of IDF1, MOTA and HOTA were com-
puted across all sequences for comparison.

For Challenge 3, geolocation accuracy was evaluated us-
ing the geolocation estimation deviation metric [17]. This
involves computing the minimum, maximum, Mean Abso-
lute Error (MAE), and Root Mean Square Error (RMSE) of
the Haversine distance between the estimated and ground-
truth coordinates.

4.2. Results Discussion

4.2.1 Challenge 1

The results for each sensor group are discussed in this sec-
tion. Table 7 shows the results for GS-RGB. Among the
UoR models, YOLOVSs slightly outperformed YOLOVSs,
while YOLOv11s produced more detections but with sig-
nificantly higher FP and FN. RT-DETR Large achieved the
best F1 among UoR models by favouring recall, though at
the cost of higher FN. NYCU stood out as the top performer
overall, with the highest TP, recall, F1, and lowest FNR. In
contrast, Toho U. produced results with the lowest F1, likely
due to class confusion when different objects shared similar
bounding box sizes. NECTEC and ETRI-Vision also per-
formed strongly; NECTEC achieved the highest precision
and MOTP, while ETRI-Vision ranked second across sev-
eral metrics, including TP, FNR, recall, and MOTP. JU &
U. Surrey demonstrated reliable performance with a more
cautious detection style, as reflected by their lower recall.
UIT showed moderate performance, with F1 scores slightly
below top models. SKYLD underperformed in this setting,
though their method was originally designed for UAV-RGB
imagery and included here for exploratory evaluation on
GS-RGB. GE Aerospace (Gemini) and (pali-gemma) had
low FN but were only tested on a single sequence. Overall,
NYCU achieved the highest average rank across all metrics.

As for the results on GS-UV (Table 8), NYCU achieved
the best overall performance, with the highest F1 and
the second-highest MOTP. ETRI-Vision followed closely,
showing the best performance in terms of TP, FN, FNR, re-



Table 7: Challenge 1 GS-RGB results. For each metric, the best value is shown in bold, and the second-best is underlined.
The best overall performance (based on the lowest average rank across all metrics) is highlighted in yellow.

Participant Submitted/Total TP FP FN FNR Precision Recall Fl-score MOTP
sequences
UoR (YOLOVS) 3/3 4479 205 24193 0.869 0.632  0.131 0.207 0.627
UoR (YOLOVS) 3/3 4945 195 23727 0.861 0.639  0.139 0.221 0.627
UoR (YOLOVI11) 3/3 7100 1090 21572 0.815 0.578  0.185 0.276 0.630
UoR (RT-DETR) 3/3 11927 3492 16745 0.691 0.515  0.309 0.378 0.638
SKYLD 2/3 1554 1671 14339 0.934 0.324  0.066 0.109 0.579
Toho U. 3/3 276 3207 28396 0.990 0.032  0.010 0.015 0.316
UIT 3/3 14253 2381 14419 0.612 0.572  0.388 0.451 0.644
NYCU 3/3 21348 2749 7324 0476 0.605 0.524 0.842  0.652
NECTEC 3/3 18060 6837 10612 0.537 0.684 0.463 0.495 0.961
DGA 3/3 10558 1487 18114 0.729 0.588  0.271 0.551 0.635
JU & U. Surrey 3/3 17393 2995 11279 0.563 0.588  0.437 0.751 0.647
GE Aerospace (Gemini) 1/3 3016 392 2138 0.540 0.603  0.460 0.771  0.625
GE Aerospace (pali-gemma) 1/3 1047 9081 4107 0.882 0.067 0.118 0.127 0.561
ETRI-Vision 3/3 21053 7517 7619 0.493 0.517  0.507 0.768 0.652

Table 8: Challenge 1 GS-UV results. For each metric, the best value is shown in bold, and the second-best is underlined. The

best overall performance (based on the lowest average rank across all metrics) is highlighted in yellow.

Participant Submitted/Total TP FP FN FNR Precision Recall Fl-score MOTP
sequences
UoR (YOLOVS) 272 774 8 12531 00916 0.994 0.084 0.146 0.966
UoR (YOLOVS) 272 848 25 12457 0.906 0985  0.094 0.160 0.966
UoR (YOLOv11) 272 1263 25 12042 0.858 0.990  0.142 0.222 0.936
UoR (RT-DETR) 2/2 2712 361 10593 0.710 0.874  0.290 0.374 0.955
UIT 2/2 4085 365 9220 0.590 0940 0.410 0.496 0.974
NYCU 2/2 9252 974 4053 0.264 0914  0.736 0.813 0.982
NECTEC 2/2 6535 1726 6770 0.423 0.789  0.577 0.639 0.979
JU & U. Surrey 2/2 7977 1545 5328 0.358 0.861  0.642 0.734 0.979
ETRI-Vision 2/2 9289 3013 4016 0.254 0.758  0.746 0.747 0.983

call, and MOTP. However, it performed significantly worse
than the top model in terms of FP and precision, placing it
in second overall. JU & U. Surrey also performed robustly,
maintaining good precision while keeping FP manageable.
NECTEC delivered moderate results with a lower F1-
score, while UIT achieved high precision but relatively low
recall. RT-DETR, YOLOv11, YOLOVS8, and YOLOVS all
underperformed, with particularly low recall and F1-score
values, despite having high precision. These models pro-
duced too few detections, missing a substantial number of
true positives.

Table 9 shows results on GS-SWIR, NYCU again led
the overall ranking, achieving the best TP, FN, FNR, re-
call, F1-score and the second-best MOTP. ETRI-Vision fol-
lowed closely, obtaining the second-best in multiple metrics
and the highest MOTP. NECTEC and JU & U. Surrey also
demonstrated similar solid results, balancing precision and
recall. UIT, AIT, UWIPL_ETRI, GE Aerospace (Gem-
ini), and all UoR’s models showed moderate performance
with decent precision but significantly lower recall. This re-
sulted in low F1-score values among these models. Lastly,

GE Aerospace (pali-gemma) produced results with sub-
stantially higher FP, compared to the others. This suggests
the limitation of this open-source VLM when applied to
non-RGB images, such as SWIR images in this case.

The GS-Therm results in Table 10 mirror the GS-UV re-
sults, where NYCU achieved the best overall ranking, even
though ETRI-Vision led in more individual metrics. The
reason is the same: ETRI-Vision’s significantly higher FP
and lower precision placed it second overall. JU & U. Sur-
rey also performed robustly, attaining the highest precision
but with relatively lower recall due to higher FN. NECTEC
and UIT remained consistent performers, with Fl-scores
above 0.85. The models from AIT, UWIPL_ETRI, and
UoR (RT-DETR) demonstrated moderate detection perfor-
mance with low recall, but still showed a good trade-off be-
tween precision and recall, resulting in moderate F1-scores.
In contrast, UoR (YOLOVS, YOLOVS, and YOLOvV11)
exhibited notably high precision with extremely low recall,
indicating a poor trade-off between these metrics. Toho
U. also showed severe under-detection, limiting its perfor-
mance for this sensor type.



Table 9: Challenge 1 GS-SWIR results. For each metric, the best value is shown in bold, and the second-best is underlined.
The best overall performance (based on the lowest average rank across all metrics) is highlighted in yellow.

Participant Submitted/Total TP FP FN FNR Precision Recall Fl-score MOTP
sequences
UoR (YOLOVS) 3/3 4204 222 19411 0.801 0.958  0.199 0.319 0.942
UoR (YOLOVS) 3/3 4518 92 19097 0.785 0982 0215 0.342 0.940
UoR (YOLOvV11) 3/3 5364 251 18251 0.740 0.961  0.260 0.389 0.945
UoR (RT-DETR) 3/3 9271 1554 14344 0.537 0.864  0.463 0.544 0.946
AIT 3/3 5531 575 18084 0.735 0.895  0.265 0.396 0.942
UWIPL_ETRI 3/3 6978 4048 16637 0.667 0.625 0.333 0.419 0.915
uUIT 3/3 10869 1686 12746 0.497 0.867  0.503 0.617 0.957
NYCU 3/3 19922 2235 3693 0.147 0.908  0.853 0.880  0.975
NECTEC 3/3 17999 3664 5616 0.219 0.838  0.781 0.808  0.964
JU & U. Surrey 3/3 17480 3794 6135 0.254 0.856  0.746 0.796 0.970
GE Aerospace (Gemini) 1/3 2329 313 7373 0.750 0918  0.250 0.343 0.940
GE Aerospace (pali-gemma) 1/3 1182 11046 8520 0.876 0.103  0.124 0.112 0.841
ETRI-Vision 3/3 19912 6767 3703 0.155 0.763  0.845 0.801 0.980

Table 10: Challenge 1 GS-Therm results. For each metric, the best value is shown in bold, and the second-best is underlined.
The best overall performance (based on the lowest average rank across all metrics) is highlighted in yellow.

Participant Submitted/Total TP FP FN FNR Precision Recall Fl-score MOTP
sequences
UoR (YOLOvVS5)  3/3 5508 338 17951 0.726 0945 0.274 0411 0.933
UoR (YOLOVS)  3/3 5228 358 18231 0.737 0.940  0.263 0.396 0.938
UoR (YOLOv11) 3/3 6867 755 16592 0.626 0923 0.374 0.481 0.931
UoR (RT-DETR)  3/3 11228 2848 12231 0.418 0816  0.582 0.621 0.943
AIT 3/3 8091 2430 15368 0.550 0.780  0.450 0.503 0.939
UWIPL_ETRI 3/3 13949 2501 9510 0.361 0.855  0.639 0.727 0.937
Toho U. 3/3 1667 1759 21792 0.901 0.595  0.099 0.147 0913
UIT 3/3 18275 1788 5184 0.209 0921  0.791 0.851 0.966
NYCU 3/3 19933 1584 3526 0.153 0945  0.847 0.893  0.971
NECTEC 3/3 19807 3832 3652 0.162 0.879  0.838 0.855 0.969
JU & U. Surrey 3/3 18290 996 5169 0.211 0956 0.789 0.865  0.967
ETRI-Vision 3/3 20336 4425 3123 0.140 0.866  0.860 0.859 0.975

For UAV-RGB, the results are presented in Table 11.
The top performer was NYCU, achieving the best aver-
age ranking result. ETRI-Vision followed second, due
to high FP and low precision, similar to the GS-UV and
GS-SWIR results. SKYLD produced the highest preci-
sion and F1 scores, as well as the second-best TP and FN.
Unlike its results on GS-RGB, the results on UAV-RGB
were significantly better, as it was designed for UAV im-
agery, not ground-sensor imagery. JU & U. Surrey also
performed well, especially in terms of recall and FNR. In
contrast, NECTEC underperformed on this sensor despite
performing well on others. One possible reason could be
the lower number of training samples in UAV-RGB, which
may have reduced its performance. The rest of the models,
UoR (YOLOVS, YOLOvVS, YOLOv11, and RT-DETR),
UIT, UWIPL_ETRI, and Toho U., all struggled signifi-
cantly with F1. Although they produced fewer false posi-
tives compared to the top-performing models, these models
missed most detections, resulting in F1 scores below 0.27.

Notably, all methods performed worse on the GS-RGB test
sequence compared to other sensor types. This may be at-
tributed to the presence of a floating mannequin, which only
partially resembles a real person, and distant, blurry vessels
as shown in Figure 5. These pose challenges for person and
vessel detection and contribute to the overall lower perfor-
mance across all models.

As for UAV-Therm, as shown in Table 12, the top per-
formance was achieved by NYCU. NECTEC performed
best in terms of TP, FN, FNR, and recall; however, it suf-
fered from high FP and low precision, which caused it
to be ranked second overall. JU & U. Surrey followed
closely, with the second-best FNR and recall. For UoR
(retrained YOLOv11) and UIT, despite having lower TP,
these models produced substantially fewer FP compared to
the top-performing models, making them more precise at
the cost of missing some ground-truth detections. As for
ETRI-Vision, its performance on this sensor was not as
strong as on others due to a large number of false posi-



Table 11: Challenge 1 UAV-RGB results. For each metric, the best value is shown in bold, and the second-best is underlined.
The best overall performance (based on the lowest average rank across all metrics) is highlighted in yellow.

Participant Submitted/Total TP FP FN FNR Precision Recall Fl-score MOTP
sequences
UoR (YOLOvS)  1/1 226 108 1766 0914 0.551  0.086 0.147 0.956
UoR (YOLOvVS8) 1/1 212 19 1780 0.927 0.677  0.073 0.130 0974
UoR (YOLOv11) 1/1 248 33 1744 0.905 0.687  0.095 0.167 0.960
UoR (RT-DETR) 1/1 578 362 1414 0.810 0426  0.190 0.263 0.969
SKYLD 1/1 769 237 1223 0.610 0.784  0.390 0.521 0.910
UWIPL_ETRI 1/1 107 130 1885 0.959 0.354  0.041 0.073 0.943
Toho U. 1/1 95 284 1897 0.969 0.138  0.031 0.050 0.485
UIT 1/1 109 114 1883 0.894 0.524  0.106 0.174 0.933
NYCU 171 617 243 1375 0.524 0.781  0.476 0.486 0.970
NECTEC 1/1 603 648 1389 0.647 0.467  0.353 0.384 0.966
JU & U. Surrey 1/1 641 351 1351 0.487 0.736  0.513 0.471 0.953
ETRI-Vision 171 848 1643 1144 0.465 0.449  0.535 0.377 0.983

Table 12: Challenge 1 UAV-Therm results. For each metric, the best value is shown in bold, and the second-best is underlined.
The best overall performance (based on the lowest average rank across all metrics) is highlighted in yellow.

Participant Submitted/Total TP FP FN FNR Precision Recall Fl-score MOTP
sequences
UoR (YOLOVS) 3/3 3641 61 25946 0.852 0936  0.148 0.250 0.949
UoR (YOLOVS) 3/3 3142 55 26445 0.848 0.960  0.152 0.252 0.947
UoR (YOLOv11) 3/3 4502 86 25085 0.820 0.977  0.180 0.282 0.946
UoR (RT-DETR) 3/3 9440 773 20147 0.628 0.827 0.372 0.483 0.951
UoR (retrained YOLOv1l1s) 3/3 12080 1926 17507 0.506 0.891  0.494 0.629 0.956
UWIPL_ETRI 3/3 6417 9287 23170 0.852 0.287  0.148 0.195 0.632
Toho U. 3/3 1924 907 27663 0.943 0.227  0.057 0.091 0.326
UIT 3/3 15625 2555 13962 0.513 0.813  0.487 0.608 0.971
NYCU 3/3 19718 4234 9869 0.340 0.873  0.660 0.739  0.977
NECTEC 3/3 20051 10650 9536 0.268 0.784  0.732 0.729 0.968
DGA 3/3 6077 284 23510 0.778 0.955 0.222 0.343 0.964
JU & U. Surrey 3/3 18727 5557 10860 0.299 0.845  0.701 0.741 0.967
ETRI-Vision 3/3 19075 9528 10512 0.541 0.844  0.459 0.515 0.978

Figure 5: Sample image from the UAV-RGB test sequence
that shows a floating mannequin (representing a person in
water) and distant vessels, both posing detection challenges.

tives; however, it achieved the highest MOTP. Interestingly,
UoR (YOLOVS, YOLOvVS, YOLOv11, and RT-DETR)
and DGA, although not retrained on the UAV-Therm data,
achieved highly precise predictions with low FP. Nonethe-
less, they missed many ground-truth objects. This demon-
strates the ability of pretrained YOLO models to detect
objects in thermal UAV imagery, despite being originally
trained on the COCO dataset, which mainly contains RGB
images. UWIPL_ETRI detected a large number of objects;
however, its number of false positives exceeded true pos-
itives, indicating a precision issue. Toho U., on the other
hand, detected far fewer objects compared to other models,
reflecting severe under-detection that may be attributed to
the BBox size problem.

Overall, the results highlight key challenges and ob-
servations in multi-sensor object detection. Fine-tuning
deep learning models on sensor-specific data improved ob-
ject detection in corresponding image sequences, but often



led to a significant increase in the number of false posi-
tives. This poses concerns for some real-world applications,
where false alarms might be undesirable. Another point is
that performance on UAV images was generally worse than
on ground sensor data, as most models rely on pretrained
backbones trained on datasets with perspectives similar to
ground-sensor images. This emphasises the challenge in de-
veloping detection models for sensor platforms across vari-
ous altitudes. Finally, deep learning-based detection models
demonstrated superior performance compared to VLMs in
this challenge. However, VLM-based methods in this chal-
lenge were limited to zero-shot prompting, and their perfor-
mance could improve with further prompt tuning or more
advanced techniques.

4.2.2 Challenge 2

Tables 13 - 18 show the results of Challenge 2 for GS-
RGB, GS-UV, GS-SWIR, GS-Therm, UAV-RGB and UAV-
Therm, respectively. From these tables, both JU & U. Sur-
rey and ETRI-Vision were top performers across all sen-
sor groups. ETRI-Vision achieved first place in GS-SWIR,
GS-Therm, UAV-RGB, and UAV-Therm, while JU & U.
Surrey ranked first in GS-UV. For GS-RGB, both meth-
ods achieved a joint first place. These results underscore
the effectiveness of their approaches, particularly in terms
of the association and re-identification strategies employed.
ETRI-Vision used appearance-based tracking with DINO
features, while JU & U. Surrey adopted the MOTIP frame-
work, which trains an ID prediction model using image fea-
tures and ground-truth tracks.

Considering AIT’s tracker on the GS-SWIR and GS-
Therm datasets, the method performed well, particularly
in terms of IDSW. It consistently maintained strong iden-
tity consistency for successfully tracked objects, as reflected
by its low IDSW count. However, it missed more detec-
tions than the top two methods, indicated by lower IDF1
and MOTA scores. These results suggest that the tracker
prioritised high-confidence, stable tracks while discarding
lower-confidence or ambiguous detections. This trade-off
reflects a conservative strategy that favours precision and
ID stability over broader coverage. This could be beneficial
in applications where reliable individual tracks are critical.

Comparing tracking methods from UoR for all sensor
groups, RT-DETR + BoT-SORT generally performed bet-
ter than the method using RT-DETR + ByteTrack, while
RT-DETR + DeepSORT performed the worst. This dif-
ference likely stems from the underlying association and
motion modelling techniques. BoT-SORT incorporates ap-
pearance features and camera-motion compensation, lead-
ing to improved handling of occlusions, identity switches,
and constantly moving sensors. ByteTrack, although ef-
fective, relies more heavily on motion cues, which can be

Table 13: Challenge 2 GS-RGB results. For each metric,
the best value is shown in bold, and the second-best is un-
derlined. The best overall performance (based on the lowest
average rank across all metrics) is highlighted in yellow.

Participant IDSW IDF1 MOTA HOTA

UoR (RT-DETR + BoT-SORT) ~ 1098 0266 0257  0.279
UoR (RT-DETR + ByteTrack) 1289 0201  0.187  0.237
UoR (RT-DETR + DeepSORT) 650 0.144 0120  0.187
JU & U. Surrey (MOTIP) 864 0572 0495 0.517
ETRI-Vision (DINO) 710 0501 0557  0.490

Table 14: Challenge 2 GS-UV results. For each metric, the
best value is shown in bold, and the second-best is under-
lined. The best overall performance (based on the lowest
average rank across all metrics) is highlighted in yellow.

Participant IDSW IDF1 MOTA HOTA
UoR (RT-DETR + BoT-SORT) 169 0.262 0.160  0.247
UoR (RT-DETR + ByteTrack) 313 0.222 0.147  0.209
UoR (RT-DETR + DeepSORT) 175 0.138 0.086  0.177
JU & U. Surrey (MOTIP) 141  0.596 0458 0418
ETRI-Vision (DINO) 277 0.533 0.576  0.454

Table 15: Challenge 2 GS-SWIR results. For each metric,
the best value is shown in bold, and the second-best is un-
derlined. The best overall performance (based on the lowest
average rank across all metrics) is highlighted in yellow.

Participant IDSW IDF1 MOTA HOTA

UoR (RT-DETR + BoT-SORT) 915 0.284 0.263 0.278
UoR (RT-DETR + ByteTrack) 800 0.271  0.260 0.256
UoR (RT-DETR + DeepSORT) 399  0.209  0.180 0.209

AIT 106 0.267  0.194 0.298
JU & U. Surrey (MOTIP) 826 0.656  0.504 0.510
ETRI-Vision (DINO) 477 0.574  0.675 0.542

less reliable in scenarios where the sensors are also in mo-
tion. DeepSORT is an older method with simpler appear-
ance modelling and association strategies. Therefore, it is
likely to underperform the other two methods.

4.2.3 Challenge 3

Table 19 presents the results for Challenge 3 using UoR’s
method. In scenarios “cy4” and “rd7”, the method achieved
low MAE and RMSE (below 11 meters), as the target ves-
sels were captured at low pitch angles and relatively short
distances. In “bg7” and “cy6”, a combination of near and
distant vessels, along with varied pitch angles, resulted in
moderate errors. Scenario “cy5” proved the most challeng-
ing, with the target captured from a significant distance and
a high pitch angle (close to 0). Consequently, the method
yielded MAE and RMSE values exceeding 40 meters.



Table 16: Challenge 2 GS-Therm results. For each metric,
the best value is shown in bold, and the second-best is un-
derlined. The best overall performance (based on the lowest
average rank across all metrics) is highlighted in yellow.

IDSW IDF1 MOTA HOTA

UoR (RT-DETR + BoT-SORT) 1502  0.275 0.275 0.253
UoR (RT-DETR + ByteTrack) 1527 0.253 0.272 0.227
UoR (RT-DETR + DeepSORT) 757 0.186 0.178 0.176

Participant

AIT 258 0.297 0273  0.240
JU & U. Surrey (MOTIP) 799  0.537 0.589  0.492
ETRI-Vision (DINO) 534 0.474 0.698 0.474

Table 17: Challenge 2 UAV-RGB results. For each metric,
the best value is shown in bold, and the second-best is un-
derlined. The best overall performance (based on the lowest
average rank across all metrics) is highlighted in yellow.

Participant IDSW IDF1 MOTA HOTA
UoR (RT-DETR + DeepSORT) 59 0131  0.104 0.173
UoR (RT-DETR + ByteTrack) 83 0.166  0.158 0215
UoR (RT-DETR + BoT-SORT) 66 0.165 0078  0.233
JU & U. Surrey (MOTIP) 119 0296  0.115 0411
ETRI-Vision (DINO) 38 0485 0243 0.469

Table 18: Challenge 2 UAV-Therm results. For each metric,
the best value is shown in bold, and the second-best is un-
derlined. The best overall performance (based on the lowest
average rank across all metrics) is highlighted in yellow.

Participant IDSW IDF1 MOTA HOTA

UoR (RT-DETR + BoT-SORT) 1131 0296 0234 0292
UoR (RT-DETR + ByteTrack) 1349 0211 0203 0221
UoR (RT-DETR + DeepSORT) 495 0.133  0.125  0.176
JU & U. Surrey (MOTIP) 2639 0529 0398  0.479
ETRI-Vision (DINO) 946 0534 0452 0473

5. Conclusions

PETS2025 introduces three challenges aimed at advanc-
ing maritime and coastal surveillance using multi-authority,
multi-platform, multi-spectral sensors. Challenge 1 focuses
on detecting and classifying persons, vessels, and vehicles
across RGB, thermal, UV, and SWIR imagery from ground
and UAV sensors. Challenge 2 addresses long-term track-
ing of these targets, requiring consistent object IDs across
occlusions and diverse terrains. Challenge 3 involves ge-
olocating persons and vessels in thermal UAV images using
provided telemetry data. Together, these challenges pro-
mote robust multimodal detection, tracking, and geoloca-
tion approximation in maritime and coastal environments.

A total of 12 teams joined Challenge 1, 4 teams partici-
pated in Challenge 2, and Challenge 3 received a single sub-
mission. The majority of object detection methods centred

Table 19: Challenge 3 results.

Scenario Min Max MAE RMSE
bg7 9.03 77.86 33.37 40.56
cy4 2.16 19.73 5.8 6.62
cys 20.2 75.08 42093 44.83
cy6 1548 29.14 21.57 21.99
rd7 452 16.33 9.79 10.42

on using deep learning-based detectors, particularly variants
of the YOLO family (e.g., YOLOvS, YOLOVS, YOLOv11),
which were the most widely adopted across participants.
Several teams trained or fine-tuned these detectors on the
PETS2025 dataset, often tailoring them to different sensor
modalities (RGB, thermal, SWIR) or target domains (land
vs maritime). Transformer-based models such as RT-DETR
and deformable DETR were also explored, especially by
teams aiming to improve performance on small or occluded
objects. A few groups incorporated more advanced compo-
nents, such as semantic segmentation (e.g., SAM2), bound-
ing box modelling (e.g., GMM), or auxiliary modules to
compensate for false negatives.

The best-performing model was obtained using PRB-
FPN, fine-tuned on a combined dataset from all sensors
to ensure robustness across multiple modalities. The
second-best approach employed a three-stage coarse-to-
fine pipeline, which initially detects objects in a class-
agnostic manner at multiple scales using Co-DETR and
Weighted Boxes Fusion, followed by fine-grained classi-
fication that leverages both local and contextual features
through a Swin Transformer backbone. Another effec-
tive method utilised the MOTIP framework, integrating ob-
ject detection and object association into a single end-to-
end trainable model. Additionally, zero-shot object detec-
tion with vision-language models (VLMs) was investigated,
highlighting the potential of prompt-driven multimodal rea-
soning without the need for dataset-specific training.

For object tracking, common strategies involved detect-
and-track pipelines using established tracking methods
based on the Hungarian algorithm, with detection results
from YOLO or transformer-based backbones serving as in-
puts. To maintain consistent tracking through occlusions
and temporary disappearances, some methods incorporated
advanced techniques for enhanced object association and
re-identification. These included appearance-based track-
ing using DINO embeddings to ensure robust temporal con-
sistency across challenging multi-sensor scenes, as well as
MOTIP, which employs image features as input to an ID
prediction model trained on ground-truth tracks. This en-
ables the model to associate detected objects across frames
effectively based on both appearance and motion cues.

For the geolocation approximation task, a method was



submitted that projects the UAV’s FOV onto the ground us-
ing its altitude, orientation, and FOV to calculate ground
distances and image corners, from which a homography
matrix maps image pixels to geospatial coordinates. To han-
dle low-pitch angles with sky regions, horizon-aware cor-
rection and vertical pixel scaling techniques were applied
to improve the accuracy. The results show that the method
achieved an error of less than 11 metres in less challenging
cases (closer targets with an optimal UAV camera pitch an-
gle), and under 45 metres in more challenging cases (distant
targets with the UAV camera pitch angle nearly horizontal).

All submissions demonstrate that detection, tracking,
and geolocation approximation remain challenging tasks,
particularly due to varying sensor modalities, platforms,
and complex maritime and coastal backgrounds. Future
work will focus on advancing these challenges further to en-
able the development of more effective detection, tracking,
and geolocation methods in maritime and coastal environ-
ments.
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