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Abstract

Background: Metabolic diseases, like type 2 diabetes mellitus and obesity, show a growing
public health concern in Sri Lanka. Genetic predisposition and diet contribute to metabolic
disease risk, but there are limited investigations into the impact of gene–diet interactions
on metabolic disease risk in the Sri Lankan population. In this study, we examined whether
a metabolic genetic risk score (GRS), constructed from 10 single nucleotide polymorphisms
(SNPs), interacts with dietary factors to influence metabolic health indicators in Sri Lankan
adults. Methods: This cross-sectional study included 105 generally healthy adults aged
25–50 years from the GOOD (Genetics of Obesity and Diabetes) study. Anthropometric,
biochemical, and dietary data using food frequency questionnaires were collected using
validated methods. Genotyping was performed using the KASP® assay. The unweighted
GRS was calculated by summing risk alleles across 10 SNPs in the TCF7L2, CAPN10, FTO
KCNJ11, and MC4R genes. Gene–diet interaction analysis was conducted using regression
models adjusted for confounders. Results: A statistically significant interaction was identi-
fied between the 10-SNP metabolic GRS and polyunsaturated fatty acid (PUFA) intake on
waist circumference (P(interaction) = 0.00009). Participants with a high GRS (≥6 risk alleles)
and higher PUFA intake (≥3.1 g/day) exhibited significantly lower waist circumference
(p = 0.047). Conclusions: This study provides novel insights to understand gene–diet inter-
actions affecting metabolic traits in Sri Lankans. The findings suggest that higher PUFA
intake may mitigate genetic susceptibility to central obesity, highlighting the importance of
personalized dietary recommendations for metabolic disease prevention. Further studies
in larger cohorts are warranted to confirm this finding.

Keywords: Sri Lanka; genetic risk score; single nucleotide polymorphism; gene-diet
interaction; metabolic diseases

1. Introduction
Metabolic diseases, including obesity and type 2 diabetes, are characterised by

metabolic dysfunction, leading to conditions such as insulin resistance, hyperglycaemia,
and dyslipidaemia [1]. These disorders result from a complex interplay of genetic, environ-
mental, and lifestyle factors, including sedentary behaviour and poor diet [2]. In South Asia,
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a region predominantly comprising low- and middle-income countries, the prevalence
of metabolic diseases has risen alarmingly [2]. The global burden of metabolic diseases,
including type 2 diabetes mellitus and hypertension, has grown significantly from 2000 to
2019, with the highest mortality rates observed in low to low-middle socio-demographic
index countries [3]. Shifts in urban development, economic growth, and lifestyle have led
to rising cases of obesity and type 2 diabetes mellitus, creating major public health issues
and pressuring health infrastructure [2].

In Sri Lanka, a country with a population of 22 million, obesity and type 2 diabetes
mellitus prevalence has markedly increased [3,4]. A nationally representative study re-
ported that the prevalence of overweight and obesity among Sri Lankan adults was 25.2%
and 9.2%, respectively, based on Asian-specific body mass index (BMI) cut-off values [5].
Additionally, a cross-sectional descriptive study conducted in the Central Province of Sri
Lanka found that 32.3% of men were overweight, and 13.2% were obese, emphasising the
considerable impact of obesity in this setting [6]. A systematic review and meta-analysis
conducted in Sri Lanka reported a pooled prevalence of type 2 diabetes mellitus of 11.8%
in the 2000s, increasing to 17.3% during 2011–2021, highlighting a growing trend over the
last three decades [4]. The same study also showed that the pooled prevalence of type 2
diabetes mellitus in Sri Lanka increased from 5.6% in the 1990s to 17.3% in the 2011–2021
period, underscoring the urgency for effective interventions [4].

The escalation of overweight and obesity in Sri Lanka can be attributed to factors
such as sedentary lifestyles, unhealthy diets, and genetic predisposition. A study assessing
dietary patterns among Sri Lankan adults found that individuals with higher dietary
diversity scores tended to have increased obesity measures. This may be due to greater
consumption of energy-dense foods, resulting in higher overall caloric intake and body
weight [6]. Furthermore, research has identified genetic markers that are significantly
associated with increased susceptibility to obesity in studies conducted among Sri Lankan
populations. For example, variants of the fat mass and obesity-associated gene (FTO) and
melanocortin 4 receptor (MC4R) genes have been shown to be associated with higher BMI
and obesity measures, with urban living amplifying the effect of the FTO polymorphism [7].
Additionally, metabolic disorders are also prevalent among Sri Lankan children, even those
not classified as obese by anthropometric measures, emphasizing the importance of early
detection and intervention [8]. Previous studies have examined gene–diet interactions
on vitamin B12 status in the Sri Lankan population [9,10]. Nonetheless, few studies have
directly explored how metabolic GRS interacts with dietary intake in influencing obesity
and type 2 diabetes mellitus-related traits. Hence, we have constructed a unique 10-single-
nucleotide polymorphism (SNP) metabolic genetic risk score (GRS) to investigate GRS–diet
interactions on metabolic-disease-related traits in the Sri Lankan population.

2. Materials and Methods
2.1. Study Participants

The GOOD (Genetics of Obesity and Diabetes) study is a cross-sectional study con-
ducted in Colombo, Sri Lanka, from April to August 2017 [9]. Healthy individuals aged
25 to 50 years were enrolled in this study. Approval for this study was granted by the
Ethics Committee of the University of Colombo (EC-17-107) and the University of Reading
Research Ethics Committee (17/25) on the 15th of February 2017. Written informed consent
was obtained from each participant before taking part in the study. Participants were
excluded if they had a prior diagnosis of type 2 diabetes mellitus, cardiovascular disease,
or hypertension. Additional exclusion criteria included a BMI exceeding 40 kg/m2 or a
classification of morbid obesity by a physician, being related biologically to other study
participants, currently presenting with communicable disease, women who are lactating or
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pregnant, using dietary or medical supplements, or taking medications that influence lipid
metabolism or blood pressure.

2.2. Anthropometric Measures

An electronic scale (Seca 815, Seca GmbH, Hamburg, Germany) was used to measure
body weight to the nearest 100 g, and height was assessed using a stadiometer (Seca 217,
Seca GmbH, Germany) accurate to the nearest millimetre. BMI was calculated as body
weight (in kg) divided by the square of height (in m). Body fat percentage estimation
was performed using a bioelectrical impedance handheld analyser (Omron Body Fat
Monitor BF306, Omron, Milton Keynes, UK). A flexible measuring tape (Lufkin W606PM®,
Parsippany, NJ, USA) was used to obtain waist and hip circumference measurements.

2.3. Biochemical and Clinical Measures

Following a 12 h overnight fast, a trained phlebotomist collected 10 mL of blood for
analysis. Fasting serum insulin was measured using the chemiluminescent microparticle
immunoassay method on an Architect i1000 analyser (Abbott Laboratories, Abbott Park, IL,
USA). Glycated haemoglobin (HbA1c) levels were quantified through high-performance
liquid chromatography (HPLC) using the BioRad D10 HPLC analyser (BioRad, Hercules,
CA, USA). Plasma fasting glucose levels were assessed using the glucose hexokinase
method using a Beckman Coulter AU5800 analyser (Beckman Coulter®, Brea, Orange
County, CA, USA).

2.4. Dietary Assessment

An interviewer-administered, validated food frequency questionnaire (FFQ) listing
85 food items was used to evaluate participants’ dietary intake [11]. Participants reported
their typical consumption patterns by specifying how often they consumed each item (daily,
weekly, monthly, or never) along with an estimation of portion sizes. This dietary data was
analysed using the NutriSurvey 2007 database (EBISpro, Willstatt, Ortenau, Germany) to
estimate total energy, macronutrient, and micronutrient intakes [12].

2.5. SNP Selection and Genotyping

For this study, 10 metabolic-disease-related SNPs (association with obesity and/or
type 2 diabetes mellitus), Calpain-10 (CAPN10) rs2975760, rs5030952 [13] and rs3792267 [14],
Potassium inwardly rectifying channel, subfamily J, member 11 protein (KCNJ11) rs5219 [15],
Transcription factor 7 like 2 (TCF7L2) rs12255372 and rs7903146 [16–18], Fat mass and
obesity-associated (FTO) rs9939609 and rs8050136 [19–21], near Melanocortin-4 receptor
(MC4R) rs17782313 [22], and Melanocortin-4 receptor (MC4R) rs2229616 [23], were screened
and selected based on previously published candidate gene association and genome-wide
association studies (GWAS) for metabolic-disease-related traits.

Blood samples intended for DNA analysis were transported to the UK on dry ice.
Genomic DNA was extracted from 5 mL of whole blood collected from each partici-
pant. Genotyping was carried out at LGC Genomics using the Kompetitive Allele-Specific
PCR (KASP®) platform (https://www.biosearchtech.com/products/oligos-probes-and-
primers/kasp-genotyping-assays/, accessed on 9 January 2025).

The p-values of Hardy–Weinberg equilibrium (HWE) was calculated for all the 10 SNPs
chosen for the study. The CAPN10 SNP rs3792267 showed deviation from HWE (p = 0.05);
however, it was retained in the analysis. This deviation is unlikely to be due to geno-
typing error, as the KASP™ platform used in this study has a validated accuracy rate
exceeding 99.8%, and all genotyping was independently reviewed by project managers at
LGC Genomics. The observed deviation may instead reflect true biological phenomena
such as population stratification or selection. Additionally, rs3792267 has well-established
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associations with insulin resistance and type 2 diabetes in South Asian and other popu-
lations [14,24], making it biologically relevant to the construction of the metabolic GRS.
Excluding this variant would weaken the comprehensiveness of the risk score [14,24,25].
The KASP™ genotyping technology used in this study has been independently verified to
exhibit an accuracy rate exceeding 99.8%. Validation was carried out at LGC Genomics,
where two project managers independently reviewed the genotyping results to ensure data
accuracy. This thorough assessment eliminated genotyping artifacts as a potential cause for
deviations from Hardy–Weinberg equilibrium (HWE).

2.6. Statistical Analysis

Data were statistically analysed using SPSS version 27 (SPSS Inc., Chicago, IL, USA).
Allele frequencies were determined through gene counting. Normality of the data distribu-
tion was assessed using the Shapiro–Wilk test, and variables that deviated from normal
distribution were log-transformed before further analysis [age, BMI, waist circumference
(WC), hip circumference, systolic blood pressure, diastolic blood pressure, HDL, VLDL,
glucose, insulin, HbA1c, total energy intake, protein intake, carbohydrate intake, fat intake,
fibre intake, polyunsaturated fatty acid (PUFA) intake]. An unweighted GRS was calculated
for each participant by summing the number of risk alleles across all SNPs, applying an
additive genetic model. The 10-SNP metabolic GRS was derived from SNPs in the CAPN10,
KCNJ11, TCF7L2, FTO, and MC4R genes, which have been linked to metabolic disorders.
An unweighted GRS was calculated for each participant by summing the number of risk
alleles across all SNPs, applying an additive genetic model. This method was selected due
to the absence of established effect sizes for these SNPs in South Asian populations. Each
SNP was assigned a value of 0, 1, or 2, representing the number of risk alleles present. The
total GRS for each participant was calculated by summing the risk alleles across all SNPs.
The median number of risk alleles per individual was 6.00. Based on this, participants
were classified into two groups: a low genetic risk group (GRS < 6 risk alleles, n = 50) and
a high genetic risk group (GRS ≥ 6 risk alleles, n = 55). Participants were also grouped
based on central obesity status (centrally obese: WC ≥ 94 cm for men; WC ≥ 80 cm for
women). Independent t-tests were applied to compare continuous variables across genetic
risk categories and central obesity status (WC ≥ 94 cm for men; WC ≥ 80 cm for women).
Association between GRS and anthropometric, biochemical, and dietary parameters was
performed using linear regression analysis. Categorical variables were analysed using the
chi-square test to compare distributions between the two groups.

To evaluate gene–diet interactions, interaction terms (GRS × dietary intake) were
incorporated into regression models. The interaction models were adjusted for age, sex,
BMI, total energy intake, smoking and alcohol intake, where applicable. Since there were
no prior studies examining this 10-SNP metabolic GRS or reporting effect sizes in South
Asian populations, a power calculation could not be conducted. In accordance with
recent recommendations, post hoc power analysis was not conducted, as it is considered
statistically uninformative and potentially misleading [26]. Instead, we report the observed
R2 value from the interaction regression model (R2 = 0.061), which reflects the variance in
waist circumference explained by the genetic risk score, PUFA intake, and their interaction
term. This approach provides a more accurate reflection of model performance in the
context of gene–diet interaction analysis.

3. Results
3.1. Association of Anthropometric, Biochemical and Dietary Characteristics with Central Obesity

Participants were categorised based on central obesity status (centrally obese:
WC ≥ 94 cm for men; WC ≥ 80 cm for women). Statistically significant associations
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were observed between the two groups in metabolic-disease-related traits such as BMI
(p ≤ 0.001), waist circumference (p = 0.039), fat mass (p ≤ 0.001), systolic blood pressure
(p = 0.019), and insulin levels (p ≤ 0.001) (Table 1).

Table 1. Anthropometric, biochemical, and dietary characteristics of centrally obese and non-centrally
obese participants.

Parameter
Mean ± SE p Value

Non-Centrally Obese
(n = 54)

Centrally Obese
(n = 51)

Age (years) 36.87 ± 0.93 39.25 ± 0.97 0.078
BMI (kg/m2) 22.43 ± 0.42 26.81 ± 2.95 <0.001

Waist Circumference (cm) 86.25 ± 1.99 80.34 ± 2.95 0.039
Hip Circumference (cm) 93.50 ± 2.04 87.85 ± 2.85 0.054

Waist Hip Ratio 0.92 ± 0.01 0.91 ± 0.18 0.297
Fat Mass (kg/m2) 23.84 ± 0.86 30.51 ± 0.97 <0.001

Systolic Blood Pressure (mm Hg) 116.96 ± 1.99 123.09 ± 2.20 0.019
Diastolic Blood Pressure (mm Hg) 74.74 ± 2.61 74.92 ± 1.80 0.367

Cholesterol (mg/dL) 202.79 ± 4.89 208 ± 4.69 0.208
High-Density Lipoprotein (mg/dL) 42.81 ± 1.19 42.11 ± 1.09 0.360
Low-Density Lipoprotein (mg/dL) 132.24 ± 4.23 135.45 ± 3.89 0.289

Very-Low-Density Lipoprotein (mg/dL) 28.57 ± 2.71 30.78 ± 2.37 0.163
Glucose (mg/dL) 83.40 ± 0.91 89.92 ± 4.33 0.051
Insulin (pmol/L) 54.86 ± 5.55 81.88 ± 7.72 <0.001

HbA1c (%) 5.33 ± 0.06 5.52 ± 0.13 0.090
Total Energy (kcal) 2048.93 ± 60.54 2130.23 ± 66.23 0.218

Protein (%) 58.78 ± 2.61 59.44 ± 2.42 0.419
Carbohydrate (%) 355.74 ± 10.16 365.02 ± 11.36 0.319

Fat (%) 50.06 ± 2.85 52.93 ± 2.70 0.378
Fibre (g/day) 16.36 ± 1.07 16.88 ± 1.86 0.932
PUFA (g/day) 3.35 ± 0.23 3.40 ± 0.26 0.717

Genetic Risk Score 0.48 ± 0.06 0.56 ± 0.07 0.616
Data presented as mean ± standard deviation. Independent sample t-test was performed to compare the variables
between centrally obese and non-centrally obese participants. The p value < 0.05 using linear regression analysis
(highlighted in bold), shows significant association between the two groups. Centrally obese participants refer
to men with WC ≥ 94 cm and women with WC ≥ 80 cm (WHO). Log transformed variables—BMI (Body
Mass Index), waist circumference (cm), hip circumference (cm), systolic blood pressure (mmHg), diastolic
blood pressure (mmHg), high-density lipoprotein (mg/dL), low-density lipoprotein (mg/dL), very-low-density
lipoprotein (mg/dL), glucose (mg/dL), insulin (pmol/L), HbA1c(%), total energy (kcal), protein (%), carbohydrate
(%), fat (%), fibre (g/day), PUFA (g/day).

3.2. Association of GRS with Anthropometric, Biochemical and Dietary Characteristics

A total of 105 individuals were included in this study. Table 2 presents comparisons
of anthropometric, biochemical, and dietary characteristics between low and high GRS
groups. Supplementary Table S1 shows the allele frequency and HWE for the SNPs in the
study population.

Table 2. Association of Genetic Risk Score (GRS) with anthropometric, biochemical, and dietary
parameters.

Variables

GRS Groups

p ValueLow Risk
(n = 50)

High Risk
(n = 55)

Mean ± SE

BMI (kg/m2) 25.49 ± 0.65 23.71 ± 0.48 0.581
Waist Circumference (cm) 80.95 ± 2.80 85.60 ± 2.22 0.105
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Table 2. Cont.

Variables

GRS Groups

p ValueLow Risk
(n = 50)

High Risk
(n = 55)

Mean ± SE

Hip Circumference (cm) 89.01 ± 2.71 92.34 ± 2.27 0.191
Waist Hip Ratio 0.90 ± 0.14 0.93 ± 0.01 0.528

Fat Mass (kg/m2) 28.68 ± 1.17 25.63 ± 0.84 0.371
Systolic Blood Pressure (mm Hg) 122.18 ± 2.38 117.90 ± 1.86 0.874
Diastolic Blood Pressure (mm Hg) 75.84 ± 1.52 73.90 ± 2.72 0.500

Cholesterol (mg/dL) 206.34 ± 5.18 204.72 ± 4.48 0.936
High-Density Lipoprotein (mg/dL) 42.46 ± 1.17 42.49 ± 1.12 0.213
Low-Density Lipoprotein (mg/dL) 135.51 ± 4.63 132.24 ± 3.52 0.954

Very-Low-Density Lipoprotein (mg/dL) 28.36 ± 2.35 30.80 ± 2.71 0.218
Glucose (mg/dL) 90.34 ± 4.41 83.14 ± 0.87 0.577
Insulin (pmol/L) 76.16 ± 7.54 60.55 ± 6.18 0.135

HbA1c (%) 5.567 ± 0.13 5.29 ± 0.05 0.267
Total Energy (kcal) 2058.13 ± 66.64 2115.96 ± 60.52 0.888

Protein (%) 59.79 ± 2.36 58.48 ± 2.65 0.407
Carbohydrate (%) 355.29 ± 10.95 364.76 ± 10.56 0.376

Fat (%) 50.21 ± 2.58 52.58 ± 2.93 0.839
Fibre (g/day) 16.16 ± 1.13 17.02 ± 1.12 0.530
PUFA (g/day) 3.34 ± 0.23 3.41 ± 0.25 0.069

Data presented as mean ± standard error. Linear regression analysis was used to compare the variables between
low and high genetic risk groups. p < 0.05, statistically significant association between GRS and variables
adjusted for confounders. Log transformed variables—BMI (Body Mass Index), waist circumference (cm), hip
circumference (cm), systolic blood pressure (mmHg), diastolic blood pressure (mmHg), high-density lipoprotein
(mg/dL), low-density lipoprotein (mg/dL), very-low-density lipoprotein (mg/dL), glucose (mg/dL), insulin
(pmol/L), HbA1c (%), total energy (kcal), protein (%), carbohydrate (%), fat (%), fibre (g/day), PUFA (g/day).

3.3. Interaction Between 10 SNP Metabolic GRS and Dietary Factors on Anthropometric and
Biochemical Parameters

Four significant interactions were observed between the 10-SNP metabolic GRS and
dietary factors on metabolic disease-related traits (Table 3). Further stratification of partici-
pants was performed based on dietary intake of study parameters into high and low intake;
statistically significant association (p = 0.015) was only observed for the interaction between
the GRS and PUFA intake on waist circumference Pinteraction ≤ 0.001 (0.00009) (Figure 1).
Binary analysis indicated that individuals with high PUFA intake (≥3.1 gm/day) and
having high GRS (≥6 risk alleles) had a statistically significant lower waist circumference
(p = 0.047) compared to the low genetic risk counterparts. When stratified by PUFA intake
groups, participants in the high PUFA group exhibited a lower mean waist circumference
(81.56 ± 2.79 cm) compared to those in the low PUFA group (85.82 ± 2.06 cm). However,
this difference was not statistically significant (p = 0.125). Yet, this trend supports the
observed gene–diet interaction, wherein individuals with higher genetic risk demonstrated
significantly lower waist circumference when consuming higher levels of PUFA.

Table 3. Gene–diet interactions between 10-SNP metabolic GRS and dietary factors on central obesity
status, and anthropometric and biochemical parameters.

Parameters Total Energy
(kcal)

Protein
(%)

Carbohydrate
(%)

Fat
(%)

Fibre
(g)

PUFA
(g)

BMI (kg/m2) 0.615 0.693 0.572 0.586 0.687 0.478
Waist Circumference (cm) 0.016 0.025 0.004 0.158 0.011 <0.001

Waist Hip Ratio 0.558 0.253 0.545 0.262 0.255 0.305
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Table 3. Cont.

Parameters Total Energy
(kcal)

Protein
(%)

Carbohydrate
(%)

Fat
(%)

Fibre
(g)

PUFA
(g)

Fat Mass (kg/m2) 0.637 0.268 0.424 0.596 0.790 0.907
Systolic Blood Pressure (mm Hg) 0.320 0.373 0.079 0.719 0.241 0.161
Diastolic Blood Pressure (mm Hg) 0.894 0.516 0.880 0.904 0.779 0.970

Cholesterol (mg/dL) 0.337 0.669 0.289 0.350 0.243 0.957
High-Density Lipoprotein (mg/dL) 0.178 0.265 0.464 0.097 0.358 0.606
Low-Density Lipoprotein (mg/dL) 0.231 0.416 0.303 0.088 0.082 0.618

Very-Low-Density Lipoprotein (mg/dL) 0.489 0.863 0.406 0.892 0.894 0.665
Glucose (mg/dL) 0.956 0.872 0.861 0.973 0.996 0.077
Insulin (pmol/L) 0.324 0.069 0.302 0.127 0.190 0.289

HbA1c (%) 0.999 0.997 0.999 0.989 0.999 0.415
Central Obesity 0.222 0.452 0.273 0.215 0.501 0.339

Data is presented as p-value for the interactions between GRS and dietary factors on anthropometric and biochem-
ical parameters. The p value < 0.05 (highlighted in bold), shows significant gene-diet interactions. Gene–diet
interaction models were adjusted for relevant confounders including age, sex, BMI (if not the dependent variable),
alcohol use, smoking status, and total energy intake where applicable. Log transformed variables—BMI (Body
Mass Index), waist circumference (cm), hip circumference (cm), systolic blood pressure (mmHg), diastolic blood
pressure (mmHg), high-density lipoprotein (mg/dL), low-density lipoprotein (mg/dL), very-low-density lipopro-
tein (mg/dL), glucose (mg/dL), insulin (pmol/L), HbA1c (%), total energy (kcal), protein (%), carbohydrate (%),
fat (%), fibre (g/day), PUFA (g/day).

 

Figure 1. Binary analysis for the interaction between 10-SNP metabolic GRS and PUFA (%) intake
on waist circumference (cm). Participants were stratified by PUFA intake using a median cutoff
of 3.1 g/day (log-transformed value ≈ 0.49). Participants were stratified into four groups: Low
GRS/Low PUFA (n = 27); Low GRS/High PUFA (n = 23); High GRS/Low PUFA (n = 21); High
GRS/High PUFA (n = 34). This threshold reflects typical intake levels among Sri Lankan adults in this
study and was chosen for internal stratification. Low GRS (<6 risk alleles); high GRS: (≥6 risk alleles).
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4. Discussion
The study explored the interaction between a 10-SNP metabolic GRS and dietary

factors on metabolic-disease-related traits in a Sri Lankan population. A statistically signif-
icant interaction was observed between the 10-SNP metabolic GRS and PUFA intake on
waist circumference Pinteraction ≤ 0.001 (0.00009), whereby individuals with higher PUFA
intake (≥0.49 g/day) and a high GRS (≥6 risk alleles) exhibited significantly lower waist
circumference (p = 0.015) than their counterparts with lower genetic risk. To our knowledge,
this is the first study in Sri Lanka to examine gene–diet interactions using this 10-SNP
metabolic GRS. These results highlight the need to account for genetic susceptibility along-
side dietary habits when evaluating central obesity risk. From a public health perspective,
this evidence highlights the potential of integrating genetic risk assessment into nutritional
guidelines. Encouraging PUFA-rich dietary patterns in genetically predisposed individuals
may represent an effective intervention to reduce obesity and metabolic disease prevalence
in Sri Lanka. As metabolic diseases continue to rise, incorporating precision nutrition strate-
gies into public health policies may offer more effective, sustainable solutions to combat
metabolic diseases, tailored to the genetic and dietary contexts of the local population.

The ten SNPs selected for constructing the metabolic GRS were chosen based on both
their established associations with metabolic diseases and their functional roles in relevant
biological pathways, as detailed below. Variants in the CAPN10 gene (rs3792267, rs2975760,
and rs5030952) have been associated with impaired insulin secretion and increased type 2
diabetes mellitus risk across multiple ethnic groups, including Asians [14,24]. The KCNJ11
rs5219 variant has been shown to affect pancreatic β-cell function and implicated in type
2 diabetes mellitus susceptibility [15]. Similarly, TCF7L2 polymorphisms (rs12255372
and rs7903146) are among the strongest genetic risk factors for type 2 diabetes mellitus,
influencing insulin secretion and glucose homeostasis [16,27,28]. In relation to obesity, the
FTO variants (rs9939609 and rs8050136) [19] and MC4R variants (rs17782313 and rs2229616)
have been widely recognized for their roles in regulating appetite and energy balance [29].
Importantly, studies conducted in Sri Lankan and broader South Asian populations have
demonstrated associations between FTO and MC4R variants and increased adiposity,
highlighting the relevance of these loci in this ethnic context [7]. Given the alarming
rise in obesity and type 2 diabetes mellitus in Sri Lanka, largely driven by rapid lifestyle
changes, understanding the genetic underpinnings is crucial [3,4]. Therefore, selecting
SNPs with established functional significance in metabolic pathways ensures that the GRS
reflects the biological mechanisms underlying metabolic disease risk in this population.
Moreover, a multi-SNP GRS approach offers a more comprehensive capture of genetic
susceptibility compared to analysing single variants [30], thereby providing valuable
insights for developing precision nutrition strategies targeted at South Asians.

In this study, we identified a significant interaction between PUFA intake and the
10-SNP metabolic GRS on waist circumference, suggesting that higher PUFA consumption
may attenuate the adverse effects of genetic predisposition to central obesity. Notably, none
of the individual SNPs included in the GRS showed significant associations with metabolic
traits when analysed independently using logistic regression (Supplementary Table S2).
This underscores the advantage of employing a cumulative GRS, which can better capture
the polygenic architecture of complex traits. The significant interaction observed between
the GRS and PUFA intake suggests that the combined genetic burden may have a more
pronounced effect on metabolic outcomes than any single variant alone, particularly in
the context of dietary modulation. Additionally, when stratified by PUFA intake, partic-
ipants in the high PUFA group had a lower mean waist circumference (81.56 ± 2.79 cm)
compared to the low PUFA group (85.82 ± 2.06 cm). However, this difference was not
statistically significant (p = 0.125). This indicates that PUFA intake alone is not associated
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with WC in the overall cohort. However, the observed significant gene–diet interaction
between PUFA intake and the metabolic GRS on waist circumference (Pinteraction < 0.001),
suggests that the relationship between PUFA intake and waist circumference is influenced
by genetic background.

The World Health Organization (WHO) recommends that PUFA intake should con-
tribute 6–11% of total energy intake [31], which translates to approximately 13–24 g/day
for an average 2000-calorie diet. This includes both omega-3 and omega-6 fatty acids,
emphasizing their role in metabolic health and disease prevention [32,33]. However, par-
ticipants had a median PUFA intake of only 3.1 g/day and our study’s “high PUFA”
group still falls below global recommendations of required daily PUFA intake. It is rec-
ommended that higher PUFA intake in the diet could prove beneficial. Our findings align
with previous research indicating the beneficial role of PUFAs in modulating obesity risk
through mechanisms such as improved lipid metabolism, enhanced insulin sensitivity, and
anti-inflammatory effects [34–36]. Collectively, these biological effects suggest that PUFA
intake may counteract genetic susceptibility to central obesity, as reflected by reduced
waist circumference, by promoting favourable metabolic pathways, thereby supporting the
gene–diet interaction observed in our study.

Our findings show that high PUFA intake may attenuate the impact of genetic vari-
ants predisposing to central adiposity. Several genes included in the 10-SNP metabolic
GRS—notably FTO, MC4R, TCF7L2, CAPN10, and KCNJ11—influence pathways related to
appetite regulation, adipocyte differentiation, and insulin signalling [37–40]. For instance,
FTO and MC4R variants were associated with hyperphagia and increased fat storage [29,41],
while TCF7L2 variants affect insulin secretion and glucose metabolism [16]. Through ac-
tivation of PPAR-γ and stimulation of fatty acid oxidation, PUFAs may counteract the
obesogenic effects of these genetic variants by redirecting energy metabolism toward re-
duced fat deposition and improved insulin action [36,42]. Additionally, PUFAs possess
anti-inflammatory properties that may mitigate the chronic low-grade inflammation often
observed in individuals with a high genetic risk for central obesity [33,34]. Therefore,
higher PUFA intake could function as an environmental modifier, buffering the genetic
predisposition to central adiposity and explaining the observed lower waist circumference
among participants with high GRS and higher PUFA consumption in our study.

Previous research has demonstrated that dietary fat composition interacts with genetic
variants to influence insulin sensitivity and lipid profiles [43,44]. In Sri Lanka, dietary
patterns are predominantly characterized by high consumption of carbohydrates, mainly in
the form of polished white rice, starchy vegetables, and sugary beverages [12]. Sri Lankan
cuisine typically includes rice paired with coconut-milk-based curries, lentils, and small
portions of meat or fish, resulting in diets that are energy-dense and rich in saturated fats,
while being relatively low in polyunsaturated fats [7,12]. Coconut oil, a commonly used fat
in Sri Lankan cuisine, is a major contributor to the elevated saturated fat levels in traditional
diets. Coconut oil is widely used for cooking, frying, and as an ingredient in curries and
confectionery, leading to a diet rich in saturated fatty acids [12]. Approximately 80–90% of
the fatty acids in coconut oil are saturated, primarily lauric acid, which has been associated
with elevated LDL cholesterol levels, a well-established risk factor for cardiovascular
and metabolic diseases [45]. Although some studies have suggested that coconut oil
may increase HDL cholesterol and possesses neutral effects on certain cardiometabolic
outcomes, the overall high intake of SFA is concerning, particularly in populations with
heightened genetic susceptibility to metabolic diseases [46,47]. Moreover, frequent snacking
on sweetened foods and limited intake of fruits and vegetables further contribute to an
imbalance in macronutrient distribution [5]. This imbalance results in a diet that is high
in carbohydrates and saturated fat, but low in PUFAs—a pattern that has been associated
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with insulin resistance, increased adiposity, and dyslipidaemia, particularly in South Asian
populations [3,48]. High carbohydrate intake, common in South Asian diets, has been
linked to increased adiposity, insulin resistance, and dyslipidaemia [3,48]. Conversely,
PUFAs have demonstrated protective effects against these metabolic disturbances [49].

Given this dietary context in Sri Lanka [12], our study’s finding that individuals
with high genetic risk for metabolic disease had significantly lower waist circumference
when consuming higher levels of PUFA is especially relevant. The median PUFA intake
observed in our cohort (~3.1 g/day) is substantially lower than WHO’s recommended
PUFA intake of 13–24 g/day for a standard 2000 kcal diet [31], reinforcing the need for
targeted nutritional interventions. Encouraging the inclusion of locally available PUFA-rich
foods may help increase intake levels. In the Sri Lankan context, such sources include
small oily fish, like sardines and mackerel, flaxseeds, PUFA-enriched cooking oils (such as
soybean or sunflower oil), and eggs fortified with omega-3 fatty acids. Incorporating these
foods into daily diets may offer a culturally appropriate means of mitigating genetic risk
for central obesity. Given the genetically heightened susceptibility to metabolic disorders
in Sri Lankans [7,30] population-wide shifts toward PUFA-rich dietary patterns may not
only improve metabolic outcomes but also help to counteract gene-driven obesity risk.
These findings support the integration of nutrigenetic insights into public health policies
and dietary guidelines for Sri Lanka, enabling the development of culturally relevant and
genetically informed interventions to address the burden of central obesity and related
non-communicable diseases.

One of the strengths of this study is the use of a GRS approach, that captures the
cumulative effect of multiple SNPs rather than focusing on individual genetic variants. This
method provides a more comprehensive assessment of genetic predisposition to metabolic
diseases. Additionally, this is the first study using this 10-SNP metabolic GRS to examine
gene–diet interactions in a Sri Lankan cohort, contributing valuable insights to the field of
nutrigenetics in South Asia. However, the limitations should also be acknowledged. First,
the sample size for this study was relatively small, which may limit the generalizability
of the findings and reduce statistical power to detect additional significant interactions.
Larger studies are needed to validate these results in broader Sri Lankan and South Asian
populations. Although the relatively modest sample size in our study is a limitation, the
post hoc sensitivity analysis conducted using G*Power 3.1 showed that our study was
sufficiently powered (77%) to detect small-to-moderate interaction effects. The analysis
suggests that the sample size of 105 participants was adequate to observe meaningful
gene–diet interaction effects, even within the context of a limited cohort. A key limitation
of our study is the modest sample size (n = 105), which may reduce the statistical power to
detect subtle interaction effects. However, rather than rely on post hoc power calculations,
we emphasize the significance of the observed gene–diet interaction and its effect size
(R2 = 0.061), which supports the biological plausibility of the findings [26]. While larger
sample sizes would enhance generalizability and precision, studies with sample sizes in this
range can still yield meaningful insights, particularly in exploratory gene–diet interaction
studies involving well-defined cohorts. Secondly, although the FFQ used was validated
for this population, it is inherently prone to recall bias and misreporting. Consequently,
absolute estimates of dietary intake—especially of micronutrients or specific fatty acids
like PUFA—may be imprecise. Future studies should consider incorporating objective
biomarkers of dietary intake, such as plasma fatty acid levels, to enhance the validity of
gene–diet interaction analysis. Another limitation is the use of an unweighted GRS, which
does not account for the relative contribution of each SNP. However, given the lack of effect
size data for South Asian populations, the unweighted approach avoids bias introduced by
applying effect sizes derived from unrelated populations. Finally, the cross-sectional nature
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of the study precludes causal inferences, emphasizing the need for longitudinal studies to
confirm the observed associations.

The findings of this study underscore the potential of personalized nutrition in miti-
gating metabolic disease risk in genetically susceptible individuals. Given the high burden
of metabolic diseases in Sri Lanka, integrating genetic screening with dietary interventions
could offer more effective strategies for disease prevention and management. Future studies
should explore gene–diet interactions in larger cohorts, incorporate additional dietary com-
ponents, and examine the long-term effects of dietary modifications on metabolic health.

5. Conclusions
This study is the first to report a significant interaction between this 10-SNP metabolic

GRS and PUFA intake on waist circumference among a Sri Lankan population. Our find-
ings reveal that individuals with a higher genetic risk of metabolic disease may benefit
from higher dietary PUFA intake, as it was linked with a reduction in waist circumfer-
ence, a core measure of central obesity. These results emphasize the potential of targeted
dietary strategies in mitigating genetic susceptibility to metabolic diseases. In the context
of gene–diet interactions, particularly in a South Asian population, this study provides
evidence to support the development of personalized nutrition strategies and public health
interventions tailored to genetic susceptibility and traditional dietary patterns. Future
longitudinal and interventional studies with larger cohorts are essential to validate and
expand upon these findings.
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