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Abstract

In remote sensing image processing, cloud and cloud shadow detection is of great signifi-
cance, which can solve the problems of cloud occlusion and image distortion, and provide
support for multiple fields. However, the traditional convolutional or Transformer models
and the existing studies combining the two have some shortcomings, such as insufficient
feature fusion, high computational complexity, and difficulty in taking into account local
and long-range dependent information extraction. In order to solve these problem:s, this
paper proposes the MCloud model based on Mamba architecture is proposed, which takes
advantage of its linear computational complexity to effectively model long-range depen-
dencies and local features through the coordinated work of state space and convolutional
support and the Mamba-convolutional fusion module. Experiments show that MCloud
have the leading segmentation performance and generalization ability on multiple datasets,
and provides more accurate and efficient solutions for cloud and cloud shadow detection.

Keywords: cloud and cloud shadow; semantic segmentation; remote sensing images;
Mamba; state-space models; deep learning

1. Introduction

In the field of remote sensing image processing, the recognition of clouds and cloud
shadows is an important research direction. However, recognizing clouds and their shad-
ows only represents one approach to mitigating the interference of cloud cover; another
effective technical solution lies in cloud removal, which directly restores ground informa-
tion obscured by clouds. Cloud cover has a significant impact on the quality and accuracy of
remote sensing images, which changes the reflectance spectrum of ground objects, further
increasing the difficulty of remote sensing data processing and analysis [1-3]. Especially in
the fields of agriculture, urban planning, and natural disaster monitoring, its occlusion can
lead to image brightness distortion and spectral characteristics change, which increases
the difficulty of data processing and analysis [4,5]. In agricultural resource management,
cloud occlusion can affect crop growth assessment, while in natural disaster monitoring,
cloud cover can help assess the severity and extent of disasters [6,7]. The persistence of
cloud cover over disaster-stricken areas can indicate prolonged adverse weather conditions,
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aiding in assessing secondary disaster risks. Thus, understanding cloud properties is
not only essential for mitigating occlusion impacts but also provides valuable insights
for disaster assessment and response strategies. The wide application of cloud detection
technology in the fields of earth resources research, agriculture and forestry research, and
meteorological forecasting provides important information support for the study of global
climate change [8-10]. In terms of earth resources, cloud detection of remote sensing
images can help monitor and evaluate land use, distribution, and utilization of water
resources, and changes in the ecological environment [11,12]. In agriculture and forestry,
cloud detection of remote sensing images can help agricultural producers better assess the
production status, planting status, and crop growth status of farmland, thereby improving
the production efficiency of farmland [13]. At the same time, cloud detection technology
also plays an important role in the monitoring of natural disasters, which can provide
necessary data support for pre- and post-disaster assessment [14]. Therefore, the accurate
identification of clouds and cloud shadows is not only an important topic in the field of re-
mote sensing image processing, but also a necessary condition to meet the needs of remote
sensing technology development and information acquisition on the Earth’s surface. Before
deep learning technology was widely used, the early cloud detection methods mainly
included the following types: first, image analysis-based techniques [15,16], which used
visual computing methods such as texture analysis and edge recognition to extract features,
and classified pixels in the image with the help of classifiers. Secondly, the threshold-
based method [17] distinguishes clouds from the surface by setting fixed thresholds in
different spectral intervals according to the characteristics that the reflectance of clouds in
the visible and near-infrared spectra is generally higher than that of most surface objects.
Thirdly, techniques based on frequency domain analysis [18], which identify clouds and
their shadows by studying the characteristics of remote sensing images in the frequency
domain, such as spectral distribution and energy density, include Fourier analysis, wavelet
analysis, and frequency domain filtering. Finally, techniques based on classical machine
learning, such as support vector machines and random forests, learn to classify labeled
training data to identify clouds and their shadows. With the rapid development of deep
learning technology in the field of computer vision [19,20], how to build a deep learning
network model to achieve more accurate segmentation of clouds and their shadows in
remote sensing images has important application value for environmental monitoring,
climate forecasting, and hydrological model construction [21].

In the early research on cloud and cloud shadow detection, the texture feature analysis
method proposed by Haralick et al. in 1973 [22] provided a theoretical basis for subsequent
cloud detection research. In addition, Hyeungu Choi et al. proposed a method that
combines shadow matching techniques and normalized snow index threshold decision-
making [23] to achieve cloud detection in polar ice sheet regions through the combination of
texture analysis and shadow features. The threshold-based approach is one of the simplest
and most widely used techniques in early cloud detection. Simpson et al. (2002) proposed a
cloud detection method based on 1.6 micron band data [24] to classify Arctic sea ice, clouds,
and water bodies by setting thresholds for spectral reflectance.

Traditional cloud and cloud shadow semantic segmentation methods play an impor-
tant role in remote sensing image processing. The technique based on image analysis and
the method based on threshold setting have been widely used in early research because
of their simplicity and efficiency, but their adaptability in complex scenarios is poor. The
technique based on frequency domain analysis can effectively extract the local features of
the image, but the computational complexity is high, and the noise is sensitive. The classical
machine learning-based method shows good performance when dealing with complex
scenes, but requires a large number of training samples and feature engineering. Although
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these traditional methods can meet the needs of cloud and cloud shadow detection to
a certain extent, with the continuous improvement of the resolution of remote sensing
data and the increasing complexity of application scenarios, the limitations are gradually
revealed.

Significant progress has been made in cloud and cloud shadow detection methods
based on deep learning. Early Fully Convolutional Networks (FCNs) and U-Net [25]
achieved end-to-end pixel-level prediction through an encoder-decoder architecture, which
solved the problem of traditional methods relying on manual features. Subsequently,
the introduction of multi-scale contextual modeling, such as dilated convolution, spatial
pyramid pooling, and attention mechanisms, has further improved the adaptability of
the model to complex scenes, especially in the distinction between thin clouds and cloud
shadows [26]. In addition, lightweight design, such as deep separable convolution, and
multimodal data fusion have become research hotspots, which significantly improve the
efficiency and generalization performance of the model [27,28]. However, the limitations
of the Convolutional Neural Network (CNN) in long-range dependency modeling have
prompted researchers to explore the Transformer architecture, while Transformers provide
the ability to extract global semantic features, they also increase the number of parameters,
so their high computational complexity still needs to be optimized. Transformer modules
with a high number of parameters are susceptible to overfitting, particularly on small- to
medium-sized datasets [29].

In order to overcome the shortcomings of the Transformer [30], recent research has
turned to state-space models (SSMs), especially the Mamba architecture [31], which has
shown potential in visual tasks due to its linear computational complexity and dynamic
feature selection ability. MCloud also shows obvious advantages in segmentation results,
especially in complex scenarios, not only against traditional deep learning frameworks but
also among state-of-the-art Mamba-based models [32]. Models such as Vision Mamba [33]
and VMamba have been successful in image classification and segmentation tasks, while
Pan-Mamba [34] and RSMamba [35] have further adapted them to remote sensing image
processing. However, the application of Mamba in cloud and cloud shadow detection has
not been fully explored, which provides an important direction for future research. At
present, the combination of CNN'’s local feature extraction and Mamba'’s global modeling
capabilities may be the key breakthrough point to improve the detection accuracy and
efficiency.

In the field of cloud and cloud shadow semantic segmentation, deep learning-based
methods have become the mainstream research direction, but there are still some problems,
such as the lack of generalization ability, easy loss of space and detailed information, and
false positives. At present, although there are many attempts, such as using transformers to
extend vision tasks and building dual-branch fusion networks, the segmentation accuracy
and reliability in complex scenarios still need to be improved. In this context, this study is
the first to explore the application of state-space model-based networks to cloud and cloud
shadow semantic segmentation of remote sensing images, and MCloud is proposed. The
encoder includes a state-space architecture branch and a convolutional architecture branch,
which are used for long-range dependency and local feature learning modeling, respectively.
At the same time, the MC module is designed to integrate the global context modeling
ability of the Mamba architecture [36,37] and the local feature perception advantages of
the convolutional network, realize the cross-scale feature interaction mechanism, and
carry out multi-modal feature fusion through the adaptive weight mechanism, which
significantly enhances the model’s ability to analyze the features of complex ground objects,
provides new research ideas and directions for the development of this field, and proves
the feasibility of the Mamba architecture in this direction. It is worth noting that after
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achieving accurate segmentation, the subsequent challenge of cloud and shadow removal
from contaminated images, which is crucial for downstream applications, has also been
explored, as seen in studies like [38,39].

Compared to traditional methods, such as the GGLCM threshold method, which have
limitations such as insufficient robustness and the inability to reuse different sensor data,
MCloud can operate reliably in a diverse range of sensor data environments. This ensures
continuity and accuracy in cloud information collection during disaster monitoring. For
methods with weak cross-sensor generalization capabilities, such as U-Net cloud, MCloud
can effectively obtain consistent cloud distribution information of multi-source data in
complex disaster scenarios with its strong adaptability, so as to comprehensively evaluate
the disaster scope covered by the cloud.

2. Network Architecture
2.1. Backbone Architecture

The MCloud model proposed in this chapter is designed for efficient and accurate
segmentation of clouds and cloud shadows in remote sensing images. The model adopts a
dual-branch encoder—-decoder architecture, as illustrated in Figure 1. The encoder consists
of two parallel branches: one based on the state space model, referred to as the Variational
State Space Model (VSSM) branch, and the other based on traditional convolutional archi-
tecture. These two branches are responsible for modeling the long-range dependencies
and local detail features of clouds and cloud shadows in remote sensing images, respec-
tively, enabling the model to capture and interpret complex information from different
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Figure 1. Overall structure diagram of MCloud.

The VSSM branch leverages the powerful capabilities of state space models to effec-
tively capture the long-range dependencies of clouds and cloud shadows in images, which
is crucial for handling their large-scale influence and interactions with other ground objects.
On the other hand, the convolutional architecture branch focuses on extracting local detail
features such as edges and textures, which are essential for accurately identifying the
boundaries and shapes of clouds and cloud shadows. In this study, we aim to ensure model
performance while minimizing computational complexity. Therefore, for the convolutional
branch responsible for extracting local features, we selected a computationally efficient
structure. After balancing computational complexity and performance, we adopted the
ResNet-34 module to construct the convolutional branch.
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For the decoder design, we employed a cascaded upsampling strategy. Specifically,
this approach is similar to the U-Net architecture, where skip connections are used to con-
catenate features from the encoder with the upsampled output features from the previous
decoder layer along the channel dimension. This is followed by convolutional opera-
tions to further process and fuse the features, generating more precise segmentation results.
Through this design, we effectively reduce computational complexity while ensuring model
performance to meet the objectives of this study.

During the feature extraction process, the features generated by the VSSM branch are
fed into the corresponding scale of the MC module in the convolutional branch for feature
fusion. This fusion mechanism allows the model to integrate global and local information
across multiple scales, enhancing its ability to represent cloud and cloud shadow features.
Specifically, after feature extraction and fusion at four different scales, we obtain rich
and multi-scale feature representations. These multi-scale features are then passed to the
corresponding decoder via skip connections. The skip connections are designed to directly
transfer features from different levels of the encoder to the corresponding levels of the
decoder, preserving more detailed information during the restoration of spatial resolution.
The decoder utilizes these multi-scale features to gradually restore the spatial resolution
of the image and optimize segmentation accuracy, ensuring that the final segmentation
results are both accurate and detailed.

In summary, the MCloud model, through its unique dual-branch encoder-decoder
architecture, combines the strengths of the VSSM branch and the convolutional branch.
By incorporating mechanisms such as multi-scale feature fusion and skip connections, it
achieves efficient and precise segmentation of clouds and cloud shadows in remote sensing
images, providing a reliable foundation for subsequent image analysis and applications.

2.2. VSSM Module

The VSSM branch uses the VSSM block as its core building unit, and the specific
structure of the VSSM block is shown in Figure 2. In this branch, the input features first
enter the initial branch, where the feature channels are expanded through a linear layer.
Subsequently, the expanded features undergo a series of operations, including depthwise
convolution, nonlinear transformation via the SiLU activation function, and processing
through SS2D and layer normalization. After these operations, the resulting features are
aggregated with the input features mapped by another linear layer, further integrating
information.

Layer
Normalization
Layer
Normalization

XOutput

DWConv

Linear Layer

Linear Layer

Linear Layer

I Addition Multiplication Depthwise Separable |
| @ Operation @ Operation DWConv Convolution
\_ _

Figure 2. VSSM structure diagram.
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To capture long-range dependencies while maintaining computational efficiency, the
VSSM block employs the state space model (SSM). The state space equations governing the
VSSM block are defined as follows:

g1 = Ahy + Bx; 1
yt = Chy + Dx; (2)
he = Aly_y + Bxy ®)
Yk = Chy + Dxy (4)

Here, x; and y; represent the input and output of the system at time ¢, respectively.
h; represents the internal state of the system at time t. The matrices A, B, C, and D are
the parameter matrices of the model. A captures information from previous states and
constructs new states. B represents the degree of influence of the input on the system, C
defines how the state is transformed into the output, and D acts as a direct signal from
input to output, similar to a residual connection. These equations enable the VSSM block
to effectively model long-range dependencies while preserving local feature details.

Finally, the aggregated features are combined with the original input features through
a residual connection mechanism, enabling efficient feature propagation and stable network
training. The output of this branch serves as the foundation for subsequent processing and
analysis.

The SS2D (Selective Scan 2D) module is the core component of the VSSM module, and
its structure is illustrated in Figure 3.

______________ S6 Blocks |

— (== :
=" e S

‘

(g AD

(

(

Figure 3. SS2D structure diagram.

The SS2D module processes the image through four distinct scanning paths: from top-
left to bottom-right, from bottom-right to top-left, from top-right to bottom-left, and from
bottom-left to top-right. Each path unfolds the 2D image into a 1D sequence, allowing the
model to capture contextual information from multiple directions. This multi-directional
scanning mechanism ensures a comprehensive understanding of cloud and cloud shadow
features in the image, regardless of their distribution direction. The sequences generated by
each scanning path are processed by independent S6 blocks [40] for feature extraction. The
56 block possesses dynamic weight adjustment capabilities, enabling it to adaptively adjust
model parameters based on the input data, thereby more effectively capturing complex
patterns and features in the image. This dynamic characteristic allows the SS2D module to
flexibly adjust its focus on image features when processing remote sensing images under
different scenarios, enhancing the model’s generalization ability and segmentation accuracy.
Through this design, the SS2D module not only efficiently captures global and local features
in the image but also achieves a good balance between computational complexity and
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performance, providing robust technical support for the precise segmentation of clouds and
cloud shadows in remote sensing images. The calculation formula for SS2D is as follows:

X4 = S6(Xd) )

y = merge(xy) ©®)

Here, scan(-) and merge(-) represent processes similar to the multi-path scanning and
scan merging in VMamba [40]. The S6 block is an improvement based on the state space
model in the Mamba architecture, which can selectively retain or filter information based
on the input content, thereby maintaining linear time complexity when processing long
sequences. The state space model is a mathematical model derived from modern control
theory, used to describe the dynamic behavior of systems. It represents the internal state of
a system through a set of state variables and describes the evolution of state variables over
continuous time, as well as the relationship between state variables and output variables,
through state equations and output equations. SSM assumes that the state of a dynamic
system can be predicted using the following two mathematical equations:

h(t+1) = Ah(t) + Bx(t) 7)

y(t) = Ch(t) + Dx(t) (®)

where x(t) and y(t) represent the input and output of the system at time, /() represents the
internal state of the system at time. A, B, C, D are the parameter matrices of the model. A
used to capture information from previous states and construct new states. B represents the
degree of influence of the input on the system, and C defines how the state is transformed
into the output. D is similar to a residual connection, providing a direct signal from input
to output.

However, in traditional SSMs, A, B, C the parameter matricesare static and do not
change with the input content. This prevents the model from dynamically adjusting its
information retention strategy based on the input, leading to a loss of contextual relevance.
In the Mamba architecture, the S6 block associates the parameter matrices B, C and A
with the input through linear layer projections, enabling the model to selectively retain or
ignore contextual information and adjust the state update rate based on the input content.
Additionally, the parameter matrix A is initialized as a HIPPO matrix [41]. Specifically, the
initialization formula for matrix A is given by:

A =exp(AA,) &)

where AA, represents the dynamic adjustment factor for long-range dependency modeling.
This initialization ensures that the matrix A remains positive definite, which is crucial
for maintaining numerical stability and ensuring that the model can adaptively capture
long-range dependencies. Furthermore, the parameter matrix B is dynamically adjusted
during training using the following equation:

B= (eAAc - 1) A;1B, (10)

The exponential function ensures that the matrix A remains positive definite, which
is crucial for maintaining numerical stability and ensuring that the model can adaptively
capture long-range dependencies. These improvements enhance the model’s content-
awareness while maintaining low computational complexity. The parameter matrices B, C
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and A dynamic update formulas are shown in the Formulas (6)—(8), where SiLU is the
SiLU activation function, and the projection and bias operations are denoted as follows:

A = SiLU(Wax + by) (11)
B = Wgx + bg (12)

C = Wex + be (13)
hiy1 = Ahy + Bx; (14)
yt = Chy 4+ Dx; (15)

Here, A and B are the parameter matrices are obtained by approximating the dis-
cretization of continuous equations using the zero-order hold method, as shown in
Formulas (11) and (12). D represents the direct linear projection of the input to the output,
similar to a residual connection.

A=t (16)

B= (AA)’l (eAA—I) AB (17)

After processing by the S6 block, the sequences from the four scanning directions
are reassembled. Through an inverse operation, the 1D sequences are restored into 2D
image blocks, which contain contextual feature information integrated from four different
directions. These features are then fused using the Hadamard product. The Hadamard
product, as an element-wise multiplication operation, effectively integrates features from
different directions, enhancing the model’s understanding of global image information.
This fusion method not only preserves the uniqueness of features from each direction but
also highlights their common characteristics, thereby improving the model’s adaptability
to complex scenes.

Through this approach, the SS2D module can learn long-range dependency features
while maintaining linear complexity, thereby enhancing the model’s performance. This
design enables the SS2D module to efficiently capture global and local features in remote
sensing images, providing robust technical support for the precise segmentation of clouds
and cloud shadows.

2.3. Mamba—Convolution Fusion Module

Most existing state space model networks overly emphasize the modeling of long-
range dependencies while neglecting the importance of local feature information, which
plays a crucial role in semantic segmentation. This leads to suboptimal performance in
cloud and cloud shadow detection tasks. To address these issues, this study proposes the
Mamba-Convolution Fusion Module, whose core design goal is to effectively integrate long-
range dependency features from the VSSM branch and local feature information from the
convolutional branch. This enables more comprehensive and richer feature representation,
enhancing the model’s performance on specific tasks. Its structure is illustrated in Figure 4.

For features extracted by the convolutional branch: Since these features are inher-
ently obtained through convolution operations between convolutional kernels and local
regions of the input image, they primarily contain local feature information. To more
effectively integrate these local features into the global semantic understanding framework,
a channel attention mechanism is first applied to optimize them. The channel attention
mechanism evaluates and weights the importance of each channel feature, highlighting
those channels that contribute more discriminative power to the current task, thereby
enhancing the discriminability and expressiveness of the features. On this basis, a spatial
attention mechanism is further introduced. This mechanism allocates attention weights to
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different spatial locations in the feature map with relatively low computational complexity,
capturing global feature information with significant semantic value. This achieves an
effective combination of local and global features, improving the model’s overall grasp
and understanding of features. For features from the VSSM branch: Their advantage lies
in being obtained through VSSM blocks with excellent long-range dependency learning
capabilities, enabling the capture of long-range dependencies in images or data. This is
crucial for semantic understanding and context modeling in many complex tasks. However,
relying solely on long-range dependency features may result in insufficient description of
local details. Therefore, convolutional operations at different scales are used to further learn
detailed features of local regions. Multi-scale convolutional operations extract features from
various perspectives and granularities, enriching the expressive power of VSSM branch
features. This allows the features to retain long-range dependency information while also
more accurately depicting local details, further enhancing the completeness and richness of
the features.

XConvo]ution XVSSM

DWConv
Batch
Normalization

)
L Channel L Spatial

Attention Attention

( Additi R .
ition Multiplication . Depthwise Separable
| Operation Operation Cony  Convolution DWConv Convolution |

Figure 4. MC module structure diagram.

Finally, the processed features from the convolutional branch and the VSSM branch
are fused and fed into the decoder through skip connections. This fusion method not only
preserves the richness of the original features while maintaining low computational com-
plexity but also transmits feature information at different levels and semantic hierarchies
to the decoder via skip connections. Skip connections effectively prevent the loss and
degradation of feature information during transmission, enabling the decoder to obtain
more comprehensive and accurate feature representations. This significantly enhances
the decoder’s ability to reconstruct features and adapt to complex tasks, providing strong
support for the model to achieve excellent performance in various application scenarios.

3. Experimental Results
3.1. Datasets
Three main datasets are used in this paper: CloudSEN-12, 38-Cloud, and SPARCS-Val.

(a) CloudSEN-12: This is a large-scale cloud semantic understanding dataset that covers
multispectral imagery from the Sentinel-2 satellite, containing annotated information
for multiple clouds and cloud shadows, and is widely distributed on all continents
except Antarctica [42].The dataset has diverse band information and high-resolution
image features, which provides a valuable resource for studying cloud and cloud
shadow detection in complex scenes. And CloudSEN12 is a large dataset for cloud
semantic understanding that consists of 9880 regions of interest (ROIs). Each ROI has
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five 5090 m x 5090 m image patches (IPs) collected on different dates; we manually
choose the images to guarantee that each IP inside an ROI matches one of the cloud
cover groups.

(b) 38-Cloud: This dataset is focused on the cloud detection task of Landsat8 satellite
images, which contains images of 38 scenes and their pixel-level annotations [43]. The
dataset is characterized by its multispectral band configuration, which can effectively
distinguish clouds from other highly reflective surface objects such as ice, snow, and
buildings, thereby creating a more challenging data environment for model training.
The dataset is binary and contains two classifications: cloud and background. The
labeling process is performed manually by professionals, ensuring the high quality
and accuracy of the labels.

(c) SPARCS-Val: This dataset was created by Oregon State University in the United States
to validate the performance of cloud and cloud shadow removal algorithms [44]. The
dataset not only contains a variety of feature types of annotations, but also covers
complex scene combinations, each scene is equipped with manually annotated finely
labeled images, and seven categories such as cloud shadow, cloud shadow on water,
ice and snow, and cloud are annotated in detail, which further enriches the scene
diversity of model validation and provides researchers with a rich data base.

3.2. Experiments Setup

Experiments were performed on NVIDIA RTX 4090 GPU (NVIDIA Corporation, Santa
Clara, CA, USA) using PyTorch (v2.6.0), and since most of the models in this experiment
converged after 250 iterations, the epoch number was fixed at 300 and the batch size was
16. In this study, the cross-entropy loss function was used, and the AdamW optimizer was
used, and the weight attenuation coefficient was 0.001. The Poly learning rate strategy is
used during training. The initial learning rate is set to 0.001, the PolyPower is set to 2, and
the learning rate LR of each round of training is described as follows:

2

B epoch) (18)

LR = 0.001 x (1 300

3.3. Ablation Experiments

Ablation experiments were conducted on the CloudSEN-12 dataset to evaluate the
contribution of different components in the model to the final segmentation performance.
The following are the different combinations and their corresponding MIoU metrics:

I = Zx,y [Pred(x,y) =iNGT(x,y) = i (19)

Ui =Y, [Pred(x,y) =iUGT(x,y) = i (20)

Iol; = LIT: (21)

MIoU = %Zﬁ Toll; 22)

pa — ZaylPred(x,y) = GT(x,y)] 23
Yoyl

_ LaylPred(x,y) =iNGT(x,y) = i

PA; = , 24
Ty [GT(y) = 1 24
MPA = lzfi | PA; (25)

N
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where Pred(x,y) = i represents that at the image coordinate (x, y), the predicted class by
the model is class i. In other words, the model predicts that the pixel at this position belongs
to class i. GT(x,y) = i is the abbreviation of “Ground Truth”, means that at the image
coordinate (x, y), the actual (true) class is class i, that is, the real class that the pixel belongs
to. I; counts the number of pixels where both the predicted class and the ground truth class
are class i. U; counts the number of pixels where either the predicted class is class i or the
ground-truth class is class i. MIoU is the average of the intersection over Union JolU; for
all N classes. Mean Pixel Accuracy (MPA) is an index obtained by calculating the Pixel
Accuracy (PA) of each category and then averaging the accuracy of all categories, which
is used to evaluate the pixel-level prediction accuracy of the image segmentation model
on all categories, which can more evenly reflect the segmentation ability of the model for
different categories, especially small categories. 1t is a simple and intuitive indicator to
reflect the overall correct prediction degree. The results are shown in Table 1.

Table 1. Ablation experiments of different modules in the network.

Methods MIoU(%)
Convolutional Branch 73.22
Convolutional Branch + VSSM Branch 76.3 (3.087)
Convolutional Branch + VSSM Branch + MC Module 78.19 (1.891)

(a) Convolutional Branch: The baseline model uses only the convolutional branch, achiev-
ing an MlIoU of 73.22% and an MPA (Mean Pixel Accuracy). While the convolutional
branch effectively extracts local features, it struggles with capturing long-range de-
pendencies, this limitation is not only reflected in the moderate MIoU but also in the
relatively low MPA, especially for small-scale cloud regions. The low MPA indicates
that the baseline model frequently misclassifies these small cloud regions as non-cloud
areas, as it cannot integrate global contextual information to distinguish them from
similar-textured ground objects.

(b) Convolutional Branch + VSSM Branch: After adding the VSSM branch to the baseline
model, the MIoU increased to 76.30%, an improvement of 3.08%, and the MPA has in-
creased. The VSSM branch captures long-range dependencies through the state space
model, significantly enhancing the model’s ability to perceive global information. The
larger improvement in MPA confirms that the VSSM branch effectively addresses the
baseline model’s weakness in classifying small or scattered cloud categories, which
are more sensitive to MPA metrics.

(c) Convolutional Branch + VSSM Branch + MC Module: With the further addition of
the MC module, the MIoU increased to 78.19%, an improvement of 1.89% and MPA
increased. The MC module integrates the global features from the VSSM branch
and the local features from the convolutional branch, enabling cross-scale feature
interaction. This further enhances feature representation and strengthens the model’s
ability to interpret complex cloud and cloud shadow features.

3.4. Comparative Experiments
3.4.1. Generalization Experiments on the CloudSEN-12 Dataset

In this section, the proposed MCloud network is compared with state-of-the-art mod-
els, which are categorized into three main types based on their architectures: Convolution-
based models, such as FCN, DeepLab, and OCRNet; Transformer-based models, such as
SETR, PVT, and SwinUNet; Convolution-Transformer hybrid models, such as CVT, MPViT,
and DBNet; Mamba-based models, such as CCViM, VM-UNet, and RS3Mamba.



Remote Sens. 2025, 17, 3120

12 of 24

The experiment designed for thick and thin cloud scenarios on the CloudSEN-12
dataset needs to combine the physical characteristics of the two types of clouds, with high
reflectivity, clear boundaries, and continuous spatial distribution. Thin clouds have low
reflectivity, blurred boundaries, and are distributed in discrete filaments.

Tables 2 and 3 present the evaluation metrics of different models on the CloudSEN-12
dataset. In terms of the overall ranking based on the MloU metric, the proposed MCloud
model achieves the best performance, outperforming CNN-based, Transformer-based,
hybrid, and Mamba-based networks in MIoU, PA, and MPA metrics, with scores of 78.19%,
90.13%, and 88.85%, respectively. These results demonstrate that MCloud has a significant
advantage in the task of cloud and cloud shadow semantic segmentation.

Table 2. Comparison of overall evaluation metrics of different models on the CloudSEN-12 dataset.

Architecture Model MIoU(%) PA(%) MPA (%)
FCN-32s 71.23 86.98 84.8
DANet 71.79 87.02 84.14
BiSeNetV2 74.19 88.12 85.47
PAN 74.83 88.48 86.48
CGNet 74.98 88.59 86.23
CNN LinkNet 75.19 88.63 86.64
DenseASPP 75.32 88.77 86.61
DeeplabV3 75.33 88.71 86.79
HRNet 76.45 89.25 87.03
OCRNet 76.74 89.5 87.66
SegNet 77.01 89.62 87.56
SETR 73.9 87.78 85.38
Transformer PVT 76.62 89.03 86.59
SwinUNet 77.53 89.78 87.61
CVT 73.93 87.93 85.16
CNN'HT;ir;?gormer MPViT 77.22 88.89 87.37
DBNet 77.37 89.71 87.4
CCViM 745 88.1 85.3
VM-UNet 77.13 89.53 86.29
Mamba RS3Mamba 77.91 90.05 86.34
MCloud 78.19 90.13 88.85

In comparison with models based on other architectures, MCloud not only outper-
forms most CNN and Transformer-based models but also significantly surpasses models
with CNN-Transformer hybrid architectures. For instance, compared to SegNet, which
performs well in the CNN architecture (MIoU of 77.01%), and SwinUNet, which performs
well in the Transformer architecture (MIoU of 77.53%), MCloud’s MIoU is higher by 1.18%
and 0.66%, respectively. Moreover, MCloud also outperforms models in CNN-Transformer
hybrid architectures, such as DBNet (MIoU of 77.37%), which was proposed in a previous
study on cloud and cloud shadow semantic segmentation using attention mechanism-based
multi-scale feature extraction (MIoU of 77.85%). This indicates that MCloud demonstrates
stronger feature extraction and fusion capabilities. In comparisons within models based on
the Mamba architecture, MCloud also stands out. Compared to CCViM (MIoU of 74.5%),
VM-Unet (MIoU of 77.13%), and RS3Mamba (MIoU of 77.91%), MCloud’s MIoU exceeds
theirs by 3.69%, 1.06%, and 0.28%, respectively. This suggests that the MCloud, based on
the Mamba architecture and paired with the network structure and MC module designed
in this study, has superior feature extraction and fusion capabilities, enabling it to more
effectively handle complex cloud and cloud shadow segmentation tasks.
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Table 3. Comparison of classification evaluation metrics of different models on the CloudSEN-12

dataset.
. Cloud Cloud Shadow

Architecture Model P(%) R(%) F1(%) P(%) R(%) F1(%)
FCN-32s 87.55 89.85 88.68 787 61.31 68.92

DANet 88.59 88.44 88.51 75.51 66.02 70.44

BiSeNetV2 90.08 89.81 89.94 77.26 71.03 74.01

PAN 91.43 88.67 90.02 79.97 70.48 74.92

CGNet 90.27 90.39 90.32 79 71.04 74.8

CNN LinkNet 91.96 88.38 90.13 80 715 75.51
DenseASPP 91.44 89.23 90.32 79.71 71.36 75.3

DeeplabV3 89.79 90.66 90.22 81.03 70.98 75.67

HRNet 91.35 90.04 90.69 80 74.27 77.02

OCRNet 91.44 90.32 90.87 81.91 72.8 77.08

SegNet 91.22 90.63 90.92 81.5 73.14 77.09

SETR 88.92 89.96 89.43 78.07 71.29 7452

Transformer PVT 89.67 90.43 90.04 78.98 72.34 75.51
SwinUNet 91.16 91.19 91.17 80.88 75.96 78.34

CNN-Transformer CVT 89.62 89.44 89.52 76.55 71.44 73.9
Hybrid MPViT 91.66 89.67 90.65 78.28 73.79 75.96
DBNet 91.7 90.51 91.1 80.03 76.17 78.05

CCViM 89.5 88.2 88.8 75.4 74.1 747

VM-UNet 90.08 91.72 90.9 76.1 80.13 78.12

Mamba RS3Mamba 90.93 91.76 91.34 74.63 83.02 78.83
MCloud 92.15 92.50 92.32 83.00 82.50 82.75

From the perspective of classification indicators, MCloud performs well in the seg-
mentation task of both cloud and cloud shadow. In the cloud segmentation, MCloud’s P, R,
and F1 reach 92.15%, 92.50%, and 92.32%, respectively, which is significantly better than
other models. In the segmentation of cloud shadow, MCloud’s P, R, and F1 reach 83.00%,
82.50%, and 82.75%, respectively, which is also better than other models. This shows that
MCloud can not only accurately detect the target area in the segmentation task of cloud and
cloud shadow, but also retain rich boundary details to reduce false positives and missed
judgments.

In order to further verify the performance of MCloud, this study randomly selected
five images in different scenarios such as urban, rural, open space, and water, and compared
the segmentation results using several models at the top of the MIoU index, as shown in
Figure 5. From the visualization results, MCloud performs best in the segmentation task of
cloud and cloud shadow. The segmentation results are better than other models in terms of
edge accuracy and local detail, and can accurately identify small areas of clouds and cloud
shadows, reducing misjudgment.

In summary, MCloud significantly outperforms models from other Mamba archi-
tectures on the CloudSEN-12 dataset, as well as most models with CNN, Transformer,
and CNN-Transformer hybrid architectures. This shows that MCloud has significant ad-
vantages in feature extraction, fusion and multi-scale information processing, and can
effectively improve the accuracy and robustness of cloud and cloud shadow segmentation.

3.4.2. Generalization Experiments on the 38-Cloud Dataset

In order to evaluate the segmentation performance and generalization ability of our
proposed MCloud network, generalization experiments were carried out on the 38-Cloud
dataset. Tables 4 and 5 show how our network compares to the current state-of-the-art
model on the 38-Cloud dataset.
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Figure 5. Comparison of segmentation results of different networks in several scenarios. (a) Test
Image; (b) Label; (c) MCloud; (d) RS3Mamba; (e) VM-Unet; (f) SwinUNet; (g) DBNet; (h) SegNet.

Table 4. Comparison of overall evaluation metrics of different models on the 38-Cloud dataset.

Architecture Model MIoU(%) PA (%) MPA (%)
DANet 87.69 93.44 93.45
FCN-32s 88.67 94 93.99
BiSeNetV2 91.28 95.44 95.45
LinkNet 91.48 95.55 95.55
DenseASPP 91.62 95.62 95.63
PAN 91.69 95.66 95.66
CNN DeeplabV3 91.86 95.75 95.77
CGNet 92.24 95.96 95.98
PSPNet 92.34 96.02 96.01
SegNet 92.58 96.14 96.16
HRNet 92.63 96.17 96.17
CDUNet 92.64 96.18 96.19
OCRNet 92.69 96.2 96.21
SETR 82.65 90.5 90.51
Transformer SwinUNet 93.1 96.42 96.42
CVT 87.92 9357 9356
CNNg;ﬁgormer MPViT 92.86 95.96 95.97
DBNet 93.27 96.52 96.51
RS3Mamba 93 96.38 96.38
VM-UNet 93.5 96.85 96.88
Mamba CCViM 94.1 97.15 97.2
MCloud 94.6 97.58 97.62

From the perspective of network architecture, the model based on the Mamba ar-
chitecture shows significant advantages in cloud detection tasks, and its performance
exceeds that of traditional CNN, Transformer, and hybrid architecture models. In terms
of comprehensive performance, traditional CNN models, such as DANet and FCN-32s,
and pure transformer models, which include SETR, performed the weakest, with their
MIoU values falling below 90%. Hybrid architecture models, such as DBNet, outperform
single-architecture models, but they are still inferior to Mamba models. Specifically, the
Mamba architecture’s MCloud topped the list with 94.60% MloU, 97.58% PA, and 97.62%
MPA, significantly ahead of other models. The Mamba-based algorithm shows significant
advantages in cloud segmentation tasks, and its comprehensive performance surpasses
that of traditional convolutional, Transformer, and hybrid architecture models. Traditional
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convolutional networks, such as DANet and BiSeNetV2, and pure transformer models,
such as SETR, exhibit insufficient segmentation accuracy in complex scenarios due to their
limited feature modeling capabilities. Although hybrid architecture models improve per-
formance by integrating multiple types of features, they are still limited by computational
complexity and local-global information interaction efficiency. In contrast, the Mamba
architecture achieves a breakthrough balance between long-range dependency modeling
and computational efficiency through the co-design of state-space models and convolution.

Table 5. Comparison of classification evaluation metrics of different models on the 38-Cloud dataset.

) Cloud Background
Architecture Model P(%) R(%) F1(%) P(%) RC%) F1(%)
DANet 93.69 93.08 9338 932 93.79 935
FCN-32s 93.78 94.17 93.98 94.21 93.82 94.02
BiSeNetV2 94.68 96.24 95.46 96.22 94.65 95.43
LinkNet 95.63 95.41 95.52 95.47 95.68 95.58
DenseASPP 95.35 95.87 95.61 95.9 95.38 95.64
PAN 95.33 95.99 95.66 9% 95.35 95.67
CNN DeeplabV3 94.75 96.83 95.79 96.79 94.69 95.74
CGNet 94.88 96.12 95.49 97.08 94.81 95.95
PSPNet 95.44 96.61 96.02 96.61 95.43 96.02
SegNet 96.22 96.02 96.12 96.07 96.27 96.17
HRNet 96.02 96.29 96.16 96.32 96.06 96.19
CDUNet 95.52 96.86 96.19 96.85 95.5 96.18
OCRNet 96.48 95.87 96.17 95.94 96.54 96.24
SETR 89.86 91.2 90.53 91.16 89.82 90.49
Transformer SwinUNet 96.4 96.41 96.41 96.45 96.44 96.44
CNN-Transformmer CVT 9351 9356 9354 93.62 9358 93.6
Hybrid MPViT 95.97 95.93 95.94 95.23 95.74 95.48
DBNet 96.82 96.16 96.49 96.22 96.67 96.44
RS3Mamba 95.99 96.75 96.37 96.76 96.01 96.38
VM-UNet 96.82 9.5 96.66 96.92 9.8 96.86
Mamba CCViM 97.1 96.95 97.03 97.3 97.1 97.20
MCloud 97.5 97.2 97.35 97.8 97.3 97.55

The time complexity of Transformer is O(n? x d); and the time complexity of VSSM
is O(n x d) or O(n x d x logn), respectively. The O(nxd) complexity arises when no pre-
computation is used, relying solely on direct sampling or approximation. While simple
to implement, this approach becomes highly inefficient for large filters due to explicit
computation costs. In contrast, the O(nxdxlogn) complexity leverages acceleration struc-
tures (e.g., MIPMAP, SAT) to enable efficient large-filter operations. These methods trade
pre-computation overhead for runtime efficiency by employing statistical approximations
and hierarchical optimizations.

For the MCloud network, when evaluating its segmentation performance and gen-
eralization on the 38-Cloud dataset, with Tables 4 and 5 comparing to state-of-the-art
models, the Mamba-based architecture stands out. Traditional CNNs, such as DANet and
FCN-32s, and pure Transformers, such as SETR, are constrained by limitations in feature
modeling, yielding weak performance (MIoU < 90%) and often incurring high complexities
like O(n? x d). Hybrid models (e.g., DBNet), though better than single architectures, still
face bottlenecks from computational complexity and suboptimal information interaction,
likely adhering to costlier complexity patterns. In contrast, our MCloud leverages Mamba’s
state-space model and convolution co-design. This not only delivers superior performance,
topping metrics with 94.60% MIoU, 97.58% PA, and 97.62% MPA, but also achieves a
breakthrough balance: it avoids the high quadratic complexity of traditional models, align-
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ing more closely with the lower-order, efficient complexities O(n x d) or O(n x d x logn).
Thus, in both performance and computational efficiency, the Mamba-based method out-
paces competitors, boasting the smallest complexity while delivering state-of-the-art cloud
segmentation results.

Our proposed MCloud network achieves a balance between global context perception
and local detail extraction through the collaborative design of state-space branches and
convolutional branches, while discarding the dependence on multiband input to reduce
the computational complexity, and achieving the leading performance with visible light
data alone. Compared with DBNet, the MloU is improved by 1.33%, and the parameter
volume is reduced by 43%, providing an efficient and reliable solution for real-time remote
sensing image processing. This result validates the feasibility and potential of the Mamba
architecture in cloud and cloud shadow remote sensing tasks.

Figure 6 shows the segmentation results of MCloud, DBNet, and SwinUNet in complex
background scenarios such as cloudless and multi-cloud. From the visualization results,
it can be seen that the segmentation results of MCloud are significantly better than other
models in terms of edge continuity and detail restoration ability. In the prediction results of
DBNet and CDUNet, obvious jagged fractures appear at the cloud boundary, particularly
in thin cloud areas, where local misjudgment is prone to occur, as shown in Figure 2.
Although OCRNet improves the detection accuracy of cloud subjects through multi-scale
feature extraction, it is not adaptable enough to the changes in the internal texture of clouds,
resulting in the over-smoothing of thick cloud segmentation. SwinUNet’s Transformer-
based global modeling capability improves the coherence of the cloud contour, but there
are still missing detections in small-scale cloud block detection.

@)
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Figure 6. Comparison of different models on the 38-Cloud dataset. (a) Test Image; (b) Label Image.
(c) MCloud; (d) DBNet; (e) SwinUNet; (f) OCRNet; (g) CDUNet.

The segmentation results of MCloud proposed by us show remarkable robustness
and accuracy, and it effectively captures the continuity characteristics of cloud distribution
and avoids the edge fracture problem through the long-range dependence of state-space
branching modeling. In the dense cloudy area, the local texture information extracted
from the convolution branch and the global semantic guidance of the state space branch
synergize, and the fine distinction of the thick and thin areas in the cloud layer is realized.
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However, in the snow area with high reflection background interference, as shown in
Figure 6, MCloud significantly suppresses the false detection noise by dynamically filtering
the cross-scale context features, while completely preserving the boundary details of clouds
and ground objects. It is worth noting that MCloud only relies on visible band input, which
confirms the potential of state-space architecture in complex feature modeling.

In summary, MCloud achieves an efficient balance between global context perception
and local feature resolution through the deep collaboration between the state space model
and the convolution module, and its output results reach the advanced level in terms of
edge accuracy, noise suppression and scene adaptability, which provides a new solution for
the semantic segmentation task of remote sensing images.

3.4.3. Generalization Experiments on the SPARCS-Val Dataset

In order to further evaluate the segmentation performance and generalization ability
of MCloud networks, comparative experiments were also carried out on the SPARCS-Val
dataset with more classifications and more scenarios. The experimental results are shown
in Tables 6 and 7, where Table 6 show the overall indicators and Table 7 show the pixel
accuracy of different models for each category.

Table 6. Comparison of overall evaluation metrics of different models on the SPARCS-Val dataset.

Overall Data
Model MIoU(%) | PA(%) | MPA(%) R(%) F1(%)
DANet 55.61 85.04 70.28 67.12 66.76
FCN-32s 61.38 88.03 75.41 71.2 72.4
BiSeNetV2 64.38 88.57 80.33 73.26 75.8
SegNet 65.86 89.3 80.74 75.18 77.53
CGNet 66.82 89.93 80 76.37 77.31
PSPNet 67.23 89.92 82.5 75.23 77.81
Dense ASPP 67.73 89.81 82.42 76.21 78.63
DeeplabV3 68.26 90.06 82.94 76.9 79.05
LinkNet 68.62 90.84 83.38 76.8 79.24
HRNet 69.74 90.98 84.61 77.3 80.51
OCRNet 69.91 90.94 86.21 77.15 80.04
SETR 6359 87.73 79.58 72.89 7538
PVT 68.54 89.28 83.02 77.57 80.2
SwinUNet 73.0 91.86 86.44 80.44 83.1
CVT 62.68 87.03 78.3 72.42 74.6
MPViT 72.98 90.02 85.26 79.49 82.27
DBNet 74.04 92.54 87.26 81.01 83.65
VM-UNet 749 92.14 88.24 81.95 84.59
RS3Mamba 75.36 93.14 86.86 83.52 84.98
CCViM 76.46 93.02 89.1 83.17 85.61
MCloud 77.47 93.77 88.23 85.06 86.5

Table 7. Comparison of classification evaluation metrics of different models on the SPARCS-Val

dataset.
Class Pixel Accuracy (%)

Model CS [ CSOW | W 7S L C F
DANet 55.44 30.37 89.21 87.63 91.07 76.89 61.36
FCN-32s 64.63 37.51 89.57 89.56 92.36 83.1 71.17
BiSeNetV2 73.24 57.35 90.2 92.17 91.65 83.18 74.52
SegNet 76.98 55.74 86.82 92.49 92.66 83.5 77.02
CGNet 7247 50.32 93 90.53 94.02 84.17 75.49
PSPNet 76.72 56.59 93.06 92.59 92.75 83.81 82.02
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Class Pixel Accuracy (%)

Model CS [ CSOW | W 7s 1oL C F
DenseASPP 77.13 57.26 94.13 93.23 93.46 81.2 80.58
DeeplabV3 79.87 60.99 91.28 91.56 93.71 81.97 81.21

LinkNet 79.3 60.06 87.36 91.46 93.2 88.7 83.58
HRNet 82.77 65.31 89.36 93.22 93.23 85.91 82.52
OCRNet 81.64 68.4 94.27 93.53 92.46 87.4 85.78
SETR 71.16 55.83 89.85 92.31 91.89 78.9 77.14
PVT 76.34 62.57 90.42 93.23 92.46 84.6 81.55
SwinUNet 80.14 70.09 92.34 94.17 94.15 88.27 85.94
CVT 67.11 52.85 88.78 93.11 91.64 77.79 76.85

MPViT 80.42 68.95 91.03 93.77 92.96 84.56 85.18

DBNet 81.74 70.21 93.3 94.15 94.44 89.38 87.62
VM-UNet 82.43 75.21 94.15 94.88 95.04 85.22 90.76
RS3Mamba 85.66 70.69 93.5 94.41 95.25 89.84 78.71

CCViM 83.39 77.55 94.27 93.95 95.23 89.01 90.3

MCloud 81.95 74.38 95.34 94.31 95.86 92.06 83.74

CS refers to cloud shadow classification, CSOW refers to cloud shadow classification
on water, W refers to water classification, I/S refers to ice and snow classification, L refers
to land classification, C refers to cloud classification, and F refers to flood classification.

Experimental results show that MCloud performs better on the SPARCS-Val dataset
than most models with other architectures. Specifically, MCloud’s MlIoU, PA, MPA, R,
and F1 indicators reached 77.47%, 93.77%, 88.23%, 85.06%, and 86.5%, respectively, and
performed well among all models.

This indicates that MCloud has strong generalization ability when dealing with com-
plex datasets. From the perspective of category pixel accuracy, MCloud performed well in
cloud (C) and land (L) classification, with pixel accuracy of 92.06% and 95.86%, respectively.
MCloud also achieved good results in the classification of cloud shadow (CS) and cloud
shadow over water (CSOW), with 81.95% and 74.38%, respectively. In addition, MCloud’s
pixel accuracy of 95.34% and 94.31%, respectively, for water (W) and ice and snow (I/S)
classifications is equally excellent. Specifically, MCloud’s high pixel accuracy on cloud
(C) and land (L) classifications indicates that it has high accuracy in distinguishing be-
tween these two common feature categories. Although the accuracy of cloud shadow (CS)
and cloud shadow over water (CSOW) classification is relatively low, it still shows good
recognition ability, which may be related to the complexity and diversity of cloud shadow.
In the classification of water (W) and ice and snow (I/5), MCloud’s high pixel accuracy
further proves its effectiveness when dealing with these features with different spectral and
spatial characteristics. MCloud has a well-balanced segmentation performance in different
categories, and can effectively handle the segmentation tasks of various complex features.
This shows that MCloud not only performs well in terms of overall performance, but also
has high accuracy and stability in the face of different types of feature classification.

Figure 7 shows the segmentation results of multiple models in different scenarios of
the SPARCS-Val dataset. As can be seen from the figure, the segmentation results of the
traditional convolutional structure network DeepLab V3 have the problems of rough edges
and false detections, especially in the classification of water areas. Although the SwinUNet
of the Transformer structure and the DBNet of the hybrid structure have relatively good
segmentation results, there are still a certain range of false detections. In contrast, MCloud’s
segmentation results are outstanding. In the segmentation task of cloud and cloud shadow,
MCloud can accurately segment the boundary between cloud and cloud shadow, retain rich
boundary details, and reduce the occurrence of false detection. This is mainly due to the
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introduction of the Mamba architecture based on the state space model in MCloud, which
enables the effective modeling of long-range dependencies and local features through the
collaborative work of state space architecture branches and convolutional architecture
branches. In addition, the MC module designed by MCloud further enhances the model’s
ability to resolve complex features, so that the model can segment clouds and cloud
shadows more accurately.
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Figure 7. Comparison of different models on the SPARCS-Val dataset.(a) Test Image; (b) Label;
(c) MCloud; (d) RS3Mamba; (e) VM-UNet; (f) SwinUNet; (g) DBNet; (h) DeepLab V3.

In complex scenes, such as ice and snow noise interference, MCloud can still maintain
good segmentation performance. This is mainly due to the fact that MCloud’s Mamba
architecture is able to effectively capture global context information, while the convolutional
architecture branch is able to extract local feature details. By synergistically integrating
these two features, the MC module realizes a cross-scale feature interaction mechanism,
thereby improving the robustness and adaptability of the model in complex scenarios.

Compared with other networks based on the Mamba architecture, such as RS3Mamba
and VM-UNet, MCloud also shows significant advantages in segmentation results. Al-
though RS3Mamba also has a good performance in the segmentation of cloud and cloud
shadow, there are still some false detections when dealing with complex scenes. VM-UNet
also has similar problems in the segmentation results, especially in the case of ice and snow
noise interference, the false detection phenomenon is obvious. In contrast, MCloud further
enhances the model’s ability to resolve complex feature features by introducing the MC
module, so as to show excellent segmentation performance in different scenarios.

In summary, the performance of MCloud on the SPARCS-Val dataset proves its gener-
alization ability and robustness in cloud and cloud shadow semantic segmentation tasks.
This is mainly due to the introduction of the Mamba architecture based on the state space
model in MCloud, which enables the effective modeling of long-range dependencies and
local features through the collaborative work of the state space architecture branch and
the convolutional architecture branch. At the same time, the design of the MC module
further enhances the model’s ability to analyze complex ground features, so that MCloud
can maintain excellent segmentation performance on different datasets. The results are
shown in Figure 8.

In summary, MCloud’s accurate segmentation in complex surface, low-contrast and
broken cloud scenes can capture local details such as cloud shadow edges and thin cloud
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textures through feature visualization depth analysis, shallow volume branching, and this
hierarchical feature division and module collaboration clearly express MCloud’s decision-
making logic from local details to global semantics, so that the advantages and disadvan-
tages of segmentation results can be explained.

(b)
Figure 8. The comparison of the MCloud model on different datasets. (a) Test Image; (b) MCloud.

MCloud has achieved significant results in cloud and cloud shadow semantic seg-
mentation tasks, but there are still some areas that can be improved. In future work, we
will further optimize the model to improve its inference speed. This study proves the
feasibility of Mamba architecture in cloud and cloud shadow semantic segmentation in
remote sensing images, which is of great significance for promoting the development of
cloud and cloud shadow semantic segmentation.

4. Performance Analysis

The original motivation of this study was to explore the possibility of introducing
the Mamba architecture based on the state space model to the cloud and cloud shadow
detection tasks in order to solve the high computational complexity of the Transformer
architecture. In order to comprehensively evaluate the balance between the computational
overhead and segmentation accuracy of the MCloud model proposed in this study, the
parameters and computational complexity of MCloud and other advanced models were
compared with the MIoU indicators on the CloudSEN-12, 38-Cloud and SPARCS-Val
datasets, and the results are shown in Figures 9-11.
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Figure 9. Performance analysis of models on the SPARCS-Val dataset. (a) Comparison of parameter
count and MIoU metric; (b) comparison of computational complexity and MIoU Metric.

Through comparative analysis, it is found that in the models based on Mamba ar-
chitecture, although the number of parameters is slightly higher than that of RS3Mamba,
CCViM and VM-UNet, the segmentation performance of MCloud is significantly better
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than that of these models. This shows that MCloud can effectively improve the feature
expression ability through reasonable network design, especially the introduction of MC
module, so that the model can capture the morphological features of clouds and cloud
shadows more accurately. Compared with CCViM and VM-UNet, which have lower com-
putational complexity, the performance improvement of MCloud is significantly higher
than the increase in computational complexity, reflecting a good balance between efficiency
and performance.
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Figure 10. Performance analysis of models on the 38-Cloud Dataset. (a) Comparison of parameter
count and MloU metric; (b) comparison of computational complexity and MIoU Metric.
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Figure 11. Performance analysis of models on the CloudSEN-12 dataset. (a) Comparison of parameter
count and MIoU Metric; (b) comparison of computational complexity and MIoU Metric.

Compared with the model based on the convolution-Transformer hybrid architecture,
MCloud significantly reduces the computational complexity and parameter quantity while
maintaining higher segmentation accuracy. This huge efficiency improvement is due to the
linear computational complexity of the Mamba architecture, which proves the feasibility of
introducing the Mamba architecture into remote sensing image cloud and cloud shadow
semantic segmentation tasks.

From a broader perspective, different architectural models present different balances
between efficiency and performance. Convolutional models such as LinkNet have the
highest computational efficiency but limited performance; Transformer models such as
SwinUNet have better performance but heavier computational burden. In particular, the
MCloud proposed in this study achieves a segmentation performance that is close to or
even surpasses that of most convolutional-Transformer hybrid architecture models when
the number of parameters and computational complexity are only slightly higher than
those of some convolutional models.
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Overall, MCloud strikes a good balance between performance and computational
complexity, providing an efficient and practical solution for cloud and cloud shadow se-
mantic segmentation tasks. Compared to previous studies, MCloud significantly improves
computing efficiency while maintaining near-top-tier segmentation performance, making
it more suitable for real-world deployment applications. At the same time, MCloud’s
exploration of state-space models and Mamba architecture in the field of remote sensing
image processing shows that this direction has broad research prospects and application
potential.

5. Conclusions

In this chapter, MCloud, a state-space model-based cloud and cloud shadow semantic
segmentation network, is proposed, which is the first time to introduce the state-space
model-based Mamba architecture into the cloud and cloud shadow semantic segmentation
task of remote sensing images. MCloud enables effective modeling of long-range dependen-
cies and local features through the collaborative work of state-space architecture branches
and convolutional architecture branches. The MC module designed in this study further
enhances the model’s ability to parse complex features, and realizes a cross-scale feature in-
teraction mechanism by integrating the global context modeling capabilities of the Mamba
architecture and the local feature perception advantages of the convolutional network.
Recent years have witnessed significant advancements in computer vision technology, with
deep learning providing promising solutions to change detection problems. Experimental
results show that MCloud exhibits excellent segmentation performance and generalization
ability on multiple datasets. Compared with traditional CNN and Transformer architecture
models, MCloud shows greater robustness and adaptability when dealing with complex
scenarios. Compared with other networks based on Mamba architecture, MCloud also
shows obvious advantages in segmentation results, especially in complex scenarios, further
solidifying its competitiveness not only against traditional deep learning frameworks but
also among state-of-the-art Mamba-based models. However, it still relies on large-scale
manual annotation data, which limits its application in scarce scenarios. Future research can
further make up for the lack of information in thick clouds and low visibility scenarios, and
further enhance the application of the model in business scenarios such as meteorological
early warning and agricultural resource survey.
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