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Abstract

Navigation means getting from here to there. Unfortunately, for biological nav-

igation, there is no agreed definition of what we might mean by ‘here’ or ‘there’.

Computer vision (‘Simultaneous Localisation and Mapping’, SLAM) uses a 3D

world-based coordinate frame but that is a poor model for biological spatial

representation. Another possibility is to use an image-based rather than a map-

based representation where the observer moves relative to a fixation point. This

would require a system for relating different fixation points to one another as the

observer moves through the environment. I describe how this can be done by,

first, relating fixations to an egocentric representation of visual direction and,

second, encoding egocentric representations in a coarse-to-fine hierarchy. The

coarsest level of this hierarchy is, in some sense, a world-based frame as it does

not vary with eye rotation or observer translation. This representation could be

implemented as a ‘policy’, a term used in reinforcement learning to describe a

set of states and associated actions, or a ‘graph’ that describes how images or

sensory states can be connected by actions. I discuss some of the psychophysical

evidence relating to these differing hypotheses about spatial representation and

navigation.

Keywords: Image space, navigation, fixation, optic flow, egocentric,

allocentric, 3D, spatial representation.
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1. Moving through 3D space or image space

Navigation implies a representation of the observer’s current location and of their

goal plus some rules that will allow the observer to move from one to the other. The

type of representation(s) that animals use remains a matter of debate. It does not

have to be a 3D coordinate frame and many suggest that it is not [1–4].

Figure 1 illustrates two alternative types of approach to this problem. In Fig. 1a,

an observer walks along a path (O1 to O4) and records their location in a Cartesian,

world-based frame of reference shown by the grid [5–8]. An alternative is shown in

Fig. 1b where the observer takes the same path but now it also shows the points

that the observer fixates (A, B, C) as they move. Thinking about the fixation point

emphasises the retinal flow that the observer receives. Much of the ventral stream

of visual processing is useful for identifying the fixated object while, conversely, the

dorsal stream is relatively insensitive to the nature of the fixated object but instead

provides highly sensitive information about the movement of the observer relative to

the fixated object. This makes Fig. 1b a good starting point for thinking about the

guidance of observer movement. We will explore this perspective in more detail in

Section 4.

The literature covering hypotheses about retinal flow processing in the visual sys-

tem is influenced by assumptions about the representations used for navigation, in-

cluding the two alternatives sketched in Fig. 1. The underlying assumption in many

models is that the visual system’s goal is to recover the translation (movement in

space) of the observer in a world-based frame like Fig. 1a; if so, the argument goes,

the visual system should decompose retinal flow into a ‘translational’ component and

a ‘rotational’ component because the first of these can be used to recover the move-

ment of the observer relative to the scene in a world-based frame of reference [9–13].

The approach I describe here is different. I argue that the goal is not to recover the

translation of the observer relative to a world-based frame but, instead, to change the

current image into a goal image (similar to the approach used in current reinforcement

learning algorithms for navigation [14, 15]), i.e. the task is to navigate across a surface

of images from the current image to the goal image. If this is the case, there is no

need to decompose retinal flow into rotational and translational components [16, 17].
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Figure 1: Alternative methods of representing observer location. (a) Four

locations of the observer (O1 to O4) are shown relative to a world centred reference

frame (pink grid). (b) The same four locations are now shown including the the fixation

point for each segment of the movement (O1 → O2, O2 → O3 and O3 → O4). The

approach to representing the whole trajectory O1 → O4 could be quite different from

(a) if the first step is to estimate how the observer has moved in relation to the fixation

point. This information would then need to be integrated across saccades (shown by

red arrows). Fig. 3 describes one of these segments (e.g. O1 → O2) in more detail.

In Section 3, I set out some of the problems that exist with the hypothesis of a

map-based representation (Fig. 1a) then, in Sections 4 to 6, I outline an alternative

approach based on navigating between the current image and a goal image. First, in

Section 2, I describe two anectodal examples from my own experience that illustrate

why one might want to look for alternatives to the idea that we build a map of the

world and use this to guide our actions.

2. Real world examples

Before going into details of an alternative to a map-based representation, I describe

two real-world examples of navigation that are difficult to explain if observers rely on a

map of the environment to guide their actions. These provide motivation for thinking
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of alternatives to the idea that the visual system generates a world-based 3D model

of the scene. The idea of a map is generally taken to mean that the visual system

has an allocentric (world-based) representation [18, 19] that is rather like a ‘survey’ or

birds-eye view of the scene. It does not need to be veridical, but it should be consistent

across tasks.

The first real-world example relates to the disorientation that I sometimes observe

when going down a spiral staircase. In the library I often work in, there is one that

has quite a few 90◦ turns before I get to the lavatories in the basement and there are

no windows on the way. By the time I reach the bottom I know with high confidence

that I am facing either North, or West, or South or East rather than any intermediate

orientation but I never know which of these is the case. If the representation that I

use is a form of 3D reconstruction such as ‘Simultaneous Localisation and Mapping’

(SLAM) or a similar kind of map of the environment, that would not happen. But if

the representation that I use is more like a set of images or neural states connected

by actions, then this confusion is to be expected (and, incidentally, has no practical

consequence because I still arrive at my goal). A set of images or states connected

by actions is called a ‘graph’ where the images/states form the nodes and the edges

joining the nodes are actions. A ‘policy’, P (a|s), describes the actions, a, that are

triggered by a set of states, s, so it is closely related to the idea of a graph of states
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connected by actions.

Double lifts
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Platform 8A Platform 8B

Platform 9A Platform 9B

Figure 2: Image-based navigation. The lifts from the platform to the bridge in

Reading station are symmetrical (outlined in green and red here) which means that

the view when you go in at platform level is similar whichever side you go in (lower

red and green images) and the view when you exit the lift at the bridge level is almost

identical (compare red and green upper images). Of course, the direction you face in

each case as you emerge from the lift is 180◦ different. On my journey to work, unless

I really concentrated, I would take the wrong turn about 50% of the time.

The second example is illustrated in Fig. 2. This shows a pair of lifts at the station

in Reading on my way to work. The lifts can be entered from either side and, because

they are built symmetrically, both entrances appear similar (lower images). When

you emerge from the lift, your orientation is 180◦ different depending on the lift you

were in, but the view is almost identical in either case (images outlined in green and

red). For a long time, I would regularly come out of the lift and head off in the wrong

direction. An inescapable conclusion, it seems to me, is that I was not simply using a

map. If I built a map (like SLAM [20]) and then relied on this to guide my actions,

it should work equally well whether the scenes I saw coming out of the two lifts were

similar or not. My confusion can only be explained if I was making image-dependent

decisions about my next action, i.e. I was relying on a policy.

An elegant demonstration of a very similar conclusion comes from a study in which

participants are asked to mime the action of driving a car including changing lane on
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a motorway. Almost no-one can do this correctly (instead, they turn the wheel one

way then back to the centre, which in real life would result in them veering off the

road) [21]. The conclusion is, as with the example of emerging from the station lifts,

that people do not form a map of the world and make a motor plan that would be

appropriate for that map. Instead, they follow a policy, with every action followed

by an image that triggers the next action and, for most tasks, this is sufficient to

accomplish their goals.

3. Moving relative to a world-based map

The majority of physiologically-based models of navigation include a world-based

representation of space and heading direction that are presumed to be dependent on

the hippocampus and entorhinal cortex [22, 23]. The idea of an allocentric or ‘world-

based’ representation consists of two elements. One is a representation of the location

of objects, which relies on 3D transformations of sensory information from egocentric

to allocentric coordinate frames (Section 3.1). The other is a representation of the

location of the observer in a world-based frame of reference (Section 3.2).

3.1. 3D coordinate transformation

If the visual system generates true 3D representations of the scene, e.g. in visual

cortex, and these are used to contribute to a 3D world-based representation as the

observer moves around, then somewhere in the brain a process of coordinate transfor-

mation must occur to transfer information between these different reference frames.

The posterior parietal cortex has long been associated with this hypothetical operation

(e.g. retinal, head-, hand-, body- or world-centred coordinates) [24–26]. The neural

mechanisms that have been proposed to date are very complex. One example involves

duplicating a representation many times in slightly different coordinate frames then

‘gating’ the output so that only one of the candidate representations is copied to the

next stage of processing [6]. The logic applied here would need to be very much more

complex if it were to be extended to the case of translation (movement in space) of the

observer. There are many more options for translation than for rotation and transla-

tion has no obvious limit. There are no detailed proposals for a neural mechanism to

implement transformations of this type.
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Some papers that discuss neural mechanisms for carrying out coordinate tranfor-

mations suggest possible simplifications. One option is to update the coordinates of

only a single object in the scene instead of the whole scene or to update a single dif-

ference vector (e.g. between the hand and a target) [27–31]. These are more plausible

as neural mechanisms, but they abandon the idea of taking retinal inputs and using

them to generate world-based representation of the whole scene.

3.2. Using grid cells for navigation

A separate goal of the visual system is to identify the world-centred location of the

observer (rather than other objects) as the observer moves around. There is evidence

that place cells in the hippocampus and grid cells in the entorhinal cortex are involved

in encoding the location of the observer [32–34], although there is a debate about the

extent to which these cells provide a regular ‘grid-like’ reference frame with a map-like

role similar to a longitude-latitude coordinate frame. For example, an extreme claim,

advocated and tested by Carpenter et al. [35], is that a continuous grid-like pattern of

responses might extend across two rooms that are separated by a corridor. If that were

true, it would suggest that the brain could apply a coherent coordinate system across

both rooms, just like an externally defined longitude-latitude system. This would be

a remarkable finding and would not be predicted by the type of scheme advocated in

this paper (Sections 4 to 6). The data that Carpenter et al. [35] present in fact support

a more modest assertion, namely that rats, once they have learned to distinguish and

navigate successfully between the two rooms, develop a new pattern of grid cell firing

in the second room. Stronger evidence than this would be required to support the

assertion that a single continuous grid-like coordinate frame encompassed both rooms

(see [36]).

Taken at face value, grid cells provide a signal that is not at all like the grid

pattern of an Ordnance Survey map or a longitude-latitude coordinate frame because

the signals from these cells are entirely ambiguous. This is the opposite of the unique

labelling system that allows navigation using a map. Bush et al. [37] try to address

this problem by suggesting an algorithm for interpreting grid cell firing rates (from 9

cells, three at each of three scales) to provide an estimate of signal of location. The

proposed decoding is not straightforward.

A more recent and more plausible model for interpreting the output of neurons

that fire in multiple spatial locations has been presented by Banino et al. [38]. In
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this modelling paper, the activity of 512 units (rather than 9 grid cells) is used to

learn a policy (a mapping between sensory context an action, in this case pointing

towards a rewarded target). The 512 units each have receptive fields that, like grid

cells, occur in multiple locations in the environment but only a portion of them have

a regular spacing like grid cells and this subset have no special status among the 512

contributing cells. There is no attempt in this algorithm to generate a map or anything

like a longitude-latitude coordinate frame.

A different modelling approach is taken by Whittington et al. [8] who describe a

‘Tolman-Eichenbaum Machine’ that relates different sensory states to one another by

storing the actions that would take the agent from one sensory state to another. They

describe this as a ‘graph’ of states where the nodes of the graph are states and the

edges are actions that connect them. This is closely related to the idea of a policy,

since every state has an associated action. The use of information from grid cells is

different in this model compared to [38]. The grid cell output is explicitly linked to

the visual input at each point in space and ‘loop closure’ [39] is rewarded during the

learning which results in there being a metric structure to the graph. We will see

a discuss a different approach to developing a metric-like representation of the scene

in Section 6.

4. Moving relative to a fixation point

In this section, we’ll examine in more detail the idea that much of the visual system

is arranged to facilitate the observer making a single transition, e.g. O1 → O2 and

then a saccade in Fig. 3a. Then, in Section 5, we’ll examine the problem of knitting

together multiple epochs of movements relative to different fixation points, i.e. the

issue illustrated in Fig. 1b.

Almost all animals adopt a pattern of movement in which they ‘fixate and saccade’.

A fly with eyes rigidly attached to its head and its head rigidly attached to its body

will make saccades with its body and, in between saccades, it will fixate on an object

as it moves. Essentially, whether the eyes are free to move in the head or relative to the

body, what matters is the gaze. The head and body compensate for eye movements to

ensure gaze is fixed on an object as the animal moves and then makes a sudden switch

to a new object (a saccade) [40, 41]. Gilchrist et al. [42] show the same phenomenon

in humans when extraocular fibrosis limits the ability to make saccades with the eyes:

8



the head now makes saccade-like movements, so that the pattern of gaze movement is

relatively unchanged despite the paralysis of the eye muscles.

Figure 3 shows one of the epochs from Fig. 3a. An observer moves from O1 to

O2 while fixating point A and then makes a saccade to point B. Figure 3b shows

a different way to illustrate the same movement which highlights the image changes

that are generated as the observer moves. Two surfaces are shown. One represents

all the images that the camera/eye could see if it moved while maintaining fixation

on a particular object. Each point on the surface corresponds to a different image.

Nearby points on the surface correspond to images that could be obtained from nearby

vantage points. Most animals, including humans, have a restricted pattern of eye

movements that means they must maintain fixation for a period (e.g. about 200

ms) before they can make a saccade to a new object (i.e. jump to a new surface of

images) [40, 41]. This is quite different from the general 6 degrees of freedom movement

of a camera, which means that the retinal input to the visual system is radically

different from the visual input to a computer vision algorithm (e.g. SLAM [20]).

This leads to profound implications about the way that biological image processing

is likely to proceed compared to computer vision. In particular, it suggests that

biological image processing to control navigation has a different goal from that of

SLAM navigation systems.
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Figure 3: Moving relative to a fixation point. (a) An observer moves from O1 to

O2 while fixating on a point A and then makes a saccade to fixate object B, i.e. one

transition from the trajectory illustrated in Fig. 1b. (b) This shows a way to depict

the retinal images that the observer receives during that movement. Every point on

the pink surface represents an image and, for each image, the camera/eye is fixating

the woman. The dashed line shows a path across this image space corresponding to

the images that the observer would receive if they moved while fixating on the woman’s

head and then (red arrow) made a saccade to fixate the man (blue plain of images). (c)

The responses of some types of neuron in the inferotemporal cortex can be plotted as

a ‘receptive field’ on the surface of images, i.e. the set of images to which that neuron

responds. The receptive field of a notional size-invariant neuron is shown on the left

and of a view-invariant neuron on the right. (d) Dorsal stream neurons do not have

receptive fields on the surface of images in the same way as ventral stream neurons.

Instead, they signal motion across the surface in a particular direction, e.g. towards

the fixated object (red arrows) or laterally (orange arrows).
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The responses of neurons in the dorsal and ventral streams of visual processing

are tailored to the restricted set of inputs that are produced by this pattern of eye

movements. The ventral stream provides a rich source of information about which

surface the current image is on (i.e. which object the observer is looking at) while

the dorsal stream provides complementary information about the direction and mag-

nitude of movement of the current image across the surface (largely independent of the

object that the observer is looking at). Individual neurons in the ventral stream have

responses that are relatively invariant to certain types of image change, e.g. the same

stimulus viewed at different viewing distances [43] or from different viewing angles [44]

and this set of stimuli can be plotted as a region on the surface (Fig. 3c). It has been

claimed that some neurons in macaque hippocampus respond to a very wide range of

views of a location from different vantage points [45]. A hypothetical cell of this type

would have a receptive field covering the entire surface shown in Fig. 3c. All the way

up the ventral stream, from complex cell in primary visual cortex to inferotemporal

cortex to hippocampus, neurons in this stream tend to give a more stable output than

a one might expect.

The dorsal stream does the reverse and indicates change caused by observer move-

ment, relatively independent of the contents of the scene. It is not possible to draw the

receptive fields of dorsal stream neurons on the surface of images (Fig. 3c) in the same

way as for ventral stream neurons. Instead, their responses signal that the current

image has moved across the surface in a particular direction. For example, Roy and

Wurtz [46] showed that neurons in the motion-sensitive cortical area MSTd respond

to lateral head movement, while other MSTd cells respond to looming stimuli and

self-motion in different directions with respect to the fixated object [47]. The inter-

pretation of these neurons as indicating a movement of the observer depends on the

fact that the observer is fixating a point as they move. This pattern of fixational eye

movement is maintained by a very fast feedback loop involving the nucleus of the optic

tract [48]. Given that the observer is fixating, the movement of the observer relative

to the fixation point can be decoded from a population of MSTd neurons [11, 49].

If goals are defined in terms of desired images, then the role of visual processing

in the dorsal stream could be much simpler than decomposing flow into rotational

and translational components (Section 1). Specifically, if the goal of the observer

is to change the current image into another image that is closer to (or at least on
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the path towards) the desired image, then the neurons in MSTd already encode the

information in the relevant coordinate frame (a retinal one). They highlight the change

in the image, e.g. looming (approaching the fixated object) or the more complex type

of image change that Roy and Wurtz [46] describe (caused by moving sideways with

respect to the fixated object). This is the type of signal that is needed in order to

control the observer’s movement in relation the fixated object.

It is worth remembering that the mechanisms for controlling movement suggested

in this section are quite different from the method that would be involved in a general

SLAM-like system of 3D reconstruction. In a fixating system, the rotation of the

camera is yoked to translation so movement of the head leads to a unique image change.

Essentially, all 3 degrees of freedom of rotation of the eye/camera are not actually free,

they are determined by the translation of the eye in space (head movement) [16, 50].

This makes it far simpler to control movement using image-based parameters than it

would be if the rotation of the eye/camera was unconstrained (Fig. 1a).

In the next section, we consider translation (movement in space) of the observer

over a larger scale and with multiple fixation targets.

5. An image-based frame of reference

This section explores the case illustrated in Fig. 1b where the observer moves

while fixating on a series of different targets. The first step will be to consider how an

egocentric representation of the visual direction of objects can be built up from a single

vantage point. Then, I will discuss the consequences of observing a scene in which all

the objects are distant. The egocentric representation of a world of distant points is

independent of observer movement, so in one sense it is ‘world-based’. Finally, I will

show how a standard egocentric representation lies at one end of a spectrum, with

a ‘world-based’ representation at the other end. This spectrum makes it possible to

have a hierarchical, coarse-to-fine method of defining the address of the current image.

5.1. An egocentric representation of visual direction

Figure 4 shows how, as an observer looks around, the images they receive can be put

together into a single representation. This applies to a static monocular observer, so

the eye is assumed to only rotate around its optic centre, not move in space. Figure 4a

shows the eye and two distant objects (mountain peaks). If the observer fixates one
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of these objects and then the other, the images from those two fixations can both

contribute to a representation of the scene. In Fig. 4b, the eye is looking at Peak A, so

an image of Peak A falls on the fovea. In Fig. 4c, the eye has now rotated to look at

Peak B so now the image of Peak B falls on the fovea. The angle of rotation between

A and B is α, i.e. this is the magnitude of the saccade that would take the eye from

looking at A to looking at B. Figure 4d shows how retinal information about the

angles between different visible objects can be united in a common reference frame,

recording the relative visual directions of objects in the scene. For a more detailed

account of this reference frame, see [16].
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Figure 4: An egocentric representation of visual direction. (a) This shows the

angle, α, between two points measured at the eye. For distant points, this angle varies

very little when the observer moves. (b) An eyeball with the fovea at the back, looking

in the direction shown by the arrow. Here, the eye is looking at the mountain on the left

(peak A). (c) Now the eye has rotated through an angle of α to look at the mountain on

the right (peak B). (d) This shows information from (b) and (c) combined on a single

sphere, i.e. independent of eye position. It shows the angles between pairs of points

and hence the eye movement (‘saccade’) that would take the fovea from one object to

another. In theory, this set of angles (‘relative visual directions’) can span the whole

sphere and hence provide the information that would allow the eye to rotate to look at

any visible object in the scene. Hence, this is a type of egocentric representation of

visual direction (but, at the same time, it is also a policy).

Ultimately, it is possible to triangulate the entire sphere (assuming a transparent
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head and a freely-rotating eyeball) to record the relative visual direction of objects all

around the observer. One might raise the objection that the number of pairs of points

in a scene, and hence the number of potential saccades between them, is large (roughly

n2 for n points). However, there are ways to reduce the storage load and not include

every possible pairing, for example by recording the location of fine scale features in

the scene relative to coarse scale ‘parent’ features in a hierarchical structure [51–53].

There is psychophysical evidence to support such a hypothesis [51, 54, 55].

Although the egocentric reference frame in Fig. 4 is illustrated as a sphere, which

is easy to grasp intuitively, an alternative implementation is to store a ‘policy’ as

discussed in Section 3.2. A policy is a set of states where each state is associated with

an action. In this case, the action is a saccade and the state combines information

about the current and desired image, i.e. the image after the saccade. A list of

these state-action-dyads makes a policy and, equivalently in this case, an egocentric

representation.

5.2. A hierarchical address system for location

Next, we consider how this egocentric representation changes as the observer

moves. Observer movement causes motion on the retina as objects at different dis-

tances move relative to one another (motion parallax). This information needs to

be integrated and contribute to a representation that persists across eye movements

(saccades). We’ll see that, as the observer moves, some elements of the representation

in Section 5.1 change slowly while others change rapidly. This makes it possible to

construct a hierarchical ‘address’, rather like a postal address (country, town, street,

house), for defining spatial location.

Figure 5 shows a scene that contains mountains, a forest in the middle distance

and a picnic table close to the observer. We’ll see that the mountains provide a coarse

scale ‘address’ (like ‘UK’ in a postal address) while the trees and the picnic table

provide progressively finer detail about the observer’s location. For example, Fig. 4

shows mountains that are very far away. If the observer translates (moves in space) by

a few metres, the change in angles between the distant mountains will be so small that

an observer cannot detect it. This means that the egocentric representation we have

discussed in the previous section (Section 5.1) will be equally applicable wherever the

observer moves their head (unless they walk a very long way). In this sense, the angles
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between distant mountains provide the coarsest possible component of the observer’s

current address.

The yellow plane drawn in the centre of Fig. 5 is related to the surfaces shown

in Fig. 3 but is not identical. In Fig. 5, each point on the surface corresponds to an

entire egocentric representation (like Fig. 4d) as viewed from one location in space.

Figure 3 is very similar in some ways, in that neighbouring points in Fig. 3 correspond

to the view from neighbouring locations in space, but in that case the ‘view’ was just

a single image. Now, in Fig. 5, the ‘view’ corresponding to a point on the surface is

a full 360◦ egocentric view of the scene.

Figure 5: A hierarchical address of an egocentric representation. (a) The

yellow plane represents a surface of views in which each point corresponds to a full

360 degree egocentric view of the scene from one location (like Fig. 4d). Neighbouring

points on this surface correspond to egocentric representations generated by viewing the

scene from neighbouring locations in space. The beige region shows the set of egocentric

representations that are (for practical purposes) indistinguishable if only distant objects

are considered. When the angles between the trees and the mountains are included, the

range of distinguishable egocentric representations narrows considerably (light brown

region) and when nearby objects like the picnic table are included the range narrows

even further (dark brown region). The egocentric representation that applies to the

current location lies within all three regions; in other words, its address is hierarchical.
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If the scene only contains distant mountains, then egocentric representations that

correspond to views from a wide range of locations are essentially indistinguishable.

That is what is indicated by the large beige region in Fig. 5.

Just as a postal address can be refined by adding information about the town,

street and house number, a visual address can be refined by adding in information

about progressively closer objects in the scene. The picture on the right shows the

same mountains but now with some trees that are closer to the observer. As the

observer moves their head by a metre or two, there is detectable motion parallax

between the trees and the mountains. This is shown in Fig. 5 by the fact that the

light brown region is much smaller than the beige region, i.e. the region over which

egocentric representations of the scene are indistinguishable is now much smaller. It

is a subset of the larger region. Finally, if the scene contains a picnic table close to the

observer then the set of egocentric locations that are indistinguishable is even smaller

(dark brown region) and, again, this forms a subset of the region defined only by the

mountains and forest. The current egocentric view is defined by the objects visible

from a single point in space and this egocentric representation corresponds to a single

point on the surface in Fig. 5. That point lies within the dark brown region, which lies

within the light brown region which lies within the beige region, just as Number 10 lies

within Downing St, which lies within London and finally the UK. In other words, the

address of the current egocentric representation has a hierarchical, scene-dependent

address. A possible implementation of this hierarchical address system is described

by Muryy et al. [56].

We can now look back at Fig. 1 and see how it relates to the hierarchical description

of location that we have described in this section. A path along a trajectory, O1 to

On, will change the observer’s ‘fine scale’ address quite rapidly but the ‘coarse scale’

address will remain stable for a longer time as the observer moves. This is quite

different from the idea that the observer recognises their location according to a fixed,

3D world-based coordinate frame (Fig. 1a).

This section has concentrated on the representation of location in an open space

with objects visible both in the distance and nearby. Sometimes, this is called a ‘vista

space’ [57]. In the next section, we’ll look at evidence from participants navigating

mazes where their view from any one location is restricted. Nevertheless, as we will

see, these environments can also be described hierarchically and a policy is still a useful
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way to implement the representation.

6. Graphs for navigating mazes

Figure 6 shows a number of places (shown by coloured circles) connected by routes.

This topological map of connectivity between places would be sufficient to allow an

observer to navigate between the different locations. The representation is a ‘graph’

with nodes (places) connected by edges (routes). In Fig. 6a, the length and configu-

ration of the routes is arbitrary, it simply indicates that a route exists between two

locations so the spatial location of the places is not constrained. Siegel and White

[22] suggest that observers start with a representation of connectivity like Fig. 6a and

gradually add information about the edges between nodes. Two examples are shown

on the right of Fig. 6a, where each edge of the graph is now labelled with the length

of the path between the two nodes it connects. This information allows an agent to

travel by the shortest path to a goal whereas the topological information alone does

not. The idea of adding more and more information about the edges is a powerful

one. The information could be quite crude (e.g. ‘shorter than average edge’) but could

be much more precise and include information about the length and curvature of the

route and the angle between different routes that meet at a junction. Initially, these

lengths and angles might be estimated quite crudely and that would make it impossi-

ble to unite all the nodes and edges together in a consistent ‘map’ of the environment.

However, in theory, the lengths and angles of the routes connecting locations could be

known with sufficient accuracy (lack of bias) and precision (lack of variability) that

the representation becomes just like a map in the sense that the performance of an

observer carrying out a range of tasks could be done equally well using a map or a

highly calibrated graph.

Evidence in favour of this idea of a hierarchy, in which observers learning increas-

ingly accurate graphs, comes from experiments in virtual reality that allow experi-

menters to use physically impossible mazes and hence disentangle different hypothe-

ses [2, 58, 59]. A similar approach was taken by Muryy and Glennerster [60, 61]

who measured participants’ accuracy for different tasks using a related virtual maze

paradigm. In their case, the maze changed in configuration when the participant en-

tered certain regions. The key result, as with [59], was that the task matters, which

should not be the case if participants rely on the same map to carry out different tasks
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such as pointing to an unseen target or finding the shortest route to a previously-

visited location. If people instead rely on a hierarchy of labelled graphs and use the

simplest one that they can for the task at hand, then this apparently contradictory

behaviour can be explained.

(a) (b)

Figure 6: A graph with edges described at different levels of detail. (a) A

topological graph describes the connections (edges) between different locations (nodes)

without any information about the length or angle of the edges. This is a coarse scale

description of the layout in the sense that many different structures are compatible

with the same topological structure. Two examples are shown here where, in each case,

the length of the path between nodes is recorded in the graph. This level of detail allows

planning of a shortest route to a goal. (b) An even finer scale of detail is shown here.

The edge between the yellow and blue node can be described by its length or, as shown

below, by a series of sub-turns each with an associated length and angle of rotation. In

this way, sufficient detail can be added to the description of each edge that – in theory

– the representation is impossible to distinguish from a metric map, at least in relation

to the behaviour that it can support.

Chrastil and Warren [62] review some of the evidence suggesting that participants

use a hierarchy of tasks and, supporting these tasks, a corresponding hierarchy of rep-

resentations. They describe survey knowledge (equivalent to building a map of the

environment) as a different category of representation from labelled graphs, whereas

Muryy and Glennerster [61] advocate including the representation underlying survey

knowledge under the same umbrella, i.e. as an extreme form of labelled graph (illus-

trated in Fig. 6b). The distinction between these interpretations may not be a critical
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one, but the idea of a spectrum of increasingly sophisticated graphs is important.

The implementation of this hierarchy of representations could, as suggested in

Sections 5.1 and 5.2, be as a policy. Figure 6a is a coarse description of the layout of a

scene. Adding information about the lengths of the paths between nodes in the graph

refines the representation. This makes the policy (i.e. the contexts in which different

actions are taken) more constrained. For example, the two situations on the right of

Fig. 6a can be distinguished when extra information about turns is added, whereas

before (pure topological graph in the left of Fig. 6a) they could not. If the task is to

go from the yellow to the green node by the shortest route, it is now possible to judge

the relative lengths of the paths Yellow → Orange → Green versus Yellow → Purple

→ Green. In other words, a coarse scale representation of the action Yellow → Green

has now been split onto two contexts that have different actions associated with each.

The strength of this hierarchical approach is that it can explain why, in many

situations, participants behave as if they are relying on a representation that is simpler

than a Euclidean reconstruction of the scene. A good example of this logic, albeit not

one from the navigation literature, comes from a paper by Glennerster et al. [54] who

asked participants to judge the shape (depth-to-height ratio) of a cylinder and also to

compare the depths of cylinders at two distances. When participants were able to use

a simple heuristic to do the task (compare cylinder depths) they were very accurate in

their judgements. When they were forced to judge the shape (depth-to-height ratio)

of a single cylinder, they made large errors. This is very like the two examples we have

just discussed of a hierarchical policy. In the case of shape discrimination, the coarse

scale representation might only allow a distinction to be made between a concave and

a convex shape. With more information, more detailed discriminations can be made,

up to and including representing the true shape of the surface. The parallel with

the navigation examples shown in Figs. 5 and 6 is that, in both these and the shape

discrimination task, a true metric representation is at one end of a spectrum that

includes, at the other end, far simpler categorisations of the stimulus.

7. Discussion

In this paper, I have set out two opposing hypotheses about the reference frame

that the visual system might use for navigation: graph-based (which is closely related

to the idea of a ‘policy’) versus a map-based representation. Some authors suggest
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that observers use graphs and maps ‘interchangeably’ [63]. Instead, I have argued,

as others have [2], that graph-based representations can be progressively refined with

the most highly calibrated graph having many of the functional features of a map

(e.g. Fig. 6).

In the following sections, I discuss whether there are tasks that could not be carried

out with a graph- or policy-based representation; how neurophysiologically-inspired

proposals relate to computer vision approaches; what visual processing might be re-

quired for a policy representation; and the role of other cues, including proprioception,

in generating a spatial representation.

7.1. Path planning and other tasks that seem to require a map

Path planning is one example of a task that seems, at first sight, to be more

difficult with a graph representation than it would be using a 3D Cartesian coordinate

representation (e.g. [37, 64]). However, suggestions have been made about ways to

plan a path using a graph (e.g. [65]). There are also impressive demonstrations of

navigational tasks including finding shortcuts that rely on a policy not a map (e.g.

[38]). The way that human observers choose routes to a goal is one way to probe the

type of representation they are using. For example, Muryy and Glennerster [61] found

that observers could plan a route successfully to a target in a distorted, physically-

impossible maze while, at the same time, making large errors (up to 180◦) in pointing

to targets. This dichotomy in performance on the two tasks is difficult to explain if

both are based on the same internal map.

Similar results and conclusions are found by Warren and colleagues [2, 59, 66].

These experiments support the hypothesis that the visual system uses a range of

heuristics, choosing different ones for different tasks. This can help to explain why

a single underlying 3D representation provides such a poor account of human perfor-

mance when participants carry out different tasks in the same environment [54, 61, 67].

One might think that there must be some tasks that could only be done using a map-

like representation and would not be open to heuristics. However, given the argument

that heuristics can be refined progressively (e.g. Fig. 6, [36, 54, 61]), it may not be so

easy to find an ‘impossible’ task for the graph model.

One version of the argument that certain tasks should not be possible using a

graph-based representation concerns scenes that the observer has not experienced be-

fore, e.g. predicting the view from the other side of a novel room. Aside from the

21



fact that human observers turn out to be remarkably poor at this type of task [68],

there is evidence from modelling studies that this task can be done without building

a 3D map of the room. If a network is trained on a sufficient number of examples of

similar environments, then two views of the novel room from one side of the room are

sufficient to produce a remarkably accurate prediction of the view that would be seen

from the other side of the room [69].

7.2. Rapid computation at ‘runtime’ versus large storage capacity

The two alternative approaches to spatial representation explored in this paper

lead to very different challenges when it comes to possible neural implementation. If

observers guide their movements using a world-based 3D reconstruction of the environ-

ment, then there needs to be a lot of computation at ‘runtime’. One element of this is

a decomposition of retinal flow into rotational and translational components [70]. An-

other is the rotation and translation of any egocentric representation into a world-based

coordinate frame. In computer vision applications, these computations are carried out

at frame rate, but it is hard to see how similar operations could be carried out in the

cortex. There are no detailed suggestions about how equivalent transformations could

be carried implemented neurophysiologically [6, 30].

The alternative policy-based approach that I have advocated in this paper faces a

quite different – and in some ways is almost the converse – challenge. The proposed

computation at runtime is standard and familiar, but the storage demand is much

greater. The system must recognise a seemingly vast number of different situations

(i.e. a particular image and a given task) and choose an action in response. The system

must also compare the subsequent sensory input to the expected input and respond to

any discrepancy between the two [8, 71]. If the proposal is that all of these different

situations are stored in advance, then any such model must explain how so many could

be learned and stored.

There are many possible ways in which the problem of storage might be made

manageable. One is the use of generalisation. For example, in the case of the movement

shown in Fig. 1, it is not necessary to store every image that the observer could meet

along the path. The visual system could store sufficient information to recognise the

fixation targets A, B and C and then use a method that is independent of the identity

of the fixation target to move relative to A, B or C. The signals from neurons in MSTd
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([46], discussed in Section 4) are largely blind to the nature of the fixated object and

would be useful in this regard.

7.3. Fixation as a constraint

A central argument for the model presented here is that fixation is critical for

the simplicity of motor control. One might ask whether the same is true for 3D

construction algorithms, i.e. that yoking camera translation and rotation together and

so reducing the number of degrees of freedom could make 3D reconstruction simpler.

This idea has been pursued by [72–75]. Daniilidis [75] showed explicitly how the

computation of camera motion can be simplified when the camera fixates a scene

point as it moves. However, unlike the policy-based proposal in this paper, the output

in [75] is still a camera trajectory within a 3D the scene and both are described in the

same world-based coordinate frame.

7.4. Neurophysiological models versus SLAM

It is important to realise that neurophysiological proposals about 3D vision and

navigation are radically different from standard computer vision approaches (like

SLAM). Typically, neurophysiological accounts assume a two step process moving

from image to egocentric representation (e.g. in posterior parietal cortex) followed by

a transformation to world-based coordinates (e.g. in the hippocampus) [25, 76, 77].

However, that is quite different from the computer vision computation underlying

SLAM (‘photogrammetry’) which finds the most likely structure of the scene and the

most likely pose of the camera given a set of images of a static scene. There is no ego-

centric intermediate stage in this process and hence no transformation from ego-centric

to allocentric coordinates [6]. In this sense, the biological hypothesis is fundamentally

different from SLAM. Also, a crucial output of SLAM is the world-based description

of the scene structure. This is a quite different goal from generating outputs similar

to those of a place cell [78] or grid cell [79] which signal the world-based location of

the observer not the world-based location of objects in the scene.

7.5. Visual control parameters

The discussion so far has not addressed the type of visual processing that might be

required for a graph-based representation. In general, the output of visual processing

should be sufficient to distinguish different contexts for action. For example, if the

23



current task is to thread a needle, then the visual processing must generate a control

parameter that is useful for that task, such as the binocular disparity between the

thread and the needle. Of course, some visual processing is required to recognise the

overall context (e.g. that the observer is in a room, threading a needle) but that does

not change from moment to moment.

On the other hand, if the task is to move around an obstacle, then a very different

type of visual processing becomes relevant for controlling the task. For example, in this

case optic flow across the whole retina is important, quite unlike the needle-threading

task. When carrying out a complex sequence of actions, the cortical task is to find

the relevant set of neurons at the appropriate point in the sequence to control the

observer’s next movement.

Interestingly, Nienborg and Cumming [80] have argued that a columnar organisa-

tion of the cortex is critical if the observer is to use sensory information to control an

action in this way. Specifically, they suggest that the relevant sensory cue (e.g. relative

disparity) is always organised into cortical columns in situations where experimenters

find a tight correlation between neuronal firing rates and the animal’s behavioural

choice.

7.6. Idiothetic cues

Vision is not the only cue relevant to navigation. Other cues such as proprioception

or knowledge of the interocular distance, collectively known as ‘idiothetic cues’, help

the observer to infer their movement and the structure of the scene. There is evidence

that the integration of visual and idiothetic cues can be close to optimal [81, 82].

Kang et al. [82] present models of visual and idiothetic integration in rodents when

environments are stretched, similar to the experiments and analysis by Svarverud et al.

[81]. The idiothetic information is often assumed (including in [82])to be derived from

grid cells [79] although that postpones the problem of determining how grid cell firing

indicates observer location (see [37]). The predictions of optimal integration in Kang

et al. [82] provide a good fit to the experimental data (see also [83–85] and modelling

by [64]).

There is evidence that visual and idiothetic cues contribute to a common repre-

sentation of the scene (e.g. [86]) but this does not mean that the representation needs

to be a 3-dimensional one. For example, if participants learn a path through a state
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space in which states are made up of both visual and proprioceptive information, it

can still be useful when only visual input or only proprioceptive input is available (i.e.

the path still exists when projected onto a lower dimensional hyperplane).

7.7. Visual ambiguity

If a representation is based on images rather than 3D structure then there are

situations in which it should be vulnerable to visual ambiguity whereas one based

on 3D reconstruction would not be. This is exactly the problem that we discussed

in Section 2 in relation to the visual ambiguity I experienced when emerging from a

lift. The problem of visual ambiguity is recognised in some image-based computer

vision approaches, where similar input images lead to mislocalisation [87]. If observers

walk past a rotationally symmetric object, they have difficultly attributing the image

changes correctly to either rotation of the object or movement of the observer [88, 89].

And if observers walk through an expanding room, the images that they receive (at

least, when viewing the scene monocularly) are entirely ambiguous about the size of

the room. In this case, idiothetic cues are very poor at resolving that ambiguity and

portraying the correct size of the room [90]. This does not mean that images are the

only determinant of scene structure. Idiothetic cues often play an important role, as

we have discussed. Also, the path that the observer has taken to arrive at the current

image is important (whether through 3D space or image space). This history often

helps disambiguate the interpretation of location if the current input on its own is

ambiguous.

8. Conclusion

If ‘here’ and ‘there’ are defined in a space of images or neural states, then some

of the more difficult challenges for finding plausible neurophysiological mechanisms

disappear. One of these challenges is identifying how 3D coordinate transformations

could be carried out, e.g. converting egocentric information to a world-based reference

frame. However, observers still need some kind of reference frame and I have discussed

how a reference frame for location might be constructed in vista spaces and in more

visually constrained environments like mazes. In each case, the argument has been

that the nervous system stores a ‘policy’, i.e. a set of states and an action associated

with each state. I have focussed on the sensory aspect of the state, and in particular
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the image the observer receives, but a ‘state’ includes both sensory and task-related in-

formation (Section 5.1). Reinforcement learning is already using this type of approach

to learn how to navigate (Section 1) and may be a valuable source of inspiration for

understanding biological representations that can support navigation.
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