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Abstract
AdamZ is an advanced variant of the Adam optimiser, developed to enhance convergence efficiency in neural
network training. This optimiser dynamically adjusts the learning rate by incorporating mechanisms to address
overshooting and stagnation, which are common challenges in optimisation. Specifically, AdamZ reduces the
learning rate when overshooting is detected and increases it during periods of stagnation, utilising hyperpa-
rameters such as overshoot and stagnation factors, thresholds, and patience levels to guide these adjustments.
While AdamZ may lead to slightly longer training times compared to some other optimisers, it consistently excels
in minimising the loss function, making it particularly advantageous for applications where precision is critical.
Benchmarking results demonstrate the effectiveness of AdamZ in maintaining optimal learning rates, leading to
improved model performance across diverse tasks.

Keywords Machine learning � Deep learning � Neural network training � Multi-head attention layer �
Optimisation techniques � Stochastic optimisation � Gradient descent algorithms � Adam optimiser �
Dynamic learning rate adjustment � AdamZ optimiser

1 Introduction

In recent years, the machine learning domain has seen significant advancements, particularly in the development
of optimisation algorithms that enhance the efficiency and effectiveness of training deep neural networks. Among
these algorithms, the Adam optimiser has gained widespread popularity due to its adaptive learning rate capa-
bilities, which enable more efficient convergence compared to traditional methods such as stochastic gradient
descent. However, despite its advantages, Adam is not without its limitations, particularly when it comes to
handling issues such as overshooting and stagnation during the training process.

To address these challenges, this paper introduces AdamZ as an advanced variant of the Adam optimiser. It is
specifically designed to dynamically adjust the learning rate responsive to the characteristics of the loss function,
thereby improving both convergence stability and model accuracy. This novel optimiser integrates mechanisms to
detect and mitigate overshooting, at the point where the optimiser has stepped too far into the parameter space,
and stagnation at the points where progress has started to stall despite ongoing training. By introducing hyper-
parameters such as overshoot and stagnation factors, thresholds, and patience levels, AdamZ provides a more
responsive approach to learning rate adaptation than obtained through Adam.

The development of AdamZ is motivated by the need for more robust optimisation techniques that can
adaptively respond to the dynamic nature of neural network training landscapes. Traditional fixed learning rate
strategies often struggle with the non-convex and irregular loss surfaces characteristic of deep learning problems,
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leading to suboptimal performance. By contrast, the AdamZ adaptive strategy enables more precise navigation of
these complex landscapes, reducing the likelihood of getting trapped in local minima or experiencing erratic
convergence behaviour.

In this paper, we present a comprehensive analysis of the AdamZ optimiser, detailing its theoretical under-
pinnings and practical implementation. We also provide empirical evidence demonstrating its superior perfor-
mance in terms of loss minimisation and accuracy of model predictions across a range of benchmark datasets,
albeit with slightly longer training times compared to some other optimisers. This trade-off highlights the
potential of AdamZ as a valuable tool for applications where accuracy is paramount.

The remainder of this paper is structured as follows: Section 2 reviews the related work in optimisation
algorithms for deep learning. Section 3 details the implementation of AdamZ, including its key features and
hyperparameters. Section 4 presents experimental results comparing AdamZ to other leading optimisers. Finally,
Section 5 discusses the implications of our findings and suggests directions for future research.

2 Related work

The development of optimisation algorithms has been pivotal in advancing the field of machine learning,
particularly in training deep neural networks. This section reviews several key optimisers that have influenced the
design and functionality of AdamZ.

To provide a structured overview of these methods, a classification tree was constructed based on their key
characteristics, as shown in Fig. 1. This tree highlights the relationships between various optimisation methods,
offering a high-level summary of their design characteristics.

Each branch represents a decision point that distinguishes methods according to specific features:

1. Learning rate adaptation: The root node splits methods into two groups:

• Fixed learning rate: Methods such as SGD [1] and ASGD [2] maintain a constant learning rate throughout
training. Fixed learning rates are simple to implement and require fewer hyperparameters to tune.
However, they can be inefficient for problems with varying gradient magnitudes, where a constant learning
rate may cause slow convergence or overshooting.

• Dynamic learning rate: Methods such a Adagrad [3], RMSprop [4], and Adam [5] adapt the learning rate
during training based on gradient information. Dynamic learning rates enable the optimiser to adjust to the
scale of the gradients, improving convergence speed and stability. These methods are particularly effective
in scenarios where gradients vary significantly across parameters or during different stages of training.

Fig. 1 Classification tree of optimisation methods
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2. Averaging (for fixed learning rate): Fixed learning rate methods are further divided based on whether they use
averaging techniques:

• No averaging: SGD [1] directly updates weights without averaging. Direct updates are computationally
efficient and straightforward but can lead to noisy updates, especially in stochastic settings, requiring
careful tuning of the learning rate.

• Averaging: ASGD [2] uses averaging to stabilise updates and improve generalisation. Averaging helps
reduce variance in parameter updates, leading to smoother convergence and better generalisation. This is
especially useful in non-convex optimisation problems.

3. Momentum (for dynamic learning rate): Dynamic learning rate methods are classified based on whether they
incorporate momentum:

• No momentum: Methods such as Adagrad [3] and RMSprop [4] rely solely on adaptive learning rates
without momentum. Although these methods are effective in adapting learning rates, they may struggle
with optimisation in the presence of noise or poor conditioning, as they lack the acceleration benefits
provided by momentum.

• Momentum: Methods such as Adam [5], NAdam [6], and AdaMax [5] include momentum to accelerate
convergence. Momentum helps smooth out noisy gradients and accelerates convergence in directions of
consistent gradients. It is particularly beneficial for escaping saddle points and navigating ravines in the
loss landscape.

4. Weight decay: Optimisation methods are further divided based on whether they include weight decay:

• No weight decay: Adam [5], NAdam [6], and AdaMax [5] do not explicitly include weight decay. Without
weight decay, these methods may overfit to the training data, especially in over-parametrised models, as
they lack explicit regularisation.

• Weight decay: AdamW [7] incorporates weight decay, improving regularisation and reducing overfitting.
Weight decay penalises large parameter values, acting as a form of regularisation. This helps prevent
overfitting and encourages simpler, more generalisable models.

This classification approach provides a structured framework for understanding the relationships and trade-offs
between different optimisation methods. Table 1 summarises the salient characteristics of these optimisers,
highlighting their distinctive features and contributions to the field.

Stochastic Gradient Descent (SGD) [1] is a foundational optimisation algorithm introduced in 1951. It updates
parameters iteratively by moving in the direction of the negative gradient of the loss function. The update rule is
given by:

htþ1 ¼ ht � grhJðhÞ

where g is the learning rate. This method is commonly used in training machine learning models, especially in
deep learning. It is simple to implement and computationally efficient for large datasets. However, it requires
careful tuning of the learning rate and can get stuck in local minima.

Averaged Stochastic Gradient Descent (ASGD) [2], introduced in 1992, enhances convergence by averaging
the sequence of iterates. The update rule is:

�ht ¼
1

t

Xt

i¼1
hi
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This approach is effective in reducing variance in updates and is used in scenarios where reducing the variance of
SGD updates is crucial, such as in online learning. However, the averaging process can slow down convergence
in the initial stages.

Adagrad (2011) [3] adapted the learning rate for each parameter based on historical gradients. The update rule
is:

htþ1 ¼ ht �
gffiffiffiffiffiffiffiffiffiffiffiffiffi

Gt þ �
p rhJðhÞ

where Gt is the sum of squares of past gradients and � is a small constant. It is suitable for sparse data and
problems with sparse gradients, such as natural language processing tasks. However, it accumulates squared
gradients, which can result in a continually decreasing learning rate.

RMSprop (2012) [4] modified Adagrad by introducing a decay factor to control the accumulation of past
gradients:

E½g2�t ¼ cE½g2�t�1 þ ð1� cÞg2t
htþ1 ¼ ht �

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2�t þ �

p rhJðhÞ

Table 1 Summary of key optimisers

Optimiser References Year Description Hyperparameters Application

SGD [1] 1951 Stochastic Gradient Descent (SGD) updates parameters
iteratively by moving in the direction of the negative
gradient of the loss function: htþ1 ¼ ht � grhJðhÞ where g
is the learning rate

1 (learning rate) Requires careful tuning of
learning rate

ASGD [2] 1992 Averaged Stochastic Gradient Descent (ASGD) improves
convergence by averaging the sequence of iterates:
�ht ¼ 1

t

Pt
i¼1 hi

1 (learning rate) Effective in reducing
variance in updates

Adagrad [3] 2011 Adagrad adapts the learning rate for each parameter based on
historical gradients: htþ1 ¼ ht � gffiffiffiffiffiffiffiffi

Gtþ�
p rhJðhÞ where Gt is

the sum of squares of past gradients

1 (learning rate) Accumulates squared
gradients, which can lead
to overly small learning
rates

RMSprop [4] 2012 RMSprop modifies Adagrad by introducing a decay factor:
E½g2�t ¼ cE½g2�t�1 þ ð1� cÞg2t htþ1 ¼ ht � gffiffiffiffiffiffiffiffiffiffiffiffiffi

E½g2 �tþ�
p rhJðhÞ

2 (learning rate,
decay rate)

Commonly used in recurrent
neural networks

Adam [5] 2014 Adam combines the advantages of Adagrad and RMSprop,
using moving averages of the gradient and its square: mt ¼
b1mt�1 þ ð1� b1Þgt vt ¼ b2vt�1 þ ð1� b2Þg2t m̂t ¼
mt

1�bt1
; v̂t ¼ vt

1�bt2
htþ1 ¼ ht � gffiffiffî

vt
p
þ� m̂t

3 (learning rate,
beta1, beta2)

Widely used due to its
robustness and efficiency

AdaMax [5] 2014 AdaMax is a variant of Adam using the infinity norm:
ut ¼ maxðb2ut�1; jgtjÞhtþ1 ¼ ht � g

ut
m̂t

3 (learning rate,
beta1, beta2)

Useful for large parameter
spaces

NAdam [6] 2016 NAdam incorporates Nesterov momentum into Adam:
htþ1 ¼ ht � gffiffiffî

vt
p
þ� ðb1m̂t�1 þ ð1� b1ÞgtÞ

3 (learning rate,
beta1, beta2)

Suitable for non-convex
optimisation problems

AdamW [7] 2017 AdamW decouples weight decay from the gradient update:
htþ1 ¼ ht � gffiffiffî

vt
p
þ� m̂t � gkht

4 (learning rate,
beta1, beta2,
weight decay)

Suitable for large models
with regularisation
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RMSprop is popular in training recurrent neural networks and models with non-stationary objectives. It requires
tuning of the decay factor and learning rate.

Adam (2014) [5] combined the advantages of Adagrad and RMSprop by using moving averages of the gradient
and its square:

mt ¼ b1mt�1 þ ð1� b1Þgt
vt ¼ b2vt�1 þ ð1� b2Þg2t
m̂t ¼

mt

1� bt1
; v̂t ¼

vt
1� bt2

htþ1 ¼ ht �
gffiffiffiffi
v̂t
p
þ �

m̂t

This optimiser is widely used across various deep learning applications due to its robust performance. However, it
can sometimes lead to non-convergent behaviour or overfitting if not properly tuned.

AdaMax (2014) [5] is a variant of Adam using the infinity norm:

ut ¼ maxðb2ut�1; jgtjÞ

htþ1 ¼ ht �
g
ut
m̂t

It is particularly useful for models with large parameter spaces.
NAdam (2016) [6] incorporated Nesterov momentum into Adam:

htþ1 ¼ ht �
gffiffiffiffi
v̂t
p
þ �
ðb1m̂t�1 þ ð1� b1ÞgtÞ

This optimiser is effective in non-convex optimisation problems.
AdamW [7], introduced in 2017, decouples weight decay from the gradient-based update:

htþ1 ¼ ht �
gffiffiffiffi
v̂t
p
þ �

m̂t � gkht

It is particularly useful in training large models with regularisation, such as in transformer architectures.
The optimisation methods mentioned are not the only ones available, but they represent foundational and

widely adopted approaches. The field of optimisation, particularly as applied to deep learning, is rich and
constantly evolving. While methods like SGD, Adam, and their variants are foundational, numerous other
approaches and theoretical underpinnings have shaped the landscape. Early contributions established fundamental
concepts. Cauchy’s work in 1847 [8] laid the groundwork for gradient-based methods, while Polyak’s seminal
work in 1964 [9] provided crucial insights into momentum and its role in accelerating convergence. Bottou’s
1998 work [10] helped establish the framework for stochastic approximation, which is critical for handling the
large datasets common in modern machine learning.

Building upon these foundations, researchers have developed a diverse range of optimisation techniques.
Nesterov’s accelerated gradient method [11] offered an improvement over standard momentum, achieving a faster
convergence rate for convex functions. The development of AdaGrad [12] introduced the concept of adaptive
learning rates, adjusting them per-parameter based on the historical gradients. RMSProp [13], an unpublished but
widely used method often attributed to Geoffrey Hinton, addressed some of AdaGrad’s limitations by using a
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moving average of squared gradients. More recently, Lion [14] was introduced as a sign-based optimiser,
demonstrating competitive performance with Adam.

The quest for efficient and effective optimisation continues, with researchers exploring various avenues. Some
focus on adapting learning rates at different granularities, such as AdaLip [15], which performs per-layer
adaptation. Others tackle the challenges of distributed training, as seen in AdaGL [16], designed for graph neural
networks. Beyond these, significant contributions include the development of methods like the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm and its limited-memory variant L-BFGS [17], which approximate the
Hessian matrix to achieve second-order optimisation. The exploration of natural gradients [18] seeks to exploit
the Riemannian geometry of the parameter space. AdaBound [19], which dynamically adapts the learning rate
bounds to transition smoothly between Adam and SGD, aiming to combine the benefits of both, also falls into this
category of adaptive methods.

Further innovations include the introduction of methods specifically designed for non-convex optimisation,
such as AMSGrad [20], which addresses convergence issues observed in Adam. Normalised direction-preserving
Adam (ND-Adam) [21] proposes modifications to Adam to enhance stability and robustness. Explorations into
the relationship between optimisation and generalisation are also crucial, with works like [22] examining the
impact of batch size. The development of the Lookahead optimiser [23] introduces a mechanism to improve
stability by occasionally interpolating between ‘‘fast’’ and ‘‘slow’’ weights. SGDR (Stochastic Gradient Descent
with Restarts) [24] tackles the challenge of escaping local minima by introducing a cyclical learning rate schedule
with warm restarts. Finally, works such as Yogi [25] improve the convergence properties and generalisation
ability of Adam-style optimisers. K-FAC [26] approximates the Fisher information matrix to achieve more
efficient second-order optimisation. Shampoo [27] is a preconditioning method that calculates statistics using
higher-order tensors. AdaHessian [28] offers another approach to incorporating second-order information by
using a diagonal approximation of the Hessian, aiming to improve convergence speed and generalisation,
especially in settings with highly non-convex loss landscapes. NALA (Noise-Adaptive Learning Algorithm) [29],
an improved noise-adaptive algorithm that uses mini-batch statistics for faster training, represents a further step in
refining adaptive methods for non-convex problems.

2.1 Alternative learning paradigms

While gradient-based optimisers such as SGD, Adam, and RMSprop dominate deep learning, several non-
gradient-based optimisation algorithms have been explored in the broader optimisation literature. The most
notable among these are Genetic Algorithms (GAs), Particle Swarm Optimisation (PSO), Simulated Annealing
(SA), pseudo-inverse modelling, analytical neural networks, and hybrid optimisation approaches.

Genetic Algorithms (GAs) [30] are inspired by the process of natural selection. They operate on a population of
candidate solutions, applying selection, crossover, and mutation operators to evolve solutions over generations.
GAs are classified as non-gradient optimisers because they do not use gradient information; instead, they rely
solely on the evaluation of the objective function. This makes GAs applicable to non-differentiable or highly
irregular search spaces. However, GAs are computationally expensive and scale poorly with the number of
parameters, making them impractical for deep neural networks with millions of weights.

Particle Swarm Optimisation (PSO) [31] is based on the social behaviour observed in bird flocking or fish
schooling. A population of particles explores the search space, with each particle updating its position based on its
own best-known position and that of its neighbours. Like GAs, PSO does not require gradient information,
relying only on the objective function values. While PSO is robust to noisy or non-differentiable objectives, it
suffers from high computational cost and poor scalability in high-dimensional spaces, limiting its applicability in
deep learning.

Simulated Annealing (SA) [32] mimics the annealing process in metallurgy. It explores the solution space by
probabilistically accepting worse solutions, allowing the algorithm to escape local minima. SA is non-gradient-
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based, as it only requires the evaluation of the objective function. However, SA is inherently sequential and
converges slowly, especially in high-dimensional settings.

Pseudo-inverse modelling [33], analytical neural networks [34], and hybrid optimisation approaches [35] have
shown significant promise in engineering and manufacturing domains. Pseudo-inverse modelling employs ana-
lytical solutions to optimise neural networks, circumventing the need for iterative gradient updates. Analytical
neural networks leverage closed-form expressions for weight updates, enhancing interpretability and reducing
computational overhead. Hybrid optimisation approaches combine gradient-based and non-gradient-based
methods, achieving improved stability and convergence in complex systems.

Despite their versatility in non-differentiable or combinatorial problems, non-gradient-based optimisers are not
standard in deep learning frameworks for several reasons:

• Scalability: Deep neural networks typically have millions of parameters, making population-based or
sequential non-gradient methods computationally infeasible.

• Efficiency: Gradient-based methods exploit the structure of differentiable loss functions, enabling rapid
convergence with far fewer function evaluations.

• Library support: Popular libraries such as PyTorch and TensorFlow focus on gradient-based optimisation, and
non-gradient methods are not included as standard options.

As a result, comparisons in deep learning research focus on gradient-based optimisers, and non-gradient methods
are not considered competitive baselines.

Despite the widespread adoption and success of optimisers such as SGD, Adam, RMSprop, and their variants,
each method exhibits notable limitations that can hinder optimal model performance. For instance, SGD, while
simple and scalable, often suffers from slow convergence and susceptibility to local minima, especially in highly
non-convex loss landscapes. Adam and RMSprop, though adaptive and robust to the choice of learning rates, can
exhibit erratic convergence behaviour, overshooting, or stagnation, particularly when hyperparameters are not
meticulously tuned. Moreover, these optimisers may struggle with plateaus in the loss surface, leading to
inefficient training and suboptimal solutions. These challenges are especially pronounced in deep learning sce-
narios characterised by high-dimensional, irregular loss landscapes, where the inability to dynamically and
appropriately adjust the learning rate can result in either premature convergence or excessive oscillations around
minima.

These limitations highlight the necessity for continuous innovation in optimisation methods. The proposed
AdamZ optimiser aims to address these issues by enhancing convergence rates and improving the ability to reach
global minima. By incorporating novel mechanisms to dynamically adjust learning rates and momentum, AdamZ
seeks to provide a more robust and efficient optimisation strategy, paving the way for improved performance in
complex, high-dimensional learning tasks. The next section provides a comprehensive overview of the imple-
mentation of AdamZ, highlighting its key features and the specific hyperparameters that drive its performance.

3 Implementation of AdamZ optimiser

The AdamZ optimiser is an advanced variant of the traditional Adam optimiser, designed to provide more
adaptive learning rate adjustments during the training process. This optimiser addresses two common issues faced
in optimisation: overshooting and stagnation. Overshooting occurs when the learning rate is too high, causing the
optimiser to miss the optimal point, while stagnation happens when the learning rate is too low, resulting in slow
convergence or getting stuck in local minima.

The motivation behind AdamZ is to enhance the flexibility and robustness of the learning process by
dynamically adjusting the learning rate based on the behaviour of the loss function. Traditional Adam, while
effective, can be deficient in responsively adapting the learning rate given with dynamically changing landscapes
of the loss function, leading to inefficient convergence. AdamZ introduces mechanisms to detect and mitigate
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these issues by adjusting the learning rate in response to overshooting and stagnation, thereby improving the
optimiser’s adaptability and efficiency.

Thus, AdamZ incorporates additional hyperparameters that enable it to respond to the training dynamics, as set
out below:

• Overshoot factor (cover): Reduces the learning rate once overshooting has been detected, preventing the
optimiser from overshooting the minimum.

• Stagnation factor (cstag): Increases the learning rate once loss has started to plateau, thus indicating the onset of
stagnation is detected, helping the optimiser to escape local minima.

• Stagnation threshold (rstag): Determines the sensitivity of the stagnation detection based on the standard
deviation of the loss.

• Patience (p): Number of steps to wait before adjusting the learning rate, allowing for a stable assessment of the
loss trend.

• Stagnation period (s): Number of steps over which stagnation is assessed.
• Learning rate bounds (amin, amax): Ensures that the learning rate remains within this specified range to prevent

extreme adjustments.

The above six parameters essentially enable measured i) agility control and ii) over-reactivity control of the
AdamZ optimiser in attempting its dynamic responsive adaptation of the learning rate.

The performance of AdamZ is highly dependent on the careful tuning of its hyperparameters. Each hyper-
parameter plays a critical role in determining how the optimiser reacts to changes in the loss function. Fine-tuning
these parameters through techniques such as grid search can significantly enhance the optimiser’s performance by
adapting it to the specific characteristics of the problem at hand.

The mathematical formulation and algorithmic steps involved in implementing the AdamZ optimiser are set
out below:

1. Initialise parameters: Initialise the parameters h0, and set initial values for the first moment vector m0 ¼ 0,
second moment vector v0 ¼ 0, and step t ¼ 0.

2. Hyperparameters: Define the hyperparameters (note that these are default values inferred from our validation
experiments, they must be task/domain-specifically fine-tuned for best performance):

• Learning rate a ¼ 0:01

• Exponential decay rates for the moment estimates b1 ¼ 0:9, b2 ¼ 0:999

• Stability constant � ¼ 10�8

• Overshoot factor cover ¼ 0:5

• Stagnation factor cstag ¼ 1:2

• Stagnation threshold rstag ¼ 0:2

• Patience period p ¼ 100

• Stagnation period s ¼ 10

• Maximum gradient norm Nmax ¼ 1:0

• Minimum and maximum learning rates amin ¼ 10�7, amax ¼ 1

3. Update rule: For each iteration t, perform the following steps:

(a) Compute gradients gt ¼ rhftðht�1Þ.
(b) Update biased first moment estimate:

mt ¼ b1 � mt�1 þ ð1� b1Þ � gt

(c) Update biased second raw moment estimate:
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vt ¼ b2 � vt�1 þ ð1� b2Þ � g2t

(d) Compute bias-corrected first moment estimate:

m̂t ¼
mt

1� bt1

(e) Compute bias-corrected second raw moment estimate:

v̂t ¼
vt

1� bt2

(f) Update parameters:

ht ¼ ht�1 � a � m̂tffiffiffiffi
v̂t
p
þ �

4. Adjust learning rate: Evaluate the current loss Lt and adjust the learning rate:

• If overshooting is detected, i.e. Lt� maxðfLt�p; . . .;LtgÞ, then:

a a � cover

• If stagnation is detected, i.e. stdðfLt�s; . . .;LtgÞ\rstag � stdðfLt�p; . . .; LtgÞ, then:

a a � cstag

Ensure a is bounded: a ¼ maxðamin;minða; amaxÞÞ.

5. Gradient clipping: Clip the gradients to the maximum norm Nmax.
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Algorithm 1 AdamZ optimiser

To prove the convergence of the AdamZ algorithm, we assume:

• f ðxÞ is Lipschitz smooth: krf ðxÞ � rf ðyÞk� Lkx� yk.
• Gradients are bounded: krf ðxtÞk�G.
• Learning rate at satisfies:

X1

t¼1
at ¼ 1;

X1

t¼1
a2t\1:

The zero-bias corrected moments m̂t and v̂t are unbiased estimates of the true first and second moments:

E½m̂t� ¼ E½rf ðxtÞ�; E½v̂t� ¼ E½ðrf ðxtÞÞ2�:

The update step size is bounded due to the denominator
ffiffiffiffi
v̂t
p
þ �:

kxtþ1 � xtk� a
km̂tkffiffiffiffi
v̂t
p
þ �

:

Since krf ðxtÞk�G, we have:

km̂tk�G;
ffiffiffiffi
v̂t

p
þ �� �:

Thus:
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kxtþ1 � xtk�
aG
�
:

The effective learning rate decreases over time:

at ¼
affiffiffiffi
v̂t
p
þ �

:

As t!1, v̂t stabilises, ensuring that at satisfies the conditions for convergence:

X1

t¼1
at ¼ 1;

X1

t¼1
a2t\1:

Using the smoothness of f ðxÞ, we can bound the decrease in the function value:

f ðxtþ1Þ � f ðxtÞ� � atkrf ðxtÞk2 þ
L

2
kxtþ1 � xtk2:

Substituting the bounds for kxtþ1 � xtk and at, we get:

X1

t¼1
krf ðxtÞk2\1:

This implies that krf ðxtÞk ! 0 as t!1, i.e. the sequence converges to a stationary point.
AdamZ converges to a stationary point under the assumptions of bounded gradients, Lipschitz smoothness, and

appropriate learning rate decay. The key modifications in AdamZ (e.g. overshooting and stagnation adjustment)
do not affect the fundamental convergence properties.

The code implementation in Python for the AdamZ optimiser is available at the following GitHub repository:
https://github.com/izaznov/AdamZ.git.

Figure 2 illustrates the mechanism of the AdamZ identification of the stagnation and overshooting patterns and
respective learning rate adjustments. Initially, periods of stagnation, marked by losses fluctuating around a

Fig. 2 AdamZ mechanism
of detecting and responding
to overshooting and
stagnation
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constant value, trigger three rounds of learning rate increase. Subsequently, spikes in losses indicate overshooting,
which in turn trigger seven rounds of learning rate reduction.

The default values of hyperparameters for AdamZ were selected based on a preliminary grid search experi-
ment. The grid search explored combinations of overshoot factors, stagnation factors, stagnation periods, stag-
nation thresholds, and patience levels to identify configurations that consistently yielded optimal performance.
Default values such as cover ¼ 0:5 and cstag ¼ 1:2 were chosen because they demonstrated robust loss minimi-
sation and accuracy improvements.

Fig. 3 AdamZ hyperparameters sensitivity and correlation analysis
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To further validate the hyperparameter choices, a sensitivity and correlation analysis was conducted to evaluate
the impact of varying key hyperparameters on performance. Figure 3 demonstrates that no hyperparameters are
strongly correlated, which allows for individual optimisation of each hyperparameter. There are also no sub-
stantial swings in the accuracy, which stays in the narrow range of 97-98%, when the hyperparameters fluctuate in
a quite broad range.

The introduction of dynamic learning rate adjustments in AdamZ enables it to handle a wider range of
optimisation challenges compared to traditional methods. By incorporating mechanisms to detect and respond to
overshooting and stagnation, with measured agility to avoid over-reactivity as restrained by the aforementioned
control thresholds, AdamZ enhances the convergence speed and stability of the training process. This makes it
particularly valuable in complex neural network training scenarios where traditional optimisers may falter.

In conclusion, AdamZ represents a significant advancement in optimisation techniques, offering a more
measured and responsive approach to learning rate adjustment. Its effectiveness, however, is contingent upon the
appropriate tuning of its hyperparameters, underscoring the importance of experimental validation and parameter
optimisation.

4 Experimental results

4.1 Objectives

The primary objective of these experiments was to evaluate the performance of the proposed optimiser, AdamZ,
in comparison with other popular optimisation algorithms. We aimed to assess its effectiveness across three
different datasets: a synthetic dataset generated using make_circles (from sklearn.datasets), the widely used
MNIST dataset (from torchvision), and the CIFAR-10 image classification dataset. The implementation of these
experiments in Python is available in GitHub repository: https://github.com/izaznov/AdamZ.git, with the first
experiment in the file Circle_adamz_whitepaper.py, the second in Mnist_adamz_whitepa-

per.py, and the third in Cifar10_adamz_whitepaper.py.
These experiments provided insights into the optimiser’s performance, including loss, accuracy of prediction,

training duration, and overall applicability in neural network training.

4.2 Experiment 1: synthetic dataset using make_circles with a shallow neural network

4.2.1 Dataset description

This experiment utilised the make_circles function from sklearn.datasets to generate a synthetic dataset for binary
classification tasks. The controlled nature of this dataset enabled a clear assessment of the optimiser’s perfor-
mance. The make_circles function in the Scikit-learn library was used to generate a synthetic dataset that is
particularly useful for binary classification problems. This dataset consisted of two interleaving circles, which
made it a challenging test case for algorithms that rely on linear separability. The dataset was generated in a two-
dimensional space and was often used to demonstrate the capabilities of non-linear classifiers such as support
vector machines with a radial basis function kernel or neural networks.

The make_circles function enabled several parameters to be specified, such as:

• n_samples: This parameter defined the total number of samples to be generated.
• noise: This parameter specified the standard deviation of Gaussian noise to be added to the data, which can

help simulate real-world conditions.
• factor: This was the scale factor between the inner and outer circle, determining the relative size of the circles.
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Using this dataset, one can effectively test and visualise the performance of classification algorithms that are
designed to handle non-linear decision boundaries. Figure 4 illustrates a typical visualisation of the make_circles
dataset, showing the inner and outer circles and illustrating the ability of the model to correctly classify whether
the particular point belonged to the inner or outer circle.

4.2.2 Model architecture

A shallow neural network architecture was employed, consisting of several fully connected layers. This setup is
ideal for quick experimentation and testing on smaller datasets. Figure 5 shows the architecture of the neural
network deployed. The hyperparameters were carefully chosen to ensure a fair comparison across different
optimisers.

4.2.3 Training setup

The performance of AdamZ was compared against well-established optimisers such as Adam, SGD, and
RMSprop, providing a benchmark for evaluating improvements in terms of model classification accuracy,
training time, and loss minimisation for 10 epochs (100 steps in each epoch) of training with 100 simulations to
account for randomness in the parameter initialisation. The experiment was conducted on a compute cluster with
4x A100 GPUs.

4.2.4 Results

As illustrated in Fig. 6, and summarised in Table 2, AdamZ demonstrated the highest classification accuracy (%),
but slightly longer training time (measured in seconds) compared to the other optimisers.

To further validate the robustness of the results, confidence intervals were computed for the accuracy of each
optimiser, as shown in Table 3. These intervals provide a statistical measure of reliability, indicating the range
within which the true accuracy is likely to fall with 95% confidence.

AdamZ demonstrated the highest median accuracy at 97.83%, with a tight confidence interval ranging from
97.67% to 98%, affirming its consistent performance across simulations. Optimisers like SGD and Adagrad,

Fig. 4 Visualisation of the
make_circles dataset
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Fig. 5 A neural network
architecture applied to the
make_circles dataset

Fig. 6 Accuracy and training duration on the make_circles dataset

Table 2 Performance com-
parison on make_circles

Optimiser Accuracy Training duration

Q1 Median Q4 Q1 Median Q4

Adam 97.58 97.76 97.85 2.41 2.70 3.11

AdamW 97.58 97.73 97.86 2.78 3.48 4.20

SGD 54.21 56.32 58.84 1.82 2.32 2.94

RMSprop 97.45 97.67 97.82 2.77 3.42 4.04

Adagrad 59.51 61.80 64.50 2.29 2.69 3.52

Adamax 95.39 96.33 96.83 2.62 3.12 4.11

ASGD 53.19 56.14 58.92 2.59 3.07 3.66

NAdam 97.51 97.70 97.88 2.80 3.38 4.38

AdamZ 97.67 97.83 98.00 3.36 4.35 4.99

Table 3 Confidence inter-
vals for accuracy on
make_circles

Optimiser Median accuracy 95% CI Lower 95% CI upper

Adam 97.76 97.62 97.73

AdamW 97.73 97.59 97.73

SGD 56.32 56.05 57.81

RMSprop 97.67 97.49 97.65

Adagrad 61.80 61.55 63.76

Adamax 96.33 95.85 96.27

ASGD 56.14 55.82 57.62

NAdam 97.70 97.58 97.71

AdamZ 97.83 97.75 97.85
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which are less suited for non-linear classification problems, exhibited significantly lower median accuracies and
wider confidence intervals, highlighting their limitations in handling the make_circles dataset.

Considering the training loss evolution of the optimisers in Figure 7, it can be seen that AdamZ is also
minimising loss better than other optimisers.

4.3 Experiment 2: MNIST Dataset with a deep neural network

4.3.1 Dataset description

The MNIST dataset is a cornerstone in the field of machine learning and computer vision, commonly utilised for
training diverse image processing applications in areas such as document digitization, postal address interpre-
tation, and bank check handling. It was introduced by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges
[36]. MNIST stands for Modified National Institute of Standards and Technology database, and it is a large
collection of handwritten digits that is commonly used to train image processing systems.

The dataset consists of 70,000 images of handwritten digits from 0 to 9. These images are grayscale and
normalised to fit in a 28x28 pixel bounding box, preserving the aspect ratio of the original digit. This normal-
isation process ensures that the dataset is consistent and easy to use for various machine-learning models.

Key features of the MNIST dataset include:

• Training set: 60,000 images used for training models.
• Test set: 10,000 images used for evaluating model performance.
• Balanced classes: Each digit class is represented equally, providing a balanced dataset for training.
• Preprocessing: The digits have been size-normalised and centred in a fixed-size image, making preprocessing

minimal.

Figure 8 illustrates the MNIST dataset, showcasing examples of handwritten digits from 0 to 9. Each digit is
labelled with its true class, and the predictions made by the model are displayed alongside. This figure demon-
strates the digit classification task, whereby a neural network model is trained to accurately recognise and classify
each digit, highlighting the role of the dataset in evaluating model performance and optimisation strategies.

Fig. 7 The loss evolution of
the optimisers for the
make_circles dataset
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The MNIST dataset provides a more complex and real-world scenario to evaluate the effectiveness of various
optimisers and neural network architectures. Its simplicity, yet challenging nature, makes it a standard bench-
marking dataset for new algorithms in the field of machine learning.

4.3.2 Model architecture

Figure 9 illustrates the deep neural network architecture deployed with multiple layers, including a multi-head
attention mechanism to handle the complexity of the MNIST dataset.

Hyperparameters were optimised for each optimiser to ensure a fair comparison.

Fig. 8 Visualisation of the MNIST dataset
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4.3.3 Training setup

The performance of the newly developed optimiser, AdamZ, was rigorously evaluated against well-established
optimisers such as Adam, Stochastic Gradient Descent (SGD), and RMSprop. This evaluation provided a
comprehensive benchmark for assessing improvements in model classification accuracy, training time, and loss
minimisation. The experiments spanned five epochs of training, each comprising of 1,000 steps, with 100
simulations to account for randomness in parameter initialisation. These tests were conducted on a high-per-
formance computer cluster equipped with four A100 GPUs, ensuring robust computational support for the
experiments.

4.3.4 Results

As depicted in Figure 10 and summarised in Table 4, of all the optimisers tested, AdamZ achieved the highest
classification accuracy. However, it required slightly more training time, of the order of seconds, compared to the
other methods. This trade-off highlights the effectiveness of AdamZ in enhancing accuracy, albeit with a marginal
increase in computational time.

Additionally, confidence intervals were calculated for accuracy using the 95% confidence level, as shown in
Table 5.

Looking at the training loss evolution of the optimisers in Fig. 11, it can be seen that AdamZ has minimised the
loss faster than other optimisers.

The results from this experiment highlight that AdamZ achieved the highest median accuracy (95.91%),
making it the best-performing optimiser on this task. Furthermore, AdamZ’s confidence interval [95.86, 95.95]

Fig. 9 Neural network
architecture with Multi-
head Attention for the
MNIST classification task

Fig. 10 Accuracy and training duration on the MNIST dataset
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reflects its consistent performance across simulations, outperforming other widely used optimisers such as
AdamW, SGD, and Adamax.

While Adamax and Adagrad demonstrated strong median accuracies of 95.21% and 94.60%, respectively,
AdamZ’s narrow confidence interval suggests greater reliability in performance compared to these methods. SGD

Table 4 Performance com-
parison of optimisers on the
MNIST dataset

Optimiser Accuracy Training duration

Q1 Median Q4 Q1 Median Q4

Adam 79.91 85.42 88.41 33.62 33.68 33.73

AdamW 84.87 88.28 89.97 33.67 33.72 33.76

SGD 89.77 90.59 91.19 32.80 32.84 32.88

RMSprop 11.35 11.35 11.35 33.32 33.37 33.42

Adagrad 94.30 94.60 94.85 33.39 33.43 33.48

Adamax 95.01 95.21 95.39 33.46 33.51 33.56

ASGD 89.67 90.55 91.21 36.63 36.65 36.71

NAdam 11.35 11.35 11.36 33.99 34.03 34.10

AdamZ 95.82 95.91 96.01 36.43 36.46 36.52

Table 5 Confidence inter-
vals for accuracy on the
MNIST dataset

Optimiser Median accuracy 95% CI lower 95% CI upper

Adam 85.42 64.98 77.03

AdamW 88.28 71.77 82.47

SGD 90.59 90.29 90.69

RMSprop 11.35 10.71 13.28

Adagrad 94.60 94.51 94.65

Adamax 95.21 95.13 95.25

ASGD 90.55 90.20 90.63

NAdam 11.35 15.00 24.42

AdamZ 95.91 95.86 95.95

Fig. 11 Optimisers’ loss
evolution for the MNIST
dataset
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also performed well, achieving a median accuracy of 90.59% with a tight confidence interval [90.29, 90.69],
indicating consistent results.

4.4 Experiment 3: CIFAR-10 dataset with a convolutional neural network (CNN)

4.4.1 Dataset description

This experiment evaluates the performance of AdamZ and other optimisers on the CIFAR-10 dataset, a widely
used benchmark for image classification tasks, such as object detection and classification in autonomous vehicles,
industrial automation, and medical imaging.

The CIFAR-10 dataset, introduced by Alex Krizhevsky and Geoffrey Hinton [37], is a benchmark dataset
widely used for image classification tasks. It consists of 60,000 colour images divided into 10 classes, such as
aeroplanes, cars, birds, and cats. Each image is of size 32x32 pixels and contains three RGB colour channels. The
dataset is split into 50,000 images for training and 10,000 images for testing, making it suitable for evaluating the
performance of machine learning models across diverse categories. For computational efficiency, subsets of
10,000 training samples and 2,000 testing samples were used.

Key features of the CIFAR-10 dataset include:

• Complexity: The dataset presents a more challenging classification task compared to simpler datasets like
MNIST due to its higher dimensionality and colour information.

• Balanced classes: Each class is equally represented, ensuring a balanced dataset for training and testing.
• Preprocessing: Images are normalised to improve model convergence during training.

Figure 12 illustrates examples from the CIFAR-10 dataset, showcasing the diversity of classes and the com-
plexity of the classification task.

4.4.2 Model architecture

The neural network architecture deployed is a Convolutional Neural Network (CNN), featuring convolutional
layers for feature extraction, max-pooling for downsampling, and fully connected layers for classification. A
dropout layer was added to reduce overfitting. The architecture is illustrated in Fig. 13.

4.4.3 Training setup

The model was trained for 10 epochs with a batch size of 128 across 100 simulations to account for randomness
in parameter initialisation. The performance of AdamZ was compared against other optimisers, including Adam,
AdamW, SGD, RMSprop, Adagrad, Adamax, ASGD, and NAdam. Metrics evaluated include classification
accuracy, training duration, and loss minimisation.

4.4.4 Results

Results are summarised in Table 6 and visualised in Fig. 14.

Additionally, confidence intervals were calculated for accuracy using the 95% confidence level, as shown in
Table 7.

The loss evolution for each optimiser is depicted in Figure 15, demonstrating AdamZ’s superior ability to
minimise loss compared to other methods.

The results from this experiment highlight that Adagrad achieved the highest median accuracy (34%), making
it the best-performing optimiser on this task. However, AdamZ demonstrated significant strengths as the second-
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best optimiser, achieving a median accuracy of 28%, which is notably higher than the popular Adam optimiser
(8%). Furthermore, AdamZ’s confidence interval [25.5, 30.5] reflects its consistent performance across simula-
tions, outperforming other widely used optimisers such as AdamW, RMSprop, and SGD.

Fig. 12 Examples from the CIFAR-10 dataset. Each image is labelled with its true class, alongside the predictions made by
the model. This visualisation demonstrates the diversity of the dataset and the complexity of the classification task

Fig. 13 CNN architecture for CIFAR-10 classification
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AdamZ’s dynamic learning rate adjustments contributed to its superior loss minimisation, as shown in Fig. 15.
While Adagrad excelled in accuracy, AdamZ offers a balanced trade-off between accuracy and adaptability,
making it a strong contender in scenarios where precision and stability are critical.

These findings reinforce AdamZ’s potential as a robust optimiser capable of competing with and outperforming
many established methods, including the widely adopted Adam.

Table 6 Performance com-
parison of optimisers on the
CIFAR-10 dataset

Optimiser Accuracy Training duration

Q1 Median Q4 Q1 Median Q4

Adam 7.0 8.0 19.5 1.152 1.157 1.165

AdamW 7.0 8.5 19.75 1.154 1.158 1.165

SGD 17.375 19.25 21.5 1.146 1.149 1.158

RMSprop 14.875 17.5 20.5 1.151 1.155 1.162

Adagrad 32.375 34.0 36.5 1.149 1.154 1.163

Adamax 9.375 17.5 26.5 1.150 1.154 1.163

ASGD 17.5 19.5 21.5 1.192 1.196 1.207

NAdam 21.375 25.75 28.0 1.155 1.160 1.168

AdamZ 25.5 28.0 30.5 1.201 1.204 1.216

Fig. 14 Accuracy and training duration on CIFAR-10

Table 7 Confidence inter-
vals for accuracy on the
CIFAR-10 dataset

Optimiser Median accuracy 95% CI lower 95% CI upper

Adam 8.0 10.81 13.69

AdamW 8.5 11.27 14.27

SGD 19.25 18.70 20.01

RMSprop 17.5 16.94 18.36

Adagrad 34.0 33.66 34.86

Adamax 17.5 16.36 19.83

ASGD 19.5 18.80 20.05

NAdam 25.75 22.08 24.98

AdamZ 28.0 26.64 28.50
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4.5 Analysis of results

The experiments highlight a clear trade-off in AdamZ’s performance: while it achieves the highest accuracy on
MNIST and consistently excels at loss minimisation across all tasks, on the more challenging CIFAR-10 dataset
AdamZ ranks as the second-best optimiser for accuracy-outperformed only by Adagrad. However, AdamZ
demonstrates more stable and adaptable learning, maintaining strong performance even as task complexity
increases, and continues to minimise loss effectively. This comes at the cost of slightly longer training times,
reflecting the computational overhead of its dynamic learning rate adjustments. The experiments highlight a clear
trade-off in AdamZ’s performance: while it achieves the highest accuracy by more effectively minimising the
loss, particularly on more challenging tasks such as MNIST, this comes at the cost of slightly longer training
times. This is attributed to the dynamic learning rate adjustments, which are computationally more intensive but
result in improved convergence. The trade-off becomes more pronounced in more complex models, such as the
MNIST experiment, where the deep architecture amplifies the computational overhead. However, the scalability
of AdamZ across both shallow and deep networks demonstrates its robustness, making it a viable choice for
applications where accuracy is paramount. For instance, in the MNIST experiment, AdamZ achieved a median
accuracy of 95.91%, outperforming other optimisers, but required approximately 2-3 s longer in training time.
This trade-off is particularly beneficial for tasks that prioritise accuracy over speed, such as in cloud environments
where accuracy often outweighs time constraints. For instance, AdamZ’s ability to dynamically adjust learning
rates reduces the number of iterations required to achieve optimal loss minimisation, which can offset the
additional overhead in many scenarios.

However, AdamZ is not without limitations. Its dynamic learning rate adjustment introduces additional
hyperparameters, increasing the complexity of tuning and requiring careful validation for different tasks. The
slightly longer training times may be disadvantageous in settings where computational efficiency is paramount.
Moreover, as observed on the CIFAR-10 dataset, AdamZ does not always outperform optimisers like Adagrad,
particularly for problems with highly sparse gradients. In tasks with extreme noise or non-stationarity, inap-
propriate calibration of stagnation or overshooting thresholds could also lead to suboptimal adaptation.

Overall, these findings suggest that AdamZ is a promising candidate for applications requiring high accuracy
and reliability in model predictions at the expense of a marginal increase in latency, which could be tolerated in

Fig. 15 Loss evolution for
CIFAR-10 optimisers
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most applications. Future development of AdamZ could explore further optimisation of hyperparameters and
potential enhancements in computational efficiency to reduce training time without compromising accuracy. The
results from these experiments not only validate the effectiveness of AdamZ but also pave the way for its
application to more diverse and challenging machine-learning tasks.

5 Conclusions and future work

5.1 Conclusions

The development and evaluation of the AdamZ optimiser have demonstrated its potential as a robust tool for
enhancing neural network training. By dynamically adjusting the learning rate to limit overshooting and stag-
nation, AdamZ effectively improves convergence stability and model accuracy. The experimental results
underscore the superior performance of this optimiser in minimising loss and achieving higher accuracy, par-
ticularly in complex datasets such as MNIST and CIFAR-10. Despite its slightly longer training times, the ability
of AdamZ to maintain optimal learning rates positions it as a valuable asset in applications where precision is
critical.

The comparative analysis with well-established optimisers, such as Adam, SGD, and RMSprop, demonstrated
the strengths of AdamZ in navigating the intricate landscapes of neural network training. The advanced mech-
anisms of the optimiser for a learning rate adjustment, guided by hyperparameters such as overshoot and
stagnation factors, thresholds, and patience levels, provide a dynamically responsive but tightly controlled
approach that enhances its adaptability and efficiency.

Nonetheless, users should be aware that AdamZ’s effectiveness depends on appropriate hyperparameter tuning
and may incur higher computational cost, and it may not always be optimal for all problem types or in highly
resource-constrained environments.

5.2 Applications in real-world scenarios

AdamZ’s dynamic learning rate adaptation makes it highly valuable in applications requiring precision and
adaptability to complex systems. In engineering, AdamZ can be applied to predictive approaches for improving
manufacturing processes, such as optimising welding techniques or mitigating defects like hot cracking [38–40].
Machine learning models, including regression-based methods and neural networks, have been widely used to
enhance prediction accuracy and optimise process parameters. AdamZ’s ability to dynamically adjust learning
rates can further refine these models, enabling more reliable predictions and improved system performance.

In finance, AdamZ offers significant advantages in applications like stock price prediction, portfolio optimi-
sation, and risk assessment [41–43]. Its dynamic learning rate adaptation is particularly useful for handling
complex market trends and correlations, allowing for more precise modelling and effective decision-making. By
improving the stability and convergence of financial models, AdamZ contributes to robust strategies for managing
investments and assessing risks.

Across healthcare, AdamZ can be applied to predictive models for disease diagnosis and treatment planning,
where accuracy is critical. Its ability to handle complex loss landscapes makes it suitable for tasks like medical
imaging analysis, enabling high-precision predictions that directly impact patient outcomes [44].

These examples highlight the versatility of AdamZ across diverse domains, showcasing its potential to address
critical challenges in engineering, finance, and healthcare.
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5.3 Future work

Future research will focus on several key areas to further enhance the capabilities of AdamZ. Firstly, optimising
the computational efficiency of AdamZ is crucial to reduce training times without compromising optimisation
performance. This might involve refining the internal update rules to minimise redundant computations,
implementing more efficient memory management for moment estimates, or leveraging hardware accelerations
such as mixed-precision arithmetic [45]. Additionally, exploring algorithmic modifications that enable AdamZ to
better scale with very large batch sizes [46] or adapt dynamically to available computational resources could
further improve its utility in practical deployments.

Another promising direction is the exploration of adaptive hyperparameter tuning. Developing methods for
AdamZ to automatically adjust its own hyperparameters based on real-time feedback from the training process
could reduce the need for manual intervention and improve model performance. Techniques such as online
hyperparameter adaptation [47], where AdamZ monitors gradient statistics and adjusts its parameters accordingly,
or meta-optimisation approaches [48] that learn optimal schedules during training, represent fruitful avenues for
making the optimiser more robust and user-friendly.

Additionally, expanding the application of AdamZ to more diverse and challenging machine learning tasks will
be a priority. To ensure effectiveness across different neural network architectures and domains, AdamZ could be
enhanced with mechanisms to detect and adapt to domain-specific training dynamics, such as varying gradient
distributions or loss landscape properties [22]. For example, incorporating curvature information or domain-aware
scaling factors could help AdamZ maintain stability and convergence speed in both natural language processing
and computer vision settings. Systematic benchmarking and ablation studies would be necessary to identify and
address any limitations that arise in these varied contexts.

Finally, integrating AdamZ with emerging technologies, such as reinforcement learning frameworks [49] or
hybrid optimisation models [50], could open new avenues for innovation. For reinforcement learning, AdamZ
could be adapted to better handle non-stationary objectives and high-variance gradients, possibly by introducing
mechanisms for temporal credit assignment or reward-based learning rate modulation [51]. In hybrid optimisation
scenarios, AdamZ’s update rules could be designed to interoperate seamlessly with other algorithms, allowing for
dynamic switching or blending of optimisation strategies based on training progress or model behaviour.

In conclusion, AdamZ represents a significant advancement in optimisation techniques, offering a more
responsive and effective approach to learning rate adjustment. Continued research and development along these
lines will ensure its relevance and utility in the ever-evolving landscape of AI Engineering.
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