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spatiotemporal contexts. However, ecologists and evolutionary biologists often
texts, either explicitly or implicitly, without properly quantifying and interpreting

. Here, we present a pluralistic approach that aims to quantify heterogeneity by
introducing complementary metrics, each of which decomposes heterogeneity
Handling Editor: Aaron Ellison into within-study, between-study and between-species (species and phylogenetic)
variances. These metrics include the traditional I? (variance-standardized metric),
the newly derived coefficient of variation for heterogeneity (CVH family;
mean-standardized metric), the second-order coefficient of variation (M family;
variance-mean-standardized metric) and their stratified variants.
3. Todemonstrate the benefits of the combined use of these measures, we synthesize
heterogeneity estimates from 512 ecological and evolutionary meta-analyses. We
show that total heterogeneity (variance of true effects) is, on average, 10 times
larger than statistical noise (sampling error variance), contributing to 91% of the
observed variance (median I =91%). This amount of heterogeneity is nearly twice
the size of the mean population effect (median CVH=1.8 and M=0.6), indicating
substantial variation among studies within a meta-analysis. Moreover, different
effect size types yield different values of heterogeneity metrics because they are
inherently influenced by statistical properties of their effect size estimators. As
such, comparisons of heterogeneity across effect size types should be made with

caution, albeit the proposed heterogeneity metrics are unit-free.
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1 | INTRODUCTION

Meta-analytic modelling is widely used to test ecological and evolu-
tionary hypotheses, which can be important in informing conserva-
tion and environmental policy (Gurevitch et al., 2018). Three critical
steps are necessary. First, an estimate of an overall mean effect
characterizes the magnitude of a focal effect of interest (Nakagawa
& Santos, 2012; Yang, Lagisz, et al., 2024). Second, a measure that
quantifies the inconsistency among study findings, the ‘heteroge-
neity’ among true effect sizes, is estimated to contextualize study
findings. Finally, effect modifiers or moderator variables that are
hypothesized to explain variation in effect sizes—and how much of
it is identified (context-specific effects; Nakagawa & Santos, 2012).
Crucially, heterogeneity indicates the degree of inconsistency or
‘context dependence’ of study findings, with high heterogeneity in-
dicating high variability among effect sizes that underpin the mean
population effect. Without quantifying heterogeneity, it is not possi-
ble to properly interpret both the overall trends and context-specific
effects (Senior et al., 2016; Spake et al., 2022).

While meta-analyses of a collection of studies using similar pro-
tocols for single species allow for clearer interpretations, the inter-
pretation of average population effects across diverse taxonomic
groups and spatiotemporal contexts can be difficult. However, ecol-
ogists and evolutionary biologists often either explicitly or implicitly
interpret the mean population effect and context-specific effects as
consistent across contexts (Spake et al., 2022), and thus transferable
to a broad, largely unspecified target context. The mean population
effect size is only generalizable across the contexts when the meta-
analytic evidence base accounts for informative effect modifiers,
leading to a low amount of variability around the true effect size
(i.e. low heterogeneity). Until now, the significance of heterogeneity
in interpreting meta-analytic evidence has been largely overlooked
in practice. Indeed, surveys have revealed that heterogeneity sta-
tistics are not routinely reported (Nakagawa et al., 2023; Senior
et al., 2016; Yang et al., 2022).

Currently, measuring and interpreting meta-analytic heterogene-
ity is challenging for two major reasons. First, no single heterogene-
ity metric provides a holistic interpretation of inconsistency among
study findings (Cairns & Prendergast, 2022). Currently, the I? statis-
tic is a popular metric that quantifies the proportion of variance due
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4. Our large-scale synthesis also provides new benchmarks for the interpretation
of heterogeneity and recommendations on how to quantify and report
heterogeneity. New extensions for stratifying heterogeneity metrics will clarify
our understanding of the generalisability, and at what level of meta-analytic

effects in ecology and evolution.

context dependence, effect size, heterogeneity, linear models, meta-analysis, mixed effects

to differences between effect sizes rather than by statistical noise
(i.e. sampling error variance; Higgins & Thompson, 2002; Riicker
et al., 2008). The biological interpretation of 12, however, is ambig-
uous (IntHout et al., 2016) because a small absolute heterogene-
ity can lead to a high > due to small statistical noise (see Figure 1;
Borenstein et al., 2017; IntHout et al., 2016; Riicker et al., 2008).
Second, meta-analytic practice typically focuses on estimating
total heterogeneity only (Nakagawa & Santos, 2012), despite the
hierarchical nature of real biological data structures (Nakagawa
et al., 2023; Noble et al., 2022). Explicitly decomposing effect size
heterogeneity across hierarchical levels (i.e. stratification) enables a
more nuanced configurative account of the meta-analytic evidence
and helps identify contextual factors that drive context dependence
(Nakagawa & Santos, 2012). For example, in a multi-taxon meta-
analysis, if stratification of studies by species yields low heterogene-
ity at the taxon level, the focal effect can still be generalizable across
taxon (Figure 2). This is so, even if the total heterogeneity remains
high (Senior et al., 2016).

Here, we present a pluralistic framework designed to quantify
heterogeneity, incorporating two intertwined strategies: stratifi-
cation and the estimation of complementary measures of hetero-
geneity. We begin by introducing a general method for stratifying
heterogeneity, which applies to any effect size metric. We then eval-
uate commonly used heterogeneity metrics and propose two sets of
new metrics, which capture different dimensions of heterogeneity
and inform cross-context generalizability of the meta-analytic mean
effect size. To ground our framework empirically, we undertake a
large-scale synthesis, generating new benchmarks for interpreting
heterogeneity and generalizability (Table 1), leveraging a big dataset
spanning 512 ecological and evolutionary meta-analyses (cf. Costello
& Fox, 2022; O'Dea et al., 2021). We also present meta-scientific ev-
idence on (in)congruence between different heterogeneity metrics
and outline approaches for developing useful extensions of hetero-
geneity quantification for phylogenetic multilevel meta-analyses.
The replication materials for this study are available on the GitHub
repository (https://github.com/Yefeng0920/heterogeneity_bench
mark) and Zenodo (Yang, 2025). To facilitate researchers in navigat-
ing the intricate landscape of heterogeneity, we conclude by offering
practical recommendations and a tutorial with R functions (https://

yefeng0920.github.io/heterogeneity_guide/). The proposed
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FIGURE 1 The interpretation of total I2 can be ambiguous and can lead to incorrect conclusions about the magnitude of heterogeneity.
(a) The value of the total I? is dependent on sampling error variances. (b) A large estimated total I2 value could be due to small ‘typical’

sampling error variances v (Equation 3). (c) In contrast, a large total I2 value could also result from a large true heterogeneity. Values of ¢2

total

and v were derived from their empirical distributions based on 512 meta-analyses. Total I2 values were calculated using Equations (2) and (3).

High, medium and low "total

(and V) denote the 25%, 50% and 75% percentiles of their empirical distributions (Table 1). Three horizontal lines

denote the conventional thresholds for the use of I2 to interpret the magnitude of heterogeneity.

framework and large-scale synthesis aim to empower researchers in
their quest to unravel the complex patterns underlying the general-

izability of ecological and evolutionary phenomena.

2 | METHODS
2.1 | Database

The ecological and evolutionary databases used in this study
were originally compiled by Costello and Fox (2022) and O'Dea
et al. (2021). For more information on data collection, see the
relevant data sources (Costello & Fox, 2022; O'Dea et al., 2021).
After de-duplicating, our database included 522 meta-analytic
datasets (Yang, 2025). We dropped meta-analysis datasets that
could not achieve convergence when fitted to the multilevel model.
Table S1 reports a descriptive summary of these datasets that were
excluded due to model convergence issues. Convergence could not
be reached for nine meta-analytic datasets, even after adjusting key
parameters of the iterative methods to maximize the log-likelihood
function (see below for details). Therefore, our database contained
512 meta-analysis datasets encompassing 17,770 primary studies

and 109,495 effect size estimates. Each meta-analysis dataset
included, on average, 240 effect size estimates (first quartile=30,
median= 68, third quartile=201) from 40 studies (first quartile=12,
median=24, third quartile=49).

2.2 | Stratifying heterogeneity using a multilevel
meta-analytic modelling framework

Data used in meta-analyses often exhibit a complex hierarchical
structure (Nakagawa & Santos, 2012; Noble et al., 2017), with paper
(or study) identity serving as a typical clustering variable, forming two
strata (i.e. between- and within-study levels; Equation 1). Ecological
and evolutionary meta-analyses typically report around six effect
size estimates per study (median). However, traditional random-
effects meta-analytic approaches do not account for heterogeneity
driven by such data stratification (Nakagawa et al., 2023; Noble
et al, 2022; Yang et al., 2022), and multilevel meta-analysis is
required to model heterogeneity at different strata or multilevel in
a meta-analysis (see Appendix 51 for the theoretical background).

In the simplest multilevel model, the effect size estimate ES;
is modelled as a combination of the population mean effect or
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FIGURE 2 A cross-taxa meta-analysis with a high total variance can have a small amount of species-level heterogeneity. It is still possible
that the focal effect will be generalizable at the species level. The circles represent the replicated species-specific effects. The red dashed
lines denote the meta-analytic mean effects. See a real example in Extended strategies: Non-phylogenetic and phylogenetic species-level

heterogeneity and generality.

meta-analytic overall mean effect size u (overall mean of an outcome
of interest), random effects at two strata (i.e. between- and within-

study levels) and sampling error effect:

ES[] = # + Upetween[j] + Uwithin[i] + €[i]: @

The typical assumptions for Equation (1) are as follows: (i) between-
study-level random effect Upeqyeenfj) follows a normal distribution with

) 2 . N 2 L
mean zero and variance oy . Upetweenj] N (0,62, con ) (il) within

study-level random effect uyiin[;] follows a normal distribution with

2

; 2. -
mean zero and variance o, < Uyithin[i] N (O, O ithin

error e;) follows a normal distribution with mean zero and variance in

)and (i) sampling

effects defined by the sampling variance (v[,»]) associated with each ef-
fect size i, such that e[| ~ N'(O, VIl ) The assumption of homogeneous
variances for the random effects can be relaxed to allow for heterosce-
dasticity (Viechtbauer & Lopez-Lopez, 2022). Similarly, the assumption
of independent sampling errors (em) can be relaxed to allow for sampling
error covariance v[; (Noble et al., 2017; Yang et al., 2022). Note that

in the context of the traditional random-effects model, the between-

2
total’

multilevel model (essentially a random-effects model with multiple ran-

study variance, often termed 72 is treated as the o In contrast, a

dom effects) treats between-study variance as one of the components
of the 62 2 -0

_ .2
total’ between — © total’
Statistical analyses were carried out using R 4.0.3 computing

2
when ol i,

Therefore, 2 = ¢
platform (R Core Team, 2020). We used the rma.mv() function from
the metafor package (v4.7.53; Viechtbauer, 2010) to fit all 512 meta-
analysis datasets to the multilevel meta-analytic model (Equation 1).

We employed restricted maximum likelihood REML (embedded in

metafor package) as the variance estimator and the quasi-Newton
method as the optimizer to maximize the likelihood function over
2 e i) With a threshold of 1078, a
step length of 1 and a maximum iteration limit of 1000. We con-
)
by checking their likelihood profiles. The R code for model fitting can

variance estimation (o and 62

and 62

firmed the identifiability of variance estimation (¢2 ithin

between
be accessed on the website (see Supporting Information; https://
yefeng0920.github.io/heterogeneity_guide/). In the following sec-
tions, we will elaborate on how to use Equation (1) to stratify hetero-
geneity information for different metrics.

2.3 | Complementary measures of heterogeneity

2.3.1 | Unstandardized heterogeneity metrics

Cochran's Q is a widely used metric for assessing heterogeneity in
meta-analyses (Cochran, 1954). It serves as a test statistic to determine
whether the true effects are homogeneous or not, informing a binary
decision as to whether the effect sizes come from a common underly-

ing population or not (i.e. is there variability around the true effect

P ; 2 _ 2 2
size?). In contrast, the variance of true effects (67 | = 67 .. con T Caithin)
provides a direct measure of absolute heterogeneity (hereafter re-

2 o2
total ~ between

represent the standard deviation of the true effect size

ferred to as ‘raw heterogeneity’). The square roots of ¢

2
and oy,
and can also be used as a direct measure of absolute heterogeneity.

In Equation (1), the variance of the observed effects (Var[ES[,-] ]) is the
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sum of the sampling error variance and the true effect variance ("tzotal)-

In meta-analyses with infinite sample sizes, Var[ES[i]] is larger than

o—t20tal' Importantly, Equation (1) provides a general way to partition
o2, into different strata, such as between-study (62 ) and

within-study strata (62, . ). By considering additional strata, such as

within’
variation in effects among species or geographical locations, the total

2

2 wa) €an be further decomposed to assess

variance in true effects (o
generalizability at these specific strata (Figure 2). For example, low
variation among species implies effects are similar, on average, across
species. Nonetheless, relying solely on absolute variance does not
provide practical intuition regarding the magnitude of heterogeneity.
For example, in a meta-analysis with atzota|= 1, it is unclear whether this
amount of variance is large and meaningful because absolute variance

is not unitless and comparable across effect size statistics. Importantly,

2
total

on the research field, study designs and measurement scales. A proper

interpreting o2,  in context is crucial because its magnitude depends
contextual interpretation requires a thorough understanding of the
topic, including typical effect size ranges, study characteristics and
sources of variability. However, if contextual interpretation is unclear

or difficult due to limited subject knowledge, researchers can resort

2
total

similar meta-analyses (see Section 3.2). These benchmarks provide a

to empirical benchmarks, such as median or quartile o2, values from
reference point, helping to assess whether observed heterogeneity
is typical, moderate or extreme relative to comparable syntheses.
While empirical benchmarks can be a practical guide, they should
complement, not replace, efforts to understand heterogeneity in the

specific context of the research question.

2.3.2 | Variance-standardized heterogeneity
metrics

The heterogeneity index, 12 has emerged as the most popular heter-
ogeneity metric as it provides a standardized measure of heteroge-
neity that accounts for the scale dependence (i.e. unitless; Higgins
et al., 2003). 12 is a variance-scaled heterogeneity metric that meas-
ures the proportion of total variance beyond sampling error variance
(Higgins & Thompson, 2002). The total I? (denoted as 12

total
2

total

in the observed effects (Var[ES[,-] ]). Therefore, lfotal is given by

) can be com-

puted by dividing the variance in the true effects (52 . ) by the variance

2 2
I2 _ total _ Ototal

| - - —_
o2 Var[ES[,»]] Utzotal +v

(2)

where Vv represents the ‘typical’ sampling error variance, representing
the average level of sampling error variance. v can be computed using
different estimators (Cheung, 2014; Takkouche et al., 1999), with the
common one being (Higgins & Thompson, 2002):

k
(k— 1)_211/V[,]

V= ,

k 2 k
<._21 1/Vm> - X/ vpp?

@)

where k denotes the number of observations (in this case, effect
size estimates). Within the multilevel modelling framework, the total
|2 can be stratified, for example, by estimating |2 at between-study
(12 ) and within-study (2. ) levels (Cheung, 2014; Nakagawa &

between within'
Santos, 2012):
2 2
’2 _ 0between _ Gbetween
between ™ - (4)

Var[ES[,»]] Gt20tal +V

2 2
2 Owithin ~_ Owithin

- Var[ES[;]] - O +V

’within -

(5)

However, as mentioned earlier, large I values do not necessarily
imply a practically relevant amount of heterogeneity (see Figure 1;
also see a case study in ‘Extended strategies: Non-phylogenetic and
phylogenetic species-level heterogeneity and generality’). Stratified
12 metrics range from O to 1 (or can be rescaled to a percentage rang-
ing from O to 100 percent), providing a clearer intuition of the rel-

ative sources of heterogeneity and aiding in assessing the drivers
2

within
there-

of context dependence at different strata. For example, a | of

0.9 means within-study variation accounts for 90% of lt20ta|’
fore, indicating that within-study level predictors are more likely to
drive context dependence. I? and its stratified variants can also be
transformed into the ratio of the variance of true effect to typical
. . 2 2 62\ _ L .
sampling error variance (? =Tn or Iog(;) = Ioglt(l )), which
represents heterogeneity as a proportion of the sampling error

variance.

2.3.3 | Mean-standardized heterogeneity metrics

Evolutionary biologists and behavioural ecologists are familiar with
variance-scaled metrics such as heritability (h? and repeatability
(R), which are statistically comparable to the variance-scaled
heterogeneity index, I2 Less commonly used but equally relevant are
mean-scaled counterparts, such as evolvability or the coefficient of
variation (CV) for additive genetic variance (CV,) and CV for between-
individual variance (CVg) (Hansen et al., 2011). Here, we introduce
a mean-scaled heterogeneity metric, CVH2,,,, (‘H’ and ‘2’ denoting
‘heterogeneity’ and ‘squared version’, respectively) that can be used
in meta-analysis, which standardizes heterogeneity by comparing
the variance of true effects ("tzotal) to the square of the overall mean
effect size (4?) (Takkouche et al., 1999):

0_2
CVH2, = ;’j'. (6)

CVH2,., can be easily interpreted as it expresses heterogene-
ity as a proportion of the overall mean effect size, or as a percent-
age when multiplied by 100. A value of CVH2,,,, = 1 indicates that
the heterogeneity (variance among true effects) equals the overall
mean effect size. Assuming a normal distribution this means ~16%
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empirically derived benchmarks for the
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Tentative interpretation benchmarks

interpretation of heterogeneity based on

Rule-of-thumb

Empirically-derived®

12, CVH2 and M2.

Metric Category Range Percentile Range

12 Very small 0to00.25 Oth to 25th 0to0 0.79
Small 0.25t0 0.50 25th to 50th 0.79 to 0.91
Moderate 0.50t0 0.75 50th to 75th 0.91t00.97
Large 0.75to 1 75th to 100th 097to1

CVH2 Very small 0to 0.04 Oth to 25th 0to 1.03
Small 0.04 to 0.19 25th to 50th 1.03 to 3.45
Moderate 0.19 to 0.56 50th to 75th 3.45t012.43
Large 0.56 to oo 75th to 100th 12.43 to o

M2 Very small 0to 0.04 Oth to 25th 0to0.51
Small 0.04t0 0.16 25th to 50th 0.51t00.78
Moderate 0.16 t0 0.36 50th to 75th 0.78t0 0.93
Large 0.36to 1 75th to 100th 093to 1

Note: Table S3 provides empirically derived benchmarks for the full set of standardized
heterogeneity metrics. The rule-of-thumb was retrieved from the literature, with slight
modifications (Higgins et al., 2003; Kvalseth, 2017). Empirically derived interpretation benchmarks
are proposed based on the empirical distribution of different heterogeneity measures. Table 2
provides the empirically derived benchmarks corresponding to the commonly used effect size
measures (e.g. Cohen's d). Given the differences between different effect size measures, we
recommend using effect size type-specific benchmarks (but see the limitations of using empirically
derived benchmarks in Section 3.2). Definitions of heterogeneity measures can be found in both
the main text and the Appendix S1. For simplicity, the subscript for each heterogeneity measure
was removed in Table 1. The precise percentile range in which the heterogeneity estimates for a
particular meta-analysis fall can be obtained via the R helper function het_interpret().

“The distributions and percentiles could be underestimated if publication bias existed. While the
existing technique allows for publication bias to be taken into account to obtain bias-corrected
estimates of the population mean effect (Yang, Lagisz, et al., 2024), there is not yet any method to
obtain bias-corrected estimates of heterogeneity.

of effects would have opposite sign to the overall mean effect
(Figure S1). To assist with interpretation, we provide rule-of-thumb
and empirically derived benchmarks to classify heterogeneity as
‘very small’, ‘small’, ‘medium’ or ‘large’ (Tables 1 and 2). In addition,
we provide an R helper function (het_interpret()) that can help deter-
mine the percentile range in which the heterogeneity estimates for a
particular meta-analysis fall, based on the heterogeneity distribution
of the published meta-analyses.

For a more precise breakdown of heterogeneity, we propose
two variants of CVH2,,,, under the multilevel model framework
(Equation 1). We express the between-study, CVH2, yeenr @and

within-study, CVH2,;, versions of CVH2,, as follows:

2

CVH2, _ Ubetween (7)
between — M2 ’
o2
CVH2, i = VL'—‘Z"'" (8)

These variants quantify between- and within-study heterogeneity
relative to the effect being measured. Additionally, we provide mean-

standardized metrics based on standard deviation (e.g. o\ihin) rather

than variances (e.g. 62, ), CVH1 o1 CVH1peryeen and CVHL i, (s€€
Appendix S1). To estimate CVH2,,,, and its two variates, we suggest

2 2
between’ % within

using the maximum likelihood estimates for o and u de-
rived from Equation (1), and substitute them into Equations (6-8). For
simplicity, throughout the paper, we use population parameters (e.g.

and ) and their estimators (e.g. o; and 7)

2 2 2 —2
Obetween’  within between’ ©within
interchangeably. Notably, these mean-scaled variance metrics have
the limitation of becoming arbitrarily large as the magnitude of overall

mean effect y approaches zero (Kvalseth, 2017; Lobry et al., 2023).

2.3.4 | Variance-mean-standardized heterogeneity
metrics

2
total

we introduce a more robust heterogeneity measure, M2, .., which

To remedy the limitations of I2 _ and CVH2,, as illustrated above,

combines the strengths of mean-scaled and variance-scaled metrics
(Cairns & Prendergast, 2022; Kvalseth, 2017):

2

M2 _ Ootal
total = 22— ©
Utotal tu
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TABLE 2 Summary of heterogeneity measures and their stratified counterparts. SMD denotes standardized mean difference.

Types Metrics
Test statistic Q
Unstandardisation o2 family
Variance-standardization 12 family
Mean-standardization CVH
family
Variance-mean-standardization M family

Interpretation and examples

Null-hypothesis test. Statistical test of
heterogeneity in effect sizes

Absolute magnitude measure of heterogeneity.

Variance (square of standard deviation) of the
meta-analytic overall mean effect (”tzotal) and
its stratification in between- and within-study

2 2
contexts (”between and "within)‘

Heterogeneity source measure. Proportion of
variance not due to sampling error variance.
It measures the source of heterogeneity. For
example, 2 = 95% denotes that 95% of
variation is the result of heterogeneity (i.e.
differences in contexts). Igetween =0.8and
Iﬁmhin = 0.15indicates differences in between-
study contexts dominate the heterogeneity,
pointing towards between-study level
predictors as the likely drivers of context-

dependent variation.

Heterogeneity magnitude measure, including
CVH1 and CVH2. Variance is expressed as

the proportion of the mean effect. It is the
measure of the magnitude of heterogeneity

in the context of the mean effect. For
example, CVH2,.,, = 1.5, CVH2, s veen = 0.8 and
CVH2,,inin = 0.5 denotes that total, between-
and within-study variance are 150%, 80% and
50% of the mean effect.

Heterogeneity magnitude measure,

including M1 and M2. Variance is expressed
as the proportion of the mean effect and a
transformation of CVH family designed with
better properties. It is the measure of the
magnitude of heterogeneity in the context of
the mean effect.

Empirically derived benchmark?®

Not applicable

25th, 50th and 75th percentiles (Figure S4):
0.54, 1.25 and 3.03 for SMD; 0.11, 0.27 and
0.57 for InRR; 0.06, 0.12 and 0.25 for Zr;
1.04, 1.20 and 2.51 for the 2-by-2 table; 0.01,
0.04 and 0.27 for uncommon measures. The
percentiles of typical sampling variance v are
reported at Figure S5.

25th, 50th and 75th percentiles (Figure 3):
0.78,0.89 and 0.96 for SMD; 0.88, 0.95 and
0.99 for InRR; 0.73, 0.87 and 0.95 for Zr; 0.71,
0.73 and 0.89 for the 2-by-2 table; 0.74, 0.91
and 0.98 for uncommon measures.

25th, 50th and 75th percentiles for CVH2 (and
CVH1):

1.1 (1.05), 3.94 (1.98) and 15.4 (3.93) for SMD;
1.36(1.16), 3.76 (1.94) and 12.1 (3.48) for
InRR; 0.67 (0.82), 2.77 (1.66) and 8.54 (2.92)
for Zr; 1.57 (1.21), 4.96 (2.19) and 7.04 (2.65)
for the 2-by-2 table; 0.47 (0.69), 1.22 (1.11)
and 1.7 (1.3) for uncommon measures.

25th, 50th and 75th percentiles M2 (and M1):
0.52(0.51), 0.8 (0.66) and 0.94 (0.8) for SMD;
0.58 (0.54), 0.79 (0.66) and 0.78 for InRR; 0.4
(0.45),0.73 (0.62) and 0.9 (0.75) for Zr; 0.57
(0.54),0.82 (0.68) and 0.88 (0.73) for the
2-by-2 table; 0.32 (0.41), 0.55 (0.52) and 0.62
(0.56) for uncommon measures.

Note: InRR denotes log response ratio. Zr denotes Fisher's r- to z-transformed correlation coefficient. 2-by-2 table denotes often dichotomous
(binary) effect size measures, such as log odds ratio and log risk ratio. Uncommon measures represent less frequently used effect size measures, such
as raw mean difference and regression coefficients. For simplicity, the subscript for each heterogeneity measure was removed in Table 2.

*The distributions and percentiles could be underestimated if publication bias existed. While the existing technique allows for publication bias to be
taken into account to obtain bias-corrected estimates of the population mean effect (Yang, Lagisz, et al., 2024), there is not yet any method to obtain

bias-corrected estimates of heterogeneity.

We also propose stratified versions of M2, for between-study
(M2 comeen) @and within-study (M2,,,) heterogeneity, allowing for a
more precise quantification of heterogeneity at specific strata:

2

M2 _ O-between
between — "5 2’ (10)
Ototal tu
2
o .. .
within
Mzwithin = 2 o (11)
[ +u

total

Similar to CVH2,,, M2,,., and its stratified variants provide
a standardized measure of heterogeneity relative to the overall
mean effect size. Importantly, M2, offers the advantage of being
bounded between 0 and 1, making interpretation more intuitive and

simpler. For example, oy, =0 leads to M2,,,, =0, indicating the
population mean effect is fully generalisable, and replicable across
different contexts (see a case study in ‘Extended strategies: Non-
phylogenetic and phylogenetic species-level heterogeneity and
generality’). Conversely, a value near 1 suggests that heterogeneity
is maximized relative to the overall mean effect size. Additionally,
M2, ., can be transformed into a coefficient of variation by apply-
ing the logit transformation: logit(M2,, ) = 2log(CVH2). Unlike
CVH2, . M2, and its stratified variants avoid the problem of over-
inflation when the magnitude of overall mean effect u approaches
zero, making it a more robust and reliable measure of heterogeneity.

In the Appendix S1, we describe additional metrics, M1,
M1, ciween @and M1 i where the squared terms in the numer-
ator and denominator are replaced by their square roots. In the
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FIGURE 3 The distribution of heterogeneity estimates derived from 512 meta-analyses was systematically assessed using multiple
measures and stratified across different strata. Total heterogeneity measures (a-c): 12, CVH2, .., and M2, ... Between-study heterogeneity

total’
measures (d, e): 12 CVH2opeen aNd M2peyeen. Within-study heterogeneity measures (g-i): 12, . CVH2,iiin and M2, ... Three dashed

lines correspond to the 25th, 50th and 75th percentiles, respectively. In panels (b, e and h), thewét{]/I;‘-IZ was truncated at five for figure clarity,
as very large CVH2 values can be challenging to interpret when the meta-analytic mean effect is small. For example, the maximum CVH2
observed in the 512 meta-analyses was 106, which was inflated by a small meta-analytic mean effect of 0.03. For unstandardized (raw)
heterogeneity and typical sampling error variance, please refer to Figures S4 and S5. The density of heterogeneity distribution was based
on Gaussian kernel density estimation. The degree of smoothing (bandwidth) was determined using a rule-of-thumb method (Heidenreich
et al., 2013), which uses 0.9 times the minimum of the standard deviation and the interquartile range divided by 1.34 times the sample size
to the negative one-fifth power. Given that density estimates are sensitive to bandwidth selection (Pick et al., 2023), we also provided the

histograms corresponding to panels (a-i) (Figure S2).

statistical literature (Kvalseth, 2017), M1,  and M2,.,., are known in terms of Euclidean distances (a measure of deviation) between
as second-order coefficients of variation, derived from the ratio true effect sizes and the overall mean effect relative to the dis-
of second-order moments. Statisticians interpret these measures tance between true effect sizes and the origin (see geometric
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formulation in Kvalseth, 2017). For example, a value of M2,,,,, = 0.5
means that, in an n-dimensional space, the distance (deviation)
between a collection of effect sizes and the overall mean effect
is 50% of the distance (deviation) to the origin. Although this
distance-based interpretation feels unfamiliar, it is worth noting
that standard deviation and variance—the most commonly used
measures of dispersion—are also based on distances. Standard de-
viation represents the ‘standard’ or ‘typical’ distance (deviation) of
a value from the mean value, while variance measures the aver-
age of the squared distances from the mean. To further aid in the
interpretation of these variance-mean-standardized metrics, we
provide both rule-of-thumb and empirically derived benchmarks
to categorize heterogeneity as ‘small’, ‘medium’ or ‘large’ (Tables 1

and 2, and R help function het_interpret()).

3 | RESULTS AND DISCUSSION

3.1 | Empirical
patterns of heterogeneity and implications for the
generalizability of the meta-analytic effects

3.1.1 | Source of heterogeneity

To examine the magnitude and sources of heterogeneity across the
512 ecological and evolutionary meta-analyses, we first used the
variance-standardized metric I, which quantifies the proportion of
total observed variance attributable to variation in true effects (as
opposed to sampling error). Across the full dataset, which includes
meta-analyses using different effect size metrics, the 25th, 50th and
75th percentiles of total heterogeneity (Itzotal) were 0.79, 0.91 and
0.97 of Ifotal, respectively (Figure 3; Table 1). Importantly, however,
these summary values should not be interpreted as universal
benchmarks that apply across effect size metrics. The magnitude of
’tzotal’ the raw heterogeneity measure (variance of true effects; 62) and
the average sampling error variance (v) are inherently influenced by
the scale and statistical properties of the effect size metric used.
Indeed, differences emerged when stratifying by effect size type
(Table 2): 0.78 (25th), 0.89 (50th) and 0.96 (75th) for standardized
mean difference (SMD), 0.88, 0.95 and 0.99 for log response ratio
(InRR), and 0.73,0.87 and 0.95 for Fisher's z-transformed correlation
coefficient (Zr). These differences stem from variation in the
magnitude of 62 an v across effect size types.

The observed distribution of lfotal
thresholds for interpreting I2, which typically categorize heterogene-
ity as small, moderate or high at 0.25, 0.50 and 0.75 of 12, (Higgins

total
et al.,, 2003), respectively. Thus, on average (50th percentile), 91% of

contrast with the conventional

the variance in effect sizes can be attributed to the ‘true’ biological or
methodological differences in research contexts, and may therefore
be explainable using appropriate predictor variables (i.e., modera-

tors). It also indicates that the variance in true effect sizes is 10 times
—_— ’2

T (a-p
Figures S4 and S5 for empirical distributions of 62 and V).

larger than the typical sampling error variance (“—; = 10; see

While Itzotal displayed a left-skewed and single-modal distribution,
its stratified counterparts, Iﬁet and 12 demonstrated a right-
ween within’

skewed distribution with multi-modal patterns (Figure 3). There was
no consistent trend suggesting neither type of stratified heterogene-
ity consistently outweighed the other across the 512 meta-analyses
(Figure 3). Intriguingly, 47% (242 out of 512) of the meta-analyses
exhibited smaller between-study level heterogeneity than within-
12 < 12 Figure 4). Within this sub-

study level heterogeneity (| botween < Fithind

set of meta-analyses, the median values for lfota‘, Igetween and Ifmhin
were 95%, 21% and 63%, respectively.

We note that the above results were drawn from fitting a ge-
neric model to meta-analytic datasets without contextualizing any
specific ecological and evolutionary topics. Therefore, the above
conclusion about heterogeneity accounting for 91% of total vari-
ance does not necessarily imply that a given meta-analysis included
in our dataset exhibits a high level of heterogeneity and thus a low
level of generalizability, although on average this is the case. In con-
trast, the degree of heterogeneity and generalizability of a specific
meta-analysis is linked to the characteristics (e.g. taxonomic cov-
erage, outcomes, study design) of primary studies included in the
meta-analysis. Ecologists and evolutionary biologists are encour-
aged to identify sources of heterogeneity specific to their meta-
analyses, testing relevant hypotheses and drawing conclusions
about the generalizability of a given effect of interest. For exam-
ple, telomere length measurements are affected by the laboratory
assay (Monaghan et al., 2018; Salmén & Burraco, 2022), with the
in-gel hybridization-based TRF method yielding different measure-
ments compared to Southern blot-based TRF and qPCR methods
(Chik et al., 2022; Remot et al., 2022). Meta-analysing results of pri-
mary studies using different laboratory assays would naturally lead
to a high amount of heterogeneity, resulting in low generalizability
across studies. However, if the laboratory assay could account for
heterogeneity driven by the method of choice (Remot et al., 2022),
generalizability could then be concluded as high when conditioned
on the method used.

3.1.2 | Magnitude of heterogeneity

When the mean-standardized metric CVH2,,, was used to quantify
the magnitude of heterogeneity, the calculated 25th, 50th and 75th
percentiles of CVH2,,,, values were 1.0, 1.8 and 3.5, respectively
(Figure 3). Therefore, the variance (raw heterogeneity) was, on
average (50th percentile), nearly twice that of the square of the
overall mean effect. The distributions of both CVH2,. and its
stratified versions, CVH2, i eery @and CVH2 1, displayed a right-
skewed pattern with a single-mode (Figure 3). In contrast, the
distribution of the mean-variance-standardized metric M2,
exhibited a more symmetrical pattern, with the 25th, 50th and 75th
percentiles of M2, values being 0.5, 0.6 and 0.8, respectively
(Figure 3), albeit with a minor peak around zero.

Notably, stratification analysis revealed that MH2, . een

and MH2 had patterns similar to those observed for

within
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FIGURE 4 Comparison of stratified heterogeneity estimates
across 512 meta-analyses for three heterogeneity metrics:

(a) I, (b) coefficient of variation (CVH2) and (c) M2. Each point
represents an estimate from an individual meta-analysis. Linear
regression was applied to visualize trends (fitted lines), with shaded
bands indicating the 95% confidence intervals. The correlation
coefficients between between-study heterogeneity and within-
study heterogeneity were -0.567, 95% Cl=[-0.627, -0.500]

for 1% 0.482, 95% Cl=[0.408, 0.549] for CVH 2; and -0.382,

95% Cl=[-0.456, -0.303] for M2, respectively. Figures S6 and
S7 present between- and within-study heterogeneity through
alternative visualizations. Refer to Figure 3 for additional details.

CVH2 oween and  CVH2 e This  similarity is expected as
they can be mathematically transformed into one another
using  equations  MH2,, = CVH2,,, /(14 CVH2,,,)  and
logit(MH2,4,) = log(CVH2,., ). The median values for both CVH2, o,

2719

and MH2,., across the 512 meta-analyses signify a high amount of
heterogeneity, thereby warranting a thorough exploration into the
drivers influencing such context dependence. However, stratifica-
tion of MH2, ., also suggests that meta-analyses with high hetero-
geneity can possess a considerable likelihood of generalizability at
the between-study level, given the low MH2, . cen (@5 We pointed
out above with I? family metrics). On average, there was a median
MH2, o tween = 0.3 (SD is 43% of the overall mean effect) observed in
47% of the meta-analyses (242/512) with smaller MH2,.cen Values

compared to MH2 values (Figure 4).

within

3.1.3 | Meta-scientific evidence on (in)congruence
between different metrics

We found only moderate agreement between heterogeneity
measured as 2> and the newly proposed metrics (CVH2,,:
Fspearman=0-319, 95% Cl=[0.237, 0.396], MH2,.;: Ispearman=0-319,
95% Cl=[0.237, 0.396]; Figures 2b and 5a). In cases of meta-
analyses with 12 larger than 0.75 or smaller than 0.25 (identified as
large and small heterogeneity by conventional benchmarks; Higgins
et al., 2003), the disagreement between I2 and CVH2, as well as I2
and MH2, became even more pronounced (see Figures S8-510 for
additional results about inter-rater agreement test). In contrast,
a near-perfect-though non-linear-relationship was observed
between CVH2,., and MH2, . (r =1, 95% CI=[0.999, 1];

Figure 5c). Therefore, cross-meta-analysis (meta-scientific) evidence

spearman

suggests that I2as a measure of heterogeneity does not always agree
with magnitude measures (CVH2,,, and MH2,.,) for ecological and

evolutionary data. We also found that out of the 512 meta-analyses

2
total

guidelines), 80 had small CVH2,.,., (Figure 5), indicating that more

featuring medium to large |2, values (>0.50 based on conventional

than 20% of the large lt20tal values were caused by small sampling
errors rather than a larger amount of heterogeneity. These findings
emphasize the importance of considering multiple metrics to obtain
a holistic understanding of heterogeneity in meta-analyses (see

Section 3.2).

3.2 | Heterogeneity interpretation benchmarks and
a pluralistic framework

To support the interpretation of the newly proposed mean-
standardized and variance-mean-standardized heterogeneity
metrics, we derived empirical benchmarks based on their observed
distributions across 512 ecological and evolutionary meta-analyses
(illustrated in Figure 3). We tentatively classify heterogeneity
as ‘very small, ‘small’, ‘moderate’ or ‘large’ based on quartiles
(specifically, the Oth to 25th, 25th to 50th, 50th to 75th and 75th to
100th percentiles). Table 1 presents these percentiles for variance-
standardized heterogeneity (2 family metrics), mean-standardized
(CVH2 family metrics) and variance-mean-standardized (M2 family
metrics) heterogeneity. For example, for M2, the benchmarks for
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FIGURE 5 Comparison of heterogeneity measure estimates across 512 meta-analyses. A local polynomial regression was applied to

illustrate trends (fitted lines), with shaded bands representing 95% confidence intervals. (a) I? exhibits moderate consistency with CVH2

total”

(b) I? exhibits moderate consistency with M2, . . (c) CVH2, . and M2, _ show a near-perfect-though non-linear-relationship. See Figure 3
total total total

for further details.

very small, small, moderate and large heterogeneity corresponded
to values of O to 0.51, 0.51 to 0.78, 0.78 to 0.93 and 0.93 to 1,
respectively (Table 1). Additionally, Table 2 offers a more fine-
grained interpretation of these benchmarks for commonly used
effect size measures, including SMD, InRR and Zr. These empirically
derived benchmarks are intended to provide general guidance for
interpreting heterogeneity in ecological and evolutionary studies.
However, it is essential to recognize that these benchmarks
should not replace contextual interpretation, which remains critical.
Because effect size metrics differ in scale and statistical properties,
heterogeneity estimates are inherently influenced by the metric used.
Therefore, empirical benchmarks are most informative when applied
to commonly used, standardized effect sizes (e.g. SMD, InRR, Zr) and
we discourage their application to less frequent metrics in our data-
set (e.g. odds ratios or raw means), where coverage is too sparse for
reliable guidance. When domain-specific knowledge is insufficient,
these empirical benchmarks can serve as a starting point (rather than
a substitute) for interpreting heterogeneity. In this spirit, we propose
a pluralistic framework that encourages a comprehensive assessment
of biological generalizability by jointly quantifying and contextualizing

heterogeneity. Our key recommendations are as follows.

1. Adopt a multilevel meta-analytic framework: We strongly rec-
ommend modelling heterogeneity using multilevel meta-analysis
(e.g. Equation 1) rather than a standard random effects model.
The multilevel structure enables partitioning of heterogeneity
across nested levels, and additional random effects (e.g. study
ID, phylogeny, species) can be incorporated as needed. For
instance, the phylogenetic multilevel model (Equation 12) can
disentangle species-level sources of heterogeneity.

2. Quantify and stratify heterogeneity using complementary
metrics: We encourage transparent reporting of all variance
components, including average sampling error variance. From

these components, multiple heterogeneity metrics can be

computed, including 12 M and CVH (the latter derivable from
M), along with stratified versions. These measures provide
complementary information, for example, I? quantifies the
proportion of observed variance due to heterogeneity, whereas
M and CVH place heterogeneity in the context of the mean.
When there is not enough contextual information to guide
the interpretation of heterogeneity, we encourage using the
empirically derived benchmarks (Tables 1 and 2) as a starting
point, particularly for commonly used effect size types such as
SMD, InRR and Zr. However, these benchmarks should not be
used for less frequently used metrics in our dataset, such as
2 x 2 table-based measures (e.g. odds ratios) or non-standardized

metrics like raw means, due to insufficient data coverage.

. Usethe R function (het_interpret()) to help obtain precise percentile

ranges of heterogeneity estimates for a given meta-analysis based
on empirical benchmarks (see online tutorial). The uncertainty
(e.g. 95% CI) of each of the heterogeneity measures should
be reported along with the point estimate, until a time when
extensive simulation studies can provide a clear recommendation
on which estimation methods provide the most reliable estimate
of the uncertainty. Instead, we encourage researchers to conduct
sensitivity analyses to understand the potential influence of
heterogeneity (see ‘Unresolved issue: quantifying the uncertainty

around the point estimate of heterogeneity measure’).

. Check model parameter identifiability: When including multiple

random effects, issues of parameter identifiability may arise,
wherein unique variance estimates that maximize the likelihood
function may not exist (see Section 2; Raue et al., 2009).
Identifiability issues may arise in models with limited data
or overlapping random effects. We recommend evaluating
parameter identifiability (e.g. using profile likelihoods) before
proceeding with the interpretation of heterogeneity estimates.
If identifiability is uncertain, heterogeneity estimates should be
interpreted with caution.
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In conclusion, we advocate that ecologists and evolutionary biol-
ogists treat heterogeneity with the same importance as mean effect
sizes when drawing biological inferences (Higgins et al., 2009). Our
pluralistic approach provides the conceptual and practical tools to
achieve this goal. We illustrate its implementation through two ap-
plied examples in our online tutorial (https://yefeng0920.github.io/
heterogeneity_guide/).

3.3 | Extended strategies: Non-phylogenetic and
phylogenetic species-level heterogeneity and
generality

In ecological and evolutionary datasets, complexity often arises
from the inclusion of diverse species, temporal and spatial variations
(Gurevitch et al., 2018). Tackling such complexity can be achieved
by embracing a flexible random effects structure within the
multilevel meta-analytic framework (Nakagawa et al., 2023; Yang
et al., 2022). As an example, we extend our models by introducing
how heterogeneity can be decomposed into non-phylogenetic and
phylogenetic species-level strata—a common set of random effects
included in multilevel models (Cinar et al., 2022). Such an approach
offers a unique opportunity for further disentangling heterogeneity
and understanding generalisability.

In the case of datasets encompassing multiple species, incorpo-
rating species-relevant random effects terms into Equation (1) would
lead to the phylogenetic multilevel meta-analytic model as follows
(Cinar et al., 2022; Nakagawa & Santos, 2012):

ES[i] =p+ Uspecies[k] + Uphylogeny[k] + Upetween[j] + Uwithin[i] + e
(12)

where Ugeesfk] denotes the non-phylogenetic species random ef-
fect, which follows a normal distribution with mean zero and variance

u denotes the phylogenetic species random effect,

2.
o-species’ phylogeny[k]
which follows a normal distribution with mean zero and variance-co-
A (where ¢

variance matrix ¢ is the phylogenetic species

2 2
phylogeny’ phylogeny
variance, and A is the phylogenetic correlation matrix based on the dis-
tance between species on a molecular-based phylogenetic tree).

With Equation (12) in hand, the total variance can be stratified

into the phylogenetic (62 ) and non-phylogenetic species level

phylogeny’
("szpecies)' Such stratification allows for the assessment of the hetero-
geneity within these strata, as illustrated in the empirical example

below. Phylogenetic and non-phylogenetic species-level heteroge-

neity can be measured using I2 and 12 respectively. These
phylogeny species’
metrics are defined as follows:
2
12 _ 7 phylogeny (13)
phylogeny — 2 2 2 2 =’
Gphylogeny + Gspecies + Gbetween + o-within +v
2
’2 _ aspecies
species — 2 2 2 2 —
o-phylogeny + Uspecies + Gbetween + o-within +v (14)
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where all notations are as previously defined. These expressions can
also provide insights into the phylogenetic effect or signal, which re-
flects how shared evolutionary histories among species explain pat-
terns of similarity (e.g. in trait values; Freckleton et al., 2002). One
key parameter representing this concept is phylogenetic heritability,
HZ (Lynch, 1991; Nakagawa & Santos, 2012). While the definition
of hZis not consistent in the literature (Pearse et al., 2023), a simple
way to define H? is to exclude the sampling error variance v from
equations (Nakagawa & Santos, 2012), resulting in the following

expression:

‘72h I

phylogeny

H? = — (15)
+ Oliithin

2 2 2
O phylogeny + % species + Obetween

Here, H? represents the proportion of variance attributed to phylog-
eny (azh | ) relative to the total variance of the true effect sizes in
pnylogeny
the model. Therefore, when H2 = O, there is no phylogenetic effect or
signal, whereas H2 = 1 indicates that the effect sizes (or traits) among
species are entirely determined by their phylogenetic relatedness.
Another widely used parameter for assessing the phylogenetic signal is
Pagel's A (Cinar et al., 2022; Freckleton et al., 2002; Pagel, 1999), which

is given by

"zh I
_ phylogeny
A= — (16)

Gphylogeny + Gspecies

Unlike h? (Equation 15), A specifically reflects the proportion

2
phylogeny’

). Together, these parameters provide complemen-

of phylogenetic variance (¢ ) relative to the variance across

species ("Zpecies
tary perspectives on the role of phylogeny in shaping effect sizes
or traits of interest (see Appendix S1 for the extended metrics for
phylogenetic signal).

Following the same principle of Equations (7, 8, 10 and 11), we
can derive the stratified version of mean-standardized and variance-
mean-standardized heterogeneity measures. Mean-standardized

heterogeneity metrics are given by

2

% ohyl
CVHzphongeny = %, (17)
O.?pecies
CVstpecies =— (18)

Variance-mean-standardized heterogeneity metrics are given by

2

o
M2 _ phylogeny
phylogeny — 3 2 2 2 2’
phypogeny + Uspecies + o-between + Gwithin +u
(19)
2
[ "
species
Mzspecies =73 i + o2 ) 2 - (20)
phypogeny 0-species Gbetween Uwithin H
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(@)  Unstandardised heterogeneity metrics

0.03+

0.02+

Variance

0.01+

0.00+

pr Between Within
Strata

Total  Phylo

(c) Magnitude of heterogeneity

0.80-

0.00+

Srlyp Between Within
Strata

Total  Phylo

YANG ET AL.
(b) Source of heterogeneity
1.00+
0.751
~_ 0.501
0.251
Total  Phylo Spp Between Within
Strata
(d) Magnitude of heterogeneity
0.404
0.30
N
N 0.20
0.10+

pr Between Within
Strata

Total  Phylo

FIGURE 6 Heterogeneity quantification and stratification for multiple metrics. (a) Heterogeneity is quantified using the raw variance, (b)
source measure, 12 (c) magnitude measure, CVH2 and (d) magnitude measure M, and stratified at phylogenetic (Phylo), non-phylogenetic (Spp),
between-study (Between) and within-study (Within) levels. The source measure 2 sometimes aligns well with the raw variance, as observed
in this example (a, b). However, we note that 12 values can be challenging to interpret as the magnitude of heterogeneity, especially when the
typical sampling error variance is extremely small or large. This challenge is often encountered with variance-based effect size measures,
such as the variation ratio and coefficient of variation ratio, as demonstrated in a real example at https://yefeng0920.github.io/heterogene

ity_guide/.

One can also easily derive the variance—mean-standardized
version of the phylogenetic signal index (see Appendix S1). To il-
lustrate the insights gained through these extended measures, we
present two case studies. The first case involves the phylogenetic
meta-analysis originally conducted by Risely et al. (2018). Our focus
centres on a subset of this analysis, specifically examining the impact
of infection status on the cost (e.g. movement capacity) of migra-
tory animals using standardized mean difference (SMD) as the effect
size measure. The second case study involves the publicly available
meta-analytic dataset about the impact of artificial light at night
on the suppression of melatonin in wildlife (Yang, Liu, et al., 2024).
While we reported our re-analysis of the first case study in the main
text (Table S2), we reported the second one in the online tutorial due
to limited space.

In our first case study, our re-analysis yielded two observations.
Firstly, I

total

derived heterogeneity distribution specific to SMD (Figure 6). This

= 0.97 exceeded the 85th percentile of the empirically

suggests a high amount of heterogeneity according to the con-
ventional benchmarks (Higgins et al., 2003). However, when we
employed magnitude metrics to measure heterogeneity, they fell

between the 25th and 50th percentiles of the empirically derived
heterogeneity distribution specific to SMD via the R helper func-
tion het_interpret() (CVH2,,; = 1.3 and M2,,,,, = 0.6). This amount of
heterogeneity can be tentatively interpreted as ‘small to medium’,
compared to the heterogeneity of ecological and evolutionary meta-
analyses using SMD as the effect size measure. This discrepancy was

attributed to the tiny typical sampling variance v, which was found

2
total

v to capture relative magnitude of heterogeneity. On the contrary,

2
total

indicate the source of heterogeneity rather than the magnitude, as

to be 0.001 in this case, underscoring IZ _'s limitation of relying on

we emphasize that the proper interpretation of 12 _ is to use it to

it represents the variance of the true effect in the context of the

2
total

the heterogeneity can explain most (97%) of the variability in the

variance of the observed effect. For example, 2, = 0.97 suggests
observed effect (only 3% is explained by the sampling error variance,
or the heterogeneity is 32 times larger than that of sampling error
variance).

Secondly, the effect of interest is highly likely to be general-
izable and replicable at the between-study level when account-
ing for within-study variance. This conclusion is supported by the
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stratification analysis, which reveals that between-study hetero-
geneity is extremely low, even though traditional benchmarks sug-
gest substantial overall heterogeneity. An emerging approach in
ecology and evolutionary biology, coordinated distributed exper-
iments (Fraser et al., 2013), holds promise for controlling within-
study variance by employing standardized and controlled protocols.
Traditional meta-analytic practices risk overlooking such nuanced
insights into heterogeneity and generalizability, potentially leading
to erroneous conclusions. For instance, while random effects meta-
analysis indicates high overall heterogeneity (lfotaI = 0.96; Figure 4;
Table 1), stratification analysis shows that this heterogeneity is not
driven by between-study differences. Instead, it is predominantly
explained by phylogenetic effects (lshylogeny = 0.76), which suggests
that the mean effect is still generalizable across studies despite high

total heterogeneity.

3.4 | Unresolved issue: Quantifying the uncertainty
around the heterogeneity estimate

It is well recognized that the overall mean effect size for an outcome
of interest should be reported with an uncertainty measure, such as
a (95%) confidence interval, to indicate the precision of the estimate.
In contrast, reporting confidence intervals for heterogeneity
estimates is still uncommon. There are significant challenges to
address before the routine construction of confidence intervals for
heterogeneity becomes feasible. Several methods for constructing
confidence intervals for unstandardized heterogeneity estimates
(e.g. afotal) have been proposed and tested (Viechtbauer, 2007).
However, no established methods currently exist for standardized
heterogeneity measures. Two simulation studies reveal that
most approaches for constructing confidence intervals around
unstandardized heterogeneity do not consistently achieve nominal
coverage probabilities (Veroniki et al., 2016; Viechtbauer, 2007).
For example, Wald-type and profile likelihood methods frequently
yield coverage probabilities that deviate from the nominal level,
while the Q-profile method can provide more accurate coverage
under conditions that are closer to practical applications. However,
the empirical performance of Q-profile remains untested in the
multilevel modelling context (Equation 1).

For standardized heterogeneity measures, there are no estab-
lished closed-form solutions or iterative procedures to construct
confidence intervals. One straightforward approach involves
using the confidence interval bounds for 62, to calculate bounds

total
for variance-standardized heterogeneity measures like lfotal.
Alternatively, the multivariate delta method could derive sampling
variances and construct Wald-type confidence intervals for stan-
dardized heterogeneity measures, relying on the asymptotic nor-
mality of maximum likelihood and restricted maximum likelihood
estimates. However, extensive simulation studies are necessary to
assess the empirical performance of such intervals (e.g. power, Type
| error rates) under conditions representative of multilevel models,

which is beyond the scope of this paper. Bootstrapping methods also
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offer a possible solution for constructing confidence intervals for
standardized heterogeneity measures. Yet, simulation studies indi-
cate that both parametric and non-parametric bootstrap confidence
intervals for unstandardized heterogeneity measures often exhibit
suboptimal properties (Veroniki et al., 2016; Viechtbauer, 2007).
Parametric bootstrapping assumes that parameter estimates (e.g. u

and ¢2__) represent population parameters, disregarding their inher-

total
ent uncertainty, while non-parametric bootstrapping fails to account
for the multilevel structure of data.

Future research should focus on deriving uncertainty measures
for the newly proposed standardized heterogeneity measures and
conducting simulations to evaluate their performance in the con-
text of a multilevel model. For now, researchers might conduct sen-
sitivity analyses to address the limitations of ignoring uncertainty
around heterogeneity estimates. For instance, a trace plot can illus-
trate the sensitivity of meta-analytic conclusions (e.g. the overall
mean effect size estimate and its confidence interval) to changes in
any heterogeneity measure (Roéver et al., 2024). In such a plot, the
x axis can represent different values of Gtzotal (or CVH2,oi, and M2, ,.),

while the y axis displays the corresponding overall mean effect

2
total

methods could facilitate these sensitivity analyses by suggesting a

size estimate (u). Confidence intervals for o based on Q-profile
plausible range of values for consideration. Importantly, until reli-
able and validated methods for computing uncertainty ranges for
standardized heterogeneity measures in the context of multilevel
meta-analysis, reporting 95% confidence intervals or other un-
certainty estimates for these metrics should be interpreted with

caution.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1. Descriptive summary of datasets excluded due to model
convergence problems.

Table S2. Results of heterogeneity quantification and stratification
based on multiple measures.

Table S3. Rule-of-thumb and empirically derived benchmarks for the

interpretation of the full set of standardised heterogeneity metrics.
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Figure S1. lllustration of coefficient of variation (CV).

Figure S2. Histogram of heterogeneity estimates derived from
512 meta-analyses was systematically assessed using pluralistic
measures and stratified across different strata.

Figure S3. The untruncated distribution of heterogeneity estimates
of CVH2 derived from 512 meta-analyses.

Figure S4. The distribution of estimates of total variance in effect

2

tOtal) derived from 512 meta-analyses.
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Figure S5. The distribution of estimates of typical sampling error
variance in effect size (v) derived from 512 meta-analyses.

Figure Sé6. Paired comparison of stratified heterogeneity estimates
across 512 meta-analyses for three heterogeneity metrics: (A) I, (B)
coefficient of variation (CVH?2), and (C) M2.

Figure S7. Paired comparison of stratified heterogeneity estimates
derived 512 meta-analyses for untruncated CVH2.

Figure S8. The agreement chart for a 3x3 contingency table
(confusion matrix) that assesses the congruence between [ and
CVH?2 in interpreting heterogeneity magnitude.

Figure S9. The agreement chart providing a visual assessment of
the congruence between I? and MH?2 in interpreting heterogeneity
magnitude.

Figure S10. The agreement chart provides a visual assessment of the
congruence between M2 and CVH2 in interpreting heterogeneity
magnitude.

Appendix S1. Supplementary methodologies including technical
explanation of the principle of decomposing meta-analytic

heterogeneity and their extended metrics.
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