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Abstract. Poor air quality and precipitation change are strong, rapidly changing, and possibly linked drivers of
physical hazards in sub-Saharan Africa. Future projections of sub-Saharan air quality and precipitation remain
uncertain due to differences in model representations of aerosol, aerosol—precipitation interactions, and unclear
future aerosol emission pathways. In this study, we evaluate the performance of CMIP6 models in simulating
PM, 5, aerosol optical depth (AOD), and precipitation over Africa relative to a range of observational and re-
analysis products, including novel observational datasets, over the 1981-2023 period. While models accurately
capture the seasonal cycle of PM» 5 concentrations over most regions, the concentration magnitudes show strong
intermodel diversity. Dust AOD shows a generally accurate seasonal spatial distribution, with multi-model mean
(MMM) pattern correlation coefficients within 0.77-0.94, despite strong intermodel diversity in magnitude. Sea-
sonal spatial patterns of non-dust AOD are poorly represented, with MMM pattern correlation coefficients of
0.25-0.58 and the poorest performance during September through November. Emission inventory inaccuracies
may explain systematic biases for non-dust AOD fields, with differences in circulation and precipitation patterns,
as well as aerosol treatment causing intermodel diversity. The magnitude and annual progression of precipitation
over both the east and west African monsoon regions are well captured, though there is poorer performance in
simulating the east African monsoon. Biases found relate to the intertropical convergence zone, more apparent
over east Africa, and rainfall magnitude, more apparent over west Africa. This evaluation highlights strong in-
termodel diversity in the representation of African air quality and climate and identifies model performance over
sub-Saharan Africa and the reasons behind the biases as critical gaps to address for improving confidence in
climate projections.
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1 Introduction

Africa is a region of large spatial heterogeneity in both air
quality and precipitation (Hulme, 2001; Bauer et al., 2019).
Variations in air quality are not well characterised due to a
scarcity of long-term observations (United Nations Environ-
ment Programme, 2017). However, initial studies of individ-
ual regions in Africa (Kalisa et al., 2023; Kebede et al., 2021)
have shown high spatial and temporal variability on interan-
nual and multidecadal timescales. Precipitation variability is
manifested in severe drought conditions and floods, often af-
fecting the same region from year to year (Liidecke et al.,
2021).

The variability of air quality and precipitation both have
strong impacts on public health. For example, air pollution
was the second-highest risk factor for mortality across Africa
in 2019 (Health Effects Institute, 2022; Xing et al., 2016),
placed above that associated with unsafe water, sanitation,
and hygiene. Africa exhibits high levels of PM, 5 (McFar-
lane et al., 2021; Raheja et al., 2023; Westervelt et al., 2023)
— aerosols with an aerodynamic diameter of less than 2.5 pm
(Seinfeld and Pandis, 2016). High concentrations of PM; 5
are a known cause of increased morbidity and mortality
(Xing et al., 2016), so capturing the evolution of PMj 5 is
essential for mitigation strategies. The second leading cause
of illness burden in most of sub-Saharan Africa is household
air pollution from solid fuels, which adds to ambient partic-
ulate matter pollution (Katoto et al., 2019). Air quality is un-
dergoing changes, with a continent-wide increase in aerosol
emissions associated with population growth, urbanisation,
and industrialisation (Wei et al., 2021), demonstrated by in-
creasing aerosol optical depth (AOD) and higher PM> 5 lev-
els over the majority of Africa (Turnock et al., 2020). Africa
has undergone, and continues to undergo, strong variations
in annual precipitation. Drought in the Sahel from 1968 to
1973 was marked by a sudden shift from the wetter regime
of the 1960s to a multi-year dry anomaly (Hulme, 2001).
The drought was found to be directly linked to an estimated
100000 deaths (Copans, 2019), as well as leading to the
loss of 40 %—60 % of livestock in the region (Glantz, 1976).
While annual mean precipitation has steadily recovered since
1983 in the western Sahel (Porkka et al., 2021), the eastern
coast of Africa has experienced further drought conditions,
with the Greater Horn of Africa undergoing its most severe
drought in 40 years between 2018 and 2023 (World Health
Organisation, 2024).

PM, 5, AOD, and precipitation all exhibit inter-linkages
at different spatial scales. PM> 5 concentrations relate to the
large-scale behaviour of AOD and precipitation patterns, as
well as local aerosol emissions. AOD and PM, 5 concentra-
tions are closely linked, as both are measures of particulate
matter in the atmosphere. However, the variables do not nec-
essarily align spatially with each other, due to differences
in sources and compositional differences, and the fact that
PMj; 5 is generally measured at the surface, whereas AOD is
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a whole-column measurement that also takes aerosol radia-
tive properties into account.

Absorbing and scattering aerosols also strongly affect pre-
cipitation, through changes to the local energy balance and
lapse rates (Williams et al., 2023; Samset, 2022), and induce
radiative forcing directly through the extinction of incom-
ing solar radiation and indirectly through the modification of
cloud microphysical properties (Boucher et al., 2013; Sam-
set et al., 2018; Westervelt et al., 2020). Enhanced aerosol
levels increase cloud condensation nuclei (CCN) concentra-
tions (Twomey et al., 1984), resulting in more numerous but
smaller cloud droplets, which increases cloud albedo and po-
tentially increases cloud lifetime (Twomey, 1977) and can af-
fect the efficiency of precipitation formation and the size dis-
tribution of raindrops (Westervelt et al., 2017; Gupta et al.,
2023; Stier et al., 2024; Levin and Cotton, 2008). In addi-
tion, temperature profile modifications through heating due
to absorbing aerosols alter atmospheric stability, changing
cloud cover and therefore impacting the Earth’s albedo (Ra-
manathan and Carmichael, 2008). The strongly regional forc-
ing due to aerosol changes leads to changes in the atmo-
spheric circulation, both locally and remotely. Therefore, the
representation of aerosol processes is integral to capturing
regional changes from anthropogenic forcing.

Precipitation also impacts air pollution, causing removal
of aerosols from the atmosphere via wet deposition (Fuzzi
et al., 2015; Wang et al., 2023) and influencing dust emis-
sions via soil moisture, so changes in precipitation can cause
feedbacks. Thus, it can be expected that relationships exist
between African air quality and precipitation, though the re-
sponse of precipitation to changes in aerosol emissions is de-
pendent on the background state of both the emission and
response region (Persad, 2023). From the interdependencies
noted between air quality and precipitation, the performance
of models in replicating seasonal spatial patterns and the an-
nual cycle may be related. For example, a model that fails to
capture a peak in annual rainfall may also be missing the wet
deposition of aerosol caused by the increased precipitation.
These links are difficult to determine but are crucial for the
continued improvement and development of models.

Performance in simulating airborne particulate matter is
very diverse across Coupled Model Intercomparison Project
Phase 6 (CMIP6) models (Eyring et al., 2016), as varying
representations and parameterisations of differing numbers
of aerosol species result in strong differences in AOD be-
tween models (Fiedler et al., 2023). For example, Zhao et al.
(2022) found that global dust emissions varied by a factor of
5 across 16 CMIP6 models and noted large uncertainties in
the simulated dust processes, relating to differences in soil
moisture, surface wind speeds, and the dust schemes used.
Aerosol processes are represented differently across models,
contributing to structural uncertainty. Evaluation of a range
of CMIP6 models will aid understanding of historical differ-
ences between models and potential future responses.

https://doi.org/10.5194/acp-25-10523-2025



C. A. Toolan et al.: CMIP6 simulations of aerosol optical depth, PM> 5, and precipitation over Africa

Over Africa, aerosol emissions are spatially heterogenous,
both in terms of the dominant species and magnitude of
aerosol loads, as shown in Fig. 1. The frequent biomass burn-
ing in tropical forests and intense dust storms from the Sahara
Desert are both strong sources of atmospheric pollutants for
gaseous and aerosol species (Booyens et al., 2019). There
is disagreement in observations and reanalysis datasets for
AQOD over Africa, for example, the factor of 2 difference
in dust burden between the CAMS and MERRA?2 reanaly-
ses (Zhao et al., 2022). Issues with representation of atmo-
spheric dust are an important source of intermodel disagree-
ment over Africa, as dust contributes strongly to AOD over
northern areas of the continent, as seen in Figure 1. In addi-
tion, nitrate aerosol, one of the major contributors to PMj 5,
as well as AOD, is not modelled by most CMIP6 models
(Archer-Nicholls et al., 2023), contributing to strong inter-
model spread and worsened performance compared to ob-
servations. For example, Pan et al. (2015) found that mod-
els without representation of nitrate aerosols severely under-
estimated AOD over India. Evaluation of PM, 5 levels for
CMIP6 over Africa has not yet been performed due to a lack
of appropriate observational data, and this analysis presents
an opportunity to better understand the projections of health
risk from PM3 5; if the CMIP6 models are producing incor-
rect PM» 5 concentrations, then this could lead to overes-
timating or underestimating how often dangerous levels of
PM, 5 are reached, with knock-on effects on estimates of
mortality.

CMIP6 models are known to have biases relative to ob-
servations in both African rainfall and air quality (Wood-
ward et al., 2022). Precipitation biases occur both spatially,
for example, in the southward bias of the tropical rainband,
which has persisted for several generations of CMIP (Bock
et al., 2020), and temporally, for example, the progression of
the monsoons over east and west Africa (Annor et al., 2023;
Ayugi et al., 2021). The spatial biases are mostly found over
west Africa, whereas biases in the timing of the seasonal cy-
cle are found over both east and west Africa. Finding the root
cause of these precipitation biases has proven difficult; pre-
vious work has suggested that sea-surface temperature (SST)
biases could be to blame (Schwarzwald et al., 2023). Other
proposed causes include difficulties simulating the Saharan
heat low (SHL) (Dixon et al., 2017), as well as the merid-
ional soil moisture gradient between the Sahara and Gulf
of Guinea (Cook, 1999). These previous studies focused on
either east or west Africa, while this study applies consis-
tent evaluation approaches across the continent, focussing on
both regions.

As there are long-standing biases in precipitation over
Africa in CMIP6 that are not explained by coupled SST bi-
ases (Schwarzwald et al., 2022), there may also be inter-
linkages between the performances of precipitation and air
quality over Africa, given established interactions between
the two. The reasons behind the biases in air quality and pre-
cipitation over Africa are not well understood, and this is
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a clear area for improvement in CMIP6 models. These bi-
ases mean that future projections, which also contain high
uncertainty for African aerosol emissions under different so-
cioeconomic pathways, are very poorly constrained (Wells
et al., 2023). In addition, as the mechanisms through which
the two affect each other are not well quantified (Myhre et al.,
2013a), the uncertainty in the future evolution of air quality
and precipitation is compounded. There is a need for models
that can capture air quality and precipitation over Africa ac-
curately to inform policy-making and adaptation strategies
in the face of climate change. Due to the risks to human
health from changes in air pollution and precipitation, as well
as their potential feedback interactions, both factors are dis-
cussed jointly in this study.

In this study, our aim is to identify areas of strong and
weak performance in CMIP6 models over Africa so that
understanding of the biases and overall performance can
be used to understand how CMIP6 models respond to fu-
ture emissions pathways. We demonstrate the performance
of CMIP6 models in replicating PM; 5 concentrations in 12
cities around Africa through time series presenting both the
annual cycle and interannual variability. Expanding into the
representation of larger-scale features, we evaluate the per-
formance of CMIP6 models for AOD, examining the sea-
sonal spatial distribution of AOD over the whole of Africa,
as well as the performance of regional annual AOD cy-
cles and their interannual variability. Exploring the perfor-
mance of CMIP6 models over Africa further, the spatial dis-
tribution of rainfall by season over the whole of Africa in
CMIP6 models is evaluated, as well as the representation of
regional African monsoon systems. Changes in PM» 5 con-
centrations are available only from 2016 onwards due to ob-
servational data scarcity over Africa (Shindell et al., 2022).
This study evaluates all CMIP6 models for which the neces-
sary simulations were available while also highlighting mod-
els participating in the Regional Aerosol Model Intercom-
parison Project (RAMIP) (Wilcox et al., 2023). RAMIP con-
sists of experiments designed to quantify the role of global
and regional aerosol emissions changes in near-term projec-
tions, including experiments that focus on African emission
changes. Given that aerosols have strong impacts on African
precipitation, evaluating the performance of these models
over Africa will be instrumental in interpreting the results of
RAMIP. CMIP6 models are most suitable for large-scale cli-
mate studies and are limited in their ability to capture small-
scale (e.g. city-scale) processes that impact air quality, which
is in the remit of regional models such as the Weather Re-
search and Forecasting model coupled with Chemistry (Grell
et al., 2005) or Community Multiscale Air Quality model
(US EPA, 2024). However, the use of CMIP6 models pro-
vides an opportunity to link air quality to large-scale precip-
itation and circulation changes, as regional models generally
cannot simulate global-scale drivers of air quality changes
(Turnock et al., 2020; Guo et al., 2021).

Atmos. Chem. Phys., 25, 10523-10557, 2025
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Figure 1. AOD contributions from organic aerosol (OA) (green), black carbon (BC) (black), sulfate (SO4) (purple), and dust (yellow) over
Africa for SON in the CAMS reanalysis over 1981-2023. Numbered points indicate the location of the PM; 5 observation stations used in

this analysis (see Table 1 for details of locations). AOD is unitless.

In Sect. 2.1 we introduce the observational and reanaly-
sis datasets used for this study, including the introduction
of a new PMj 5 observation dataset for Africa. These obser-
vations are composed of in situ measurements of PM; s for
several regions in east and west Africa, and, while each lo-
cation has a different start date for its time series, the earliest
measurements are from 2016. This dataset has not yet been
compared to CMIP6 model output, and so this study is the
first to take the opportunity for observation-based evaluation
of CMIP6 performance for PMj; 5 over Africa. In Sect. 2.2,
we introduce the models evaluated. In Sect. 2.3, we dis-
cuss the evaluation metrics used. Section 3 shows the per-
formance of the ensembles of models used, arranged by vari-
able. In Sect. 3.2, we evaluate the performance of CMIP6
models against surface observations of PMj; 5 at different
U.S. Embassy locations in Africa to ascertain model biases
and intermodel differences. In Sect. 3.3, the AOD perfor-
mance of CMIP6 models against reanalysis is evaluated, and
in Sect. 3.4, the performance of precipitation in CMIP6 mod-
els against observations is evaluated. Section 4 summarises
these results, discusses notable examples of linkages between
biases found, and explores how our results relate to future
work on climate responses over Africa.

2 Methods

The analysis consists of an evaluation of the present day
period in CMIP6, comprising 1981-2023, from a combina-
tion of the historical and SSP3-7.0 experiments over Africa,
against various observation and reanalysis datasets. The eval-
uation data are explained in Sect. 2.1, the models are listed
in Sect. 2.2, and the methods used are described in Sect. 2.3.

Atmos. Chem. Phys., 25, 10523-10557, 2025

2.1 Observational and reanalysis datasets

The datasets used for the evaluation performed in this study
are discussed in the following subsections. They include a
range of in situ and remote-sensing observations and meteo-
rological and composition reanalyses.

2.1.1 Station PM> 5 measurements

Data from surface air quality monitors at U.S. Embassy lo-
cations in Africa (noted in Table 1) were used for PMj 5
evaluation and obtained from the AirNow database (AirNow,
2021). These measurements began in 2016 at the earliest, al-
though some stations record data only from 2023 onwards.
There are seven stations in west Africa and four in east
Africa, as shown in Fig. 1. The datasets for east Africa are
longer, extending back to 2016 and 2017 for Addis Ababa
and Kampala. At each air quality monitoring site, Met One
Beta Attenuation Monitor 1020 (BAM-1020) sensors are in-
stalled, and each sensor is operated by the U.S. State Depart-
ment. The BAM-1020 is a certified U.S. EPA Federal Equiv-
alent Method monitor for ambient PM, 5 concentrations (U.
S. Environmental Protection Agency, 2011), which outputs
real-time (hourly or finer) measurements of PM3 5. The sen-
sor uses beta ray attenuation by a filter-tape medium laden
with size-selected particles sampled from ambient air to cal-
culate the PM> 5 concentration (Hagler et al., 2022).

2.1.2 Reanalysis AOD data

The Copernicus Atmospheric Monitoring Service (CAMS)
reanalysis product (for the 2003-2023 time period, with a
resolution of 0.75° x 0.75°) is used for AOD evaluation (In-
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Table 1. Positions of the U.S. Embassies with AirNow PM, 5 monitors that are used in this analysis, and the measurement period available
for this analysis. The numbers in the final column relate to points shown in Fig. 1 and panel numbers in Fig. 3.

City Country Latitude (°N)  Longitude (°E) Measurement period Number
Abidjan Cote d’Ivoire 5.334 —3.976  February 2020-December 2022 1
Abuja Nigeria 9.041 7.477  February 2020-December 2022 2
Accra Ghana 5.580 —0.171  January 2020-December 2022 3
Addis Ababa  Ethiopia 9.059 38.764  August 2016—August 2022 4
Bamako Mali 12.630 —8.019  October 2019-December 2022 5
Cairo Egypt 30.041 31.234  May 2022-December 2022 6
Dakar Senegal 14.745 —17.526  February 2022-December 2022 7
Kampala Uganda 0.300 32.592  February 2017-December 2022 8
Kigali Rwanda —1.936 30.078  February 2022-December 2022 9
Lagos Nigeria 6.441 3.407  January 2021-October 2022 10
Nairobi Kenya —1.234 36.811  July 2021-December 2022 11
Ouagadougou  Burkina Faso 12.305 —1.497  January 2022-December 2022 12

ness et al., 2019). This dataset was used because it offers
gridded data, facilitating the evaluation of AOD in regions of
Africa with sparse observations from in situ monitoring sta-
tions such as AERONET (AERONET, 2024). It assimilates
data from multiple satellite retrievals, so AOD in the reanaly-
sis is well constrained by observations. The use of the reanal-
ysis dataset reduces errors due to issues that satellite-based
observation datasets such as MODIS face, such as surface
brightness over deserts causing a lack of contrast between
aerosol signal and the underlying surface brightness (Wagner
et al., 2010) or systematic biases being present when clouds
interfere with optical measurements (Lee et al., 2013). While
the dust optical depth over northern Africa is known to be
too low, the CAMS reanalysis has been shown to perform
well for mean AOD over this region, as well as capturing cli-
matology and variability (Kapsomenakis et al., 2021). In this
study, we evaluate both the AOD due to dust at 550 nm (dust
AOD) and the AOD due to aerosols excluding dust at 550 nm
(non-dust AOD; i.e. the total AOD minus dust AOD) to iden-
tify differences in performance between the dust and non-
dust AODs. We evaluate AOD instead of aerosol burden be-
cause dust AOD and non-dust AODs are widely available for
the majority of CMIP6 models and are directly comparable to
the AOD reanalysis, whereas aerosol burden observations are
scarce (Fosu-Amankwabh et al., 2021). In addition, the AOD
in CAMS is more tightly constrained than aerosol burden,
through the assimilation of satellite observations (Garrigues
et al., 2022), although the speciated AODs are more depen-
dent on the underlying model (Inness et al., 2019).

The evaluation of dust AOD should be understood in the
context that dust AOD is not directly constrained by ob-
servations. Dust AOD in CAMS is a derived field, inferred
through aerosol speciation methods that use measurements
of the fine-mode fraction, Angstrom exponent, and single-
scattering albedo. Errors in reanalysis dust AOD can be in-
troduced through assumptions about aerosol speciation, the
assumptions and errors during the measurement itself, and
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model-dependent processes with their associated uncertain-
ties (Xian et al., 2020; Zhao et al., 2022).

Zhao et al. (2022) notes that accurate representation of
dust AOD in reanalysis relies on simulating correct amounts
of dust relative to other aerosol species. Dust AOD is bet-
ter represented in areas where dust dominates, for example,
over the Sahara, but is less well represented in regions where
there are similar contributions from different aerosol species
(Zhao et al., 2022).

Uncertainties in dust AOD for different datasets are dis-
cussed in detail in Vogel et al. (2022), which notes regional
uncertainty for dust AOD in CAMS and MERRA-2. Speci-
ated AOD is also subject to uncertainties in total AOD, and
north Africa is one of the regions of highest AOD uncertainty
for the satellite and reanalysis datasets (Vogel et al., 2022).
In addition, reanalysis and observational datasets show worse
agreement over bright and heterogeneous surfaces such as
northern Africa (Garrigues et al., 2022).

2.1.3 Precipitation observation and reanalysis datasets

The Climate Hazards group InfraRed Precipitation with Sta-
tion data (CHIRPS) (Funk et al., 2015) dataset, a land-
only gauge-based rainfall dataset produced from blended sta-
tion data (1981-2023, 0.05° x 0.05°), CRU (Mitchell and
Jones, 2005) (1901-2017, 0.5° x 0.5°), ERAS5 (Hersbach
et al., 2020) (1940-2023, 0.25° x 0.25°), and GPCP (Huff-
man et al.,, 2023) (1979-2023, 2.5° x 2.5°), was consid-
ered when choosing a reference observational or reanalysis
dataset for this analysis. The CHIRPS product was chosen
because it was specifically designed to monitor rainfall in the
tropics, and it has been shown that CHIRPS has good per-
formance relative to other datasets used to evaluate and mon-
itor Africa and the tropics (Ayehu et al., 2018). Beck et al.
(2017) found that CHIRPS ranked among the best perform-
ers in capturing precipitation indices and long-term precipi-
tation means but also noted that it underestimated the peak

Atmos. Chem. Phys., 25, 10523-10557, 2025
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magnitude of rainfall and produced spurious drizzle — which
was found to be a common bias among the reanalyses eval-
uated. CHIRPS is intended for environmental monitoring, so
its performance in capturing low-frequency climate variabil-
ity is not well known. However, trends are seen to be well
represented over east Africa (Peterson et al., 2014), and while
CHIRPS overestimates the frequency of rainfall, the rainfall
contributed by these extra events is small (Diem et al., 2019).

2.2 Model datasets

In this study, we make use of all CMIP6 models for which the
relevant outputs are available for the historical and SSP3-7.0
simulation to cover the 1981-2023 period. This means that
there are more models evaluated for precipitation than for
AOD and more evaluated for AOD than for PM; 5 concen-
trations. However, understanding the range of model perfor-
mance across the CMIP6 ensemble, without restricting the
study only to models with all aerosol variables available, was
a priority for the choice of models. We use the historical ex-
periment from CMIP6, which includes time-varying emis-
sions of greenhouse gases, aerosols, and ozone, along with
volcanic and solar forcing for the period 1981-2014, and the
“regional rivalry” shared socioeconomic pathway, SSP3-7.0,
experiment from ScenarioMIP (O’Neill et al., 2016) for the
period 2015-2023. The choice of a single scenario, SSP3-7.0,
does not bias the results here, as aerosol emissions do not di-
verge in the period used (Gidden et al., 2018). These datasets
were concatenated before the analysis. The models used in
the study, along with their nominal atmospheric and ocean
resolutions, are shown in Table 2. The numbers assigned to
each model are used to label them in later figures. In addition
to the general evaluation of CMIP6 models, we highlight the
performance of models participating in the Regional Aerosol
Model Intercomparison Project (RAMIP). RAMIP includes
experiments to explore the climate and air quality responses
to near-future changes in African emissions of sulfur dioxide,
black carbon, and organic carbon. As the African climate has
already been shown to be sensitive to remote aerosol changes
(Scannell et al., 2019; Dong et al., 2014), it is anticipated
that the African response to both local and remote changes
in aerosol emissions will be a key focus of the analysis of
RAMIP experiments. Evaluating the performance of partici-
pating models in replicating regional climate and air quality
over Africa is therefore important before further work.

2.3 Methodology

The majority of the analysis in this study uses monthly mean
outputs; while daily mean outputs are better able to capture
sub-seasonal variability, these were not available for most
models for variables such as speciated AOD. However, daily
mean outputs are used for the evaluation of daily precipita-
tion behaviour in order to investigate the representation of
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wet and dry days as well as rainfall intensity in CMIP6 mod-
els.

For the observational and reanalysis datasets used, the
maximum available time domain over the 1981-2023 period
is used to minimise the influence of low-frequency variabil-
ity and better capture the characteristics of the annual cycles.
The available time domain is different for each dataset, as
discussed below. For AOD, because part of the available re-
analysis dataset is past the end date of the historical CMIP
runs, ScenarioMIP (O’Neill et al.,, 2016) experiments are
used, following the SSP3-7.0 scenario. Over the time span
that this covers (2015 to 2023), the differences in emissions
inventories between SSPs cause minimal differences in AOD
at the continental scale for Africa (Lund et al., 2019).

The large bounding box used for this study (40° S, 40°N,
20° W, 50° E) is based on the subregion boxes defined by the
IPCC (Chen et al., 2021), covering the whole of the African
continent. Areas of particular focus are the east and west
African monsoon regions; both of these regions feature a
complex climatology with known biases and strong future
climate responses. In this study, west Africa is defined by
10°S-15°N, 20° W-25°E, and east Africa by 5°S—-15°N,
27-46°E, as these capture the key features of the monsoon
climatology.

Monthly means are used for evaluation of the annual cycle
for each model. In addition, the spatial distribution of rain-
fall is evaluated seasonally, focusing on June, July, and Au-
gust (JJA) and December, January, and February (DJF) to
capture the periods of maximum northward and southward
displacement of the intertropical convergence zone (ITCZ).
For more specific regional analysis, it would be preferable
to instead use the relevant monsoon periods; for example,
over west Africa, this would be July, August, and September
(JAS), as seen in Fig. 12. However, DJF and JJA were chosen
for studying the performance over a larger region while still
demonstrating the seasonal shifts in spatial distributions.

As discussed in Sect. 2.1.3, the CHIRPS precipitation ob-
servational dataset is available only over land. Therefore, for
calculating the bias and pattern correlation associated with
each model, a land mask corresponding to areas where the
land mass fraction for that model was greater than 0.5 was
applied.

The retrieval of PM> 5 data was more complex; of the
models for which PM, s data were available, EC-Earth3-
AerChem, GFDL-ESM4, GISS-E2-1-G, IPSL-CM5A2-
INCA, MIROC6, and NorESM2-LM output PM5 5 directly,
while CESM2 and UKESM1-0-LL output mass mixing ra-
tios (MMRs) of seven PM; 5 components, including sulfate
(S804), organic carbon (OA), black carbon (BC), sea salt
(SS), dust (DU), nitrate, and ammonium. The mixing ratios
of PM> 5 and its components were obtained using MMR di-
agnostics for the SSP3-7.0 experiments from 2015 to 2023.

Observed measurements of PM; 5 in the AirNow database
in Africa began in August 2016. In cases where the CMIP6
models do not provide PM;s directly, we calculate it
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from speciated mass mixing ratios at the surface following
Turnock et al. (2020):

PM; 5 =BC+ S04+ OA 4 (0.25 x SS)+ (0.1 x DU), (1)

where BC, SO4, OA, SS, and DU are the surface mass mixing
ratios of black carbon, sulfate, organic aerosol, sea salt, and
dust, respectively.

This method of calculating PM> 5 levels relies on simpli-
fied assumptions about size distributions of aerosol species
— for example, that all BC particles have sub-2.5 pm diam-
eters, whereas only 10 % of dust particles do. However, the
size distribution of the species will vary between each model,
so this assumption will not always be valid and therefore can
introduce errors. However, these values for the contribution
of each aerosol species to PMj; 5 have been shown to be ef-
fective for most regions in Turnock et al. (2020), except for
ocean regions where assumptions about SS size distributions
break down. In addition to errors introduced by the calcula-
tion itself through size distribution assumptions, model bi-
ases in the MMRs of aerosol species will be reflected in bi-
ases in the calculated PM» 5 values.

Regions with strong dust emissions, such as the Sahara,
are associated with particularly high variability in PM; 5
across models, when evaluating using the calculated PM> 5
(Turnock et al., 2020). Outside of these high dust emission
regions, Turnock et al. (2020) showed that the PM; 5 levels
calculated show higher model agreement, though this find-
ing excludes Africa, which was not included in that portion
of the analysis due to limited observations. The largest source
of model diversity in calculated PMj 5 for the majority of sta-
tions over Africa is differences in dust, and sea salt also be-
comes a more important source of model diversity in coastal
locations (Turnock et al., 2020). PM, 5 concentrations tend
to be underestimated across most regions, which Turnock
et al. (2020) notes may be due to the exclusion of nitrate
aerosols from the calculation formula, as well as biases in
other aerosol sources and processes.

We computed monthly mean simulated PM; 5 from the
CMIP6 models and corresponding monthly ensemble mean
surface PM; 5 observations at each location, after all models
were regridded to a common grid (1° x 1° resolution), be-
fore performing PM; s calculations using the nearest avail-
able grid point. The performance of the models was evalu-
ated using the coefficient of determination (R?), root mean
squared error (RMSE), and mean absolute error (MAE). All
regridded data are interpolated to a 1° x 1°-resolution grid
unless otherwise specified.

For precipitation evaluation, after time-averaging the
datasets to 2D fields, pattern correlation was performed. This
was done by regridding the model and observational fields
to a 1° x 1° grid, then connecting the rows of data to make
1D datasets. The Pearson correlation coefficient was calcu-
lated from these. The same method was used to calculate
the pattern correlation coefficients for the AOD, correlating
against the reanalysis dataset. This calculation shows how
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well the pattern of modelled data matches that of the obser-
vation or reanalysis over the domain. For precipitation, this is
useful because we are interested in the representation of rain-
fall location and progression, as this may influence aerosol—
precipitation interactions and the precipitation response to re-
gional climate forcing. Pattern correlation is also useful for
AOD, as it demonstrates how well the locations and sizes of
areas of high AOD are captured. However, the pattern corre-
lation provides no indication of whether the average magni-
tude of rainfall or AOD is correct. Therefore, to indicate the
performance of the magnitude of the fields, the RMSE is also
shown for the spatial plots.

3 Results

In this section, we evaluate the performance of CMIP6 mod-
els in replicating PM» 5, AOD, and precipitation compared
to observations and reanalyses. We first start with a summary
figure (Sect. 3.1) and then provide details for PM; 5, AOD,
and precipitation performances.

3.1 Summary of results

An overview of the results for the evaluation of precipita-
tion and AOD performance can be found in Fig. 2. This
figure provides an overview of each model’s performance
in non-dust and dust AOD seasonal spatial patterns, AOD
climatology over east and west Africa, precipitation sea-
sonal spatial pattern, monsoon progressions in east and west
Africa (demonstrated through zonal mean precipitation cli-
matology), and daily precipitation distributions over east and
west Africa. Models that perform consistently well in sea-
sonal spatial AOD patterns are MRI-ESM2-0 and IPSL-
CMO6A-LR, and these models also perform well in seasonal
spatial precipitation patterns. In contrast, CESM2, CESM2-
WACCM, and NorESM2-MM all perform consistently well
for their precipitation patterns but have difficulties replicat-
ing AOD patterns, particularly for dust AOD when compared
to the performance of other models. In addition, MIROC6
most accurately replicates the latitudinal progression of the
monsoon over both east and west Africa, though it also has
difficulty replicating the climatology of AOD over both re-
gions. These results are discussed in more detail in the rele-
vant sections.

3.2 PMass

For evaluating the behaviour of PM> 5 in the models, the
behaviour of the PM; 5 time series for 12 different cities is
examined. Figure 3 shows the comparison of time series of
PM; 5 in the CMIP6 models and surface observations from
reference monitors at 12 U.S. Embassy locations in Africa.
In this figure, the interannual variations are not expected
to match with those of observations, as individual years in
CMIP are not designed to correspond to the observed years.
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Figure 2. Performance indicators across precipitation and AOD for all models evaluated in this study. Green indicates the pattern correlation
coefficient, blue indicates the RMSE, and purple indicates the normalised root mean square error (NRMSE), with more saturated colours

indicating better performance for all colour scales.

The CMIP6 models capture the seasonal cycle better in west
Africa (1, 2, 3, 5, 7, 10, 12) than in east Africa (4, 8, 9,
11). This is also evident in the Rz, RMSE, and MAE values
shown in Table S1 in the Supplement. West Africa’s PM; 5
levels are largely influenced by the Harmattan season, which
is associated with increased dust and a northeasterly flow
over much of north Africa, carrying dust from the Sahara
Desert (Anuforom, 2007). Therefore, accurate PMj 5 simu-
lation in a model is closely tied to its representation of at-
mospheric circulation and magnitude of dust emission, the
latter of which differs strongly between models (Zhao et al.,
2022). Conversely, east Africa’s PMj3 5 concentrations are
more heavily influenced by local emissions (Kalisa et al.,
2023), and thus model climatologies are dependent on the
accuracy of emissions inventories.

From Fig. 3, it can be seen that the models demonstrate
a strong diversity in magnitude for PM5 5 concentrations. It
could be expected that the modelled PM» 5 would be too low
compared to that of the observations, as the observation sta-
tions are in urban areas that are not modelled by the CMIP6
models and, as Schutgens et al. (2016) demonstrates, increas-
ing grid box sizes and distances from observation stations to
grid points result in increased errors. There is a mixture of
both positive and negative PM; 5 concentration biases.

CMIP6 models can be seen to generally capture the PM3 5
annual cycle well. Cairo is a notable exception, as mod-
els underestimate PM> 5 relative to the surface observations
and do not match the observed seasonal cycle. However,
there is a very small time period for which PMj 5 observed
data are available over Cairo (< 1 year), and future observa-
tional data may show stronger agreement with the models.
IPSL-CM5A2-INCA overestimates surface PM; 5 observa-
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tions in all locations, especially during periods of increased
PM, s levels. This may relate to biases in daily precipita-
tion behaviour, as IPSL-CM5A2-INCA underestimates the
upper end of daily rainfall amounts in both east and west
Africa — daily precipitation behaviour is discussed further in
Sect. 3.4.3. However, MIROC6 displays similar behaviour in
daily precipitation to IPSL-CM5A2-INCA and yet has the
opposite bias; MIROC6 underestimates PM; 5 at most obser-
vation stations. However, MIROC®6, despite underestimating
the upper end of daily rainfall, exhibits wet biases for most
seasons over much of Africa, especially west Africa, where
biases in IPSL-CMS5A2-INCA for the same region are less
clear.

Most models perform best in Accra, Ouagadougou, Abid-
jan, Abuja, and Lome, with R? ranging from 0.35 to 0.96
and the mean absolute error (MAE) ranging from 2.42 to
20.07 ugm™3. All the models perform poorly in Kampala,
Nairobi, Kigali, Addis Ababa, Bamako, and Dakar, with the
largest RMSE and MAE in Bamako, ranging from 26.91 to
31.44ugm™3 and 22.01 to 25.07 ugm™3, respectively. It is
notable that the cities with poor performance are generally
located in east Africa, with the exception of Bamako and
Dakar. This is in agreement with results for the larger-scale
AOQOD analysis shown in Sect. 3.3, where representation of
the annual cycle of AOD is found to be generally poorer over
east Africa compared to west Africa.

The complex monsoon climatology impacts the levels of
PM, s, so performance in simulating the east African mon-
soon (EAM) and west African monsoon (WAM), as dis-
cussed in Sect. 3.4.2 and 3.4.1, will impact wet deposition
rates and thus may be related to model performance in repli-
cating PM» 5 concentrations. As the east African monsoon

Atmos. Chem. Phys., 25, 10523-10557, 2025



10532

is found to be modelled less accurately than the west African
monsoon, this may explain why the PM; 5 annual cycle is not
captured as well over east African cities, for example, Kigali
and Kampala, compared to west African cities, for example,
Bamako and Abuja. In addition, precipitation will affect soil
moisture, which will change dust emissions and thus alter
PM> 5 levels. This is more likely to be related to PMj 5 levels
over west Africa, where dust emissions play a dominant role
in PMj 5 levels.

As daily precipitation relates to air quality (Wang et al.,
2023), a comparison of observed rainfall and air quality
datasets in the future may lead to further understanding of
these interactions when more air quality data become avail-
able over Africa. Initial comparison of the datasets showed
the expected relationship of increased precipitation coincid-
ing with decreased PM; 5 in west Africa, though the relation-
ship is less clear in east Africa. In some cities, such as Addis
Ababa and Cairo, increased precipitation is seen to coincide
with increased PM» s, which is opposite to the expected re-
lationship; the reason for this correlation has not been deter-
mined. The comparison of the datasets is shown in the sup-
plementary information.

3.3 Aerosol optical depth

For evaluating the behaviour of AOD in the models, we con-
sider the accuracy of both dust and non-dust AOD distribu-
tions separately, as they have different contributions of uncer-
tainty and separate analysis makes the origins of biases easier
to identify. Some models output speciated non-dust aerosols,
such as black carbon and sulfate, but the majority do not,
so this analysis is split into dust and non-dust contributions
only. We also examine the accuracy of the seasonal cycle of
AQD over subregions in Africa.

The key results of AOD evaluation can be seen in Figs. 4
and 5. They show the reanalysis (CAMS) distribution of dust
and non-dust AOD during September, October, and Novem-
ber (SON), the multi-model mean (MMM), the intermodel
standard deviation, the bias in the MMM, and the biases in
the models with the least and most deviation from the spa-
tial pattern of dust and non-dust AOD in CAMS. SON is
used as the example season for the AOD analysis, as it shows
the strongest intermodel diversity and lowest overall perfor-
mance for both the dust and non-dust AODs.

Figure 4 shows that the MMM, while generally in agree-
ment with reanalysis, does not fully capture the distribution
of dust AOD during SON. The northward and westward ex-
tent of the high dust AOD over the Sahara is not well cap-
tured, with a positive bias over northeast Africa and a neg-
ative bias over the northwest. Strong intermodel variability
over the central Saharan region may be due to the differ-
ent interactive dust schemes used by many CMIP6 genera-
tion models, causing strong differences in the magnitude of
dust aerosol. There is also some intermodel disagreement in
wind speed over the region; because interactive dust emis-

Atmos. Chem. Phys., 25, 10523-10557, 2025

C. A. Toolan et al.: CMIP6 simulations of aerosol optical depth, PM> 5, and precipitation over Africa

sions rely on surface wind speeds, this will contribute to
differences in interactive dust emissions. Intermodel differ-
ences in other meteorological conditions that are not shown
here, such as soil moisture, will also contribute to the diver-
sity seen (Zhao et al., 2022). However, the initial analysis
of surface wind speed, which was found to be the dominant
driver of dust emissions for a large group of CMIP6 models
in Zhao et al. (2022), showed that outliers in surface wind
speed behaviour (for example, INM-CM5-0 and UKESM1-
0-LL) did not correspond to outliers in dust AOD (for exam-
ple, the CESM2 family and IPSL-CM6A-LR). Though fur-
ther analysis is necessary, this may indicate that differences
in dust AOD arise mainly from the different dust schemes
between models rather than differences in the meteorologi-
cal conditions for each model. The analysis noted is shown
in the supplementary information.

The closest model to the reanalysis, GFDL-ESM4, cap-
tures the dust AOD well. While the biases that are present
still show a negative (positive) dust AOD bias over northwest
(northeast) Africa, the model performs well overall for SON,
with a pattern correlation of 0.95 and an RMSE of 0.04.

The model furthest from the reanalysis, NorESM2-LM,
has a positive bias in dust AOD of > 0.8 over northeast
Africa extending into central Africa and a strong nega-
tive bias over northwest Africa, as well as a positive AOD
bias over southern Africa. The latitudinal band of maxi-
mum AQOD also shows a southward bias. NorESM2-LM is
in the CESM2 family of CMIP6 models (CESM2, CESM2-
FV2, NorESM2-MM, etc.), which tend to produce the cor-
rect amount of dust but confine it to only a small number of
grid points (Zhao et al., 2022). This causes a common bias
in these models, where the dust AOD over those areas is too
high and the AOD elsewhere in dust-affected regions is too
low, which is found in this analysis in the area of positive dust
AOQOD bias over northwest Africa. Some research has noted
that this bias may relate to wind speed or soil moisture (Zhao
et al., 2022), though co-located areas of strong biases in dust
AOD and these variables were not identified in this analysis.
Overall, this model struggles to replicate the pattern of dust
AOD over Africa during SON, which is reflected in its lower
pattern correlation coefficient of 0.52 and RMSE of 0.15.

The dust AOD spatial distribution over Africa in SON is
well captured by most climate models. The strongest biases
relate to the area of high dust AOD over the Sahara being too
far eastward and the magnitude of peak AOD being overes-
timated, which is almost entirely contributed to by CESM2
family models, with their positive AOD bias noted above.
The differences shown in AOD patterns contribute to uncer-
tainty in effective aerosol radiative forcing (Kalisoras et al.,
2024; Thornhill et al., 2021; Zelinka et al., 2023) and thus
add uncertainty to climate responses over Africa. In addition,
as aerosol forcing relates to changes in regional precipitation
patterns and monsoon dynamics (Shonk et al., 2020; Shin-
dell et al., 2012; Williams et al., 2022), differences in AOD
patterns are strongly relevant to projected climate responses.
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C. A. Toolan et al.: CMIP6 simulations of aerosol optical depth, PM> 5, and precipitation over Africa

1) Abidjan 2) Abuja 3) Accra
1
175 400 i 250
150 =
o 300 = L o200
g . I A
2 100 ! i N, I 3150
= [ 2004 I 1A = 4
275 g b n =
= ‘ iom 1 <1001 4
& o5 g I 1 4 | & 1
(O T (K] 100 5 \
25 ‘\l W, 0 '
S \!
| Sarta gy , . Biahl
4)175 Addis Ababa 5) Bamako 6) Cairo
1
150 | 200 200 :
125 : I :: _ !
« 11 \ ' E 150
%100 i kl it |[-‘ Moh ls‘ % i :
g Moo as gl W ol My ES 1 H
o 751 10 b gah T e b =100 1 H
o IR PTRY A SnH T 1] Ny o |
g s I‘!ll“l' "’d‘p g Vo
( Wi, r/ [ ) I non o
25 ‘| VIR WA Y ! 50 -‘:ﬁ o ""n a0
Tl ! 4 Y4 e
| Al 3”"‘«"‘3’ M" . L NI AN 2
7) Dakar 8) Kigali
160
]
140 [ 1
120 i i
r;E\loo o :: ' "t h
> ! ll l|: o l.|l o R : |
3 80 J o [ l‘!' ,l N l'" :l ;, v 'l}
el ! N St Tty ome feog
g LTI R | A O S T
R A P | AR i P AT fibey
1ood gl 1 TR Wiy i
o SIS SR Y
o] NEPATEND I S LY Ao My w
10) Lagos Ouagadougou
300 1 1
[l \
250 : :
1
o [} N
g 200 g ] = I.l
2 S50l 4 Wopoy
2150 2 1 WM
n 0 n Nl ]
£ S R T
£ 100 a T n
Db g
50 50 \‘ ‘&‘ '3
o o AL A Ul VA
b b /\ ‘b % °) Q '\/ ’L © "o '\ ‘b D900 AN AV © 0 N\ QD90
NS N N '1/ V3 '1/ % NS TS S RGN SIS IS
O '»0 A’\P > °A'v° D ﬁ? Q ’LQ’LQ Q’L°Q¢°3°Q’»°Q’»°Q°@° D w%?qf@ Q’QQ'VQOQ wQQ"P A’P QQ’LQ\\ © X
\b(o@&\”(&& PR PR TR TR NI AN N
Months Months Months
= = GFDL-ESM4 = = |PSL-CM5A2-INCA NorESM2-LM = = EC-Earth3-AerChem = Surface Observation
= = GISS-E2-1-G = = MIROC6 CESM2 UKESM1-0-LL

10533

Figure 3. Comparison of CMIP6 models (dashed coloured lines) and surface PM; 5 observations (solid black lines) with reference monitors
at U.S. Embassy locations in Africa. Note the changing y axis between plots. A common x axis is used, though not all of the dates are covered
for each location by the available observational dataset. Numbers refer to the station locations mapped in Fig. 1 and detailed in Table 1. Units

are ugm-

For non-dust AOD, Fig. 5 shows that the MMM does not
capture the distribution of non-dust AOD during SON well.
The MMM and MMM bias in Fig. 5b and ¢ show a positive
AOQOD bias over the west coast of west Africa, which may
be due to coincident anomalous westerly winds. As these
act to weaken the southeasterly flow from over the Gulf of
Guinea, less clean air is advected, which may lead to the pos-
itive AOD bias. The area of high AOD over southern central

https://doi.org/10.5194/acp-25-10523-2025

Africa, associated with biomass burning, is missing from the

MMM.

The closest model to the reanalysis, CESM2, captures
some of the non-dust AOD spatial pattern. The negative AOD
bias found in the MMM over southern central Africa is still
present, though biases elsewhere are reduced. It is notable
that the CESM2 model family that performed poorly for the
dust AOD pattern performs best in the non-dust AOD pattern

Atmos. Chem. Phys., 25, 10523-10557, 2025
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Figure 4. SON mean dust AOD and lower-tropospheric (925 hPa) winds for 2003-2023 in (a) observations (CAMS/ERAS) and (b) CMIP6
MMM. (¢) CMIP6 MMM bias against observations and (d) intermodel standard deviation for dust AOD (shading) and wind speed along the
mean wind direction (red) and wind direction (blue). Mean dust AOD and wind fields in the models with the (e) least (GFDL-ESM4) and
(f) most (NorESM2-LM) deviation from CAMS as determined by pattern correlation. Pattern correlation and RMSE compared to CAMS are
shown below panels (c), (e), and (f). Note that the reference vectors for the 925 hPa winds differ between panels. Winds in panel (d) have

been regridded to a 4° x 4° grid for clarity.

evaluation, though none of the models analysed produce non-
dust AOD similar to that of the reanalysis. CESM2 is found
to have a pattern correlation of 0.50 and an RMSE of 0.08.

For the model furthest from the reanalysis, CanESM5-1,
the negative AOD bias found in the MMM over southern cen-
tral Africa is present. In addition, a strong positive (> 0.8)
AOQOD bias is found over the UAE — this AOD bias covers
a large area in the northeast and is not limited to Africa.
CanESM5-1 was found to have a negligible pattern corre-
lation coefficient of —0.08 and an RMSE of 0.25.

The non-dust AOD spatial distribution over Africa in SON
is not well captured by the climate models analysed here. The

Atmos. Chem. Phys., 25, 10523-10557, 2025

strongest bias relates to a negative AOD anomaly found over
southern central Africa.

Figure 6 shows the comparative performance of the mod-
els when ranked by pattern correlation compared to CAMS
for each season, with the RAMIP models highlighted in red,
for dust AOD and non-dust AOD. The mean performance of
the CMIP6 models is lowest in DJF for the dust AOD and in
SON for the non-dust AOD. For the dust AOD, this coincides
with the Harmattan season, which occurs from November
through March. Reduced performance during the DJF sea-
son may indicate that the CMIP6 models are struggling to
replicate the seasonal cycle of circulation and associated dust

https://doi.org/10.5194/acp-25-10523-2025
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Figure 5. Same as Fig. 4 but for non-dust AOD. The model with the least deviation from CAMS is now CESM2, and the model with the

most deviation from CAMS is now CanESM5-1.

changes in the Harmattan season. Poor performance in the
Harmattan season makes projections of changes in air qual-
ity, especially extreme air quality events, from the CMIP6
ensemble less reliable. For the non-dust AOD, SON is associ-
ated with biomass burning in central Africa, where the strong
negative bias is seen in all of the models. Emissions inven-
tories may not be capturing the magnitude of biomass burn-
ing emissions over the central African region during SON, as
current literature notes underestimates of AOD increases in
southern Africa (Lund et al., 2023).

Inaccuracies in emissions inventories may be the cause of
the poorer performance for non-dust AOD over Africa. How-
ever, there is higher diversity in the pattern correlation co-
efficients for non-dust aerosol. Therefore, differences in the
treatment of aerosols by different models still drive the strong
intermodel diversity even for prescribed aerosol emissions.

https://doi.org/10.5194/acp-25-10523-2025

3.3.1  West African AOD climatology

Different regions in Africa are characterised by different
AOD climatologies according to relevant emissions and lo-
cal meteorology, with consequences for human health and
local climate. Understanding the impacts of evolving aerosol
emissions is reliant on accurate interactions of the emissions
with the meteorology of their source regions.

The normalised root mean square error (NRMSE) is used
to rank model performance from least deviation (lowest
NRMSE) to most deviation (highest NRMSE).

Figure 7 shows the seasonal cycle of AOD over west
Africa in the reanalysis (CAMS), MMM, the model with
the lowest NRMSE (MRI-ESM2-0), and the model with the
highest NRMSE (MIROC-ES2L). The interannual variabil-
ity of the seasonal cycle is shown by the shaded region.

Atmos. Chem. Phys., 25, 10523-10557, 2025
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Figure 6. Models ranked by pattern correlation for seasonal (a) dust AOD and (b) non-dust AOD over Africa (40°S—40°N, 20-50°E),
with the RAMIP models highlighted in red. Black dots show the mean of the individual model pattern correlation coefficients, black crosses
show the MMM pattern correlation coefficient, and whiskers show the standard deviation of the model pattern correlation coefficients. The

evaluation is performed using CAMS over the time period 2003-2023.
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Figure 7. Monthly mean total AOD over west Africa (10° S-15°N,
20° W-25°E) for (a) reanalysis (CAMS), (b) MMM, (c) the model
with the lowest NRMSE (MRI-ESM2-0), and (d) that with the high-
est NRMSE (MIROC-ES2L), with NRMSEs against CAMS shown
in square brackets. Shaded region shows the interannual standard
deviation for each month. The evaluation is performed using CAMS
over the time period 2003-2023.

In Fig. 7a, AOD can be seen to have two peaks in west
Africa in February—March and JJA. This climatology is
driven by seasonal winds bringing dust from the Sahara, local
aerosol emission annual cycles, and monsoon seasons of high
rainfall reducing AOD. The peak from December to March
(DJFEM) is due to Harmattan winds bringing dry dusty air
from the Sahara, while Senghor et al. (2017) links the peak
in JJA AOD to transport from coastal sand sources. For the
interannual variability, higher variability is noticeable dur-
ing the Harmattan season, DJFM, which stems from differ-
ing strength of the Harmattan winds interannually — this can

Atmos. Chem. Phys., 25, 10523-10557, 2025

be seen in the high standard deviation of lower-tropospheric
wind speed during DJFM compared to the rest of the year.

The MMM shown in Fig. 7b shows the two peaks, though
there are issues with the timing of the peaks; the first peak
occurs too early by 1 month. The change in interannual vari-
ability in AOD through the year is not captured either, so the
variability of the Harmattan season is not captured. Overall,
the MMM captures the pattern of AOD climatology to the
first order, though it does not correctly capture the timing of
the AOD peaks and does not capture the changes in variabil-
ity throughout the year.

The model with the lowest NRMSE, MRI-ESM2-0, bet-
ter captures the distinct traits of the AOD peaks in each
season. There are still issues with the timing of the peaks
— while the first peak occurs at the right time, the second
peak is too late and at least a month too short. In addition,
the variability is similar year round, with a slight increase
in October—-November, which is the opposite of the variabil-
ity seen in CAMS. These biases could originate from issues
with capturing interannual variability of the Harmattan sea-
son, as the zonal mean precipitation climatology is found to
be accurate, with only small wet biases during March, April,
and May (MAM). Examining the interannual standard de-
viation in seasonal wind speed over Africa in MRI-ESM2-0
shows that, while capturing some increases in variability dur-
ing DJF, the area of increased variability is too small, and the
increase is too weak to fully capture the Harmattan and its
effects.

The model with the highest NRMSE, MIROC-ES2L, does
not capture the two-peaked climatology at all, instead having
a single AOD peak in June—July. In addition, the variabil-
ity in this model is strongest in the June—July period and is
minimal elsewhere. This could relate to issues in the precip-
itation distribution, as MIROC-ES2L is found to have strong
wet biases over west Africa — if a model has too many wet
days, the lifetime of aerosol can be drastically reduced due to

https://doi.org/10.5194/acp-25-10523-2025
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Figure 8. Monthly mean total AOD over east Africa (5°S—-15°N,
27-46° E) for (a) reanalysis (CAMS), (b) MMM, (c) the model with
the lowest NRMSE (MPI-ESM1-2-HR), and (d) that with the high-
est NRMSE (ACCESS-ESM1-5), with NRMSEs against CAMS
shown in square brackets. Shaded region shows the interannual
standard deviation for each month. The evaluation is performed us-
ing CAMS over the time period 2003-2023.

excessive scavenging, causing a low bias in AOD. The latitu-
dinal progression of rainfall in MIROC-ES2L shows a strong
wet bias in JAS, but the modelled AOD is most accurate dur-
ing JAS, and so there are no obvious parallels between the
poor performances in both the AOD and the zonal mean pre-
cipitation climatology.

Overall, the general pattern of AOD climatology through-
out the year is captured, though there are some issues with
the timing of peak AOD. Interannual variability in AOD as-
sociated with the Harmattan season is found to be too low in
the MMM and the best-performing model, with both failing
to capture the higher variability during this season. These is-
sues with AOD climatology could be related to the biases in
circulation (particularly the Harmattan winds that cause the
DJFM AOD peak) and precipitation behaviour over the re-
gion, particularly biases in the number of wet days per year.

3.3.2 East African AOD climatology

Figure 8 shows the climatology of AOD over east Africa in
the reanalysis dataset, CAMS, the AOD climatology of the
MMM, and the AOD climatologies of the models with the
lowest and highest NRMSE.

In Fig. 8a, the AOD climatology characteristics differ
greatly to that of west Africa. Dust from the Sahara Desert
is not as dominant as for west Africa, and interannual vari-
ability is reduced. The AOD can be seen to have one main
peak in JJA. This is due to an increased positive zonal wind
speed during JJA, with westerlies bringing in pollution from
central Africa, compared to the rest of the year, in which in-

https://doi.org/10.5194/acp-25-10523-2025
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creased easterly winds bring cleaner air from over the oceans
(Hastenrath et al., 2011). For the interannual variability, there
is little change during the year.

From Fig. 8b, the MMM can be seen to match this pat-
tern poorly — the JJA peak in AOD is not well produced, and
instead the models simulate a two-peaked climatology, more
similar to that of west Africa. The variability remains con-
stant throughout the year, similar to the reanalysis.

The model with the lowest NRMSE, MPI-ESM1-2-HR,
represents the AOD climatology more accurately than the
MMM. It features the strong peak in AOD during JJA, though
this peak lags a month behind that of CAMS — similar to
the zonal mean precipitation cycle (Sect. 3.4.1) of the model,
which leads the annual cycle of CHIRPS rainfall by a month
— and has a lower peak magnitude.

The model with the highest NRMSE, ACCESS-ESM1-5,
has two peaks and fails to capture the strength of the AOD
peak in JJA, as well as the length of this peak, which may
relate to wet biases found in the zonal mean precipitation
climatology for ACCESS-ESM1-5, which are strongest in
SON. The variability for ACCESS-ESM1-5 is much lower
than that for CAMS.

The climatology of AOD over east Africa is not repre-
sented as well as over west Africa, with the MMM failing to
capture the magnitude of the JJA peak in AOD found in the
reanalysis. Interannual variability here is better represented
than that over west Africa, though east Africa is not associ-
ated with the complex wind behaviour during the Harmattan
season, so the climatology is not as complex. Biases over east
Africa are found to relate to biases in the zonal mean precipi-
tation cycle in some models and may also relate to difficulties
with circulation over the region, as this governs much of the
seasonal cycle of AOD over east Africa.

3.4 Precipitation

For the observational uncertainty, African precipitation ob-
servational and reanalysis datasets demonstrate strong agree-
ment over south and west Africa (Ayugi et al., 2024; Karypi-
dou et al., 2022), though there are disagreements in precipita-
tion climatology over east Africa and some differences in the
behaviour of daily precipitation (Sylla et al., 2013). Difficul-
ties in constraining precipitation observational uncertainties
over east Africa are mainly due to a scarcity of rain gauge
observations (Dinku et al., 2018). An example of the diver-
sity in east African rainfall climatology is shown in Figure
9, through the latitude-time progression of the east African
monsoon. It can be seen that the observational datasets dis-
agree over both the northward extent and magnitude of mean
rainfall over the region, though the annual cycle itself is con-
sistent — the banded appearance of the ERAS dataset is due
to small hotspots of precipitation over east Africa caused by
local orography. Precipitation over the majority of Africa
in CHIRPS has been found to be reliable (Dinku et al.,
2018); however, the evaluation of model performance over
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east Africa should be understood in the context of the obser-
vational uncertainty.

Figure 10 shows the observational distribution of rainfall
during JJA from CHIRPS, as well as the lower-tropospheric
winds from ERAS, the CMIP6 multi-model mean (MMM),
the intermodel standard deviation, the bias in the MMM rel-
ative to CHIRPS, and the biases in the models with the least
and most deviation from the rainfall in CHIRPS, based on a
pattern correlation approach. JJA is used as the example sea-
son for the precipitation analysis, as it shows the strongest
intermodel diversity and lowest overall performance.

The most prominent feature seen in Fig. 10 is the ITCZ:
the region of intense rainfall centred around 10°N in JJA.
Capturing the seasonal and interannual position changes of
the ITCZ is important over Africa, as it has a strong influence
on both the WAM and EAM. Historically, sustained equator-
ward shifts in the northward extent of the ITCZ caused by
remote aerosol emission changes have led to strong droughts
over the west African region (Monerie et al., 2023). There-
fore, capturing the correct position and inland extent of the
ITCZ for each season is highly important.

Figure 10 shows that rainfall biases in JJA are largely con-
fined to the region associated with the ITCZ — it can also
be seen that these are the areas with the largest intermodel
spread. Though the MMM captures the magnitude and east-
ward extent of the WAM well, there is a southward bias in the
ITCZ over west Africa, a well-known bias that has persisted
over generations of CMIP models (Bock et al., 2020); the
continued presence of this bias in CMIP3, CMIP5, CMIP6,
and, moreover, in HighResMIP experiments demonstrates
that increasing model resolution in parameterised models
does not remove this bias. However, this analysis did not
identify any bias in the pattern of seasonal AOD relating to
this positional bias in seasonal rainfall. The wind biases for
the MMM in Fig. 10 show that the Saharan heat low (SHL)
has a small (< 5°) southward bias. The SHL impacts the
intensity and location of the WAM (Lavaysse et al., 2016).
Therefore, this could be a cause of the southward bias in the
WAM.

In the MMM during JJA, west Africa generally exhibits
stronger biases than east Africa, with localised areas of wet
biases such as over Nigeria and Gabon. In the MMM, a dry
bias and hot spot of large intermodel spread can be seen over
Ethiopia. This is over the Ethiopian highlands and may be
due to orographical effects of the region not being captured
because of low resolution limiting the area of high elevation.

The models analysed are found to perform well over the
whole of Africa in JJA. Pattern correlations are found to be
high for the MMM at 0.85, though there are some biases in
the location and magnitude of rainfall over some regions.

The model with the least deviation from CHIRPS,
NorESM2-LM, shows little bias in the position of the ITCZ
during JJA and some small areas of localised biases over east
Africa. While still showing a southward bias in the position
of the SHL, the spatial pattern of the WAM is well captured.

Atmos. Chem. Phys., 25, 10523-10557, 2025
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The model with the greatest deviation from CHIRPS,
CNRM-ESM2-1, shows a strong bias in the position of the
ITCZ over west Africa and a strong underestimation of rain-
fall over central and east Africa, which may be associated
with poor simulation of the ITCZ. The SHL in this model
also appears to be too weak, with easterly biases in wind di-
rection on the eastern flank of the SHL.

Overall, Fig. 10 shows that there are large differences
in the ability of the CMIP6 models to replicate African
rainfall in JJA, especially over west Africa and Ethiopia.
The strongest intermodel spread is found over west Africa,
though biases in rainfall location are found over both east
and west Africa. These biases can mainly be attributed to
differences in the location and strength of the ITCZ and SHL
during this season.

Figure 11 shows a ranking of the pattern correlations of
individual models evaluated for each season. The season as-
sociated with the weakest overall model performance and
highest intermodel spread is JJA, typically associated with
high rainfall over west Africa. Despite having the weakest
seasonal performance, the mean of the model pattern corre-
lations for JJA is 0.83, and the multi-model mean pattern cor-
relation is 0.85. A large number of models closer to the ob-
servations belong to the CESM family, indicating that these
models perform well in simulating west African rainfall.

Figure 11 also shows the model performance during SON,
DIJF, and MAM. The other seasons exhibit lower intermodel
spread in pattern correlation and stronger overall perfor-
mance. For the equinoctial seasons, the model performance
is slightly better than in JJA, with a mean of 0.87 for SON
and 0.85 for MAM. For DJF, the performance overall is also
better than that for JJA, with a pattern correlation of 0.88.

For all seasons, there is a steep drop-off in model skill for
the more poorly performing models that is most pronounced
in the solstitial seasons. The decline in model skill for se-
lect models during these seasons may indicate issues captur-
ing the northward and southward extents of the ITCZ during
JJA and DIJF, respectively. Understanding where the biases
in poorly performing models originate is integral to making
decisions on using their results in future projections.

3.4.1 West African monsoon

Capturing the meridional progression of the monsoons is im-
portant for confidence in forecasts and climate projections
for Africa. The progression is characterised by key monsoon
characteristics, such as onset, duration, demise, and intensity,
which are important to agricultural practices. The progres-
sion of the monsoon is dependent on the behaviours of sev-
eral circulation systems, such as the ITCZ, tropical easterly
jet, African easterly jet, and sub-tropical westerly jet (Niang
et al., 2020). Poor performance in replicating the evolution
of the monsoon throughout the year can point to difficulties
in the representation of these key circulation features. In ad-
dition, over west Africa in particular, the progression of the
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Figure 9. Observational estimates of precipitation in time-latitude diagrams of the tropical rain belt over east Africa for the (a) CHIRPS,
(b) CRU, (c) ERAS, and (d) GPCP datasets over 1981-2023. A bounding box (5° S-15°N, 27-46°E) is used. Units are mm a1

monsoon is dependent on local features, such as soil moisture
gradients, so poor performance in the monsoon climatology
can point to inaccuracy in local climate factors.

The latitudinal progression of the WAM throughout the
year is shown in Fig. 12. The WAM is well captured, with
a pattern correlation of 0.94 for the MMM and with indi-
vidual models having patterns correlations in the range of
0.82-0.95. The temporal evolution of precipitation is well
captured by the MMM, though there is an overall dry bias.
There is a southward bias in the southern extent of rainfall
during DJF, though this is outside the main WAM region and
timing. The overall dry bias coincides with a negative AOD
bias in the MMM for the AOD climatology over west Africa,
though the opposite would be expected; with a drier monsoon
season, less wet deposition of aerosols would lead to higher
AOD.

The model with the highest pattern correlation, INM-
CM4-8, overestimates the overall magnitude of rainfall, with
a higher RMSE than the MMM, but captures the overall pro-
gression well. The rainband matches the northward extent of
the rainband during JAS, though the southward extent during
DIJF is overestimated. The wet biases in precipitation shown
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here may relate to the negative biases in AOD found through-
out the year over west Africa.

The model with the strongest deviations from observa-
tions, UKESM1-0-LL, struggles to replicate the monsoon
pattern over west Africa. In NorCPM1, the strongest rain-
fall for the region is during MAM and OND, out of phase
with the peak rainfall period in CHIRPS. In addition, the
maximum latitude of the rainband (calculated as the maxi-
mum latitude of maximum precipitation) has a ~5° south-
ward bias. Though the generally northward progression of
the rainband is captured, the increase in intensity of rainfall
during the monsoon season is not captured well at all. These
biases may indicate difficulties with NorCPM1 capturing the
mechanisms governing the local monsoon evolution. The im-
pact of these biases in rainfall on AOD in NorCPM1 is un-
known, as NorCPM1 does not provide AOD output.

Overall, the WAM is well represented, especially in the
MMM, despite southward biases in the southward extent of
the rainband during DJF, and overall agreement in the tem-
poral rainfall pattern with CHIRPS indicates that the mech-
anisms governing the latitudinal progression of the monsoon
are also well represented by the majority of models.
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Figure 10. JJA mean rainfall and lower-tropospheric (925 hPa) winds for 1981-2023 in (a) observations (CHIRPS/ERAS) and (b) CMIP6
MMM. (¢) CMIP6 MMM bias against observations and (d) intermodel standard deviation for precipitation (shading) and wind speed along
the mean wind direction (red) and wind direction (blue). Mean rainfall and wind fields in the models with the (e) least (NorESM2-LM)
and (f) most (CNRM-ESM2-1) deviation from CHIRPS as determined by pattern correlation. Pattern correlation and RMSE compared to
CHIRPS are shown below panels (c), (), and (f). Note that the reference vectors for the 925 hPa winds differ between panels. Winds in panel

(d) have been regridded to a 4° x 4° grid for clarity.

3.4.2 East African monsoon

The east African monsoon has received renewed attention
due to ongoing severe droughts (World Health Organisation,
2024); simulating the east African monsoon is of no less im-
portance than in west Africa, and thus monitoring and pre-
dicting changes in rainfall over this region in the near future
is vital for informing climate adaptation. Therefore, knowl-
edge of the biases in rainfall over this region is also needed
to use the CMIP6 models effectively in projections.

Atmos. Chem. Phys., 25, 10523-10557, 2025

The latitudinal progression of the east African monsoon
(EAM) throughout the year is shown in Fig. 13 for observa-
tions (CHIRPS), the MMM, the model with the least devia-
tion from CHIRPS (MIROCS6), and the model with the most
deviation from CHIRPS (EC-Earth3).

Model performance in capturing the progression of the
EAM is slightly weaker than that of the WAM. This is re-
flected in the CMIP6 MMM having a pattern correlation of
0.88 (compared to 0.94 for the WAM), while individual mod-
els have pattern correlations with CHIRPS ranging from 0.93
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Figure 11. Models ranked by pattern correlation for seasonal rain-
fall over Africa (40°S—40°N, 20-50°E), with the RAMIP mod-
els highlighted in red. Black dots show the mean of the individ-
ual model pattern correlation coefficients, black crosses show the
MMM pattern correlation coefficient, and whiskers show the stan-
dard deviation of the model pattern correlation coefficients. The
evaluation is performed using CHIRPS over the time period 1981—
2023.

to 0.61. The EAM MMM, unlike that of the WAM, shows
very little bias in overall precipitation magnitude. The rain-
fall in the MMM is found to have a consistent ~ 2° northward
bias in the latitude of maximum precipitation. The evolution
of rainfall is correct, though MAM (the long rainy season) is
slightly drier than observations and October, November, and
December (OND) (the short rainy season) has a small wet
bias. The biases found could relate to difficulties capturing
the movement of ITCZ or impacts from the local orography
being poorly represented (Munday et al., 2021, 2022).

The model with the least deviation from CHIRPS,
MIROCS, is able to capture the time evolution of latitudi-
nal progression in rainfall well. The model shows an over-
all wet bias common for MIROCG6 over Africa — the RMSE
associated with the model is higher than that of the MMM
(1.30mmd~" for MIROC6, 0.90mmd~! for MMM). The
southward extent of the rainband during JFM is not captured,
with a northward bias in its position. Overall, this model cap-
tures the latitudinal progression of rainfall over east Africa
well, though the magnitude of mean rainfall is too high. This
aligns with good performance in replicating the annual cy-
cle in AOD over east Africa, reflecting good performance in
latitudinal progression in rainfall. The AOD climatology also
shows a negative bias throughout the year, which may relate
to the positive bias in mean rainfall magnitude.

The model with the most deviation from CHIRPS, EC-
Earth3, struggles to capture correct periods for maximum
rainfall and has a pattern correlation of 0.61. The rainband,
which in CHIRPS has a maximum intensity in MAM and
OND, can be seen to have a maximum only during OND,
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with little rainfall during MAM. The rainfall during this pe-
riod is too strong, shown by an RMSE of 2.80 mm d ! to
which the missing MAM wet season also contributes. De-
spite problems with the magnitude of rainfall, the progres-
sion of the rainband follows the expected northward move-
ment in MAM and southward movement in SON.

Overall, the EAM is also well represented in the CMIP6
ensemble, though model performance is not as strong as for
the WAM. While the absolute bias in mean precipitation is
lower, the intermodel diversity is larger over this region than
over west Africa, with large differences in pattern correla-
tions and RMSE:s for the models.

3.4.3 Daily precipitation

Beyond the overall temporal and spatial progression of rain-
fall patterns, it is important for climate models to be able
to capture the characteristics of daily rainfall. As extreme
events become more pronounced in a warmer world, being
able to capture the extent of extreme precipitation and the
correct distribution of rainfall amounts on wet days is inte-
gral to predicting the changes in extremes. Africa is highly
vulnerable to flooding events. This is due to many regions ex-
periencing positive trends in both severity and frequency of
flooding (Tramblay and Villarini, 2020; Ekolu et al., 2022)
and there being limited resources available to these areas
for flood mitigation (Di Baldassarre et al., 2010). In addi-
tion, proper daily rainfall characterisation is important for the
simulation of aerosol distributions and air quality (AOD and
PM, 5), as scavenging by rainfall acts to reduce aerosol life-
times in the atmosphere. Rainfall that is too frequent, as is
common in many global climate models (Emmenegger et al.,
2024), is likely to lead to reduced aerosol burdens.

Figure 14 shows the number of wet days (days with
> 2mmd~! rainfall) per year over Africa for observations
(CHIRPS), the MMM, and the MMM bias — individual
model behaviour is examined in their daily precipitation per-
formance. This again shows a common CMIP bias, where
there are too many wet days compared to observations. This
bias is strongest on the west central African coast and is sub-
stantial over this region, reaching over 160 extra wet days per
year. This coincides with an area of low bias in annual mean
AOD, though preliminary analysis does not show a strong
relationship between increased number of wet days and de-
creasing AOD. The bias is also evident over areas of southern
Africa and east Africa. The southward bias in rainfall is also
evident through this plot. There is also a noticeable region
over Uganda that has too few wet days, though the reasons
for this bias over the region are not currently clear.

To look more closely at daily rainfall behaviour for the
monsoon regions, Fig. 15 shows the probability density func-
tions (PDFs) for daily rainfall over west and east Africa for
CHIRPS, the MMM, and the models with the lowest and
highest RMSEs. The PDFs are calculated from regridded
daily precipitation datasets in order to reduce the impact of
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Figure 12. Latitudinal progression of the tropical rain belt for west Africa through the seasonal cycle, averaged over 1981 to 2023 for the
(a) observations (CHIRPS), (b) MMM, (c) the model with the smallest deviation from observations (MIROC®6), and (d) the model with the
greatest deviation from observations (NorCPM1), with pattern correlations and RMSEs shown in square brackets above each panel. The data

shown cover 10° S—15° N, 20° W-25° E. Units are mm da-!

(a) Observations (b)

Multi-model mean:[0.89, 0.9 mmd-4

. =

5

- 2
10
J A S o N D

’ L * o T
e ©

. , , S _ \ °
F M A M J J A S [} N D ) F d 1] é

(c) Least deviation: MIROC6[0.93,1.3 mm d*1] Most deviation: EC-Earth [0.61, 2.8 mm d*1] °5
=

9

[

-

TN N

S

Figure 13. Latitudinal progression of the tropical rain belt for east Africa through the seasonal cycle, averaged over 1981 to 2023 for the
(a) observations (CHIRPS), (b) MMM, (c) the model with the smallest deviation from observations (MIROC®6), and (d) the model with the
largest deviation from observations (EC-Earth3), with pattern correlations and RMSEs shown in square brackets above each panel. The data
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differing resolutions of the different climate models and ob-
servations. Days with total rainfall of less than 2 mm are ex-
cluded from this section of the analysis to examine only the
behaviour of rainfall on wet days.

As shown in Fig. 15a for west Africa, the observations
(CHIRPS) show a large spread of daily precipitation values,
with high extremes of over S0mmd~! found in the region.
In comparison, the PDFs of the MMM and highest RMSE
model show that they produce too much drizzle, and the high-
est RMSE model fails to capture the days of very intense
rainfall. This is in agreement with current literature that iden-
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tifies biases with CMIP6 models producing too many days of
light rainfall due to rainfall parameterisation over grid boxes
(Emmenegger et al., 2024).

The model with the lowest RMSE, CAMS-CSM1-0,
shows a wider range of daily precipitation values than the
MMM and highest RMSE model. CAMS-CSM1-0 captures
the correct frequency of days with light rain and only slightly
underestimates the frequency of the high-precipitation days.

The model with the highest RMSE, KACE-1-0-G, shows
a low spread in daily precipitation values, with high frequen-
cies associated with low daily precipitation values. In addi-

https://doi.org/10.5194/acp-25-10523-2025



C. A. Toolan et al.: CMIP6 simulations of aerosol optical depth, PMy 5, and precipitation over Africa 10543

(@) Observations (b) MMM (©) MMM Bias

5l \",‘-n = \\';. - & U
30°N A
10°N A
10°S 4
30°S 1

10"’W 10"’E 30"’E 1ol°w 10°E 30‘°E 10|°W 10|°E 3d°E
-180 -120 —I60 60 120 180
Bias (days yr™)
. [T N
0 60 120 180 240 300 360

Days with > 2 mm precipitation per year (days yrt)
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tion, the range of daily precipitation values for KACE-1-0-G
extends only to 24 mm d—! —less than half of the range found
in CHIRPS.

Overall, the daily precipitation over west Africa is well
represented in most models, though there are issues stem-
ming from drizzle associated with some models, and the ex-
treme high daily precipitation values lack representation for
some models.

As shown in Fig. 15b for east Africa, the observations
show a slightly smaller spread in daily precipitation val-
ues, with maximum daily precipitation values of up to
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50mmd~!. The shape of the PDF is similar to that of west
Africa. Models over this region perform worse in replicating
the behaviour of daily precipitation, especially in capturing
the range of daily precipitation values.

The model with the lowest RMSE, CESM2, has a PDF
showing a bias towards more days with less precipitation.
Both CESM2 and the MMM fail to capture the frequency of
days with intense rainfall.

The model with the highest RMSE, KIOST-ESM, has a
strong bias towards days with low precipitation. The range
of daily precipitation is extremely low in this model, up to
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10mmd—!, showing that days of intense rainfall are not well
captured by this model.

Overall, the PDF for daily precipitation is better repre-
sented over west Africa than east Africa, consistent with the
representation of seasonal mean precipitation. Most models
replicate the range of daily precipitation found in observa-
tions in both regions; however, a number of models produce
too many days with light, but non-zero, precipitation.

4 Discussion and conclusions

We have evaluated the performance of CMIP6 models in
simulating PM3 5, aerosol optical depth (AOD), and precip-
itation over Africa, relative to observational and reanalysis
products. PM> 5 performance, which was evaluated against a
novel observational dataset, was indicated using the R2, root
mean squared error (RMSE), and mean absolute error (MAE)
metrics. For AOD and precipitation, we evaluated their per-
formance through the use of pattern correlation coefficients
and RMSEs for the seasonal mean rainfall and AOD, pat-
tern correlation coefficients for the latitude-time progression
of monsoon rainfall, and the normalised root mean squared
error (NRMSE) for the seasonal cycle of AOD.

PM, s concentrations derived from model mass mixing
ratios are found to exhibit similar annual cycles to that of
the AirNow dataset, with notable exceptions such as Cairo.
However, time series over some of the stations examined are
less than 1 year in length. Therefore, further investigation as
more observational data become available is necessary to re-
liably characterise PM; s behaviour for each observation sta-
tion. Recent political developments leading to the termina-
tion of the AirNow dataset may prevent further exploration
of relationships between air quality and precipitation in lo-
cations such as Cairo and Kigali. The majority of the mod-
els examined underestimate the PM» 5 concentration, which
could be due to comparing observations taken in urban areas
to grid cell variables, models underestimating the number of
dry days identified in this analysis, and missing processes in
models, such as the modelling of nitrate.

Seasonal spatial patterns of dust AOD are fairly well rep-
resented, with DJF showing the strongest disagreement with
reanalysis, due to eastward biases in the peak dust AOD from
the Sahara Desert, with intermodel spread caused by differ-
ences in atmospheric circulation patterns, dust-emitting re-
gions, and uncertainties in simulated dust emission rates due
to differing parameterisations. Hotspots of intermodel dis-
agreements over northeast Africa can be linked most strongly
to differences in dust emission between models. Conversely,
seasonal spatial patterns of non-dust AOD are more poorly
represented, with SON being the season with the strongest
disagreement with respect to reanalysis, especially in central
Africa, where no models produce the area of high non-dust
AOD found in CAMS, which may be due to underestimations
in emissions inventories over the region. The annual cycle of
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AOD in CMIP6 is better represented over west Africa than
east Africa, though the cycle of interannual variability is not
well captured for west Africa. Underestimates in emissions
inventories are a potential cause of non-dust AOD biases in
the MMM during SON, especially over the biomass burning
regions (Reddington et al., 2016), but do not fully account for
the model spread found. Challenges in accurately modelling
regional atmospheric circulation contribute to these discrep-
ancies, especially model inability to correctly simulate the
transport of biomass burning aerosols over central Africa.
Further investigation of the regional biases would be possible
through evaluation over smaller regions and examination of
atmospheric circulation pattern performances across Africa.

There is intermodel diversity in the pattern of rainfall over
Africa during JJA, but the seasonal rainfall patterns are well
represented for the remaining seasons. For the CMIP6 mod-
els, though both are well represented, we find better perfor-
mance overall in replicating the seasonal cycle of the west
African monsoon than the east African monsoon. The ori-
gins of the rainfall biases over Africa may relate to biases
in atmospheric circulation, such as the insufficient latitudi-
nal progression of the ITCZ and biases in the wind bringing
moisture from sea to land. Biases relating to the intertropi-
cal convergence zone (ITCZ) appear to have a stronger ef-
fect over east Africa, where the MMM shows some biases
in the timing of the rainy seasons. In contrast, difficulties
with overall rainfall magnitude are more influential over west
Africa, where the MMM shows a dry bias in areas impacted
by the tropical rainband. Schwarzwald et al. (2022) showed
that while biases in SST have some impact on precipitation
performance over east Africa, changes in precipitation per-
formance made by prescribing SSTs only improve models
with difficulties in recreating features of the Indian Ocean
basin, so the biases found for precipitation are unlikely to
originate solely from SST biases.

The differing performances of the models based on the
season and region chosen underline the need to use a diverse
range of models when aiming for robust insights into the fu-
ture evolution of precipitation and AOD over Africa. This
study has identified model performance over Africa as a key
knowledge gap, and determining the climate response to lo-
cal and remote aerosol emission is crucial for Africa; these
knowledge gaps are closely linked. This evaluation will in-
form the analysis of modelled responses in RAMIP exper-
iments, which investigate the impacts of local and remote
aerosol emission changes on Africa. The results here inform
the degree of confidence that can be placed in each model’s
responses based on their performance for the season and re-
gion of interest.

A number of instances where biases in AOD and PM, 5
may relate to biases in precipitation, or vice versa, were iden-
tified in this analysis. Notable examples include poorer per-
formance in replicating the annual climatology of AOD over
east Africa than over west Africa; this may relate to weaker
model performance in replicating the latitudinal progression
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of rainfall throughout the year over east Africa compared to
west Africa. In addition, MIROC6 and MIROC-ES2L were
found to underestimate AOD and PMj; 5 in seasonal AOD
distributions and PM> 5 climatology, which may be linked to
the strong positive biases in mean rainfall magnitude causing
erroneously high rates of wet deposition of aerosol.

However, there were many areas where links could not
be identified or where biases were opposite to those ex-
pected. For example, in NorESM2-LM a southward bias in
dust AOD over west Africa coincided with good performance
in seasonal rainfall pattern over the region, though problems
with CESM2 family models were strongly linked to issues
with emission location and rate, rather than transport or re-
moval issues. Connections between dust AOD and surface
wind speed over Africa were also not identified, despite be-
ing noted for some models in regions outside of and includ-
ing Africa (Wu et al., 2021; Zhao et al., 2022). Therefore,
the initial analysis suggests that wide diversity in dust AOD
may be dominated by differences in dust schemes rather than
differences in meteorological conditions for models.

A notable boundary in this analysis for comparing biases
in AOD and rainfall is that dust and speciated AOD data are
not available for many models, limiting our ability to iden-
tify impacts of inaccurate precipitation patterns on AOD be-
haviour.

Aerosol forcing has been identified as the largest contribu-
tor to uncertainty in anthropogenic effective radiative forcing
(Myhre et al., 2013b), and it has been shown in previous stud-
ies that African precipitation is affected by aerosol emissions,
from both local and remote sources (Monerie et al., 2023;
Scannell et al., 2019; Shindell et al., 2023). CMIP6 models
exhibit a large intermodel spread and biases in their simula-
tions of air quality characteristics and precipitation patterns.
Therefore, when coupled with high uncertainty in future pro-
jections of African aerosol emissions, this intermodel spread
results in a poorly constrained outlook for the future evo-
lution of sub-Saharan air quality and precipitation. These
uncertainties and disagreements with observations, along-
side vulnerability to climate and air quality changes, make
it challenging to accurately quantify the impacts of these
changes as global warming increases and emissions of short-
lived climate forcers change. It is necessary to advise policy
makers on emissions mitigation and local adaptation mea-
sures with a clear understanding of projections and model
responses. Therefore, we highlight model performance over
sub-Saharan Africa and the underlying reasons for these bi-
ases as crucial knowledge gaps in atmospheric science.

Code and data availability. This work uses simulations from 56
models participating in the CMIP project as part of the Cou-
pled Model Intercomparison Project (Phase 6; https://esgf-ui.ceda.
ac.uk/cog/search/cmip6-ceda/, WCRP, 2025); model-specific in-
formation can be found through the references listed in Ta-
ble 2. Model outputs are available on the Earth System Grid
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Federation (ESGF) website (https://esgt-ui.ceda.ac.uk/cog/search/
cmip6-ceda/, WCRP, 2025; Cinquini et al., 2014). The reanal-
ysis and observational data used in this work are all cited and
publicly available. The analysis was carried out using the Bash
and Python programming languages. The ERAS reanalysis dataset
was retrieved from ECMWEF’s Meteorological Archival and Re-
trieval System (MARS). See https://www.ecmwf.int/en/forecasts/
dataset/ecmwf-reanalysis-v5 (ECMWF, 2025) for further details.
The CHIRPS dataset can be retrieved from the Climate Hazard Cen-
tre’s Early Warning Explorer. See https://earlywarning.usgs.gov/
fews/ewx/index.html (CHC, 2025) (CHC, 2025) for further details.
The AirNow dataset used for this study is no longer online, but a
repository is available upon request, and a more limited version of
the dataset is available at AirNow DOS Embassy and Consulate
Monitoring Site Data (Last 24h — PMj; 5 Only), US EPA, OAR,
OAQPS — Overview https://www.arcgis.com/home/item.html?id=
db1a45b351164464ac0459a52890e5a0 (AirNow, 2025).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-10523-2025-supplement.
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