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Navigation means getting from here to there. Unfortunately, for biological navigation, there is no agreed 
definition of what we might mean by ‘here’ or ‘there’. Computer vision (‘Simultaneous Localisation and 
Mapping’, SLAM) uses a 3D world-based coordinate frame but that is a poor model for biological spatial 
representation. Another possibility is to use an image-based rather than a map-based representation. The 
image-based strategy is made simpler if the observer maintains fixation on a stationary point in the scene 
as they move. This strategy would require a system for relating different fixation points to one another as the 
observer moves through the environment. I describe how this can be done by, first, relating fixations to an 
egocentric representation of visual direction and, second, encoding egocentric representations in a coarse-to-
fine hierarchy. The coarsest level of this hierarchy is, in some sense, a world-based frame as it does not vary 
with eye rotation or observer translation. This representation could be implemented as a ‘policy’, a term used 
in reinforcement learning to describe a set of states and associated actions, or a ‘graph’ that describes how 
images or sensory states can be connected by actions. I discuss some of the psychophysical evidence relating 
to these differing hypotheses about spatial representation and navigation. I argue that this evidence supports 
image-based rather than map-based representation.
. Moving through 3D space or image space

Navigation implies a representation of the observer’s current loca-
ion and of their goal plus some rules that will allow the observer 
o move from one to the other. The type of representation(s) that 
nimals use remains a matter of debate. It does not have to be a 3D 
oordinate frame and many suggest that it is not (Mallot and Gillner, 
000; Warren, 2019; Meilinger et al., 2011; Parra-Barrero et al., 2023).
Fig.  1 illustrates two alternative types of approach to this problem. 

n Fig.  1(a), an observer walks along a path (𝑂1 to 𝑂4) and records their 
ocation in a Cartesian, world-based frame of reference shown by the 
rid (Burgess et al., 2002; Byrne et al., 2007; Moser, 2014; Whittington 
t al., 2020). An alternative is shown in Fig.  1(b) where the observer 
akes the same path but now it also shows the points that the observer 
ixates (𝐴, 𝐵, 𝐶) as they move. Thinking about the fixation point 
mphasises the retinal flow that the observer receives. Much of the 
entral stream of visual processing is useful for identifying the fixated 
bject while, conversely, the dorsal stream is relatively insensitive to 
he nature of the fixated object but instead provides highly sensitive 
nformation about the movement of the observer relative to the fixated 
bject. This makes Fig.  1(b) a good starting point for thinking about 
he guidance of observer movement. We will explore this perspective 
n more detail in Section 4.

E-mail address: a.glennerster@reading.ac.uk.

The literature covering hypotheses about retinal flow processing in 
the visual system is influenced by assumptions about the representa-
tions used for navigation, including the two alternatives sketched in 
Fig.  1. The underlying assumption in many models is that the visual 
system’s goal is to recover the translation (movement in space) of the 
observer in a world-based frame like Fig.  1(a); if so, the argument goes, 
the visual system should decompose retinal flow into a ‘translational’ 
component and a ‘rotational’ component because the first of these can 
be used to recover the movement of the observer relative to the scene in 
a world-based frame of reference (Warren and Hannon, 1990; Heeger 
and Jepson, 1992; Lappe and Rauschecker, 1993; Shapiro et al., 1995; 
Matthis et al., 2022). The approach I describe here is different. I argue 
that the goal is not to recover the translation of the observer relative 
to a world-based frame but, instead, to change the current image into 
a goal image (similar to the approach used in current reinforcement 
learning algorithms for navigation (Zhu et al., 2017; Mirowski et al., 
2018), i.e. the task is to navigate across a surface of images from 
the current image to the goal image. If this is the case, there is 
no need to decompose retinal flow into rotational and translational 
components (Glennerster et al., 2001; Glennerster, 2016).

In Section 3, I set out some of the problems that exist with the hy-
pothesis of a map-based representation (Fig.  1(a)) then, in Sections 4–6, 
I outline an alternative approach based on navigating between the 
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Fig. 1. Alternative methods of representing observer location. (a) Four locations of the observer (𝑂1 to 𝑂4) are shown relative to a world centred reference 
frame (pink grid). (b) The same four locations are now shown including the fixation point for each segment of the movement (𝑂1 → 𝑂2, 𝑂2 → 𝑂3 and 𝑂3 → 𝑂4). 
The approach to representing the whole trajectory 𝑂1 → 𝑂4 could be quite different from (a) if the first step is to estimate how the observer has moved in 
relation to the fixation point. This information would then need to be integrated across saccades (shown by red arrows). Fig.  3 describes one of these segments 
(e.g. 𝑂1 → 𝑂2) in more detail.
current image and a goal image. First, in Section 2, I describe two 
anectodal examples from my own experience that illustrate why one 
might want to look for alternatives to the idea that we build a map of 
the world and use this to guide our actions.

2. Real world examples

Before going into details of, I describe two real-world examples of 
navigation that are difficult to explain if observers rely on a map of 
the environment to guide their actions. These provide motivation for 
thinking of alternatives to the idea that the visual system generates 
a world-based 3D model of the scene. The idea of a map is generally 
taken to mean that the visual system has an allocentric (world-based) 
representation (Tolman, 1948; O’Keefe and Nadel, 1978) that is rather 
like a ‘survey’ or birds-eye view of the scene. It does not need to be 
veridical, but it should be consistent across tasks.

The first real-world example relates to the disorientation that I 
sometimes observe when going down a spiral staircase. In the library 
I often work in, there is one that has quite a few 90◦ turns before I 
get to the lavatories in the basement and there are no windows on 
the way. By the time I reach the bottom I know with high confidence 
that I am facing either North, or West, or South or East rather than 
any intermediate orientation but I never know which of these is the 
case. If the representation that I use is a form of 3D reconstruction 
such as ‘Simultaneous Localisation and Mapping’ (SLAM) or a similar 
kind of map of the environment, that would not happen. But if the 
representation that I use is more like a set of images or neural states 
connected by actions, then this confusion is to be expected (and, 
incidentally, has no practical consequence because I still arrive at my 
goal). A set of images or states connected by actions is called a ‘graph’ 
where the images/states form the nodes and the edges joining the nodes 
are actions. A ‘policy’, 𝑃 (𝑎|𝑠), describes the actions, 𝑎, that are triggered 
by a set of states, 𝑠, so it is closely related to the idea of a graph of states 
connected by actions.

The second example is illustrated in Fig.  2. This shows a pair of 
lifts at the station in Reading on my way to work. The lifts can be 
entered from either side and, because they are built symmetrically, both 
entrances appear similar (lower images). When you emerge from the 
lift, your orientation is 180◦ different depending on the lift you were 
in, but the view is almost identical in either case (images outlined in 
green and red). For a long time, I would regularly come out of the 
2 
lift and head off in the wrong direction. An inescapable conclusion, it 
seems to me, is that I was not simply using a map. If I built a map (like 
SLAM Davison, 2003) and then relied on this to guide my actions, it 
should would work equally well whether the scenes I saw coming out 
of the two lifts were similar or not. My confusion can only be explained 
if I was making image-dependent decisions about my next action, i.e. I 
was relying on a policy.

An elegant demonstration of a very similar conclusion comes from 
a study in which participants are asked to mime the action of driving a 
car including changing lane on a motorway. Almost no-one can do this 
(instead, they turn the wheel one way then back to the centre, which 
in real life would result in them veering off the road) (Wallis et al., 
2007). The conclusion is, as with the example of emerging from the 
station lifts, that people do not form a map of the world and make a 
motor plan that would be appropriate for that map. Instead, they follow 
a policy, with every action followed by an image that triggers the next 
action and, for most tasks, this is sufficient to accomplish their goals.

3. Moving relative to a world-based map

The majority of physiologically-based models of navigation include 
a world-based representation of space and heading direction that are 
presumed to be dependent on the hippocampus and entorhinal cor-
tex (O’Keefe et al., 1998; Howard et al., 2014). The idea of an allocen-
tric or ‘world-based’ representation consists of two elements. One is a 
representation of the location of objects, which relies on 3D transforma-
tions of sensory information from egocentric to allocentric coordinate 
frames (Section 3.1). The other is a representation of the location of the 
observer in a world-based frame of reference (Section 3.2).

3.1. 3D coordinate transformation

If the visual system generates true 3D representations of the scene, 
e.g. in visual cortex, and these are used to contribute to a 3D world-
based representation as the observer moves around, then somewhere in 
the brain there must be a process of coordinate transformation between 
these different reference frames. The posterior parietal cortex has long 
been associated with this hypothetical operation (e.g. retinal, head-
, hand-, body- or world-centred coordinates) (Andersen and Zipser, 
1988; Andersen et al., 1997; Denève and Pouget, 2003). The neural 
mechanisms that have been proposed to date are very complex. One 
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Fig. 2. Image-based navigation. The lifts from the platform to the bridge in Reading station are symmetrical (outlined in green and red here) which means that 
the view when you go in at platform level is similar whichever side you go in (lower red and green images) and the view when you exit the lift at the bridge 
level is almost identical (compare red and green upper images). Of course, the direction you face in each case as you emerge from the lift is 180◦ different. This 
led me to take the wrong turn about 50% of the time on my way to work.
example involves duplicating a representation many times in slightly 
different coordinate frames then ‘gating’ the output so that only one 
of the candidate representations is copied to the next stage of pro-
cessing (Byrne et al., 2007). The logic applied here would get very 
much more complex if it were to be extended to the case of translation 
(movement in space) of the observer because there are so many more 
options for translation and it has no obvious limit. There are no detailed 
proposals for a neural mechanism to implement transformations of this 
type.

Some papers that discuss neural mechanisms for carrying out coor-
dinate transformations suggest possible simplifications. One option is 
to update the coordinates of only a single object in the scene instead of 
the whole scene or to update a single difference vector (e.g. between 
the hand and a target) (Medendorp et al., 2003; Smith and Crawford, 
2001; Prime et al., 2011; Pouget et al., 2002; Blohm et al., 2009). 
These are more plausible as neural mechanisms, but they abandon the 
idea of a 3D coordinate transformation underlying a 3D world-based 
representation of the whole scene based on retinal input.

3.2. Using grid cells for navigation

A separate goal of the visual system is to identify the world-centred
location of the observer (rather than other objects) as they move around. 
There is evidence that place cells in the hippocampus and grid cells in 
the entorhinal cortex are involved in encoding this information (Barry 
and Bush, 2012; Erdem and Hasselmo, 2012; Kubie and Fenton, 2012), 
although there is a debate about the extent to which these cells provide 
a regular ‘grid-like’ reference frame similar to a longitude–latitude 
coordinate frame. For example, an extreme claim, advocated and tested 
by Carpenter et al. (2015), is that a continuous grid-like pattern of 
responses might extend across two rooms that are separated by a 
corridor. If that were true, it would suggest that the brain could apply 
a coherent coordinate system across both rooms, just like an externally 
defined longitude–latitude system. This would be a remarkable finding 
and would not be predicted by the type of scheme advocated in this 
paper (Sections 4 to 6). The data that Carpenter et al. (2015) present 
in fact support a more modest assertion, namely that rats, once they 
have learned to distinguish and navigate successfully between the two 
rooms, develop a new pattern of grid cell firing in the second room 
once. Stronger evidence than this would be required to support the as-
sertion that a single continuous grid-like coordinate frame encompassed 
both rooms, despite many citations to this effect and a clear illustration 
in the graphical abstract (Glennerster, 2023).

Taken at face value, grid cells provide a signal that is not at all 
like the grid pattern of an Ordnance Survey map or a longitude–latitude 
3 
coordinate frame because the signals from these cells are entirely 
ambiguous. This is the opposite of the unique labelling system that 
allows navigation using a map. Bush et al. (2015) try to address this 
problem by suggesting an algorithm for interpreting grid cell firing 
rates (from 9 cells, three at each of three scales) to provide an estimate 
of signal of location. The proposed decoding is not straightforward.

A more recent and more plausible model for interpreting the output 
of neurons that fire in multiple spatial locations has been presented 
by Banino et al. (2018). In this modelling paper, the activity of 512 
units (rather than 9 grid cells) is used to learn a policy (a mapping 
between sensory context an action, in this case pointing towards a 
rewarded target). The 512 units each have receptive fields that, like 
grid cells, occur in multiple locations in the environment but only a 
portion of them have a regular spacing like grid cells and this subset 
have no special status among the 512 contributing cells. There is 
no attempt in this algorithm to generate a map or anything like a 
longitude–latitude coordinate frame.

A different modelling approach is taken by Whittington et al. (2020) 
who describe a ‘Tolman–Eichenbaum Machine’ that relates different 
sensory states to one another by storing the actions that would take the 
agent from one sensory state to another. They describe this as a ‘graph’ 
of states where the nodes of the graph are states and the edges are 
actions that connect them. This is closely related to the idea of a policy, 
since every state has an associated action. The use of information from 
grid cells is different in this model compared to Banino et al. (2018). 
The grid cell output is explicitly linked to the visual input at each 
point in space and ‘loop closure’ (Mei et al., 2011) is rewarded during 
the learning which results in there being a metric structure to the 
graph. We will see a quite different approach to developing a metric 
representation of the scene, starting with a topological a graph, in 
Section 6.

4. Moving relative to a fixation point

In this section, we will examine in more detail the idea that much of 
the visual system is arranged to facilitate the movement of the observer 
relative to a fixated object. Then, in Section 5, we will examine the 
problem of knitting together multiple epochs of movements relative to
different fixation points, i.e. the issue illustrated in Fig.  1(b).

Almost all animals adopt a pattern of movement in which they 
‘fixate and saccade’. A fly with eyes rigidly attached to its head and its 
head rigidly attached to its body will make saccades with its body and, 
in between saccades, it will fixate on an object as it moves. Essentially, 
whether the eyes are free to move in the head or relative to the body, 
what matters is the gaze. The head and body compensate for eye move-
ments to ensure gaze is fixed on an object as the animal moves and then 



A. Glennerster Neuropsychologia 219 (2025) 109233 
Fig. 3. Moving relative to a fixation point. (a) An observer moves from 𝑂1 to 𝑂2 while fixating on a point 𝐴 and then makes a saccade to fixate object 𝐵, 
i.e. one transition from the trajectory illustrated in Fig.  1(b). (b) This shows a way to depict the retinal images that the observer receives during that movement. 
Every point on the pink surface represents an image and, for each image, the camera/eye is fixating the woman. The dashed line shows a path across this image 
space corresponding to the images that the observer would receive if they moved while fixating on the woman’s head and then (red arrow) made a saccade to 
fixate the man (blue plain of images). (c) The responses of some types of neuron in the inferotemporal cortex can be plotted as a ‘receptive field’ on the surface of 
images, i.e. the set of images to which that neuron responds. The receptive field of a notional size-invariant neuron is shown on the left and of a view-invariant 
neuron on the right. (d) Dorsal stream neurons do not have receptive fields on the surface of images in the same way as ventral stream neurons. Instead, they 
signal motion across the surface, e.g. towards the fixated object (red arrows) or laterally (orange arrows).
makes a sudden switch to a new object (a saccade) (Land, 2009; Land 
and Nilsson, 2012). Gilchrist et al. (1997) show the same phenomenon 
in humans when extraocular fibrosis limits the ability to make saccades 
with the eyes: the head now makes saccade-like movements, so that the 
pattern of gaze movement is relatively unchanged despite the paralysis 
of the eye muscles.

Fig.  3 shows one of the epochs from Fig.  3(a). An observer moves 
from 𝑂1 to 𝑂2 while fixating point 𝐴 and then makes a saccade to point 
𝐵. Fig.  3(b) shows a different way to illustrate the same movement 
which highlights the image changes that are generated as the observer 
moves. Two surfaces are shown. One represents all the images that 
the camera/eye could see if it moved while maintaining fixation on a 
particular object. Each point on the surface corresponds to a different 
image. Nearby points on the surface correspond to images that could be 
obtained from nearby vantage points. Most animals, including humans, 
have a restricted pattern of eye movements that means they must
maintain fixation for a period (e.g. about 200 ms) before they can make 
a saccade to a new object (i.e. jump to a new surface of images) (Land, 
2009; Land and Nilsson, 2012). This is quite different from the general 
6 degrees of freedom movement of a camera, which means that the 
retinal input to the visual system is radically different from the visual 
input to a computer vision algorithm (e.g. SLAM Davison, 2003). This 
leads to profound implications about the way that biological image pro-
cessing is likely to take face compared to computer vision. In particular, 
it suggests that biological image processing to control navigation has a 
different goal from that of SLAM navigation systems.

The responses of neurons in the dorsal and ventral streams of visual 
processing are tailored to the restricted set of inputs that are produced 
by this pattern of eye movements. The ventral stream provides a rich 
source of information about which surface the current image is on 
(i.e. which object the observer is looking at) while the dorsal stream 
4 
provides complementary information about the direction and magni-
tude of movement of the current image across the surface (largely 
independent of the object that the observer is looking at). Individual 
neurons in the ventral stream have responses that are relatively invari-
ant to certain types of image change, e.g. the same stimulus viewed at 
different viewing distances (Ito et al., 1995) or from different viewing 
angles (Booth and Rolls, 1998) and this set of stimuli can be plotted 
as a region on the surface (Fig.  3(c)). It has been claimed that some 
neurons in macaque hippocampus respond to a very wide range of 
views of a location from different vantage points (Rolls et al., 1997). A 
hypothetical cell of this type would have a receptive field covering the 
entire surface shown in Fig.  3(c). All the way up the ventral stream, 
from complex cell in primary visual cortex to inferotemporal cortex 
to hippocampus, neurons in this stream tend to give a more stable 
output than a one might expect. Specifically, as the observer moves 
while fixating on an object, the retinal image changes. A neuron in 
inferotemporal cortex is relatively immune to these image changes.

The dorsal stream does the reverse and indicates change in the 
image caused by observer movement, relatively independent of the 
contents of the scene. It is not possible to draw the receptive fields 
of dorsal stream neurons on the surface of images (Fig.  3(c)) in the 
same way as for ventral stream neurons. Instead, their responses signal 
that the current image has moved across the surface in a particular 
direction. For example, Roy and Wurtz (1990) showed that neurons 
in MSTd respond to lateral head movement, while other MSTd cells 
respond to looming stimuli and self-motion in different directions with 
respect to the fixated object (Wild and Treue, 2021). The interpretation 
of these neurons as indicating a movement of the observer depends on 
the fact that the observer is fixating a point as they move. This pattern 
of fixational eye movement is maintained by a very fast feedback loop 
involving the nucleus of the optic tract (Ilg and Hoffmann, 1996). 
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Given that the observer is fixating, the movement of the observer 
relative to the fixation point can be decoded from a population of MSTd 
neurons (Lappe and Rauschecker, 1993; Gu et al., 2010).

If goals are defined in terms of desired images, then the role of 
visual processing in the dorsal stream could be much simpler than 
decomposing flow into rotational and translational components (Sec-
tion 1). Specifically, if the goal of the observer is to change the current 
image into another image that is closer to (or at least on the path 
towards) the desired image, then the neurons in MSTd already encode 
the information in the relevant coordinate frame (a retinal one). They 
highlight the change in the image e.g. looming (approaching the fixated 
object) or the more complex type of image change that Roy and 
Wurtz (1990) describe (caused by moving sideways with respect to the 
fixated object). That is what is need in order to control the observer’s 
movement in relation the fixated object.

It is worth remembering that the mechanisms for controlling move-
ment suggested in this section are quite different from the method that 
would be involved in a general SLAM-like system of 3D reconstruction. 
In a fixating system, the rotation of the camera is yoked to translation 
so movement of the head leads to a unique image change. Essentially 
for rotation of the eye/camera, all 3 degrees of freedom are not free, 
they are determined by the translation of the eye in space (head 
movement) (Ferman et al., 1987; Glennerster et al., 2001). This makes 
it far simpler to control movement using image-based parameters 
than it would be if the rotation of the eye/camera was unconstrained
(Fig.  1(a)).

In the next section, we consider translation (movement in space) of 
the observer over a larger scale and with multiple fixation targets.

5. An image-based frame of reference

This section explores the case illustrated in Fig.  1(b) where the 
observer moves while fixating on a series of different targets. The 
first step will be to consider how an egocentric representation of the 
visual direction of objects can be built up from a single vantage point. 
Then, I will discuss the consequences of observing a scene in which 
all the objects are distant. The egocentric representation in this case is 
independent of observer movement, so in one sense it is ‘world-based’. 
Finally, I will show how a standard egocentric representation and this 
‘world-based’ representation lie at two ends of a spectrum. This makes 
it possible to have a hierarchical, coarse-to-fine method of defining the 
address of the current image.

5.1. An egocentric representation of visual direction

Fig.  4 shows how, as an observer looks around, the images they 
receive can be put together into a single representation. This applies to 
a static monocular observer, so the eye is assumed to only rotate around 
its optic centre, not move in space. Fig.  4(a) shows the eye and two 
distant objects (mountain peaks). If the observer fixates one of these 
objects and then the other, the images from those two fixations can 
both contribute to a representation of the scene. This is shown in Fig. 
4(b), when the eye is looking at Peak 𝐴, so an image of Peak 𝐴 falls on 
the fovea. In Fig.  4(c), the eye has now rotated to look at Peak 𝐵 so now 
the image of Peak 𝐵 is on the fovea. The angle of rotation between 𝐴
and 𝐵 is 𝛼, i.e. this is the magnitude of the saccade that would take the 
eye from looking at 𝐴 to looking at 𝐵. Fig.  4(d) shows how the retinal 
information from these two fixations can be represented in a common 
egocentric reference frame. It shows how the angles between different 
visible objects can be united in a common reference frame recording 
the relative visual directions of objects in the scene. For a more detailed 
account of this reference frame, see Glennerster et al. (2001).

Ultimately, it is possible to triangulate the entire sphere (assuming 
a transparent head and a freely-rotating eyeball) to record the relative 
visual direction of objects all around the observer. One might raise the 
objection that the number of pairs of points in a scene, and hence the 
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number of potential saccades between them, is large (roughly 𝑛2 for 𝑛
points). However, there are ways to reduce the storage load and not 
include every possible pairing, for example by recording the location 
of fine scale features in the scene relative to coarse scale ‘parent’ 
features in a hierarchical structure (Watt, 1987, 1988; Koenderink and 
Van Doorn, 1991). There is psychophysical evidence to support such 
a hypothesis (Watt, 1987; Glennerster et al., 1996; Glennerster and 
McKee, 2004).

Although the egocentric reference frame in Fig.  4 is illustrated as 
a sphere, which is easy to grasp intuitively, an alternative implemen-
tation is to store a ‘policy’ as discussed in Section 3.2. A policy is a 
set of states where each state is associated with an action. In this case, 
the action is a saccade and the state combines information about the 
current and desired image, i.e. the image after the saccade. A list of 
these state–action-dyads makes a policy and, equivalently in this case, 
an egocentric representation.

5.2. A hierarchical address system for location

Next, we consider how this egocentric representation changes as 
the observer moves. Observer movement causes motion on the retina 
as objects at different distances move relative to one another (motion 
parallax). This information needs to be integrated and contribute to a 
representation that persists across eye movements (saccades). We will 
see that, as the observer moves, some elements of the representation in 
Section 5.1 change slowly while others change rapidly. This makes it 
possible to construct a hierarchical ‘address’, rather like a postal address 
(country, town, street, house), for defining spatial location.

Fig.  5 shows a scene that contains mountains, a forest in the middle 
distance and a picnic table close to the observer. We will see that the 
mountains provide a coarse scale ‘address’ (like ‘UK’ in a postal address) 
while the trees and the picnic table provide progressively finer detail 
about the observer’s location. For example, Fig.  4 shows mountains 
that are very far away. If the observer translates (moves in space) by a 
few metres, the change in angles between the distant mountains will 
be so small that an observer cannot detect it. This means that the 
egocentric representation we have discussed in the previous section 
(Section 5.1) will be equally applicable wherever the observer moves 
their head (unless they walk a very long way). In this sense, the angles 
between distant mountains provide the coarsest possible component of 
the observer’s current address.

The yellow plane drawn in the centre of Fig.  5 is related to the 
surfaces shown in Fig.  3 but is not identical. In Fig.  5, each point on 
the surface corresponds to an entire egocentric representation (like Fig. 
4(d)) as viewed from one location in space. Fig.  3 was very similar in 
some ways, in that neighbouring points on the surface corresponded to 
the view from neighbouring locations in space but in that case the view 
was a single image. Now, in Fig.  5, the view corresponding to a point 
on the surface is a full 360 ◦ egocentric view of the scene.

If the scene only contains distant mountains, then egocentric rep-
resentations that correspond to views from a wide range of locations 
are essentially indistinguishable. That is what is indicated by the large 
beige region in Fig.  5.

Just as a postal address can be refined by adding information about 
the town, street and house number, a visual address can be refined by 
adding in information about progressively closer objects in the scene. 
The picture on the right shows the same mountains but now with some 
trees that are closer to the observer. As the observer moves their head 
by a metre or two, there is detectable motion parallax between the trees 
and the mountains. This is shown in Fig.  5 by the fact that the light 
brown region is much smaller than the beige region, i.e. the region over 
which egocentric representations of the scene are indistinguishable is 
now much smaller. It is a subset of the larger region that was defined 
only by the having similar egocentric representations of the mountains. 
Finally, if the scene contains a picnic table close to the observer then 
the set of egocentric locations that are indistinguishable is even smaller 
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Fig. 4. An egocentric representation of visual direction. (a) This shows the angle, 𝛼, between two points measured at the eye. For distant points, this angle 
varies very little when the observer moves. (b) An eyeball with the fovea at the back, looking in the direction shown by the arrow. Here, the eye is looking at the 
mountain on the left (peak 𝐴). (c) Now the eye has rotated through an angle of 𝛼 to look at the mountain on the right (peak 𝐵). (d) This shows information from 
(b) and (c) combined on a single sphere, i.e. independent of eye position. It shows the angles between pairs of points and hence the eye movement (‘saccade’) 
that would take the fovea from one object to another. In theory, this set of angles (‘relative visual directions’) can span the whole sphere and hence provide the 
information that would allow the eye to rotate from looking at any visible object in the scene to another. Hence, this is a type of egocentric representation of 
visual direction.
Fig. 5. A hierarchical address of an egocentric representation. (a) The yellow plane represents a surface of views in which each point corresponds to 
a full 360 degree egocentric view of the scene from one location (like Fig.  4(d)). Neighbouring points on this surface correspond to egocentric representations 
generated by viewing the scene from neighbouring locations in space. The beige region shows the set of egocentric representations that are (for practical purposes) 
indistinguishable if only distant objects are considered. When the angles between the trees and the mountains are included, the range of distinguishable egocentric 
representations narrows considerably (light brown region) and when nearby objects like the picnic table are included the range narrows even further (dark brown 
region). The egocentric representation that applies to the current location lies within all three regions; in other words, its address is hierarchical.
(dark brown region) and, again, forms a subset of the region defined 
only by the mountains and forest. The current egocentric view is 
defined by the objects visible from a single point in space and this 
egocentric representation corresponds to a single point on the surface 
6 
in Fig.  5. That point lies within the dark brown region, which lies 
within the light brown region which lies within the beige region, just 
as Number 10 lies within Downing St and London and finally the UK. 
In other words, the address of the current egocentric representation has 
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Fig. 6. A graph with edges described at different levels of detail. (a) A topological graph describes the connections (edges) between different locations (nodes) 
without any information about the length or angle of the edges. This is a coarse scale description of the layout in the sense that many different structures are 
compatible with the same topological structure. Two examples are shown here where, in each case, the length of the path between nodes is recorded in the 
graph. This level of detail allows planning of a shortest route to a goal. (b) An even finer scale of detail is shown here. The edge between the yellow and blue 
node can be described by its length or, as shown below, by a series of sub-turns each with an associated length and angle of rotation. In this way, sufficient 
detail can be added to the description of each edge that — in theory — the representation is impossible to distinguish from a metric map, at least in relation to 
the behaviour that it can support.
a hierarchical, scene-dependent address. A possible implementation of 
this hierarchical address system is described by Muryy et al. (2020).

We can now look back at Fig.  1 and see how it relates to the hierar-
chical description of location that we have described in this section. A 
path along a trajectory, 𝑂1 to 𝑂𝑛, will change the observer’s ‘fine scale’ 
address quite rapidly but the ‘coarse scale’ address will remain stable 
for a longer time as the observer moves. This is quite different from the 
idea that the observer recognises their location according to a fixed, 3D 
world-based coordinate frame (Fig.  1(a)).

This section has concentrated on the representation of location in an 
open space with objects visible both in the distance and nearby. Some-
times, this is called a ‘vista space’ (Meilinger et al., 2013). In the next 
section, we will look at evidence from participants navigating mazes 
where their view from any one location is restricted. Nevertheless, as 
we will see, these environments can also be described hierarchically 
and a policy is still a useful way to implement the representation.

6. Graphs for navigating mazes

Fig.  6 shows a number of places (shown by coloured circles) con-
nected by routes. Knowing this topological map of connectivity be-
tween places would be sufficient to allow an observer to navigate 
between the different locations. This representation is a ‘graph’ with 
nodes (places) connected by edges (routes). In Fig.  6(a), the length and 
configuration of the routes is arbitrary, it simply indicates that a route 
exists between two locations so the spatial configuration of the places 
is not constrained. Siegel and White [22] suggest that observers start 
with a representation of connectivity like Fig.  6(a) and gradually add 
information about the edges between nodes. Two examples are shown 
on the right of Fig.  6(a), where each edge of the graph is now labelled 
with the length of the path between the two nodes it connects. This 
information allows an agent to travel by the shortest path to a goal 
whereas the topological information alone does not. The idea of adding 
more and more information about the edges is a powerful one. The 
information could be quite crude (e.g. ‘shorter than average edge’) but 
could be much more precise and include information about the length 
and curvature of the route and the angle between different routes 
that meet at a junction. Initially, these lengths and angles might be 
estimated quite crudely and that would make it impossible to unite all 
the nodes and edges together in a consistent ‘map’ of the environment. 
However, in theory, the lengths and angles of the routes connecting 
locations could be known with sufficient accuracy (lack of bias) and 
precision (lack of variability) that the representation becomes just like 
a map in the sense that the performance of an observer carrying out 
a range of tasks could be done equally well using a map or a highly 
calibrated graph.
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Evidence in favour of this idea of a hierarchy of observers learning 
increasingly accurate graphs comes from experiments in virtual reality 
that allow experimenters to use physically impossible mazes and hence 
disentangle different hypotheses (Rothman and Warren, 2006; Warren 
et al., 2017; Warren, 2019). A similar approach was taken by Muryy 
and Glennerster (2018, 2021) who measured participants’ accuracy for 
different tasks using a related virtual maze paradigm. In their case, the 
maze changed in configuration when the participant entered certain 
regions. The key result, as with Warren et al. (2017), was that the task 
matters, which should not be the case if participants rely on the same 
map to carry out different tasks such as pointing to an unseen target 
or finding the shortest route to a previously-visited location. If people 
instead rely on a hierarchy of labelled graphs and use the simplest one 
that they can for the task at hand then this apparently contradictory 
behaviour can be explained.

Chrastil and Warren (2014) review some of the evidence suggesting 
that participants use a hierarchy of tasks and, supporting these tasks, 
a corresponding hierarchy of representations. They describe survey 
knowledge (equivalent to building a map of the environment) as a dif-
ferent category of representation from labelled graphs, whereas Muryy 
and Glennerster (2021) advocate including the representation underly-
ing survey knowledge under the same umbrella, as an extreme form of 
labelled graph (illustrated in Fig.  6(b)). The distinction may not be an 
important one.

The implementation of this hierarchy of representations could, as 
suggested in Sections 5.1 and 5.2, be as a policy. Fig.  6(a) is a coarse de-
scription of the layout of a scene. Adding information about the lengths 
of the paths between nodes in the graph refines the representation, 
so the policy (i.e. the contexts in which different actions are taken) 
becomes more constrained, i.e. the two situations on the right of Fig. 
6(a), can be distinguished whereas before they could not. If the task is 
to go from the yellow to the green node by the shortest route, it is now 
possible to judge the relative lengths of the paths Yellow → Orange →
Green versus Yellow → Purple → Green. In other words, a coarse scale 
representation of the action Yellow → Green has now been split onto 
two contexts with distinct actions associated with each.

The strength of this hierarchical approach is that it can explain 
why, in many situations, participants behave as if they are relying on 
a representation that is simpler than a Euclidean reconstruction of the 
scene. A good example of this logic, albeit not one from the navigation 
literature, comes from a paper by Glennerster et al. (1996) who asked 
participants to judge the shape (depth-to-height ratio) of a cylinder 
and also to compare the depths of cylinders at two distances. When 
participants were able to use a simple heuristic to do the task (compare 
cylinder depths) they were very accurate in their judgements. When 
they were forced to judge the shape (depth-to-height ratio) of a single 
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cylinder, they made large errors. This is very like the two examples 
we have just discussed of a hierarchical policy. In this case, the coarse 
scale representation might be sufficient to distinguish a concave versus 
a convex shape but with more information finer discriminations can be 
made, e.g. a triangular profile versus an elliptical one, with separate 
actions associated with each. Given even more information, the full 
Euclidean shape can be defined. Just as in the earlier examples of 
hierarchical encoding that we have discussed, the full Euclidean shape 
of an object is, according to this view, a subset or refinement of the 
coarser scale descriptions.

7. Discussion

In this paper, I have set out two opposing hypotheses about the 
reference frame that the visual system might use for navigation: graph-
based (or a ‘policy’) versus a map-based representation. Some authors 
suggest that observers use graphs and maps ‘interchangeably’ (Peer 
et al., 2021). Instead, I have suggested that performance that seems 
to suggest a map-like representation may be an example of the way in 
which graph-based representations can be progressively refined (similar 
to the suggestion of Warren, 2019).

In the following sections, questions about whether a cognitive map 
is required for certain tasks that could not be carried out with a graph- 
or policy-based representation; how neurophysiologically inspired pro-
posals are similar to or differ from computer vision approaches; how 
much visual processing is required for a policy representation and 
the role of other cues, such as proprioception in generating a spatial 
representation as a policy.

7.1. Path planning and other tasks that seem to require a map

Path planning is one example of a task that seems, at first sight, to 
be more difficult with a graph representation than using a 3D Cartesian 
coordinate representation (e.g. Kessler et al., 2024; Bush et al., 2015). 
However, suggestions have been made about ways to plan a path using 
a graph (e.g. Dai et al., 2020). There are also impressive demonstrations 
of navigational tasks including finding shortcuts that rely on a policy 
not a map (e.g. Banino et al., 2018). The way that human observers 
choose routes to a goal is one way to probe the type of representation 
they are using. For example, Muryy and Glennerster (2021) found that 
observers could plan a route successfully to a target in a distorted, 
physically-impossible maze while, at the same time, making large errors 
(up to 180 ◦) in pointing to targets. This dichotomy in performance 
on the two tasks is difficult to explain if both are based on the same 
internal map.

Similar results and conclusions are found by Warren and col-
leagues (Warren et al., 2017; Warren, 2019; Strickrodt et al., 2019). 
These experiments support the hypothesis that the visual system uses a 
range of heuristics, choosing different ones for different tasks. This can 
explain why a single underlying 3D representation provides such a poor 
account of human performance when participants carry out different 
tasks in the same environment (Glennerster et al., 1996; Svarverud 
et al., 2012; Muryy and Glennerster, 2021). One might think that 
there must be some tasks that could only be done using a map-like 
representation and would not be open to heuristics. However, given 
the argument that heuristics can be refined progressively (e.g. Fig. 
6, Glennerster et al., 1996; Muryy and Glennerster, 2021; Glennerster, 
2023), it may not be so easy to find an ‘impossible’ task for the graph 
model.

One argument that is often made against the idea of a graph of 
views as a spatial representation is that certain tasks should not be 
possible if the observer has not experienced the views in advance, e.g. 
predicting the view from the other side of a novel room. Aside from 
the fact that human observers turn out to be remarkably poor at this 
type of task (Vuong et al., 2019), there is modelling evidence that a 3D 
representation of the room is not required to carry out this task (Eslami 
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et al., 2018). This shows that if a network is trained on a sufficient 
number of examples of similar environments, then one or two views 
of the novel room from one side of the room is sufficient to produce 
a remarkably accurate prediction of the view that would be seen from 
the other side of the room.

7.2. Rapid computation at ‘runtime’ versus large storage capacity

The two alternative approaches to spatial representation explored 
in this paper lead to very different challenges for models of neural 
implementation. If observers guide their movements using a world-
based 3D reconstruction of the environment, then there needs to be 
a lot of computation at ‘runtime’. One element of this is a decompo-
sition of retinal flow into rotational and translational and rotational 
components (Lappe et al., 1999). Another is the rotation and translation 
of any egocentric representation into a world-based coordinate frame. 
In computer vision applications, these computations are carried out at 
frame rate, but detailed accounts are rare of the neurophysiological 
operations that could carry out equivalent transformations (Pouget 
et al., 2002; Byrne et al., 2007).

The alternative policy-based approach that I have advocated in this 
paper faces a quite different challenge. In some ways the problem is 
almost the converse. The computation at runtime could be far less 
than the 3D reconstruction approach, but the storage demand is much 
greater. The system must recognise a seemingly vast number of dif-
ferent situations (i.e. a particular image and a given task) and choose 
an action in response. The system must also compare the subsequent 
sensory input to the expected input and respond to any discrepancy 
between the two (Momennejad et al., 2017; Whittington et al., 2020). 
If the proposal is that all of these different situations are stored in 
advance, then any such model must face the challenge of explaining 
how they are learned and how they are stored.

There are many possible ways in which the problem of storage 
might be made manageable. One is the use of generalisation. For ex-
ample, in the case of the movement shown in Fig.  1, it is not necessary 
to store every image that the observer could meet along the path. 
The visual system could store sufficient information to recognise the 
fixation targets 𝐴, 𝐵 and 𝐶 and then use a method that is independent 
of the nature of the fixation target to move relative to 𝐴, 𝐵 or 𝐶. The 
signals from neurons in MSTd (Roy and Wurtz, 1990), which are largely 
blind to the nature of the fixated object, would be useful in this regard.

7.3. Fixation as a constraint

A central argument for the model presented here is that fixation is 
critical for the simplicity of motor control. One might ask whether the 
same is true for 3D construction algorithms, i.e. that yoking camera 
translation and rotation together and so reducing the number of de-
grees of freedom of camera movement could make 3D reconstruction 
simpler. This idea has been pursued by Aloimonos et al. (1987), Ban-
dopadhay and Ballard (1990), Sandini and Tistarelli (2002), Daniilidis 
(1997). Daniilidis (1997) show explicitly how the computation of cam-
era motion can be simplified when the camera fixates a scene point as 
it moves. However, unlike the policy-based proposal in this paper, the 
output in Daniilidis (1997) is still a 3D trajectory and a 3D description 
of the scene structure as in other photogrammetry algorithms.

7.4. Neurophysiological models that assume SLAM-like operations

It is important to realise how different computer vision approaches 
are compared to neurophysiological proposals in relation to 3D vision 
and navigation. Typically, neurophysiological accounts assume a two 
step process moving from image to egocentric representation (e.g. in 
posterior parietal cortex) followed by a transformation to world-based 
coordinates (e.g. in the hippocampus) (Andersen et al., 1997; Burgess 
et al., 1999; Savelli and Knierim, 2019). However, that is quite different 
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from the computer vision computation underlying SLAM (‘photogram-
metry’) which finds the most likely structure of the scene and the 
most likely pose of the camera given a set of images of a static scene. 
There is no ego-centric intermediate stage in this process and hence 
no transformation from ego-centric to allocentric coordinates (Byrne 
et al., 2007). In this sense, the biological hypothesis is fundamentally 
different from SLAM. Also, a crucial output of SLAM is the world-based 
description of the scene structure. This is a quite different goal from 
generating outputs like a place cell (O’Keefe and Dostrovsky, 1971) or 
grid cell (Hafting et al., 2005) which signal the location of the observer 
not the world-based location of objects in the scene.

7.5. Visual control parameters

The discussion of navigation in this paper has been purely focused 
on vision, although it is extendible to other domains and to combi-
nations of cues (Section 7.6). It is worth asking what type of visual 
processing is required if the representation is a graph- or policy-based 
one? The general answer is that the output of the processing should 
be sufficient to distinguish different contexts for action. If the task is 
to thread a needle, then the critical control parameter that is needed 
from moment to moment is a signal like the binocular disparity between 
the thread and the eye of the needle. The rest of the image is largely 
irrelevant to the task, although it is relevant to specifying the overall 
context (i.e. that the observer is threading a needle).

On the other hand, if the task is to move around an obstacle, then 
optic flow across the whole retina is important and, now, quite different 
aspects of the image are irrelevant to the task. When carrying out a 
complex sequence of actions, it is necessary to find the relevant visual 
information (and hence the appropriate set of neurons in the cortex) 
at the appropriate point in the sequence. Interestingly, Nienborg and 
Cumming (2014) have argued that a columnar organisation of the 
cortex is critical if the observer is to use sensory information to control 
an action in this way. Specifically, they suggest that the relevant cue 
(e.g. relative disparity) must be organised into cortical columns in order 
for those neurons to influence or reflect the choice of the animal (this 
is true of relative disparity in visual area MT but not in V1). 

7.6. Idiothetic cues

Vision is not the only cue relevant to navigation. Other cues such 
as proprioception or knowledge of the interocular distance, collectively 
known as ‘idiothetic cues’, help the observer to infer their how they 
have moved and to estimate the size and shape of the scene. Indeed, 
there is evidence that the integration of visual and idiothetic cues can 
be close to optimal (Svarverud et al., 2010; Kang et al., 2023). Kang 
et al. (2023) present models of visual and idiothetic integration in 
rodents when environments are stretched, similar to the experiments 
and analysis by Svarverud et al. (2010). The idiothetic information 
is often assumed to be derived from grid cells (Hafting et al., 2005) 
although the problem of disambiguation of grid cell output (Bush et al., 
2015) is not tackled in the Kang et al. (2023) paper. The predictions 
of optimal integration in Kang et al. (2023) provide a good fit to the 
experimental data (see also Nardini et al., 2008; Zhao and Warren, 
2015; Chen et al., 2017 and modelling of these by Kessler et al., 2024).

A task can be learned with two cues present (e.g. visual and idio-
thetic) and then carried out with only one of the cues available. There is 
evidence that the different cues contribute to a common representation 
of the scene (e.g. Tcheang et al., 2011). This does not mean that 
the representation needs to be a 3-dimensional one. For example, a 
path through image space and a path through image+proprioceptive 
space can be closely related. The two cues can either support the same 
interpretation of the scene or be in conflict (Glennerster et al., 2009) 
but this type of evidence is not particularly helpful in discriminating 
between 3D and high dimensional coordinate frames.
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The use of idiothetic cues to form a representation of space does not 
imply that the representation uses a 3D coordinate frame — that is a 
quite independent issue. One example that illustrates this independence 
is a paper by Banino et al. (2018) discussed in Section 3.2. Although 
grid cell activity is often cited as evidence of a ‘map’, this paper shows 
that an agent could learn to navigate and take short cuts without 
developing a Euclidean map (a 2- or 3-D representation with an origin 
and axes). Instead, the model used set of sensory contexts and actions 
that linked them, i.e. a ‘policy’.

7.7. Visual ambiguity

If a representation is based on images rather than 3D structure, 
then it may be affected more by visual ambiguity — two scenes 
or viewpoints leading to the same image — than one based on 3D 
reconstruction. We saw that in the example of emerging from a lift in 
Section 2. Some image-based computer vision approaches to location 
suffer from mislocalisation if a camera image is ambiguous (Ni et al., 
2009). Human observers suffer from errors in interpreting their motion 
and the motion of objects in the scene if the images are ambiguous, 
such as walking past a rotationally symmetric object (Wallach, 1987; 
Tcheang et al., 2005) or walking through an expanding room (Glen-
nerster et al., 2006). However, observers are not totally lost, which 
shows that they can use proprioceptive cues and a history of the path 
they have been on (whether through 3D space or image space) to help 
disambiguate the location associated with the current image.

8. Conclusion

If ‘here’ and ‘there’ are defined in a space of images or neural 
states, then some of the more difficult challenges for finding plausible 
neurophysiological mechanisms disappear. One of these challenges 
is identifying how 3D coordinate transformations could be carried 
out, e.g. converting egocentric information to a world-based reference 
frame. However, observers still need some kind of reference frame and I 
have discussed how a reference frame for location might be constructed 
in vista spaces and in more visually constrained environments like 
mazes. In each case, the argument has been that the nervous system 
stores a ‘policy’, i.e. a set of states and an action associated with 
each state. I have focussed on the sensory aspect of the state, and 
in particular the image the observer receives, but a ‘state’ includes 
both sensory and task-related information (Section 5.1). Reinforce-
ment learning is already using this type of approach to learn how to 
navigate (Section 1) and may be a valuable source of inspiration for 
understanding biological representations that can support navigation.
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