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Abstract 

A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a 

wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and 

emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being 

heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, 

people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It 

is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate 

how data mining can be used to optimise the use of the office space in a building. 

# 2007 Elsevier B.V. All rights reserved. 
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1. Introduction 

 
The increasing miniaturisation of radio frequency (RF) devices and microelectro-mechanical systems (MEMS), along with the 

advances in wireless technologies, has generated a great deal of research and application interest in the area of wireless sensor 

networks (WSNs), which provide a promising infrastructure for gathering information about parameters of the physical world. 

WSNs have found a wide spectrum of exciting applications [1,2], some of which are applications in various buildings. These 

are home automation, indoor environmental monitoring and emergency services: 

 

1.1. Home automation 

 
Networking various home appliances, such as vacuum cleaners, micro-wave ovens, and refrigerators [3], with wireless medium, 

has been dreamt of for many years. Embedded sensors inside such appliances can interact with each other, and with the external 

network via the internet or satellites. They allow users to manage home devices locally and remotely more   easily. 

 
1.2. Indoor environmental monitoring and emergency services 

 

Indoor physical parameters can be monitored by different sensors that assist the occupants in managing their thermal comfort, 

light comfort, efficient operation, and work productivity [4–6]. The signals provided by the monitoring system give a dynamic 

picture of the state of the indoor environment, thus, in principle, allowing for efficient real-time diagnostics of system and 

component malfunctions and operation anomalies, an off-line analyse. 

There are two main applications of WSNs to indoor environmental monitoring: collecting information on environ- mental 

physical parameters in order to better control environ- mental systems such as heating, ventilation, and air-conditioning (HVAC), 

and emergency services such as fire and smoke detection. The sensor signals in these scenarios are usually used for decision 

making or triggering of actuators in real-time. 

 

An important reason that people prefer WSNs to wired sensor networks in buildings is: WSNs are easy and cheaper to install 

[7]. In new residential buildings such networks can now be implemented easily and with very little cost by low power, wireless 

sensors. Upgrading a WSN based on new industry standards (e.g., IEEE 802.15.4 and ZigBee) is easily carried out simply by 

adding extra sensors. However, WSNs have some disadvantages. For example, they are limited in power, computational 

capacities, and memory; and they are prune     to failures [8]. 

Research on the application of WSNs in building mainly focuses on the real-time control, which might aim to reduce energy 

consumption or improve well-being of occupants (e.g., [9,10]). 
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• Energy consumption can be reduced by using sensors to monitor occupant behaviour. Building energy performance is currently 

understood as dependent upon [11]: urban geometry, building design, systems efficiency, and occupant behaviour. Occupant 

behaviour can be monitored by sensors such as occupancy sensors and motion sensors (e.g., [12]). For example, when no 

occupancy is detected by occupancy sensors for a given time period (for example, 15 min), the HVAC system and lighting 

system can be turned off. When occupancy is again detected, the HVAC system and lighting system resumes operation as set by 

the user preference (e.g., [13]). 

• Occupant well-being can be measured by various comfort indexes, among which thermal comfort and light comfort have drawn 

most attention. WSNs have been applied in buildings to optimise these comfort indexes (e.g.,   [9,10]). 

 

However, there is little research on analysing datasets collected from sensors located in different parts of a building, or off-line 

analysis, to improve post-occupancy evaluation. This may be due to the fact that WSNs are still a new technology, and there are few 

datasets collected from the real world. Hence, little attention has been attracted. Nevertheless, analysing sensory data can allow 

facility managers, and/or building designers, to gain an in-depth understanding of the distribution of some physical parameters – 

e.g., temperature, humidity, and light– in the whole building, which can improve their post- occupancy evaluation and future 

design work. 

On the other hand, environments for working in are becoming more fluid to meet changing work patterns [14], which means 

there is a need to understand both working patterns and detailed environmental information. Collecting and then processing 

sensory data of indoor environmental variables – such as temperature, humidity, light – through WSNs in a building draw a 

dynamic picture of the state of the indoor environment in the building, which can be helpful for improving productivity under an 

environment with the changing work patterns. 

As the size of sensory data collected from a building might be so huge that the traditional statistical analysis technique is not 

able to deal with it, data mining can find its application. Data mining is a process which involves a variety of data analysis 

approaches. It has its roots in statistics and computer science, and has found applications in banking, insurance, manufacturing and 

many other industries. This paper proposes to use data mining to analysis sensory data. A case study shows how data mining can 

be applied in finding patterns of physical parameters in an indoor environment in a building. The patterns can be useful in the post- 

occupancy evaluation. 

The paper is structured as follows. Section 2 offers an introduction to data mining, and reviews the needs of data mining 

techniques in analysing sensory data. Section 3 studies a dataset collected from a WSN in a building. Section 5 presents 

conclusions. 

 
2. Data mining 

 
This section offers a brief introduction to data   mining. 

 

2.1. What is data mining? 

 
Data mining, as defined by Fayyad et al., and Piatetski- Shapiro and Frawley [15,16], is the non-trivial process of identifying 

valid, novel, potentially useful, and ultimately understandable patterns in data. It solves problems by analysing data that already 

exists in databases. Data mining is a synonym for another popularly used term, knowledge discovery in databases (KDD). 

Techniques used in data mining are categorised into two classes: 

 

2.1.1. Predictive algorithms 

These algorithms are usually to build a mapping function based on a set of input and output observations, for example, to build 

a model mapping staff’s income based on their gender, educational level, and age. The techniques for building such models 

include regression modelling, decision trees, neural networks, K-nearest neighbour, and Bayesian learning algorithms. 

 

2.1.2. Descriptive algorithms 

These algorithms can be used for exploratory data analysis to discover individual patterns, such as associations, clusters, and 

other patterns that can be of interest to the    user. 

Related research areas include database technology and data warehouses, statistics, machine learning, pattern recognition and 

soft computing, text and web mining and visualisation. 

The process of a typical data mining project might the follow steps: business understanding, data understanding, data 

preparation, modelling, model evaluation, and model deployment as shown below. 
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2.2. Data mining operations 

 
A data mining project was initially carried out in different ways with each data analyst based on his/her own experience and 

way of approaching the problem often through trial-and- error. Later, people introduced standardised data mining processes, 

among which two processes are usually used in industries: SEMMA from the SAS institute, and CRISP-DM from SPSS 

company.  SEMMA stands for sample, explore, modify, model, and assessment. The SAS data mining tool, SAS enterprise 

miner, has corresponding modules for the five processing steps. CRISP-DM stands for cross-industry standard process for data 

mining. The CRISP-DM was intended to be independent of the choice of data mining tools, industry segment, and the 

application/problem to be solved.    It defines the crucial steps of the knowledge discovery process. 

Although in most data mining projects, several iterations of individual steps or step sequences need to be performed, these basic 

guidelines are very useful both for the data analyst and the client in need for problem  solution. 

The individual steps of the CRISP-DM process [17] are the following: 

 

(1) Business understanding: To define business and data mining objectives, and the business and data mining evaluation criteria. 

(2) Data understanding: In this step, data miners become familiar with the data and the application domain, by exploring and 

defining the relevant prior knowledge . 

(3) Data preparation: In this step, through data cleaning and pre-processing, data miners create the relevant data subsets, find 

useful variables, and generating new variab les . 

(4) Modelling: This is the most important step of this process, concerned with choosing the most appropriate data mining tools 

(from the available tools for summarization, classification, regression, association, clustering), and searching for patterns and 

models of i n t e r e s t . 

(5) Evaluation: The modelling results are interpreted, analysis and evaluation of results. 

(6) Deployment: In this phrase, the produced models are put into action. 

 

2.3. Data mining on sensory  data 

 
The majority of research on sensory data are focused on real-time dynamic data. Bontempi and Le Borgne [18] introduce  an   

adaptive   approach   to   mining   sensory   data. Elnahrawy and Nath [19] present a framework for cleaning and querying noisy 

sensors. However, their aims are on processing real-time sensory data, which is different from the off-line data analysis with regard 

to their constraint problems and data resources. Constraint problems like time, bandwidth and calculation capability are main 

factors that might impact the design of the algorithms for real-time data processing, whereas such problems might not exist for off- 

line data analysis. Data resources for the real-time data processing are the data collected until a time point, whereas those for the 

off-line data analysis are from an entire time period. 

Other research on sensory data focuses on developing data mining algorithms to deal with various problems (for example, 

Kulakov and Davcev [20]). 

However, little research has been found on using data mining to analyse sensory data for improving building performance that is 

related to occupant’s benefits. 

 

Potential use of data mining 

 
Both the descriptive and predictive algorithms might find their applications in mining the sensory data from an indoor 

environment. Below we show some examples how data mining can be used. 

 
2.3.1. Predictive algorithms 

Predictive models can be built to estimate physical parameters (say, temperature and humidity) at a location where no sensor is 

placed, to predict a failure to occur, to predict occupant behaviour, etc. 

 
2.3.2. Descriptive algorithms 

Descriptive algorithms can be served to find the relationship between different variables, for example, occupant’s behaviour 

and energy consumption, usage patterns and a certain failure mode, indoor air quality and energy consumption. Section 3 shows 

how clustering or association rule discovery algorithms can be used to assess the distribution of certain physical parameters. 
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3. Case study 

 
In this case study, we are mainly interested in the distributions of three parameters, temperature, humidity, and light, in a 

building. 

Information about temperatures in houses is of importance in assessing the value of various energy conservation measures and 

gives an indication of the standards of thermal comfort enjoyed by the occupants. 

Temperature and relative humidity can affect comfort and indoor air quality. Changing thermostat settings or opening 

windows to try to control temporary fluctuations in temperature can worsen comfort problems and also have an adverse effect on 

other parts of the building. 

For our case study, we borrow a sensory data that was created by the Intel Berkeley Research Lab, which deployed 54 wireless 

sensors in their lab for collecting information of temperature, humidity, and light from 28th February and 5th April 2004. A log 

of about 2.3 million readings collected from these sensors, along with the health of sensors
1 

can be found in [21]. The data are 

sampled every 31 s. 

 
3.1. Data understanding 

 
The sensors under study were arranged in the lab according to the diagram shown in Fig.  1. 

The original dataset has 2,313,682 observations, and eight variables: date, times-tamp, epoch, moteID, temperature, humidity, 

light, and battery voltage. Epoch is a monotonically increasing sequence number from each mote. Two readings from the same 

epoch number were produced from different motes at the same time. MoteID’s, ranging from 1 to 54, are identities of wireless 

sensors. Temperature is in degrees Celsius. Humidity is temperature corrected relative humidity, ranging from 0 to 100%. Light is 

in Lux. Voltage is expressed in volts, ranging from 2 to 3 . 

Fig. 2 shows the number of observations collected from each mote. Motes 5 and 28 have never transmitted any data. Mote 22 is 

the busiest one (with 23,206 observations), whereas mote 15 is the idlest one (with only 722   observations). 

 

 

 
 

Fig. 1.  Wireless sensors installed in the Intel Berkeley Research Lab   [21]. 

 
 

 
 

Fig. 2.  Number of observations from each  mote. 

 
 

1 Here, health of sensors means the voltage of the batteries attached to the wireless sensors. 
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3.2. Invalid observations 

 
The original observations are sampled every 31 s in a whole day. In this paper, we would like to only focus on the change of the 

physical variables within working hours. If one is concerned with the indoor environment within working hours, and assume that 

working hours are from 8:00 to 18:00, then 1,365,866 observations are ignored, and 947,816 l e f t . 

The following steps are conducted to remove observations that are not valid for various reasons. 

 

• Invalid motes: The 54 motes are labelled from 1 to 54 in the dataset, that is 1 ::; moteID ::; 54. Hence, if we search all of the 

observations with moteID bigger than 54 or smaller than 1, 3695 observations can be found and removed, and 944,121 

observations left. 

• Invalid temperature: Assume the temperature in the building ranges from 10 to 40 8C. Under such a condition, 169,428 

observations are found and removed, and 774,693 observations are left. 

• Invalid humidity: As indicated in the website [21], the humidity falls in 0–100%. All of the observations satisfy this condition, 

and hence no observation is removed from the dataset. 

• Invalid light: Set light > 0, then 23,654 observations in which light is negative are found and removed and  751,039 

observations are left. 

• Invalid voltage: Set 2 ::; voltage ::; 3, then 167 observations are removed and 750,872 observations  remains. 

 

Having conducted the   above   cleansing   procedures,   we found the data collected from 26th March and 5th April 2004 have 

been removed.  We have an impression that   the original dataset has a large amount of invalid observations, or in a data mining 

terminology, the dataset is very dirty. 

All of the above cleansing procedures check the validation of one variable. As the number of removed observations is so big, we 

doubt there might be outlying observations, or called outliers, in the dataset. In the following subsection, we concentrate on 

removing outliers. 

 
3.3. Removal of outliers 

 
Fig. 3 shows the number of the observations collected within the rest days, from 28th February to 25th March (denoted as days 

1–27 in the figure). 

From Fig. 3, the last 2 days – days 26 and 27 (i.e., 24th and 25th March) – collects a small amount of   observations. 

 

Fig. 3. Frequency. 
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• Observations collected on 25th March. There are only 218 observations collected on the last date (25th March), and all of these 

observations are from mote 9. The basic statistics of temperature, humidity, and light on 25th March is shown in Table 1. As all 

of these observations are from one mote, which is not representative enough, we remove them from the dataset. Having been 

removed these observations, the dataset has 750,654 observations left. 

• Observations collected on 10th and 24th March. There 4823 observations on 10th March, and 1827 observations on 24th March. 

As they are from a number of different motes, we keep them in the dataset . 

 

3.3.1. Using clustering algorithms to discover  outliers 

There might be outliers within the rest of the observations. We can use a clustering algorithm to detect the possible outliers. The 

SAS system (http://www.sas.com/) is used to implement the clustering process. 

There are a dozen of clustering algorithms in the SAS system. Among the clustering algorithms, the K-means algorithm is 

usually used for large datasets. As our dataset is so big, we select the K-means clustering algorithm to detect outliers. The K-means 

clustering algorithm
2 
have been widely used in data mining and statistical data analysis (see [22] for more detailed discussion). 

We change the number of clusters, K, from 15 to 50. When K = 16, both temperature and humidity are abnormally big in the 

smallest cluster. Hence, we set the number of clusters to be 16, there are 506 observations in the smallest dataset. These 

observations are collected from motes 18, 19, 22, 25, 38,  40, 41, 42, and 44. The basic statistics of the 506 observations are shown 

in Table 2. From the table, the mean temperature is high, we therefore consider the 506 observations to be outliers. 

After the outliers have been removed, there remain 750,148 observations. 

 

Table 2 Basic statistics of outliers 
 

 

Variable N Mean S.D. Minimum Maximum 
 

Temperature 34.81 28.22 39.90  

Humidity 48.94 44.52 52.05  

Light 830.56 195.04 1847.36 L
i
g
h
t 

 

3.4. Clustering 

 
It is very hard to estimate the temperature distribution of a place in a day. For example, given four days, March 1–4, we can find 

the temperature distributions collected by mote 22 are different (see Figs. 4 and 5). They showed different overall patterns. For 

example, the temperature on 1st March are increasing dramatically from 8:00 am to 14:00 pm, whereas the temperature on 2nd 

March changes with a different pattern comparing to that on 1st March. 

Cluster analysis is performed using the Ward algorithm [23] in the SAS system. By comparing the clustering results with 

different numbers of clusters using the statistic R
2
, we find that it is best to cluster them into four clusters. Table 3 shows basic 

statistics of the four clusters. Cluster 1 has the smallest size, highest temperature and highest humidity. Cluster 2 has higher 

temperature, and lowest humidity. Cluster 3 has lowest temperature, and dimmest light. Cluster 4 has the largest size of 

observations, and brightest light. 

Figs. 6 and 7 show the percentage of observations of a mote belonging to a certain cluster. 

Fig. 7 shows that all motes belong to Cluster 4 with high percentages. From Fig. 6, more than 20% of observations from motes 

21, 22, 23, 24, 25, 27 belong to Cluster 2, which has a higher temperature, lower humidity and median illuminance. More than 

20% observations from motes 7, 10, 13, 14, 46, 48, 51 and 52 belong to Cluster 3, which has lower temperature, higher humidity, 

and lower light. According the locations of these motes, along with the findings, the building managers can adjust the functionality 

of the office. For example, staffs prefer a lower temperature can work in the space where motes 7, 10, 13, 14, 46, 48, 51 and 52 

are   located. 

Investigating the distribution of the clusters with time of a day, we can draw four histograms shown as Figs. 8 and 9 (the X-axis in 

the figure is decimal, which causes holes in the figure).  The values of the X-axis in these figures are time ranged from 8:00 am to 

18:00 pm. From the figures, Cluster 2 is fairy uniformly distributed with time. In Cluster 3, the number of observations are 

decreasing before 13:00 pm and increasing after that time. One reason might be the office becomes warmer during the working 

time, and cooler when time is close to 18:00 pm. From these figures, Clusters 3 and 4 have quite strong trends with time. 

 
 

 

2 The K-means clustering algorithm classifies n observations into K clusters 

by assigning each observation to the cluster whose average value is nearest to it 

by some distance measure (usually Euclidean). The algorithm computes these 

Assignments iteratively, until reassigning points and re-computing averages 

(over all points in a cluster) produces no   changes. 

http://www.sas.com/
https://www.researchgate.net/publication/2938910_Cleaning_and_Querying_Noisy_Sensors?el=1_x_8&amp;enrichId=rgreq-4d63d98e0b4508814bfa34a4b3a5ea2b-XXX&amp;enrichSource=Y292ZXJQYWdlOzIyMzMzMzA3NztBUzoyODQyMDI4MzU2OTM1NjhAMTQ0NDc3MDY0NDk4NA%3D%3D
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Table 3 Basic statistics of each cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*   In the table, N is the number of   observations. 

 

 
 

Fig. 4.  Temperature distribution on 1st and 2nd  March. 

 

 

 

Fig. 5.  Temperature distribution on 3rd and 4th  March. 

 

Cluster Variable N* Mean S.D. Minimum    

Maximum 

1 Temperature 8,309 31.94 3.81 24.90 39.98 

 Humidity 8,309 46.09 5.01 34.85 57.67 

 Light 8,309 735.79 495.67 22.91 1847.07 

2 Temperature 41,195 31.02 2.16 26.24 39.96 

 Humidity 41,195 24.05 4.47 14.41 36.82 

 Light 41,195 660.17 490.94 33.94 1847.07 

3 Temperature 100,298 20.62 1.52 14.50 25.36 

 Humidity 100,298 45.88 3.25 38.52 60.53 

 Light 100,298 402.50 307.55 5.89 1847.07 

4 Temperature 600,346 24.10 2.63 15.70 34.62 

 Humidity 600,346 36.23 5.19 18.76 54.70 

 Light 600,346 925.62 596.00 5.89 1847.07 
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4. The relationship between temperature and humidity 

 
The Pearson correlation coefficients between variables temperature, humidity, and light are shown in Table 4. From this table, 

temperature and humidity have a strong negative relationship, whereas light has little relationship with the other two variables. 

 

  
 

Fig. 6.  Percentages of observations belonging to Clusters 1,   2, 3. Fig. 7.  Percentages of observations belonging to Cluster  4. 

 

 
 

Fig. 8.  Clusters 1 and  2. 

 

Table 4 

Pearson correlation coefficients 

Pearson Temperature Humidity Light 

Temperature 1.00000 -0.63082  0.12820 

Humidity -0.63082 1.00000 -0.04479 

Light 0.12820 -0.04479  1.00000 

 

 

 
4.1. Discussion 

 
Section 3 demonstrates that a high percentage of observations in the sensory data collected from the Intel Berkeley Research 

Lab is invalid, which means the sensory data are noisy. 

Commonly, sensory data is subject to several different sources of errors, which can be broadly classified as either systematic 

errors (bias) or random errors (noise). The main sources of noise are  

• noise from external sources, 

• random hardware noise, 

• inaccuracies in the measurement technique (i.e., readings are not close enough to the actual value of the measured 
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phenomenon), 

• various environmental effects and noise,  and 

• imprecision in computing a derived value from the underlying measurements (i.e., sensors are not consistent in measuring the 

same phenomenon under the same conditions). 

 

Consider the characteristics possessed by the sensors, the following two methods can be applied to improve the reliability of the 

data. 

 
4.1.1. Temporal redundancy 

The sensory data exhibits temporal correlation, which means two consecutive observations from a sensor are correlated. In 

order to improve the reliability of readings from a sensor, the sampling rate can be increased. For example, we can read 

temperature every 15 s instead of 30 s, and average two consecutive readings, and then transmit the mean of the two readings. 

The disadvantage of this approach is it increases energy consumption of the sensor. 
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Fig. 9.  Clusters 3 and  4. 

4.1.2. Spatial redundancy 

The sensory data also exhibits spatial correlation, which means readings from two neighbour sensors at a time point are 

correlated. Combining (for example, averaging, weighted averaging, etc.) readings from neighbour sensors is a good way to 

improve the reliability of sensory   data. 

Section 3 mainly uses clustering algorithms to analysis data, and for the entire time period (from 28th February to 5th April). 

Another two angles to proceed data mining for the sensory data are 

 

• Other data mining algorithms can be used to analyse the sensory data. For example [24], built predictive models to predict 

temperature of a space where no sensor is occupied. 

• Data mining can be conducted from a multi-dimensional angle. From example, we can look at the temperature distribution at a 

specified time period, or a specified   room. 

 

5. Conclusions 

 
As the business environment becomes increasingly more competitive, it is essential that all available resources are used 

optimally and effectively. The need to evaluate various comfort indexes in different part of a building are becoming increasingly 

important, as those indexes directly and/or indirectly, affect people’s working productivity in the building. 

Using wireless sensor networks to collect data about the indoor physical parameters is a promising approach as wireless sensors 

is becoming cheaper, and they are easy to install. Analysing data collected by the wireless sensor networks can provide a whole 

picture of various distributions of indoor physical parameters. 

Data mining provides a variety of techniques that aim to analyse large datasets in order to find interesting   patterns. 

This paper applies data mining to analysis data collected from wireless sensor networks. To our best understanding, this is the 

first paper on using data mining to analyse sensory data for understanding the distributions of interesting parameters in an indoor 

environment. The case study shows the following two characteristics: 

 

(1) The sensory data are very noisy. Hence, more effort should be made in data preparation and data cleansing phase when 

conducting data mining. 

(2) Interesting patterns can be found using data mining techniques, as shown in the case study of this   paper. 

 

This paper only studied analysing the off-line dataset. It will be interesting to measure different aspects of considerations from a 

facilities manager point of view. Our future work will be focusing on analysing the real-time dynamic   data. 
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