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Abstract

Background: Dietary polyphenols, particularly flavonoids, have been associated with
improved glycemic control and reduced risk of type 2 diabetes. Raspberry leaf (RL) is a
rich but underexplored source of such bioactives, including ellagitannins, flavonoids, and
phenolic acids. While raspberry fruit has received some attention in nutritional science,
the metabolic effects of raspberry leaf—especially its influence on postprandial glucose
and insulin responses—remain largely unstudied. Objective: This study is the first to
investigate the acute effects of RL tea consumption on postprandial blood glucose and
insulin levels in healthy individuals following intake of common dietary carbohydrates
(sucrose and glucose). Methods: In a randomized crossover study, 22 healthy adults
(12 males, 10 females) consumed 50 g of glucose or sucrose with or without 10 g of RL
tea in four separate sessions. Blood glucose and insulin levels were measured at fasting
and at 15, 30, 60, 90, and 120 min post-ingestion. A total of 37 polyphenolic compounds
were identified in the RL infusion using LC-MS, following a 5-minute hot water extraction.
The contents of ellagitannins, flavonoids, and phenolic acids were 38 mg, 7 mg, and 4 mg
per 10 g of RL, respectively, contributing to a total polyphenol content of 50 mg per 10 g.
Results: When RL tea was consumed with sucrose, postprandial blood glucose levels
were significantly reduced at 15 and 30 min by 1.19 £ 0.88 mmol/L (25.59% reduction,
p = 0.001) and 2.03 £ 1.05 mmol/L (43.57% reduction, p = 0.0004), respectively. Insulin
concentrations were also significantly lower at 15 min (113.90 £ 59.58 pmol/L, p = 0.019),
30 min (161.76 £ 91.96 pmol/L, p = 0.0008), and 60 min (139.44 £ 75.96 pmol/L, p = 0.025).
No significant differences were observed with glucose ingestion. Conclusions: This study
provides the first clinical evidence that RL tea can blunt early postprandial glycemic and
insulinemic responses to sucrose in healthy individuals. The data suggest that these
effects are likely mediated by relatively low levels of polyphenols—particularly ellagic
acid—through inhibition of carbohydrate-digesting enzymes such as a-glucosidase and
B-fructofuranosidase. These findings support the potential of RL tea as a simple, dietary
approach to modulate glucose metabolism and warrant further investigation in populations
at risk for metabolic disorders.

Keywords: raspberry leaf tea; polyphenols; postprandial glucose; insulin response; sucrose
metabolism; x-glucosidase inhibition; ellagic acid; dietary flavonoids; glycemic control;
functional foods
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a major global health concern, with a dramatic rise
in cases over the years [1,2]. According to the World Health Organization, diabetes—a long-
term condition characterized by the body’s inability to produce sufficient insulin or use it
efficiently, leading to high blood sugar levels—has seen its global prevalence double from
7% in 1990 to 14% in 2022, with over 800 million people affected [3]. If left untreated, comor-
bid conditions such as neuropathy, nephropathy, visual impairment, erectile dysfunction,
heart disease, stroke, and peripheral vascular disease can lead to diabetic complications,
including ulcers, gangrene, and amputation. Effective management of blood sugar levels
is crucial in preventing such severe complications, including neuropathy, nephropathy,
visual impairment, erectile dysfunction, cardiovascular disease, stroke, and peripheral
vascular disease, which significantly increase the risk of developing severe diabetic com-
plications, such as chronic ulcers, gangrene, and limb amputation [4]. Researchers have
increasingly focused on developing alternative, low-risk therapeutic approaches instead
of antidiabetic medications, based on the belief that effective blood glucose control can
prevent and mitigate the clinical complications associated with T2DM [5].

Numerous naturally occurring plant-derived compounds have recently shown an-
tidiabetic properties while also promoting overall health. For example, polyphenols are
natural compounds recognized for their antioxidant and anti-inflammatory properties,
contributing to the colors and flavors of fruits, vegetables, and teas [6]. These compounds,
including flavonoids, tannins, and phenolic acids, offer various physiological benefits such
as antidiabetic, antioxidant, anti-inflammatory, anticarcinogenic, and anti-obesity effects,
making them instrumental in preventing chronic diseases like diabetes [7,8]. Consuming
polyphenol-rich foods, such as tea, fruits, vegetables, chocolate, and red wine, regularly
has been shown to alleviate oxidative stress and significantly reduce the risk of developing
diabetes [9-14]. According to data from the UK Registry, a higher intake of anthocyanins
and flavones was significantly associated with reduced insulin resistance and lower fasting
insulin levels in females aged 18 to 76 [15]. Polyphenols enhance insulin sensitivity by
alleviating oxidative stress in pancreatic cells, improving insulin secretion [16,17]. They
further strengthen insulin signaling within cells by activating insulin receptor-associated
proteins, such as AMP-activated kinase (AMPK), a key enzyme in glucose and energy regu-
lation [18]. Studies have also demonstrated that polyphenols decrease glucose absorption
in the intestine and slow digestion, thereby reducing post-meal blood sugar spikes [19-22].

Rubus idaeus (red raspberry), a member of the Rosaceae family with a long history of
cultivation and global farming, includes around 700 species native to temperate regions
and is widely used in traditional medicine [23-25]. RL is rich in nutrients and has long been
used in traditional medicine to treat various ailments including diseases of the alimentary
canal, airway and heart, and cardiovascular system, and can induce labor. RL has been
recognized for its therapeutic properties, with Rubus idaeus green leaves listed in the British
Pharmacopoeia since 1983 [26-29]. Raspberry leaves are a valuable source of bioactive
compounds with notable antioxidants and antibacterial properties. They also contain
appreciable levels of essential vitamins and minerals, including phosphorus, potassium,
calcium, magnesium, and iron, along with ellagitannins, anthocyanins, and a diverse range
of other polyphenolic compounds [30-32].

Currently, only 11 studies [33—42] have analyzed RL and identified a total of 52 com-
pounds. Additionally, three studies reported that ellagic acid (EA) was the dominant
compound in RL, with concentrations ranging from 292.20 to 438 mg/100 g [33-35]. The
second most abundant compound was quercetin-3-O-galactoside, with concentrations
ranging from 3.64 to 755 mg/100 g [36,37], followed by chlorogenic acid, which ranges
from 22.94 to 104.16 mg/100 g [33,35-38]. RLs, rich in polyphenols such as ellagitannins,
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quercetin, and kaempferol derivatives, possess strong antioxidant, anti-inflammatory, and
anti-diabetic properties, along with the ability to improve obesity and modulate gut mi-
crobiota, highlighting their considerable healthcare and industrial value [43-47]. Among
the 25 types of ellagitannins identified in unripe raspberry (Rubus chingii), Chingiitannin
A exhibited the most potent inhibitory activity against a-amylase and x-glucosidase [43].
The relationship between RL consumption and blood glucose levels is not well established
due to limited scientific research. However, a notable case report from 2016 documented
a 38-year-old woman with gestational diabetes mellitus who experienced hypoglycemia
after consuming RL tea [48]. This suggests that RL may influence blood glucose levels,
potentially reducing insulin requirements [48].

Given the lack of comprehensive studies—particularly randomized controlled trials—
the effects of RL on blood glucose regulation remain largely unexplored. This study
addresses a critical knowledge gap by investigating the potential health benefits of RL,
which is rich in polyphenolic compounds such as flavonoids and ellagitannins known
for their antioxidant properties and inhibitory effects on carbohydrate-digesting enzymes
like sucrase. These bioactive compounds may modulate postprandial glucose absorption,
offering a natural, plant-based approach to glycemic control. As the global burden of
chronic diseases like type 2 diabetes continues to rise, there is an urgent need for affordable,
effective, and sustainable interventions. Nutritional strategies involving polyphenol-rich
functional foods are increasingly recognized as promising alternatives or complements
to pharmaceutical treatments. RL tea, being widely accessible and inexpensive, has the
potential to serve as a cost-effective dietary tool for improving glycemic responses. This
study is the first to evaluate the acute effects of RL tea on postprandial blood glucose
and insulin levels in healthy adults using a randomized, controlled, crossover design. We
hypothesized that RL tea consumed alongside common dietary carbohydrates (sucrose and
glucose) would attenuate postprandial increases in blood glucose and insulin. To test this,
we measured glucose and insulin levels at multiple time points following ingestion of 50 g
of either sucrose or glucose, with or without 10 g of RL tea infused in water.

2. Materials and Methods
2.1. Brewing Conditions and Polyphenol Analysis of Raspberry Leaf Tea

We and others have investigated the impact of steeping time on the extraction efficiency
of polyphenols from RL tea using LC-MS [33]. In our previous study, tea infusions were
prepared by steeping 2 g of dried RL leaves in 200 mL of boiling water for durations ranging
from 0.5 to 20 min, replicating typical consumer practices. Each point was analyzed in
triplicate to ensure reliability [33]. A total of 37 polyphenolic compounds were identified
and quantified, with a focus on ellagitannins, flavonoids, and phenolic acids [33]. The
aim of the study was to evaluate the concentrations of these compounds across different
infusion times and to identify the optimal steeping duration for maximum polyphenol
extraction [33].

2.2. In Human Study
2.2.1. Study Participants

This randomized, crossover study, consisting of four visits, recruited 22 healthy
volunteers from the Whiteknights Campus of the University of Reading. The study was
conducted within the Hugh Sinclair Unit of Human Nutrition, part of the Department of
Food and Nutritional Sciences at the University of Reading, between January 2024 and
October 2024. The study aimed to assess the metabolic effects of dietary interventions
in a controlled setting. Participants were included based on specific eligibility criteria.
Volunteers aged between 18 and 65 years with a body mass index (BMI) ranging from
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18 to 34.9 kg/m? and fasting blood glucose levels between 3.9 and 5.5 mmol/L (70~
100 mg/dL) were eligible to participate. They were required to be in good health, have
no prior diagnosis of diabetes or prediabetes, and not be using medications for insulin re-
sistance or diabetes. Additionally, participants had to provide written informed consent
before enrolling in the study. Exclusion criteria were designed to minimize confounding
factors and risks to participants. Individuals were excluded if they had abnormal results
in renal function tests (e.g., blood urea nitrogen, creatinine), liver function tests (e.g.,
alanine transaminase, aspartate transaminase), or blood lipid profiles (e.g., cholesterol,
triglycerides, high-density lipoprotein, low-density lipoprotein). Other exclusion factors
included smoking, using certain medications (e.g., those for hypertension, hyperlipi-
demia, inflammation, or depression), and dietary supplements like cholesterol-lowering
agents, fish oil, probiotics, prebiotics, or natural laxatives. Participants who had taken
antibiotics within three months, consumed more than 14 units of alcohol per week, or
had food allergies were also excluded. Further exclusions applied to individuals with
chronic illnesses, severe impairments in heart, liver, or kidney function, or conditions
such as celiac disease or other gastrointestinal, metabolic, neurological, or psychologi-
cal disorders. Pregnant or breastfeeding women, those planning pregnancy within six
months, and participants engaged in recent weight loss programs, herbal medication use,
or other clinical trials were also deemed ineligible. Additionally, a history of malignancy,
drug or alcohol dependency, or known allergies to components of the dietary interven-
tion were disqualifying factors. The University of Reading Ethics Committee (UREC
ID: 23_15, Approval Date: 18 December 2023) approved the study protocol, informed
consent form, and sponsor qualifications. Written informed consent was obtained from
all participants prior to screening. The study was registered in the Clinical Trials Registry
under the identifier NCT06385626 on 26 April 2024. Participants who completed all
study visits were compensated financially, with prorated compensation provided for
those who did not complete the entire study.

2.2.2. Sample Size Determination

Based on the findings of [16], the sample size was calculated to detect a reduction in
glucose levels of 0.5 £ 0.6 mmol/L with a power of 0.8 (1-) and a significance level (x)
of 0.05. This calculation determined that 22 adults aged 18-65 would be required for the
study. Considering an expected dropout rate of approximately 10% over the 2—4-month
study duration, the goal was to retain at least 20 participants with complete primary
outcome data. A final sample size of 20 participants per group was deemed adequate for
statistically significant comparisons of diabetes-related outcomes, including blood glucose
and insulin levels.

2.2.3. Study Design

Using Stata 19 software and a randomized block design, a total of 22 participants
were randomly assigned to one of four groups (A-D; see Figure 1). Five participants were
distributed across groups, with two receiving six participants each. All participants were
scheduled to undergo four interventions across four test sessions: glucose with or without
RL tea and sucrose with or without RL tea. The order of these interventions was determined
by the group to which the participants were assigned (Figure 1). Both participants and
investigators were aware of the specific interventions administered during each test session;
blinding was not implemented.
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Assessed for eligibility (n=39)

Excluded (n=17)

Did not meet inclusion
criteria

Randomised (n=22)

Bl ———

Group (A)

(Glucose + RLT, Glucose,
Sucrose and Sucrose + RLT)

Group (B)

(Glucose, Glucose + RLT,
Sucrose + RLT and Sucrose)

Group (C)

(Sucrose, Sucrose + RLT,
Glucose + RLT and Glucose)

Group (D)

(Sucrose + RLT, Sucrose,

Glucose + RLT and Glucose)

e

Lost to follow up (n=2)
Withdrawal after the first visit

4 Visits
Wash period (2-4 weeks)

Blood glucose and insulin levels tested 15 minutes
before, at 15,30, 60, 90, and 120 minutes after
carbohydrate intake.

Analyses (n=20)

Figure 1. Patient disposition.

2.2.4. Study Products

The study used Botanical World-branded RL tea collected in the United Kingdom.
A polyphenol content analysis of the tea was conducted using LC-MS, comparing it to
other teas from various European countries [33]. The tea from the UK showed superior
polyphenol content (Table 1 summarizes the polyphenol content in 10 g of tea) [33]. The
RL tea was prepared by grinding the leaves into a fine powder. To make the tea, 200 mL
of Buxton water (Nestlé Waters UK Ltd., Haxby Road, York, North Yorkshire, YO31
8TA, UK) was boiled to 100 °C, and 10 g of tea was steeped for 5 min. The tea was then
filtered completely using paper filters, after which sucrose or glucose was added as
needed. Glucose and sucrose were used as control foods, while RL tea combinations were
utilized as test foods. Sucrose (99.6% purity) and glucose (99.8% purity) were sourced
from Ingredion. For participant consumption, 50 g of carbohydrate powder (glucose or
sucrose) was dissolved with or without 10 g of RL tea (containing approximately 50 mg
of polyphenols per 10 g). Each gram of glucose or sucrose provided 4 kcal (16.75 kJ)
of energy.



Nutrients 2025, 17, 2849 6 of 18

Table 1. Polyphenols content in RL (mg/10 g DW) [33].

Compound Identity Content, mg/10 g
Epigallocatechin 0.02 £ 0.00
Epicatechin gallate 0.18 = 0.14
Cyanidin Chloride 0.34 +0.05
Catechin 0.06 £ 0.01
Vanillin 0.06 £ 0.00
Epicatechin 0.36 + 0.00
Naringenin 0.02 4+ 0.00
Hesperetin 0.02 £ 0.00
Verbascoside 0.02 + 0.00
Chlorogenic Acid 2.21 £ 0.09
Neochlorogenic Acid 0.05 £ 0.00
Cryptochlorogenic Acid 0.09 £+ 0.01
Quercetin 0.00 £+ 0.00
Myricetin 0.01 +0.00
P-Coumaric Aicd 0.09 £+ 0.00
Salicylic Acid 0.03 £ 0.01
Vanillic Acid 0.15 £ 0.02
Mcoumaric 0.07 £ 0.00
Ocoumaric 0.01 +0.00
Isoferulic Acid 0.03 £ 0.00
Ellagic Acid 38.03 & 3.59
Ferulic Acid 0.04 £ 0.00
Phloridizin 0.03 £0.05
Gallic Acid 0.68 & 0.02
3.4-dihydroxybenzoic acid 0.18 £ 0.00
2,3-Dihydroxybenzoic Acid 0.25 £+ 0.01
Caffeic Acid 0.35£0.01
Luteolin-7-O-glucoside 0.09 £ 0.01
Quercetin-3-O-glucuronide 6.47 +0.43
Quercetin-3-O-rutinoside 0.24 £+ 0.01
Quercetin 3-O-galactoside 0.14 £ 0.00
Kaempferol-3-O-glucoside 0.08 £ 0.01
Quercetin-3-glucoside 0.14 - 0.00
Kaempferol-O-rutinoside 0.02 £ 0.00
Petunidin Chloride 0.01 £ 0.00
Gallocatechin 0.00 &= 0.00
Total of Ellagitannin content (mg/10 g) 38.03 £ 3.59
Total of Flavonoid content (mg/10 g) 7.76 + 0.49
Total of Phenolic Acid content (mg/10 g) 478 £0.15

Total of Polyphenol content (mg/10 g) 50.56 + 3.00




Nutrients 2025, 17, 2849

7 of 18

2.2.5. Procedures for Each Visit

Before each visit, participants were instructed to avoid excessive alcohol consumption,
ensure adequate sleep, and maintain proper hydration. They were also required to fast
from food and beverages, except water, for 8-10 h. Compliance with these requirements
was confirmed before proceeding with the visit. Each participant arrived at the Hugh
Sinclair Unit of Human Nutrition at 8:00 a.m. On arrival, they consumed the assigned
test meal orally (carbohydrates with or without RL tea dissolved in 200 mL of warm
water) within 5 min. Participants were then required to fast for 2 h, during which only
water was allowed. Blood glucose and insulin concentrations were measured at baseline
(15 min before the test meal) and 15, 30, 60, 90, and 120 min post-consumption. For each
measurement, 5 mL of blood was collected via venipuncture. Each participant completed
four test sessions on separate visits throughout the study (Figure 1). A 2—4-week washout
period was implemented between sessions to eliminate any carryover effects from previous
interventions and allow vein recovery. Glucose concentrations were measured using the
Daytona Plus analyzer, and insulin levels were assessed using the Ella system, ensuring
the accuracy and reliability of the collected data.

2.2.6. Blood Sample Collection, Processing, and Biochemical Analysis

Blood samples were collected at each withdrawal using 5 mL yellow-top vacutainer
tubes and transported in sealed containers to the Hugh Sinclair Unit of Human Nutrition
(University of Reading). Within the laboratory, whole blood was centrifuged at 1750x g
(~3000 rpm) for 15 min at room temperature. The separated serum, plasma, and buffy
coat were carefully aspirated into labeled aliquot tubes and stored at 20 °C in designated
storage boxes until all study visits were completed. Biochemical analyses were, therefore,
performed in batch at the end of the collection period rather than on the day of collection.

Glucose concentrations were determined using the Randox RX Daytona Plus clinical
chemistry analyzer with the hexokinase method (Randox, Cat. No. GL8319, Northern
Ireland), following the manufacturer’s instructions. Samples were thawed, centrifuged
briefly to remove air bubbles, and checked for clarity prior to analysis. The analyzer was
routinely calibrated with multi-analyte calibrators, and quality control was monitored
using commercial control sera at both normal and pathological levels. Internal QC results
were plotted on Levey—Jennings charts with Westgard rules applied to detect bias or
imprecision, and accuracy was externally validated through participation in the RIQAS
scheme. Additional onboard safeguards, including reagent blanking, cuvette integrity
checks, and liquid level sensing, were applied throughout the analysis.

Insulin concentrations were measured using the Ella automated immunoassay system
(Protein Simple, UK) with Simple Plex Cartridge Kits. Serum samples were centrifuged at
8000-10,000x g for 4 min to remove particulates, diluted with assay buffer, and loaded into
the cartridges together with wash buffer and assay controls, according to the manufacturer’s
protocol. Calibration was performed using lot-specific factory calibration curves, and
manufacturer-provided lyophilized high- and low-quality controls were reconstituted and
included in each run to verify assay performance.

Together, these procedures—including strict pre-analytical handling, routine cali-
bration, internal and external quality controls, and instrument safeguards—ensured the
accuracy, reliability, and reproducibility of glucose and insulin measurements.

2.2.7. Statistical Analysis

All statistical analyses were performed using SPSS software, version 28. Data are
presented as mean =+ standard deviation, with 95% confidence intervals (95% CI), or
as median with a range where appropriate. Differences between multiple groups were
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analyzed using one-way analysis of variance (ANOVA). Post hoc tests were performed
using Bonferroni correction if the homogeneity of variances was met or the Games-Howell
test if variances were unequal. For comparisons between the two groups, the independent
samples t-test was employed. Statistical significance was defined as p < 0.05.

3. Results
3.1. LC-MS/MS Analysis of Polyphenol Compounds in Raspberry Leaf Samples

In our previous study [33], we and others analyzed RL samples sourced from six dis-
tinct geographical regions to investigate the polyphenolic composition of aqueous extracts.
Of the 52 targeted polyphenolic compounds, 37 were consistently detected across the sam-
ples [33]. Among the various steeping times assessed, a 5-minute infusion yielded the high-
est total polyphenol content (505.65 mg/100 g, p < 0.001), significantly exceeding the levels
extracted at both shorter (409.84 mg/100 g) and longer durations (429.28 mg/100 g) [33].
Notably, EA reached its peak concentration at 5 min (380.29 mg/100 g), while phenolic
acids were most abundant after 15 min (50.96 mg/100 g), and flavonoid content peaked
at 4 min (82.58 mg/100 g) [33]. As detailed in Table 1, the concentrations of individual
compounds are expressed in milligrams per 10 g of dried RL, serving as a standardized
unit for reporting.

3.2. Basic Characteristics of Study Participants

Out of 39 healthy volunteers screened for inclusion, 17 individuals were excluded
due to not meeting the inclusion criteria. Consequently, 22 participants (10 females and 12
males) were enrolled in the study. Of these, 20 participants completed all four visits along
with the associated protocols. Two female participants withdrew after the first visit due to
a lack of willingness to continue. The basic demographic and clinical characteristics of the
participants who completed the study are presented in Table 2.

Table 2. Baseline characteristics of the study population.

Characteristic N Mean + SD 95% CI Range Median

Age, year 20 34.86 + 45.94 34.86—45.94 62-22 39.5

Height, cm 20 164.98 £ 174.92 164.98-174.92 192-153 170.5

Weight, kg 20 64.17 £ 76.9 64.17-76.9 104.5-53 63.7

BMI, kg/m? 20 22.82 +25.77 22.82-25.77 30.1-20 23.3

Fat % 20 20.81 4 26.95 20.81-26.95 40-9.9 23.5

Fasting Blood Glucose (mmol/L) 20 443 4+ 4.89 4.43-4.89 5.68-2.95 4.75
Fasting Blood Insulin (Pmol/L) 20 4191 £ 59.74 41.91-59.74 91.8-21.6 44.7
HOMA-IR 20 1.43 £2.07 1.43-2.07 2.93-0.71 1.52

Systolic blood pressure, mmHg 20 115.1 £ 125.6 115.1-125.6 147-100 119
Diastolic blood pressure, mmHg 20 72.38 +79.82 72.38-79.82 96-65 73

BMI, body mass index; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; SD, standard deviation;
95% CI, 95% confidence interval.

3.3. Blood Glucose and Insulin Levels Before and During Sucrose Intake with or Without RL Tea

Baseline blood glucose levels, measured 15 min prior to the test meals, were com-
parable across all conditions (sucrose and glucose, with or without tea). Following the
test meals, blood glucose levels increased gradually, peaking at 30 min post-intake, before
declining back to baseline by 120 min. For sucrose, postprandial blood glucose levels at 15
and 30 min were significantly lower when consumed with tea compared to sucrose alone
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(p < 0.01), indicating a moderating effect of RL tea on the glycemic response. In contrast,
for glucose, there was no statistically significant difference in blood glucose levels between
consumption with or without tea, suggesting that the tea’s effect may vary based on the
carbohydrate source. Insulin levels were significantly lower at 15, 30, and 60 min when
consumed with RL tea compared to sucrose alone (p = 0.019, p = 0.0008, and p = 0.025,
respectively). These findings demonstrate that RL tea effectively attenuates the insulin
response to sucrose consumption, as shown in Tables 3 and 4 and Figure 2A,B.

8.50
8.00
7.50

3 7.00
S
£ 650
3 6.00
5]
3 5.50
o
5.00
4.50
4.00
-15 15 30 60 90 120
Time (min)
=@ Sucrose+Raspberry Leaf Tea eeshee Sucrose
(A)
395.00
345.00
— 295.00
°
£ 245.00
=
£ 195.00
=]
@
£

145.00

95.00

45.00

-15 15 30 60 90 120
Time (min)
=@ Sucrose +Raspberry Leaf Tea eeepee Sucrose
(B)

Figure 2. (A) Effect of raspberry leaf tea on sucrose-induced blood glucose response. Means that
do not share the same letter are significantly different. For example, the sucrose + RLT peak was
significantly lower than sucrose at 30 min (p = 0.001, label “a”) and at 60 min (p = 0.00008, label “b”).
(B) Effect of raspberry leaf tea on sucrose-induced insulin response. Means with the same letter are
not significantly different. Peaks marked with different letters indicate significant differences. For
example, sucrose + RLT was significantly lower than sucrose at 15 min (p = 0.019, label “a”), at 30 min
(p = 0.00008, label “b”), and at 60 min (p = 0.025, label “c”).

Table 3. Postprandial blood glucose changes relative to preprandial levels across test and refer-
ence foods.

Food Change in Postprandial Blood Glucose Versus 15 min Before Carbohydrates Intake (mmol/L and %)

Group 15 min % 30 min % 60 min % 90 min % 120 min %

Glucose 20  203+095 4330 2984146 6357 2404172 5113  1.02+153 2174 —0.031.05  —057

Cil‘Il{CLOTse 20 1934072 4147  300+101 6459 206+197 4424 095180 2043  0.03 + 1.64 0.64
P 0.64 0.94 0.36 0.78 0.79

Sucrose 20  1.83+£087 3832 290+095 6069 129+138 2695 —027+084 570 —096+218 —20.10

ngf;e 20 119+088 2559 203+105 4357 123+129 2636  0.13+076 285  —016+077 —344
p 0.001 0.0004 0.23 0.06 0.16

RLT, Raspberry Leaf Tea; N, number. Data are presented as mean = standard deviation (mean + S.D.).
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Table 4. Postprandial blood insulin changes relative to preprandial levels for test and reference foods.

Food Change in Postprandial Blood Insulin Versus 15 min Before Carbohydrates Intake (pmol/L and %)
Group n 15 min % 30 min % 60 min % 90 min % 120 min %
159.90 + 239.88 = 214.48 + 157.15 +
Glucose 20 139.24 287.71 95.30 431.62 114.60 385.92 146,51 282.77 5347 +£76.64  96.21
Glucose 162.79 + 254.78 £ 215.10 + 143.63
+RLT 20 7823 331.75 103.43 519.22 14440 438.34 130.22 292.69 61.34+9416 125.01
P 0.93 0.50 0.98 0.45 0.44
164.07 + 24290 £ 180.25 +
Sucrose 20 125.70 296.71 125.01 439.28 94.02 32598  66.62 +58.57 12048 1640 £3278  29.66
Sucrose 113.90 + 161.76 139.44 +
+ RLT 20 50.58 211.05 91.96 299.74 7596 258.39  80.84 £58.40  149.79  31.87+£4397  59.06
[4 0.01 0.0008 0.02 0.21 0.12

RLT, Raspberry Leaf Tea; N, number. Data are presented as mean = standard deviation (mean 4 S.D.).

3.4. Blood Glucose and Insulin Levels Before and During Glucose Intake with or Without RL Tea

Similar to the trend observed with blood glucose levels, insulin levels increased
following the test meals, peaking at 30 min before gradually returning to baseline levels by
120 min. This pattern was consistent across all conditions, regardless of whether sucrose
or glucose was consumed with or without RL tea. In contrast, for glucose, no statistically
significant difference in insulin levels was observed at any time point between consumption
with or without RL tea, as illustrated in Tables 3 and 4 and Figure 3A,B. This indicates that
the tea’s moderating effect on insulin response is specific to sucrose and does not extend

to glucose.
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Figure 3. (A) Effect of raspberry leaf tea on glucose-induced blood glucose response. (B) Effect of
raspberry leaf tea on glucose-induced insulin response.
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4. Discussion

This study is the first to investigate the effects of red raspberry leaf (Rubus idaeus) con-
sumption on postprandial blood glucose and insulin responses in healthy individuals. The
findings indicate that components contained within the tea, released on brewing, reduce
postprandial blood glucose and insulin levels following sucrose but not glucose ingestion.
Considering the well-documented importance of controlling high peak glucose levels in
the management of diabetes, these preliminary findings indicate the potential utility of RL
to modulate postprandial blood glucose and insulin levels in response to carbohydrate
intake, in this case sucrose. Mechanistically, this effect may be attributed, at least in part, to
the inhibition of a-glucosidase enzymes, which are essential for the hydrolysis of complex
carbohydrates into absorbable monosaccharides such as glucose—something observed
for other polyphenol-rich plant extracts [49-53]. By delaying carbohydrate breakdown,
glucosidase inhibitors reduce the rate of glucose absorption, thus lowering the glycemic
index of meals. Importantly, the ingestion of RL in our study did not induce gastrointestinal
side effects, such as diarrhea, which are commonly associated with pharmacological glu-
cosidase inhibitors like acarbose [49]. Since sucrose—a disaccharide composed of glucose
and fructose linked by an o-1,2-glycosidic bond—is hydrolyzed by both «-glucosidase and
-fructofuranosidase, the observed attenuation of glycamic response suggests a possible
interaction between RL components and these enzymatic pathways [49].

The use of Rubus idaeus waste material has been considered for applications in the phar-
maceutical and functional food industries due to its richness in bioactive compounds [54,55].
The RL tea used in this study delivered approximately 50 mg of total polyphenols per
10 g dose, including 38 mg ellagic acid, 6.4 mg quercetin-3-O-glucuronide, and 2 mg/g
chlorogenic acid. While many studies on these compounds involve chronic supplementa-
tion, several acute trials provide relevant comparisons. Chlorogenic acid, in a randomized
crossover trial involving overweight men, in a single dose of 1 g, significantly reduced
glucose (—0.7 mmol/L, p = 0.007) and insulin (—73 pmol/L, p = 0.038) concentrations
at 15 min post-OGTT [56]. However, no significant effects were observed on the overall
glucose or insulin area under the curve compared to placebo [56]. Acutely administering
chlorogenic acid at 100-1000 mg has also been shown to reduce postprandial glucose and
insulin responses in healthy and obese individuals [57,58]. Although the chlorogenic acid
content in our tea was considerably lower, its effect may be enhanced by the co-presence
of other polyphenols. For example, in human intervention studies, quercetin has demon-
strated mixed glycemic effects, and acute single-dose trials (e.g., onion-skin extract) did
not show meaningful reduction in postprandial glucose or insulin [59]. Direct acute data
on EA are limited, but berries rich in ellagitannins [60] (their precursors) offer indirect
support. For instance, [61] demonstrated that consuming 150 g of mixed berry purée with
35 g sucrose significantly reduced early postprandial glucose and insulin concentrations in
healthy subjects. A similar effect was observed when blackcurrant or lingonberry purée
was consumed with sucrose, showing attenuated glucose and insulin peaks and improved
glycemic stability over two hours [61]. These findings suggest that there may be more
complex interactions at play. Notably, previous studies involved higher overall polyphenol
intake than used in our study, suggesting that effects on carbohydrate digestion are possible
at much lower intake levels, perhaps due to additive or synergistic effects on carbohydrate
digestion and glucose absorption, or due to the effectiveness of ellagic acid. In addition,
this may be because other compounds in RL tea have not yet been discovered that may
influence blood glucose regulation. We previously analyzed 52 compounds [33], but further
investigation is necessary to identify additional bioactive compounds.

The postprandial glucose-lowering effects of RL tea are likely mediated through inhi-
bition of key digestive enzymes—particularly sucrase, maltase, and x-glucosidase—which
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hydrolyze dietary disaccharides into absorbable monosaccharides such as glucose and
fructose [62]. Ellagic acid, the dominant polyphenol in our extract (38 mg/10 g), has shown
strong x-glucosidase inhibitory activity, with reported ICsy values between 140.2, 191.4, and
380.9 umol/L, depending on assay conditions [63]. It binds competitively to the enzyme’s
active site through hydrogen bonding and hydrophobic interactions, inducing conforma-
tional changes and destabilizing enzymatic structure [64—70]. Quercetin-3-O-glucuronide
(Q3GA), present at 6.4 mg per 10 g, is believed to exert reversible mixed-mode inhibition
of a-glucosidase, with an ICsy of 108.11 & 4.61 uM [67]. Though its effects on sucrase are
less studied, flavanol conjugates like Q3GA are known to inhibit intestinal disaccharidases
in vitro [71]. Chlorogenic acid, found at 2 mg/10 g in our extract, inhibits both intesti-
nal «-glucosidase and hepatic glucose-6-phosphatase by binding key catalytic residues,
thereby reducing both intestinal glucose release and hepatic gluconeogenesis [72,73]. These
mechanisms collectively delay carbohydrate breakdown and glucose absorption, resulting
in a flatter postprandial glucose curve and reduced early-phase insulin secretion [63]. At-
tenuating these peaks alleviates pressure on pancreatic (3-cells, limits hepatic lipogenesis,
and helps maintain peripheral insulin sensitivity [63]. Such glycemic modulation mirrors
the action of pharmaceutical a-glucosidase inhibitors (e.g., acarbose) but occurs via natu-
rally occurring dietary polyphenols such as ellagic acid, quercetin-3-O-glucuronide, and
chlorogenic acid — supporting their potential use in maintaining metabolic health in both
healthy and at-risk populations [64-71].

Polyphenols are widely recognized for their potential role in modulating glucose
metabolism, with numerous clinical studies evaluating the effects of polyphenol-rich foods
such as blueberries, cocoa, and green tea on glycemic control, insulin sensitivity, and
cardiometabolic health [74]. While several trials have demonstrated improvements in
these parameters [75-94], others have reported no significant metabolic changes [95-100],
highlighting the variability of outcomes depending on compound type, dosage, and study
design. In our acute study on healthy individuals, the observed reduction in postprandial
glucose and insulin levels following RL intake may suggest that its polyphenolic content
plays a role in short-term glycemic modulation. Among the polyphenols present in RL,
EA is one of the most abundant and biologically active. Several randomized controlled
trials have investigated its metabolic effects, with EA supplementation at 180 mg/day for
8 weeks resulting in significant improvements in fasting glucose, postprandial glucose,
HbAlc, insulin resistance, and inflammatory and oxidative stress markers in individu-
als with type 2 diabetes [101-104]. Higher doses, administered at 500 mg/day over a
12-week period, have also produced favorable outcomes in individuals with metabolic
syndrome, including improved insulin sensitivity and reductions in triglycerides, BMI, and
blood pressure [105]. Although our study did not target diabetic populations or chronic
outcomes, the findings align with the growing body of evidence supporting the acute
metabolic effects of polyphenols—particularly ellagic acid—and suggest that RL may hold
potential for glycemic regulation, warranting further investigation in both healthy and
at-risk populations.

The strength of our study is reinforced by the use of venous blood sampling rather
than fingerstick collection, as recent evidence [106,107] demonstrates that venous samples
provide more accurate and reliable glucose measurements, likely due to reduced variability
in perfusion and minimized influence from external factors such as temperature, pressure,
and local tissue metabolism, which can affect capillary samples. This study has several
limitations. First, its small sample size, short duration, and recruitment of only healthy
adults aged 22-62 from a single UK location limit the generalizability of the findings across
age groups, populations, and clinical conditions. Second, the study design focused on
only two carbohydrate types (sucrose and glucose) and did not evaluate the glycemic
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impact of more complex carbohydrates or whole foods, nor did it assess long-term markers
such as HbA1lc or insulin resistance (e.g., HOMA-IR). Third, lifestyle factors—such as diet,
physical activity, and habitual polyphenol intake—were not controlled for, and no food
diaries were used, which may have introduced variability in participants’ nutritional status.
Finally, the absence of a placebo group increases the risk of bias. Despite these limitations,
we believe that our data show novel evidence for the impact of polyphenols, in this case
present in RL tea on glucose absorption, at significantly lower concentrations than that
observed previously.

Maintaining optimal postprandial blood glucose and insulin levels is critical for
preventing type II diabetes. Our results suggest that RL may help blunt glycemic and
insulinemic responses to disaccharides. This effect could be due to polyphenolic com-
pounds in the leaf that inhibit carbohydrate-digesting enzymes or glucose transporters,
thereby reducing sugar absorption in the gut. These findings support the potential of
RL as a dietary strategy to modulate glucose metabolism. Future studies should explore
the effects of RL in larger, more diverse populations, including individuals with diabetes
or impaired glucose tolerance, and assess its impact over longer durations using clinical
endpoints such as HbAlc and insulin resistance (HOMA-IR). Trials involving real-world
dietary patterns, a wider range of carbohydrates, and placebo controls will also be essential
to fully understand the clinical relevance and mechanisms of action of RL polyphenols.
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