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1 | INTRODUCTION

Flooding is becoming increasingly common globally

Scott Mark Romeo Mahadeo® |

Matthew Blackett®

Abstract

Flood models, while representing our best knowledge of a natural phenomenon, are
continually evolving. Their predictions, albeit undeniably important for flood risk
management, contain considerable uncertainties related to model structure, param-
eterization, and input data. With multiple sources of flood predictions becoming
increasingly available through online flood maps, the uncertainties in these predictions
present considerable risks related to property devaluation. Such risks stem from real
estate decisions, measured by location preferences and willingness-to-pay to buy and
rent properties, based on access to various sources of flood predictions. Here, we eval-
uate the influence of coastal flood predictions on real estate decision-making in the
United Kingdom by adopting an interdisciplinary approach, involving flood modeling,
novel experimental willingness-to-pay real estate surveys of UK residents in response
to flood predictions, statistical modeling, and geospatial analysis. Our main findings
show that access to multiple sources of flood predictions dominates real estate decisions
relative to preferences for location aesthetics, reflecting a shift in demand toward risk
averse locations. We also find that people do not consider flood prediction uncertainty
in their real estate decisions, possibly due to an inability to perceive such uncertainty.
These results are robust under a repeated experimental survey using an open access
long-term flood risk map. We, therefore, recommend getting flood models “right” but
recognize that this is a contentious issue because it implies having an error-free model,
which is practically impossible. Hence, to reduce real estate risks, we advocate for
a greater emphasis on effectively communicating flood model predictions and their
uncertainties to non-experts.
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collectively affected 43.5 million people, caused USD 135
billion in economic damages, and killed 5539 people (Cen-
tre for Research on the Epidemiology of Disasters [CRED],

(Figure 1), and its intensity is likely to increase under future
climate projections, with significant socioeconomic impacts
(Fan & Davlasheridze, 2016; Lai et al., 2020; Laino &
Iglesias, 2023; Park et al., 2023; Rohde, 2023; Tonn & Cza-
jkowski, 2022; Wiibbelmann et al., 2023). From 1900 to
2020, flooding has been responsible for ~7 million deaths and
over USD 700 billion in losses globally (Lai et al., 2020). In
2022 alone, flooding in Australia, Bangladesh, Brazil, China,
India, Nigeria, Pakistan, South Africa, and the United States

2022a, 2022b). These socioeconomic impacts are expected
to worsen, particularly in low-lying coastal zones with an
elevation of <10 m above mean sea-level (Kirezci et al.,
2023; Moon et al., 2019; Scussolini et al., 2017). These
zones—which are often esthetically attractive and econom-
ically important (Bin et al., 2008)—are home to over 500
million people who are currently at risk of episodic coastal
flooding from storm surges and wave action (Kirezci et al.,
2020; Reimann et al., 2023). Recently, between 340 and 630
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million people are forecasted to live on land below projected
annual flood levels by mid-century and 2100, respectively
(Kulp & Strauss, 2019). Other recent estimates indicate that
one billion people live on land less than 10 m above cur-
rent high tide lines (Kulp & Strauss, 2019). With increases
in the rates of sea-level rise—a significant driver of beach
erosion (Leatherman, 2018)—anticipated under future cli-
mate projections, the number of people exposed to coastal
flooding will inevitably increase. As a quarter of residences
within 150 m of the shoreline may be affected by prop-
erty losses due to beach erosion over the next four decades,
the economic effects of erosion-induced shoreline change
are becoming increasingly concerning to beachfront prop-
erty owners (see Jin et al., 2015, and references therein).
Furthermore, coastal flooding is projected to displace 1.46%
of the world’s population by 2200, where the losses in real
global output with and without dynamic economic adapta-
tion of investment and migration are estimated at 0.11% and
4.5%, respectively, underscoring the importance of mitigation
strategies (Desmet et al., 2021). In the context of the United
Kingdom, the average annual damage to business premises
from coastal flooding alone exceeds USD 150 million (Cli-
mate Change Committee [CCC], 2021). Hence, flood risk
management requires urgent and careful consideration at both
national and global levels.

Over the last few decades, behavior-oriented and physics-
driven flood models have been developed and applied
to inform flood risk management (Jodhani et al., 2023;
Teng et al.,, 2017). The former is based on observa-
tions rather than the physics behind the observations.
The most commonly applied behavior-oriented flood model
is the bathtub model (BTM) , which treats flooding as
a function of topography only (areas at risk of flooding =
land elevation < flood water level) (Croteau et al., 2023).
This simple functional form makes BTM computationally
efficient and easy to apply over large spatio-temporal scales
(Gold et al., 2022; Lopes et al., 2022). In the United King-

2002 2012 2022

dom, BTM principles underpin the Environment Agency’s
(EA) Risk of Flooding from Rivers and Seas (RoFRS) model,
which provides long-term flood risk predictions for areas
across England (EA, 2023) (Figure 2). This information is
openly available at the postcode level, allowing real estate
consumers to get a quick estimate of a property’s loca-
tion flood risk. Physics-driven flood models, however, are
based on the shallow-water equations derived from depth-
integrating the Navier-Stokes equations (Bates & De Roo,
2000; Jodhani et al., 2023; Labadie, 1994). These models
range in complexity from simulating flow in 1D (channel-
ing flow in cross-sections) to 2D (using a gridded mesh to
simulate flow from one grid cell to the next through a simpli-
fication of the shallow water equations) and 3D (using a 3D
mesh to simulate flow in x, y, z based on complex fluid equa-
tions) (Bates & De Roo, 2000; Jodhani et al., 2023; Labadie,
1994). As flood models increase in complexity from 1D to
3D, greater parameterization is needed, which may be unnec-
essary for flood simulations (Teng et al., 2017; Zhang et al.,
2020). This means that 3D models are more computation-
ally demanding and account for more local environmental
factors in flood simulations than 2D and 1D models, which
apply more simplifying assumptions. 2D models and cou-
pled 1D/2D models, which often provide a good compromise
between complexity and computational efficiency, are more
commonly used to inform flood risk management because
they tend to facilitate more robust simulations over multi-
storm events across several kilometers (J. T. Samarasinghe
et al.,, 2022; Teng et al., 2017). However, these models,
like all flood models, are inherently uncertain, which can
compromise flood risk management decisions.

British statistician George Box famously remarked all
models are wrong, but some are useful. Although this quote
was in reference to statistical models, it is equally applica-
ble to flood models, which fail to represent all complexities
of flood physics (by applying simplifying assumptions) but
can still be useful. Despite this, these models, which are
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FIGURE 2 Flood risk predictions from the Risk of Flooding from Rivers and Seas (RoFRS) model for the CV1 postcode in the United Kingdom. Red
polygon is the postcode. Blue polygon is the flood prediction and associated uncertainty. Credits: GOV.UK.

still evolving, represent our best knowledge of flood events.
The simplifying assumptions, boundary conditions data, and
parameterization that underpin the application of flood mod-
els contain inherent and sometimes unavoidable errors, which
cause flood predictions to be uncertain (Bales & Wagner,
2009; Bates, 2023; Teng et al., 2017). For example: (a)
boundary conditions data inherently contain errors linked
to its acquisition and resolution; and (b) the parameteriza-
tion of models often requires the specification of constants
(e.g., bed friction), which may not be characteristic of spatio-
temporal variations in local factors. Although there are no
error-free flood models, we do know which model structures
produce good results based on extensive model validation
studies in the last two decades (Aronica et al., 2002; Horritt
& Bates, 2001; Neal et al., 2012; Seenath et al., 2016; Shus-
tikova et al., 2019; Smith et al., 2011; Willis et al., 2019).
Yet, even these “good model structures” are limited to spe-
cific types of terrain (Bates, 2023; Seenath, 2018). Therefore,
caution is needed when using flood predictions to inform
flood risk management, as these predictions are increasingly
sought after by the banking, insurance, and real estate sec-
tors, with implications for the economy and society (Bates,
2023; Seenath et al., 2016). For example, flood model over-
predictions can: (a) force people to pay higher flood insurance
premiums than are necessary, as flood predictions are a com-
mon input into insurance costing (Borsky & Hennighausen,
2022; Lea & Pralle, 2021); (b) cause property devaluation

in areas erroneously classified as flood vulnerable (Goure-
vitch et al., 2023; Pryce & Chen, 2011), which adversely
impacts wealth (Cronin & McQuinn, 2023); and (c) lead to
lost economic opportunities and forced migration (Seenath
etal., 2016).

There is considerable awareness of the uncertainty in flood
predictions and associated challenges within the flood mod-
eling community (Aronica et al., 2002; Aronica et al., 1998;
Bales & Wagner, 2009; Bates, 2023; Teng et al., 2017;
Willis et al., 2019). Hence, recent flood modeling studies
have adopted probabilistic modeling approaches (Wei et al.,
2023; Yulianto et al., 2023; Ziya & Safaie, 2023), which
account for the effects of intrinsic uncertainty in models
(Domeneghetti et al., 2013; Thompson & Frazier, 2014).
Such approaches also enable an investigation into potential
outcomes that may occur due to natural variability in stochas-
tic forcing conditions and provide a probabilistic distribution
of flood hazard events (Domeneghetti et al., 2013; Thompson
& Frazier, 2014). Probabilistic modeling, therefore, makes
end users aware of the uncertainties in flood predictions and
the likely implications that may arise from flood management
decisions informed from these predictions. The UK RoFRS
model is also a good example of a probabilistic flood model,
as it indicates areas at high, medium, low, and very low
chance of flooding per year (Figure 2). Although probabilistic
flood models are useful for informing more robust flood risk
management decisions, there are still considerable percep-
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tion risks with making flood predictions from these models
openly accessible (Rajapaksa et al., 2016; O. Samarasinghe
& Sharp, 2010). This risk relates to property devaluation,
which stems from how much people are willing-to-pay to buy
and rent properties based on flood predictions and is likely to
be dependent on their ability to perceive the uncertainty in
flood predictions, their level of risk aversion, and their flood
experiences and awareness, and whether they are interested
in buying or renting a property.

Within the aforementioned context, real estate studies have
shown that knowledge and experience of flooding tend to
have adverse effects on the real estate market. For instance,
properties affected by flooding attract a negative premium in
the immediate short-term (days to a decade) after an event
but tend to revert to pre-flood values with time (Atreya &
Ferreira, 2015; Beltrdn et al., 2019; Bin & Landry, 2013; Bin
& Polasky, 2004; Morgan, 2020; Pommeranz & Steininger,
2020). This temporal variation in real estate market behavior
around flood events can have a lasting subconscious effect
on flood victims’ real estate decision-making in response to
flood risk information (such as flood maps) (Kellens et al.,
2013; Pilla et al., 2019). For example, they might view such
information through a binary lens rather than through a prob-
ability lens. This implies that flood victims may assume a
property will actually flood in the now (present day) if it is
located in a flood prediction zone rather than perceiving the
property to be at “risk” of flooding, where risk refers to the
chance that the property may be exposed to flooding in a par-
ticular future scenario. Flood victims may also perceive more
dangerous, larger flood likelihood (and consequences), and
less personal control than others (Lin et al., 2007).

Furthermore, people interested in buying and renting a
property may respond differently to flood risk maps, based
on divergent perspectives on long-term investment versus
short-term occupancy risks. Buying a property is a long-
term investment, and, hence, sale prices may reflect long-term
perceptions of a property value and its associated risk of
hazards (Hennighausen & Suter, 2020). Properties in areas
perceived to be at higher flood risks are, therefore, likely to
experience lower real estate demand. Conversely, renters’ real
estate decisions tend to be driven by affordability and conve-
nience (Buchanan et al., 2019). Therefore, in the rental real
estate market, there may be greater demand for properties in
locations that are predicted to have a higher risk of coastal
flooding, as such properties may be perceived to have: (a)
lower rental values, and (b) easier access to amenities because
of the high social, economic, and cultural values attached to
coastal zones.

In the United Kingdom, potential property purchasers are
usually required to run conveyancing searches as part of the
process of obtaining a mortgage, and these searches provide
assessments of flood risk, often informed from various flood
models and data that are not publicly available. As various
sources of flood model predictions are becoming more acces-
sible through online flood maps, their real estate implications
must be understood. Although such maps are undeniably

important for flood risk management, there may be ripple
effects for the economy and society as the “lay person”
accesses the data, and these need careful consideration. Such
knowledge, currently unknown, is essential for refining the
development and application of flood models. We, therefore,
aim to evaluate the influence of access to multiple sources of
flood model predictions on real estate decision-making, mea-
sured through willingness-to-pay (WTP) for properties and
location preferences, with specific focus on the residential
coastal real estate market in the United Kingdom. We do
this through an interdisciplinary approach, involving flood
modeling, novel experimental WTP real estate surveys of
731 United Kingdom residents (532 from our main survey
instrument and 199 from our robustness experiment survey),
statistical modeling, and geospatial analysis. We make the
distinction between the sale and rental real estate markets
in the conceptualization of the study to consider plausible
assumptions that prospective homeowners are more con-
cerned than renters with certain factors, such as the proximity
to amenities (see, e.g., Pilla et al., 2019) or the risk of damage
to assets from flooding (see, e.g., Buchanan et al., 2019), all
of which can ultimately influence how our survey participants
make location preferences and WTP decisions. The following
sections outline our case study location, methods, results, and
wider implications of our findings.

2 | CASE STUDY SITE

Our case study site is a ~1.6 km? coastal town in Deal,
extending ~0.5 km from land to sea and ~3.45 km along
Sandwich Bay on the east coast of Kent, United Kingdom
(Figure 3). This location is a quintessential British coastal
town, fronted by over two miles of mixed sand and shin-
gle beaches, with access to a commercial high street, wide
paved boardwalks, and all amenities, including shops, health,
emergency, protective, hospitality and childcare services,
schools, and so forth. The town is also located in relatively
close proximity to a university and is well-served by public
transportation with easy commute links to two international
airports. Here, for a two-bedroom house, the average selling
price is £275,000, and the monthly rental cost is £975 (Office
for National Statistics [ONS], 2023). The area is relatively flat
with a straight shoreline, mainly managed by sediment redis-
tribution. The nearshore has a steep upper beach and gentler
lower beach (Figure 3).

We select this site because it is in a data-rich location,
with high-resolution digital elevation models (DEMs) and
tide data, to facilitate the flood modeling campaign of our
study. As we aim to evaluate the influence of access to mul-
tiple sources of flood model predictions on coastal real estate
decisions in the United Kingdom, any coastal town with ade-
quate data is suitable for our study. We emphasize that our
study adopts an experimental approach and is not designed
to undertake physically realistic coastal flood vulnerability
assessments.
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FIGURE 3

Case study site. (A) Location in the United Kingdom. (B) 3D planimetric view of the site topo-bathymetry. (C) Satellite view of the site

features. White box in (C) outlines the spatial extent of our study site. Credits: ESRI National Geographic World Basemap (A), UK Environment Agency

2019 SurfZone digital elevation models (DEM) (B), and Google Earth (C).

3 | METHODS AND DATA

3.1 | Flood modeling

We consider four flood models: three applied in
LISFLOOD - FP ranging in complexity and representative
of the range of physics-driven models that are typically
applied to inform flood risk communications and man-
agement, and BTM applied through ArcGIS 10.8.1. The
application of all four models in our study enables us to
quantify whether uncertainty in flood model predictions
influences coastal real estate decisions. Residents in England,
for example, can access multiple sources of flood predic-
tion information, which are openly available and informed
from computationally different models. These include: (a) a
national long-term flood risk map informed by the RoFRS
model, which is built on BTM principles (Section 3.1.2)
and provides flood risk information at postcode level (EA,
2023); (b) city council flood maps often informed by physics-
driven models, characteristic of the numerical flow solvers
within LISFLOOD — FP; (c) flood risk reports during the
conveyancing process of purchasing a new home, which
are compiled using information from various flood data
sources (e.g., British Geological Society, Land Registry)
and consultancy-based flood models. Sources of uncertainty
in flood models include their computational form, setup,

and input data. An inability to perceive the uncertainty in
flood predictions, evident from conflicting flood prediction
sources, may likely result in considerable uncertainty in real
estate demand decisions, with non-trivial implications for
a wide range of stakeholders—real estate agents, insurance
companies, banks, policymakers, and the public (see, e.g.,
Rajapaksa et al., 2016). Hence, we need to understand
whether there are potential real estate risks associated with
access to conflicting sources of such predictions, as a first
step toward refining the application of flood models for both
managing and communicating flood risk.

3.1.1 | LISFLOOD-FP

LISFLOOD —FP is a well-documented 2D hydrodynamic
model, based on a structured-grid raster DEM. It predicts
water depths in each cell of the DEM at each time-step in
a simulation based on hydraulic continuity principles (Bates
et al., 2005). LISFLOOD — FP contains several numerical
solvers to simulate flood wave propagation based on some
form of the following 2D shallow-water equations (Sharifian
et al., 2023):

oh 6qx aqy _
Tt 0 M
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* LISFLOOD — ACC, which applies a simplified form of
the shallow-water equations by assuming that the advec-
3q, o (gh*/2) d(q%/n) 9 (q.q,/h) tion term is negligible. It treats flooding as a function of
ot + Ox + ox + dy friction, water slopes, and local acceleration. These simpli-
d:el‘;;; . m — fying assumptions enable a quick simulation of flood flows,
5. el la (2) making LISFLOOD — ACC particularly advantageous for
+ gh— + M real-time flood forecasting. LISFLOOD — ACC is also the
& /3 most popular flow solver in LISFLOOD — FP and has been
bed gradient friction subject to extensive model validation studies, with its per-
formance often shown to be equivalent to more complex
flood modeling approaches (Le Gal et al., 2023; Neal et al.,

‘ 2/ 9 (2 /h Ih 2012; Seenath et al., 2016).
aaqt S 0 (ggy/ ) + (?y/ ) + 0 (q;qx}/ ) * LISFLOOD — FL, which is the least complex flow solver
———— in LISFLOOD — FP, is a zero-inertia model as it ignores
acceleration pressure advection 3) the acceleration and advection terms in the shallow water
oz gnlzw ‘qy |qy equations. It treats flooding as a function of friction
+ gha_y + s 0 and water slopes only. Its simple functional form, while
—_— — appropriate for various flood problems, has been shown
bed gradient friction to underestimate flood propagation speeds (Bates et al.,

where Equation (1) is the mass conservation, and Equations
(2) and (3) is the momentum conservation equations in x and
y Cartesian direction, respectively, & is water depth, ¢ is time,
g is gravity, z is bed elevation, n); is Manning’s friction coef-
ficient, ¢, is volumetric flow rate in x direction, and qy is
volumetric flow rate in y direction.

LISFLOOD — FP has been extensively developed and val-
idated following its release, becoming a state-of-the-art flood
model for application across local to continental spatial scales
(Bates et al., 2005; Neal et al., 2011, 2018; Rahimzadeh
et al.,, 2019; Sadeghi et al., 2022; Sharifian et al., 2023;
Shaw et al., 2021; Shustikova et al., 2020). It has been suc-
cessfully applied in fluvial (O’Loughlin et al., 2020; Sanyal
et al., 2013; Trigg et al., 2009), coastal (Bates et al., 2005;
Seenath, 2018; Wadey et al., 2013), and urban (Chen et al.,
2018; Sampson et al., 2012; Sun et al., 2022) environments,
with a proven ability to provide results equivalent to and, in
some cases, more accurate and reliable than those from more
complex 2D flood models (e.g., TELEMAC-2D) at a compu-
tationally effective cost (Horritt & Bates, 2001; Seenath et al.,
2016; Shustikova et al., 2019). For this reason, we consider
LISFLOOD — FP alongside the fact that its results are eas-
ily integrated into Geographic Information Systems for flood
mapping (Seenath, 2015). Specifically, we focus on three of
its numerical flow solvers:

* LISFLOOD — ROE, which applies Villanueva and Wright
(2006) approach to solve all terms in the 2D shallow-water
equations. It is, therefore, computationally demanding and
represents the most complex type of flood model that is
used to inform flood risk maps and management. As it
is computationally demanding, it has not been extensively
applied and validated. However, a few studies have shown
that LISFLOOD — ROE is capable of producing reliable
flood depth predictions relative to other numerical flood
models (Neal et al., 2012; Sadeghi et al., 2022; Willis et al.,
2019).

2010). We consider it here because it is representa-
tive of the reduced-complexity flood models that have
been favored historically by flood modelers and managers
(Costabile et al., 2020).

3.1.2 | Bathtub model (BTM)

BTM treats flooding as a function of topography, meaning
that an area is considered to be flood vulnerable if it is
lower in elevation than that of the maximum flood water
level being simulated (Seenath et al., 2016). It, therefore,
ignores hydraulic connectivity and flood routing physics,
often overpredicting flood inundation (Leijnse et al., 2021;
Seenath et al., 2016; Williams & Liick-Vogel, 2020). How-
ever, an advantage of BTM over physics-driven models is its
DEM-only requirement and simple raster calculation process
(DEM < maximum flood water level), which make it com-
putationally efficient and particularly useful for macroscale
(local to continental scales; daily to centennial timescales)
applications. For these reasons, BTM commonly underpins
flood risk assessment and management globally, particularly
in data-poor regions (Garcia & Dias, 2023; Lopes et al.,
2022), despite the considerable awareness of its limitations
(Gold et al., 2022; Lopes et al., 2022). The UK RoFRS model
is also built on the principles of BTM (EA, 2023), hence its
consideration here. Following Seenath et al. (2016), we apply
BTM using ArcGIS 10.8.1.

3.1.3 | Flood scenarios, model setup, and
simulations

Our study adopts an experimental approach to investigate
location preferences and how much people are willing-to-pay
to buy and rent coastal properties under two flood scenar-
ios: (a) current flood vulnerability in response to tidal surges,
and (b) future flood vulnerability in response to a 1 m sea-
level rise. We use LISFLOOD — ROE, LISFLOOD — ACC,
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FIGURE 4

LISFLOOD - FL, and BTM to simulate each flood scenario.
We, therefore, run a total of eight flood simulations based on
the specifications below.

We define a computational domain of 1.4 km (cross-shore)
by 3.5 km (alongshore), interpolated with a 10 m resolution
DEM, which was resampled from the United Kingdom 2 m
resolution SurfZone 2019 DEM (EA, 2022) using the nearest
neighbor approach in ArcGIS 10.8.1 (Figure 4). Resampling
the SurfZone DEM was necessary to enable computational
efficiency. The 10 m resolution used for resampling is the
finest, most computationally efficient, spatial resolution that
enabled numerical convergence. Importantly, 10 m resolution
is fine in relation to the spatial scale of topo-bathymetric vari-
ability at the study site, which exceeds 10 m. We choose the
nearest neighbor resampling approach because it is known
to preserve high quality values from the original data source
(Li & Wong, 2010; Saksena & Merwade, 2015). The DEM
used to interpolate the computational domain is vertically
referenced to Ordnance Datum Newlyn (ODN) in meters
and horizontally referenced to British National Grid, also
in meters. The computational domain extends from a land
boundary that is ~6-10 m above ODN to an offshore
boundary at a depth of ~10-13 m below ODN (Figure 4).
We use the same computational domain to apply all
models.

Computational domain and digital elevation models (DEM) used for flood simulations. Credits: Ordnance Survey ESRI basemap.

We obtain a 21-h time series dataset of an observed tide
surge event that occurred on January 02, 2018 at Dover
from the British Oceanographic Data Centre (Figure 5). This
dataset is in 15-min intervals and vertically referenced to
ODN. To simulate the current flood scenario, we use this
dataset to drive flood propagation in LISFLOOD — FP and
the highest water level in this dataset (i.e., 3.3 m above ODN)
to apply the BTM. In LISFLOOD - FP, we force the tide data
at the offshore boundary in the model domain. We keep the
connecting boundaries open to allow flow in and out of the
domain. We superimpose a 1 m sea-level rise onto the 21-h
time series tide data obtained (Figure 5) and use this to sim-
ulate the future flood scenario in LISFLOOD — FP. We use
the highest water level from this superimposed dataset (i.e.,
4.3 m above ODN) to simulate the future flood scenario using
BTM.

We run all LISFLOOD — FP simulations over a 21-h
period, typical of tide surge events. Unlike more complex
flood models (e.g., TELEMAC-2D), LISFLOOD — FP has
only one free parameter—bed friction—based on Manning’s
n. Generally, the specification of Manning’s n is subject to
extensive calibration. However, as this is an experimental
study designed to understand real estate demand decisions
in response to flood predictions, extensive model calibra-
tion and validation is not required. To be objective, we
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FIGURE 5

Water levels used to simulate the current and future flood scenario. The current flood scenario is an observed tide surge event from 2018 and

the future flood scenario is the same tide surge event superimposed with a 1 m rise in sea-level (SLR). ODN, Ordnance Datum Newlyn.

ensure that all models: (a) have the same setup and data,
and (b) are applied based on established guidelines for
flood simulations (Cunge, 2003; Neal et al., 2012; Seenath
et al., 2016; Smith et al., 2011). For LISFLOOD — FP sim-
ulations, we specify a friction of 0.02—the Manning’s n
value for open water/sand (Chow, 1959; Garzon et al.,
2023; Mattocks & Forbes, 2008; Seenath, 2018)—which
broadly characterizes our study location. BTM simulations
entailed a rapid calculation procedure in ArcGIS 10.8.1 that
identified areas in the DEM lower than the highest tide lev-
els in the flood scenarios. Table 1 summarizes all model
specifications.

3.1.4 | Flood maps

We generate two flood maps from each model, one each for
the current and future flood scenarios using ArcGIS 10.8.1.
We use these maps to gauge the uncertainties in flood pre-
dictions relative to model complexity and as the basis for
our main online survey, which investigates the influence of
access to multiple sources of flood model predictions on
coastal real estate demand decisions.

We generate the LISFLOOD — ROE, LISFLOOD — ACC,
and LISFLOOD - FL flood maps based on their maximum
flood depth raster output. To distinguish between flood and
non-flood areas, we apply a depth threshold >0 m using a
simple raster calculation equation in ArcGIS 10.8.1, follow-
ing Seenath et al. (2016). Specifically, for each flood scenario,
we consider areas with a predicted maximum flood depth >
0 m to flood. Using a depth threshold >0 m enables an objec-

tive comparison with BTM predictions, as BTM considers all
areas lower than the maximum flood water level to be flood
vulnerable.

To generate the BTM flood maps, we apply the same raster
calculation process outlined above in ArcGIS 10.8.1 to iden-
tify areas in the resampled DEM (Figure 4) that are lower than
the highest flood water level in the current (3.333 m ODN)
and future flood (4.333 m ODN) scenarios (Figure 5).

3.2 | Primary data collection

A novel element of our study involves understanding whether
access to multiple sources of flood model predictions can
influence coastal real estate demand decisions, measured
through: (a) WTP for properties in flood and non-flood pre-
diction zones, and (b) location preferences. To do this, we
adopt a mixed open and closed-ended reactionary survey, as
outlined below.

3.2.1 | Survey design

Our survey targets UK residents >18 years old and con-
tains 13 questions—one eligibility question and 12 questions
based on hypothetical scenarios designed to investigate the
unbiased influence of having access to multiple sources of
flood model predictions on real estate demand decisions. We
first ask respondents to specify the first part of their UK
postcode (i.e., eligibility question). We then introduce three
scenarios:

35UBD| 7 SUOLULUOD dA 1D 3|gedt dde au1 Ag peuRA0B /e a1 YO 138N JO 3N J0} ARIGIT BUIIUO AB|IM UO (SUORIPUCI-PUB-SWBHALD" A3 1M Aleiq1BU1UO//:SdNY) SUORIPUOD PUe WS | 3U) 39S *[G202/0T/20] U0 AriqIT aUIUO AB]IM B0UB|RIXT 318D PUB YIESH 10} 3iminsu| fuolieN ‘IOIN AQ 9022 TeSU/TTTT OT/I0p/L0d 43| 1M Aselq1utjuo//Sdiy WOy papeoumod ‘. ‘SZ0Z '72696EST



A RISK PERCEPTION STUDY

1907

TABLE 1 Specifications used to apply the LISFLOOD — FP solvers and the BTM in this paper.

Input LISFLOOD — ROE LISFLOOD — ACC LISFLOOD - FL BTM

DEM 10 m resampled SurfZone DEM

beifile® spec. Time-varying free surface elevation on the east side of the domain between BNG northing coordinates Not applicable
153,476 and 150,036 m

bdyfile® spec. Tide levels in Figure 5 Not applicable

startfile®
sim_time?
saveint®
massint’
elevoff?
fpfrich
initial_tstepi
Solver
adaptoff

Max. flood level
(current scenario)

Max. flood level
(future scenario)
Flood calculation
(current scenario)

Flood calculation
(future scenario)

10 m resampled SurfZone DEM containing water depth only

76,500 s

1000 s

1000 s

Activated

0.02

10s

Flow-limited

Roe Acceleration

Not activated Not activated Activated

Not applicable

Not applicable

See governing equations in Section 3.1.1

See governing equations in Section 3.1.1

Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
3.3 m ODN

4.3 m ODN

=DEM < 3.3 m ODN

=DEM < 4.3 m ODN

Abbreviations: DEM, digital elevation model; ODN, Ordnance Datum Newlyn.

“Specification of boundary condition type and coordinates, from which boundary conditions are forced in the model domain.
bSpecification of the time-varying boundary conditions that are forced in the model (in this case, tidal levels).

¢Specification of water depth file, providing initial conditions for a simulation.

dSpecifies the duration of the simulation in seconds.

¢Specifies the interval, in seconds, at which flood results are saved during a simulation. In this case, flood outputs are saved every 1000 seconds in the simulation.
[Specifies the interval, in seconds, at which mass balance data are outputted.

£Suppresses the output of water surface elevation files at each saveint. These files are unnecessarily large and not considered in this paper.
hSpecifies the friction value, which takes the form of Manning’s n.

ISpecifies the initial (warm up) model time step in seconds.

ISuppresses adaptive time stepping algorithm and a fixed time step is used.

1. In scenario one, we ask respondents to assume that they

flood extent predictions obtained from the models applied

are interested in buying or renting a property in a UK
coastal town—Deal (Figure 3). Although our scenario
focuses on Deal, we do not reveal this location in the
survey and instead provide participants with a summary
of the key characteristics of the town outlined in Sec-
tion 2. We do not reveal the town for three reasons: (a)
the location is not central to our narrative; (b) our research
is experimental and exploratory, designed to gauge the
potential influence of having access to multiple sources of
flood model predictions on real estate demand decisions;
and (c) to avoid panic and distress regarding flood vul-
nerability, especially for the case study site. In this first
scenario, we ask respondents to specify how much they
are willing-to-pay (WTP) to buy and rent properties in
four locations identified as A (commercial seafront area),
B (mixed residential and commercial area near the sea),
C (residential area away from the sea), and D (secluded
seafront residential area) in Figure 6, where WTP = max-
imum amount of money they are WTP to buy and rent a
property. We select these locations based on conflicting

(Section 4.1). However, in this baseline (first) scenario,
we do not reveal any flood predictions so that we can
obtain location preferences and WTP to buy and rent prop-
erties in the absence of flood information. We also ask
respondents to specify the reason for their choice in order
to understand the factors that drive real estate demand
decisions in the absence of hazard risk information, such
as flood predictions. To facilitate WTP estimations, we
reveal that a two-bedroom house in the town has an aver-
age selling price of £275,000 and an average renting price
of £975 per month based on the UK Office for National
Statistics (ONS, 2023).

. In scenario two, we provide survey participants with

flood maps illustrating the current flood scenario pre-
dictions from all models applied. Altogether, four flood
maps are provided, one each containing the current
flood scenario predictions from LISFLOOD — ROE,
LISFLOOD — ACC, LISFLOOD —FL, and BTM. We
inform all participants that each flood map is based on
predictions obtained from different computer models that
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FIGURE 6 The four locations used for the WTP survey, labeled A-D.

are commonly used to guide flood management policies in
the United Kingdom. We do not provide technical details
of the models, nor do we provide information on the flood
return period and probability of occurrence. Previous
studies show that there is often confusion or failure to

understand the technical language that accompany flood
maps (Burningham et al., 2008; Henstra et al., 2019). For
example, flood experts can easily digest what a “1 in 50
year” flood event means compared to a lay person. There-
fore, to avoid confusion related to technical language,
we simplify and standardize the presentation of our flood
maps to include flood predicted areas in red, non-flood
predicted land areas in green, water bodies in blue,
building outlines shaded in white, and a scale bar to
indicate distance from the sea. In doing so, we are
able to assess the direct influence of access to multiple
flood prediction maps on real estate demand decisions.
More importantly, our flood mapping and presentation
approach enables us to understand whether people can
or cannot perceive the uncertainty in flood predictions
(evident from conflicting flood maps) in real estate
decision-making, based on their WTP decisions and
location preferences. Our approach also allows us to
gauge whether real estate decisions are driven by more
extreme flood maps (another indication of how people
perceive flood risk and its inherent uncertainty). We argue
that developing these understandings is the critical first
step toward improving flood prediction communications
before considering the inclusion and presentation of tech-
nical information, such as return periods and exceedance
probability, in flood communications. In this second
scenario, we ask respondents to consider the four flood
maps aforementioned and specify how much they will
now be WTP to buy and rent properties in the same
four locations as before (A, B, C, and D in Figure 6).
We also ask them to select their most preferred living
location (A, B, C, or D) and to indicate the extent to
which they agree that the current flood predictions have
influenced their choice of location using a Likert scale
(definitely agree, agree, neutral, disagree, and definitely
disagree).

. In scenario three, we provide survey participants with

flood maps illustrating the future flood scenario pre-
dictions from all models applied. Specifically, four
flood maps are provided, each containing the future
flood scenario predictions from LISFLOOD — ROE,
LISFLOOD — ACC, LISFLOOD —-FL, and BTM. As
before, we inform all participants that each flood map is
derived from a different computer model that is commonly
used to guide flood management in the United Kingdom.
For reasons mentioned earlier, we do not provide any tech-
nical information about the models (e.g., functional form)
and their predictions (e.g., return periods). In this third
scenario, we ask respondents to consider the four future
flood maps and specify how much they will now be WTP
to buy and rent properties in the same locations as before
(A, B, C, and D in Figure 6). Again, we also ask them
to select their most preferred living location (A, B, C,
or D) and to indicate the extent to which they agree that
the future flood predictions have influenced their choice
of location using the same Likert scale from scenario
two.
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As respondents progress through the scenarios, we do not
enable them to modify answers to previous scenarios. In this
way, we capture the influence of having access to multiple
sources of flood model predictions on their WTP from their
unbiased perspective. We also do not reveal any information
relating to flooding prior to introducing the flood predictions.
Instead, to capture unbiased real estate demand decisions
primarily based on access to multiple sources of flood predic-
tions and reduce researcher bias, we only inform respondents
that our survey aims to understand the factors influencing
WTP to buy and rent coastal properties. Our supplementary
files include a copy of the survey, which we developed using
JISC Online Surveys (https://www.onlinesurveys.ac.uk/).

3.2.2 | Pilot testing, dissemination, and data
processing

We first pilot the survey to ensure that we can address
our research question and then disseminate to United King-
dom residents online. We acquire 572 responses from
May 1 to July 31, 2023, including 299 from Prolific
(https://www.prolific.com/), 160 from SurveyCircle (https://
www.surveycircle.com/en/), 20 from SurveySwap (https://
surveyswap.io/), and 93 from other sources, including social
media and mailing lists.

We inspect the 572 responses obtained, excluding ineli-
gible and impaired responses. As our survey targets adult
residents in the United Kingdom, all respondents that pro-
vide an invalid United Kingdom postcode or fail to answer
compulsory questions are excluded from our final dataset.
Altogether, we obtain 532 usable survey responses to inform
our study. Our final survey dataset is included in our
Supporting Information.

3.3 | Statistical and geospatial analyses

3.3.1 | Statistical analysis

To answer whether flood predictions affect real estate
demand, we examine how participants change their location
preferences and WTP decisions for properties in locations A—
D in Figure 6 before (baseline scenario) and after the current
and future flood scenario predictions are introduced. Addi-
tionally, to investigate whether access to multiple sources
of flood model predictions creates more uncertainty in real
estate decision-making, we follow the finance literature and
use market volatility to proxy real estate risk. Hence, we
compare changes in the standard deviations—a common and
simple measure of volatility—in property sale and rental
WTP prices in the presence of flood prediction information.
We also compute the mean differences in WTP values for
buying and renting properties in locations A-D in Figure 6, to
determine gains and losses. Using mean differences between
WTP values in the baseline and flood scenarios control for
participants who, whether because of socioeconomic reasons

or personality traits, are inclined to offer discounted or pre-
mium WTP values against the average rate of £275,000 in
the sale market and £975 in the rental market for a two-
bedroom property in the coastal town considered. It also
directly facilitates the estimation of paired sample ¢-tests to
evaluate the statistical significance in changes before and
after flood prediction maps are introduced.

3.3.2 | Geospatial analysis

We consider the .max and .maxtm outputs from
each  LISFLOOD - ROE, LISFLOOD — ACC, and
LISFLOOD — FL simulation. The .max outputs indicate
the maximum flood depth predicted in each cell of the DEM
over the entire simulation. The .maxtm outputs indicate the
time of maximum flood depth occurrence in each cell of the
DEM over the entire simulation. For each flood scenario, we
quantify the spatial differences in flood depth and flood tim-
ing predictions from each LISFLOOD — FP solver through
raster-based vertical differencing in QGIS 3.16.10. We use
the outputs to create two raster-difference matrices for each
flood scenario in ArcGIS Pro 3.1.0, one showing flood depth
differences and the other showing flood timing differences.
Although these outputs are not central to our core narrative,
and although we do not use these matrices in our survey,
considering such information alongside our survey data
allows us to extrapolate how flood prediction uncertainty
may affect the selection of flood evacuation routes, and the
potential impacts that this may have on coastal real estate
decision-making.

3.4 | Robustness study

We recognize that the design of our flood maps, which under-
pin our primary data collection survey (Section 3.2.1), could
potentially skew the decision-making process of our partic-
ipants in terms of their property pricing and preferences in
response to flood prediction information. For example, our
flood maps provide binary options—either an area is pre-
dicted to flood (red) or not flood (green)—which may push
people toward making extreme, risk averse decisions, by pri-
oritizing risk of flooding over other factors, such as location
preferences. Additionally, our decision to omit information
on flood probabilities in our binary flood maps may convey a
message of “actual” flooding and not flood “risk,” with impli-
cations for understanding real estate consumer behavior in the
presence of flood “risk” information. Therefore, in addition
to our main survey, we run a robustness experiment survey to
ascertain whether our results from our hypothetical flood sce-
narios matches up to reality in terms of how people respond
to an actual open-access flood probability map.

Our robustness experiment survey has the same eligibil-
ity questions and flood scenario setup as our main survey
(Section 3.2.1). Specifically, in this survey, we first ask
respondents to specify the first part of their United King-
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FIGURE 7 Risk of Flooding from Rivers and Seas (RoFRS)
long-term flood risk probability map for the case study site (EA, 2023).

dom postcode (eligibility question) and then ask questions
around two scenarios—one baseline scenario without flood
information and, then, another with flood risk probabilities
introduced. The first scenario is exactly the same as the first
scenario in our main survey, containing no flood information
and asking participants to specify their: (a) WTP to buy and
rent properties in locations A, B, C, and D in Figure 6; (b)
most preferred living location of the four options presented
(A, B, C, or D); and (c) reasons for selecting their most pre-
ferred living location (see specific details in Section 3.2.1).
In the second scenario, we introduce England’s open-access
RoFRS long-term flood risk predictions for the case study
site (Figure 7; EA, 2023) and ask participants to consider
this information and update their: (a) WTP to buy and rent
properties in the same four locations as before (A, B, C, and
D in Figure 6) and (b) most preferred living location (A, B,
C, or D). We also ask them to indicate the extent to which
they agree that the long-term flood risk information has influ-
enced their choice of location using a Likert scale identical

to the main survey design. To be consistent with our main
survey, we do not enable participants to modify answers as
they progress through the two scenarios so that we capture
the influence of having access to the long-term flood risk
probability information on their WTP from their unbiased
perspective. We also do not reveal any information relating to
flooding prior to introducing the open-access long-term flood
risk probability predictions from the RoFRS model. Instead,
to capture unbiased real estate demand decisions primarily
based on access to such predictions and reduce researcher
bias, we only inform respondents that our robustness survey
aims to understand the factors influencing WTP to buy and
rent coastal properties. Our supplementary files also include
a copy of the robustness survey experiment.

We disseminate our robustness survey to UK residents
online, using Prolific, ensuring that Prolific participants that
previously completed our main survey are excluded from the
robustness experiment survey. Doing so ensures that all par-
ticipants had no pre-conceived notions about the survey to
reduce any participant bias associated with prior knowledge
of the main survey. We obtain 202 responses to our robustness
survey and, following data inspection for impaired or invalid
responses, we end up with 199 usable responses. We include
the robustness survey data in our supplementary materials and
apply the same methods outlined in Section 3.3.1 to analyze
this data.

Our robustness survey experiment allows us to validate
our findings on whether: (a) people can perceive the uncer-
tainty in flood risk information when making real estate
demand decisions; and (b) access to flood prediction informa-
tion presents a risk to the real estate market. Our robustness
study also enables us to examine whether alternative modes
of flood prediction communication (binary flood maps ver-
sus flood risk probability maps) affect residential real estate
decision-making.

4 | RESULTS AND ANALYSIS

4.1 | Flood outputs

Figures 8 and O illustrate the flood predictions from all
models for the current and future flood scenarios, respec-
tively. Table 2 summarizes the differences in flood predictions
shown in Figures 8 and 9 in relation to the four locations
in Figure 6, in order to gauge flood prediction uncertainty
relative to model structure.

Collectively from the information in Figures 8 and 9 and
Table 2, we observe that all models agree that location C
is not vulnerable to flooding under the current and future
flood scenarios, consistent with England’s RoFRS long-term
flood risk predictions, which also show that location C is
not at risk of flooding (Figure 7). However, this agreement
is not indicative of convergence between model structures
but instead is due to the elevation of location C (i.e., ~6 m
above ODN) exceeding the maximum flood water level in
each scenario (Figure 5). The agreement between mod-

35UBD| 7 SUOLULUOD dA 1D 3|gedt dde au1 Ag peuRA0B /e a1 YO 138N JO 3N J0} ARIGIT BUIIUO AB|IM UO (SUORIPUCI-PUB-SWBHALD" A3 1M Aleiq1BU1UO//:SdNY) SUORIPUOD PUe WS | 3U) 39S *[G202/0T/20] U0 AriqIT aUIUO AB]IM B0UB|RIXT 318D PUB YIESH 10} 3iminsu| fuolieN ‘IOIN AQ 9022 TeSU/TTTT OT/I0p/L0d 43| 1M Aselq1utjuo//Sdiy WOy papeoumod ‘. ‘SZ0Z '72696EST



A RISK PERCEPTION STUDY

1911

LISFLOOD-ROE

I:I Properties

I Fooded area (12.35%)

LISFLOOD-ACC

I:I Properties

I Fiooded area (4.47%)

[\ ) -:‘!“ :

=1

200 400 m 200 400 m

) S AN N M|

LISFLOOD-FL BTM

,:| Properties [:| Properties

- Flooded area (3.6%) - Flooded area (17.04%)

- mm g
- R

l —
p—

o

w ¥

200 400 m
S I S B

FIGURE 8 LISFLOOD - FP and the BTM predictions of flood extent under the current flood scenario.

els on location C’s flood vulnerability is, therefore, not an
indication of model consistency or reduced uncertainty. Con-
versely, there is disagreement between (LISFLOOD — FP
versus BTM) and within (LISFLOOD — FP solvers) models
with respect to whether locations A, B, and D are vul-
nerable to flooding under both flood scenarios. We also

see that LISFLOOD — ROE and BTM predict a notably
larger inland extent of flooding than LISFLOOD — ACC and
LISFLOOD — FL. The key difference is that flood predic-
tions from LISFLOOD — ROE are hydraulically connected
as opposed to those from BTM. LISFLOOD — ACC and
LISFLOOD — FL predictions are consistent in each flood
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FIGURE 9 LISFLOOD - FP and the BTM predictions of flood extent under the future flood scenario.

scenario despite LISFLOOD — ACC predicting a slightly
larger inundated area. The spatial extent of flooding predicted
from LISFLOOD — ACC and LISFLOOD - FL in each flood
scenario is confined to the beach and does not include inland
areas. This corresponds well with the beach profile at the
site (Figure 3B), which shows a steep upper beach that will
likely act as a natural flood defense against inland flooding.

These differences in flood predictions are all indicative of
flood prediction uncertainty linked to model structure, which
may influence WTP values for buying and renting properties
in the four locations considered. WTP decisions in this regard
will likely depend on the ability of people to recognize the
uncertainty in these predictions, their level of risk aversion,
and their flood experiences and awareness.
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TABLE 2  Flood predictions for locations A—D in Figure 6.

Location Flood predictions
A = Not predicted to flood under the current and future flood scenarios from LISFLOOD — ACC and LISFLOOD — FL.
= Only predicted to flood under the future flood scenario from LISFLOOD — ROE. However, under the current flood scenario,
LISFLOOD — ROE predicts flood propagation up to location A, implicitly indicating that this location will flood with further rises
in flood water level.
= Under the future flood scenario, BTM predicts that areas immediately west of location A will flood. A caveat here is that these
flood areas predicted from BTM are not hydraulically connected to those at the coast.
B = Not predicted to flood under the current and future flood scenarios from LISFLOOD — ACC and LISFLOOD — FL.
= Predicted to flood under the current and future flood scenarios from LISFLOOD — ROE and BTM. However, yet again, we see
that flood predicted areas from BTM are not hydraulically connected.
C = Not predicted to flood under the current and future flood scenarios from LISFLOOD — ACC and LISFLOOD — FL.
= Not predicted to flood under the current and future flood scenarios from all models.
D = Not predicted to flood under the current and future flood scenarios from LISFLOOD — ACC and LISFLOOD — FL.
= Predicted to flood under the current and future flood scenarios from BTM. However, we find that areas predicted to flood inland

and at the coast from BTM are not hydraulically connected, in line with findings in related literature (Leijnse et al., 2021; Seenath

etal., 2016; Williams & Liick-Vogel, 2020).

In the absence of model validation, we use deductive rea-
soning to make inferences on which of the four models
are most accurate based on: (a) physical site characteristics
(Figure 4) and (b) the maximum flood water levels simu-
lated in each scenario (Figure 5). In the case of BTM, the
inland predictions of flooding are erroneous and do not con-
form to flood routing physics as the inland flooded areas are
not connected to the flooded areas at the coast (Figures 8
and 9). This is indicative of BTM’s inability to account
for hydraulic connectivity and flood routing physics, which
often leads to flood extent overestimation (Leijnse et al.,
2021; Seenath et al., 2016; Williams & Liick-Vogel, 2020).
The inland flood predictions from LISFLOOD — ROE are
also erroneous as the beach berm elevation alongshore falls
within the range of 6-8 m above ODN (Figure 4), which
is higher than the maximum water level simulated under
the current (3.33 m above ODN) and future (4.33 m above
ODN) flood scenarios (Figure 5). This means that beach
berm overtopping and associated inland flooding predicted
by LISFLOOD — ROE are not physically realistic. Interest-
ingly, we see that A and D have a low long-term flood
risk based on the RoFRS predictions that are open-access
in England, whereas B is in a zone with both low and
medium flood risk (Figure 7). However, a distinguishing fea-
ture of the RoFRS model relative to our models is that the
ROoFRS considers risk of flooding from both rivers and sea,
whereas our models consider flooding from the sea only.
This raises an important issue—some models account for one
or more types of flooding, which contributes to the list of
conflicting flood information sources available to real estate
consumers. Nonetheless, we see some areas of convergence
between our predictions from LISFLOOD — ROE and BTM
and the flood risk probability estimates from the RoFRS
model (Figure 7). LISFLOOD — ACC and LISFLOOD — FL.
predictions are theoretically realistic as their flood predic-
tions are confined to the coast, in areas that are: (a) below
the level of the beach berm and (b) lower in elevation than the
maximum water level simulated (Figures 4-5 and 8-9). How-

ever, LISFLOOD — ACC and LISFLOOD — FL make several
simplifying assumptions (Section 3.1.1), which do not fully
capture the complexity of flood physics. Therefore, although
their outputs are theoretically realistic, we need to be cautious
that we are not obtaining the “right” outputs for the wrong
reasons, where right is theoretically realistic predictions and
wrong is a physically unrealistic model structure representing
flood dynamics (i.e., equifinality).

4.2 | Survey and robustness study results
Table 3 provides unambiguous support that flood predictions
(both binary predictions and risk probability estimates) affect
property location preferences. The relatively more popular
property location choices selected by respondents prior to
the introduction of flood predictions in our main survey are
locations A (36%) and D (30%), whereas B (18%) and C
(16%) are less popular. However, C becomes the most popu-
lar choice for buying and renting properties when the current
(60%) and future (75%) flood predictions are introduced.
These results are consistent with those from our robustness
study, which show that: (a) locations A (28%) and D (41%)
are most popular relative to B (17%) and C (14%) before the
RoFRS long-term flood risk probabilities are introduced, and
(b) location C (58%) becomes the most preferred location
after flood probabilities are introduced (Table 3).

From our main survey, we find that close proximity to
the sea is the most cited reason for the selection of loca-
tions A and B as preferred living locations in the absence
of flood information, whereas it is safety against hazard risk
and seclusion for C and D, respectively (Table 4). Access
to amenities (convenience) and seafront views (location
esthetics) are other popular reasons for location preferences
(Table 4). Safety, quite interestingly, only appears to become
a noteworthy driver of real estate decisions for properties in
the inland locations—B and C (Table 4), potentially signaling
a risk averse group of participants in our study. These find-
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TABLE 3 Location preference under alternative hypothetical scenarios.
Flood scenarios Robustness study

Baseline Current Future Baseline RoFRS predictions
Location Freq. Percent Freq. Percent Freq. Percent Freq. Percent Freq. Percent
A 189 36 129 24 57 11 55 28 36 18
B 96 18 31 6 17 3 34 17 5 3
C 86 16 317 60 397 75 28 14 116 58
D 161 30 55 10 61 11 82 41 42 21

532 100 532 100 532 100 199 100 199 100

Note: Freq. is the frequency and it is counted in number of respondents. RoFRS predictions is the England’s long-term flood risk predictions from rivers and sea (EA, 2023).

TABLE 4  Factors influencing location preferences preflood information.
Specified reasons for preferred location choice (% )—main survey
Location Freq. Views Convenience Close proximity to sea Seclusion Safety Cost Neighborhood Others
A 189 20.1 19.0 70.4 1.6 1.1 1.1 1.6 1.1
B 96 3.1 32.3 46.9 1.0 17.7 2.1 0.0 2.1
C 86 1.2 5.8 2.3 4.7 65.1 23 1.2 23
D 161 10.6 2.5 13.7 61.5 6.8 1.2 1.9 3.1
Specified reasons for preferred location choice (% )—robustness study
Location Freq. Views Convenience Close proximity to sea Seclusion Safety Cost Neighborhood Other
A 55 10.9 18.2 78.2 - - - 21.8 -
B 34 11.8 26.5 64.7 - 29.4 14.7 324 29
C 28 - 10.7 - - 57.1 7.1 35.7 10.7
D 82 12.2 2.4 415 78 8.5 1.2 3.7 73

Note: Convenience is the access to amenities. Safety is the “safety against flood risk.” Freq. is the total number of survey participants selecting A, B, C, or D as their preferred living
location. Each row and column of percentages do not add up to 100% as individual participants often quoted more than one reason for their selection of a preferred living location.
The percentage values listed for a specific reason (“Views,” “Convenience,” etc.) under a specific location (A, B, C, or D) is the total number of times that reason has been quoted for
the selection of that location/total number of all quoted reasons for the selection of that location x 100.

ings are also consistent with those from our robustness study
(Table 4). The overall shift to C as the preferred living loca-
tion after flood information is introduced strongly suggests
that safety becomes the deciding factor, taking precedence
over personal prior preferences, of real estate decisions when
such information is made available.

Additionally, findings from our main study reveal that the
highest mean WTP buying and renting values in the baseline
scenario (non-flood scenario) are associated with location A,
the only location that has an average WTP price above the
ONS average property sale and rental values of £275,000
and £975, respectively (Table 5). In the baseline scenario,
locations B and D have similar average WTP values of ~
£10,000 (buying) and £30 (rental) below the ONS aver-
age values. C, on the other hand, has the lowest average
WTP value of all locations at < £20,000 (buying) and £85
(rental) below the ONS average values. Yet, C switches from
having the lowest to the highest WTP buying and rental val-
ues under both flood scenarios, whereas all other locations
record considerable drops in WTP buying and rental val-
ues when flood information becomes available. Moreover,
the elevated standard deviation values across all WTP buy-

ing and renting prices after flood prediction scenarios are
provided, when compared to the baseline scenario, indicate
that flood prediction information increases the uncertainty in
real estate demand decisions, presenting heightened risks for
the real estate sector. These findings match those from our
robustness study, which shows: (a) location A attracts WTP
buying and renting values above the corresponding ONS esti-
mated values before flood risk probabilities are introduced;
(b) B and D attract WTP buying and renting values slightly
below the corresponding ONS estimated values; and (c) C
attracts the lowest WTP buying and rental values. After
flood risk probabilities are introduced, locations A, B, and
D record considerable drops in WTP buying and rental val-
ues, whereas C attracts the highest WTP buying and renting
values (Table 5). This is a particularly interesting finding
as two different approaches for communicating flood risk—
binary flood maps (non-flood and flood—main survey) and
flood risk probabilities (likelihood of flood risk—robustness
study)—resulted in replicated real estate market behavior.
This finding implies that people perceive flood communica-
tions through a binary lens—whether or not a property would
flood—without considering the uncertainties (evident from
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TABLE 5  Willingness to buy and rent coastal properties under alternative scenarios.
Flood scenarios
Baseline Current Future
For sale (£) To rent (£) For sale (£) To rent (£) For sale (£) To rent (£)
Locations Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
A 275,415 73,806 1003 236 243,842 79,141 901 263 209,793 87,709 812 293
B 265,709 51,548 946 172 217,784 75,830 816 243 200,470 82,213 784 266
C 253,672 40,085 890 154 261,297 48,974 934 433 264,111 53,988 934 191
D 264,096 62,347 945 203 217,560 81,205 806 266 215.960 82,526 815 272
Robustness study
Baseline RoFRS predictions
For sale (£) To rent (£) For sale (£) To rent (£)
Location Mean SD Mean SD Mean SD Mean SD
A 286,886 65,955 1013 231 247,789 71,927 890 256
B 269,098 46,728 936 165 200,317 80,070 751 275
C 253,040 42,640 879 154 264,515 51,163 924 165
D 273,005 54,608 955 186 246,033 63,247 874 225

Note: SD is the standard deviation. RoFRS predictions is the England’s long-term flood risk predictions from rivers and sea (EA, 2023).

TABLE 6 Paired sample #-test for mean differences in WTP between the baseline and coastal flood scenarios.

Paired sample ¢-test between baseline and coastal flood predictions

Current flood scenario Future flood scenario Robustness study—RoFRS predictions

For sale To rent For sale To rent For sale To rent
Locations  Diff. (£)  z-stat. Diff. (£)  ¢-stat. Diff. (£) t-stat. Diff. (£)  t-stat. Diff. (£) t-stat. Diff. (£)  t-stat.
A 31,573 11.376* 101 11.659* 65,622 18.817* 190 16.945% 39,097 8.870¢ 123 7.847¢
B 47,924 16.534* 130 14.407¢ 65,239 19.578* 162 15.548¢ 68,781 12.999* 184 11.160°
C —7624 —-4.104*  —43 -2.462* -10438  -5.030* —44 -30.875* —-11475  -3.173* 45 —-4.311%
D 46,536 14.854* 139 13.674% 48,136 14.967* 130 12.844% 26,972 6.138¢ 81 5.568¢

Note: Diff. is the difference, and -stat is #-statistic. The null hypothesis of the paired samples #-test is that there is no difference between the willingness-to-pay for a coastal property

in the baseline scenario and a given hypothetical coastal flood prediction scenario.

“denotes statistical significance of the t-test statistic value at the 1% level, evaluated against Student’s r-distribution. Positive (negative) ¢-test values imply a right (left) tailed
hypothesis test is used. RoFRS predictions is the England’s long-term flood risk predictions from rivers and sea (EA, 2023). In the main and robustness surveys, WTP data in the
baseline scenarios refer to sale and rental values recorded under their respective non-flood scenarios (before flood risk information is introduced).

conflicting flood prediction sources in the main survey) and
probabilities in flood risk communications.

Furthermore, Table 6 records the computation of the mean
differences between the baseline and flood prediction scenar-
ios from the main survey data. Real estate losses in locations
A, B, and D, in both the sale and rental markets, are recorded,
whereas gains are observed for properties in C only. We find
the same trends in our robustness study (Table 6). Interest-
ingly, the losses incurred through WTP buying and renting
values for properties in locations A, B, and D, as well as the
gains accrued to properties in location C between the baseline
and current flood scenarios, become more pronounced when
future flood predictions are introduced in the main survey.
For example, in the case of location A, the losses more than
double from £31,573 to £65,622. As two out of the four mod-
els (LISFLOOD — ROE and BTM) predict a clear increase

in the area flooded from the current to future flood scenarios
(Figures 8 and 9), there is a notable decline in WTP to buy and
rent properties in locations projected to flood (A, B, and D)
and an increase in WTP to buy and rent properties in locations
outside the flood zone (C). This finding indicates that people
are likely to update their decisions in the presence of flood
prediction information, consistent with the findings from our
robustness study (Tables 3, 5 and 6). For instance, Table 7
conveys that over 80% of participants in the main survey
agree that flood predictions—current and future—influenced
their location preferences, consistent with the findings from
our robustness study, which show that 80% of participants
agree that the RoFRS flood risk probabilities influenced their
location preferences. Only a minority (< 20%) remain neutral
or unconvinced by the flood prediction maps, again consistent
with the findings from our robustness study, which also show
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TABLE 7  Agreeability that flood predictions influenced location preference.

Flood scenarios

Robustness study

Current Future RoFRS predictions
Responses Freq. Percent Freq. Percent Freq. Percent
Definitely agree 308 58 291 55 105 53
Mostly agree 143 27 142 27 54 27
Neither agree nor disagree 30 6 36 7 12 6
Mostly disagree 34 6 45 8 26 13
Definitely disagree 17 18 3 2 1

Note: Freq. is the frequency and it is counted in number of respondents. RoFRS predictions is the England’s long-term flood risk predictions from rivers and sea (EA, 2023).

that 20% remain neutral or disagree with the statement that
the RoFRS flood risk probabilities influenced their real estate
decisions. Paired sample #-test for comparing the mean dif-
ferences in WTP to buy and rent between the baseline and
flood scenarios in both the main survey and robustness study
are highly statistically significant (p < 0.01) for all locations
(A-D) (Table 6).

A particularly interesting observation from the main sur-
vey is that WTP values for buying and renting properties,
in all four locations, are dependent on flood predictions
from LISFLOOD — ROE and BTM only. These models show
more volatility in flood vulnerability between the current and
future flood scenarios, and also predict considerably larger
flood extents than LISFLOOD — ACC and LISFLOOD — FL.
LISFLOOD — ACC and LISFLOOD — FL predictions are
consistent in each flood scenario, indicating that all four loca-
tions are safe (Figures 8 and 9). This implies that WTP
decisions are especially sensitive to more extreme flood
predictions.

S | DISCUSSION

Our study shows that there are likely to be considerable real
estate risks associated with access to multiple sources of flood
prediction information, evident from our survey respondents’
willing-to-pay more to live in locations that are not in flood
predicted zones (despite the erroneousness and uncertainty in
these predictions—Figures 8 and 9) instead of locations that
align with their personal preferences (e.g., closeness to sea
and convenience) (Tables 3, 5-7). Our robustness study val-
idates these findings, showing that people are willing-to-pay
more to live in locations that are not associated with any lev-
els of flood risk probabilities (Tables 3, 5—7). These findings
indicate that access to flood prediction and probability infor-
mation can steer real estate demand decisions toward risk
aversion, consistent with the findings of Shr and Zipp (2019).
However, risk aversion in the context of our study could be
attributed to several factors, including flood experiences and
awareness as well as coastal residency. Flood experiences
and awareness have often been linked to falling real estate
demand (property devaluation) in the immediate period fol-
lowing a flood event (Atreya & Ferreira, 2015; Beltrén et al.,
2019; Morgan, 2020). However, the empirical real estate liter-

ature shows that real estate demand reverts to preflood event
levels as time passes, and memories and awareness of such
events eventually fade, with personal preferences (e.g., loca-
tion aesthetics) gradually returning to the forefront of real
estate decisions (Atreya & Ferreira, 2015; Beltrdan et al.,
2019; Bin & Landry, 2013; Bin & Polasky, 2004; Morgan,
2020; Pommeranz & Steininger, 2020). Unlike flood expe-
riences and awareness, which may fade with time, flood
risk prediction maps—both binary and probability—are now
becoming a permanent feature of online flood risk commu-
nications (Figure 2). These predictions are, therefore, likely
to have a more enduring impact on real estate demand deci-
sions and overshadow personal preferences (e.g., location
esthetics).

Furthermore, although flood memories and awareness are
likely to fade with time for those who have experienced a sin-
gle or a few flood events, the same may not be true for current
and past coastal residents whose lived realities involve first-
hand experiences of dealing with coastal hazards that become
engrained in memory and have inculcated a culture of risk
averse decisions. Such residents are more likely to plan on
selling their homes (Bakkensen & Barrage, 2022; Laino &
Iglesias, 2023), a decision that can become further forced by
having access to multiple flood prediction and risk probability
maps. As understanding the data generating process behind
our WTP survey experiments is beyond the scope of this
study (which only attempts to gauge whether there are poten-
tial real estate risks with having access to multiple sources
of flood predictions), an important avenue for future research
is to investigate the drivers of real estate demand decisions
in response to access to flood prediction information. The
findings of such research will be pivotal to guide how we
frame flood risk communications, especially to lay persons,
to reduce real estate risks associated with flood predictions.

Although our study focuses explicitly on flood extent
prediction uncertainty (main survey and associated flood
models) and flood probabilities (robustness study) and their
connection to real estate decision-making, we also see clear
differences in flood depth and timing predictions from the
LISFLOOD — FP solvers under the current and future flood
scenarios, which underpin our main survey (Figures 10-13).
This is another good example of uncertainty within flood
models. Specifically, we see in Figures 10 and 11 that dif-
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FIGURE 10 Matrix map of maximum flood depth predictions under the current flood scenario from LISFLOOD — ROE, LISFLOOD — ACC, and

LISFLOOD - FL. SD, standard deviation.
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FIGURE 11 Matrix map of maximum flood depth predictions under the future flood scenario from LISFLOOD — ROE, LISFLOOD — ACC, and
LISFLOOD - FL. SD, standard deviation.
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FIGURE 12 Matrix map of maximum flood timing predictions under the current flood scenario from LISFLOOD — ROE, LISFLOOD — ACC, and
LISFLOOD - FL. SD, standard deviation.
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FIGURE 13 Matrix map of maximum flood timing predictions under the future flood scenario from LISFLOOD — ROE, LISFLOOD — ACC, and
LISFLOOD - FL. SD, standard deviation.
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ferences in flood depth predictions from LISFLOOD — ACC
and LISFLOOD — FL are small compared to the differ-
ences in flood timing predictions between these solvers and
LISFLOOD — ROE under the current and future flood sce-
narios. The same is true for the flood timing differences in
Figures 12 and 13. Although we do not consider these data in
this paper, uncertainties in flood timing and depth predictions
can also adversely affect real estate demand decisions as such
information often informs flood evacuation routes (Seenath
et al., 2016), and properties adjacent to these routes tend to
suffer from lower values as people are not keen to live near
potential flood risk areas (Hallstrom & Smith, 2005).

Within the context above, we argue that the risk of falling
real estate demand in an era of accessible flood prediction and
probability information is one that needs to be addressed, as
there are considerable risks attached to property devaluation.
For instance, the real estate market is an important indicator
of macroeconomic performance. This market involves many
stakeholders such as estate agents, banks, insurance com-
panies, policymakers, and local communities, and property
price fluctuations can impact the expected lifetime wealth of
homeowners and the collateral values of homes (Rajapaksa
et al., 2016). Therefore, properties perceived to have an ele-
vated exposure to the risk of natural hazards not only affect
homeowners but can have knock-on effects for financial insti-
tutions and government policy. How individuals perceive risk,
as well as their inability to distinguish between assessed
and perceived risk, remain revolving issues in hazard and
flood management (Atreya & Ferreira, 2015). Similar to
Atreya and Czajkowski (2016), we find that seafront loca-
tions, such as location A, attract price premiums (Table 3),
primarily for reasons relating to close proximity to the sea
(location aesthetics) (Table 4). This perception changes when
flood prediction information becomes available, as respon-
dents show stronger preferences for properties in location
C—perceived as flood safe—in terms of preferred location
choice and WTP more to buy and rent here (Tables 3-6).
Moreover, our results that characterize significant losses in
WTP buying and rental values for properties in flood vul-
nerable locations (A, B, and D) resonate with the findings
that property prices tend to be discounted for properties
situated in floodplains (Atreya & Ferreira, 2015; Speyrer
& Ragas, 1991) and affected by flood inundation (Beltran
et al., 2019). Collectively, our findings on the significant
property devaluations that occur in the presence of flood pre-
dictions and probabilities provide compelling evidence that
there are considerable risks in the provision of such informa-
tion to the public, perhaps because of their inability to discern
underlying flood model uncertainties and interpret probability
information (Gourevitch et al., 2023; Rajapaksa et al., 2016;
0. Samarasinghe & Sharp, 2010).

Altogether, we consider four models that range from a
complex 2D model (LISFLOOD — ROE) to a simple behav-
ioral model (BTM). These models have been set up based
on physical site characteristics and recommended flood mod-
eling guidelines. Our flood predictions (Figures 8—13), thus,
represent the best outcomes we can expect from the model-

ing structures employed. It is beyond the scope of this study
to investigate the reasons behind the differences in flood pre-
dictions relative to model structure. Instead, what we aim to
emphasize here is that various flood maps exist online, specif-
ically for real estate consumers, often informed by different
modeling structures (Mehravar et al., 2023; Palm & Bolsen,
2023; Shr & Zipp, 2019). Our results show that: (a) variations
in model structure generate differences in flood predictions
(Figures 8 and 9); (b) most people appear to make deci-
sions based on extreme flood predictions, perhaps to be risk
averse (Belanger & Bourdeau-Brien, 2017), as evident in the
fall in real estate demand for locations A, B, and D, which
are erroneously predicted to flood from LISFLOOD — ROE
and BTM. Given this, caution is needed when selecting flood
models to both inform flood management and communicate
flood risk information, as the typical real estate consumer is
unlikely to perceive the uncertainty in flood prediction infor-
mation (Strathie et al., 2015). Essentially, we need to work
toward getting flood models “right,” although it is practi-
cally impossible to obtain an error-free model (Jodhani et al.,
2023). Hence, much greater care is needed with how flood
risk information is communicated to the wider public in
order to minimize risks associated with falling real estate
demand in response to uncertain flood model predictions.
Doyle et al. (2019) argue that when outputs from propri-
etary systems and analysis platforms on hazard and impact
models are presented to decision-makers without their com-
panion assumptions and underlying uncertainties, it has the
potential to compromise their decision-making capability and
limit their usefulness. For instance, there are two distinct
aspects of flood prediction—whether an area will flood or not,
and the uncertainty in that estimation—that can have differ-
ent influences on real estate decisions. Our robustness study,
however, shows that the provision of flood probabilities repli-
cates the impact on real estate decisions that we observed
with the provision of binary flood maps, which classified
areas into flood and non-flood zones, without accompanying
probability information. Of concern for the real estate market,
this finding suggests that people view flood risk communi-
cations through a binary lens, either considering locations
to flood or not flood, failing to consider associated prob-
abilities or mis-interpreting such information to mean that
an area will “actually” flood if it appears with an estimated
flood risk (even if the risk is low) in these communications.
Therefore, an interesting avenue for future work, beyond the
presentation of binary flood maps and flood risk probabil-
ity maps, is to determine how the communication of flood
modeling assumptions and uncertainties affects real estate
decision-making of the layperson.

6 | CONCLUSIONS

We investigate the potential influence of access to multi-
ple sources of flood predictions on residential coastal real
estate demand decisions in the United Kingdom by adopt-
ing an interdisciplinary approach, involving flood modeling,

35UBD| 7 SUOLULUOD dA 1D 3|gedt dde au1 Ag peuRA0B /e a1 YO 138N JO 3N J0} ARIGIT BUIIUO AB|IM UO (SUORIPUCI-PUB-SWBHALD" A3 1M Aleiq1BU1UO//:SdNY) SUORIPUOD PUe WS | 3U) 39S *[G202/0T/20] U0 AriqIT aUIUO AB]IM B0UB|RIXT 318D PUB YIESH 10} 3iminsu| fuolieN ‘IOIN AQ 9022 TeSU/TTTT OT/I0p/L0d 43| 1M Aselq1utjuo//Sdiy WOy papeoumod ‘. ‘SZ0Z '72696EST



1922 |

SEENATH ET AL.

novel experimental WTP real estate surveys of UK residents
in response to hypothetical flood scenarios, statistical mod-
eling, and geospatial analysis. Our findings show that, in
the absence of flood prediction information, WTP values are
notably higher for beachfront properties, as the majority of
people prefer locations with a sea view, than for properties
away from the sea. Importantly, the reverse is true when flood
prediction information becomes available, despite the uncer-
tainty in these predictions. These findings, which have been
validated from our robustness study on real estate decision-
making in response to an actual open-access flood probability
map, suggest that

1. Flood prediction information dominates real estate
demand decisions relative to personal preferences (e.g.,
location aesthetics, convenience, and seclusion) reflecting
a shift in real estate demand toward risk averse locations.

2. Flood prediction uncertainty does not factor into real
estate demand decision-making, reflecting a poten-
tial inability to perceive flood prediction uncertainty.
Although we do not provide explicit information on flood
prediction uncertainty (e.g., prediction accuracies and
flood event probability) to our survey respondents, the
uncertainty in these predictions is evident from the con-
flicting information in the flood maps provided (Figures 8
and 9), with LISFLOOD — ROE and BTM flood maps
showing more extreme flood predictions than those from
LISFLOOD — ACC and LISFLOOD — FL. The conflict-
ing information in these maps did not seem to factor into
WTP real estate decisions. For instance, if the uncer-
tainty in these flood maps had been perceived (i.e., by
recognizing the conflicting information), it is likely that
access to these maps would not have had any significant
impact on WTP real estate decisions. However, the con-
siderable changes to WTP decisions in response to these
maps (Tables 3—7) indicate, by and large, a failure to detect
the uncertainty in flood model predictions. Essentially, we
see WTP real estate decisions respond more to extreme
predictions.

Flood modelers and managers, therefore, need to be cau-
tious with respect to: (a) how flood predictions are used to
inform flood risk management, and (b) how flood predic-
tion information is communicated to the wider public. This
requires significant efforts to get flood models “right,” as
there are considerable risks of falling real estate demand in
response to uncertain flood predictions that are openly avail-
able. However, getting flood models “right” is a contentious
issue as science is not static and because it means having an
error-free model, which require error-free input data and dis-
cretization. As this is practically impossible, greater efforts
are needed to effectively communicate flood information and
their uncertainty to the general public.
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