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Abstract
1.	 Measuring heterogeneity, or inconsistency, among effect sizes is a crucial step 

for interpreting meta-analytic evidence across diverse taxonomic groups and 
spatiotemporal contexts. However, ecologists and evolutionary biologists often 
interpret overall mean effects (mean population effects) as consistent across con-
texts, either explicitly or implicitly, without properly quantifying and interpreting 
heterogeneity.

2.	 Here, we present a pluralistic approach that aims to quantify heterogeneity by 
introducing complementary metrics, each of which decomposes heterogeneity 
into within-study, between-study and between-species (species and phylogenetic) 
variances. These metrics include the traditional I2 (variance-standardized metric), 
the newly derived coefficient of variation for heterogeneity (CVH family; 
mean-standardized metric), the second-order coefficient of variation (M family; 
variance–mean-standardized metric) and their stratified variants.

3.	 To demonstrate the benefits of the combined use of these measures, we synthesize 
heterogeneity estimates from 512 ecological and evolutionary meta-analyses. We 
show that total heterogeneity (variance of true effects) is, on average, 10 times 
larger than statistical noise (sampling error variance), contributing to 91% of the 
observed variance (median I2 = 91%). This amount of heterogeneity is nearly twice 
the size of the mean population effect (median CVH = 1.8 and M = 0.6), indicating 
substantial variation among studies within a meta-analysis. Moreover, different 
effect size types yield different values of heterogeneity metrics because they are 
inherently influenced by statistical properties of their effect size estimators. As 
such, comparisons of heterogeneity across effect size types should be made with 
caution, albeit the proposed heterogeneity metrics are unit-free.
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1  |  INTRODUC TION

Meta-analytic modelling is widely used to test ecological and evolu-
tionary hypotheses, which can be important in informing conserva-
tion and environmental policy (Gurevitch et al., 2018). Three critical 
steps are necessary. First, an estimate of an overall mean effect 
characterizes the magnitude of a focal effect of interest (Nakagawa 
& Santos, 2012; Yang, Lagisz, et al., 2024). Second, a measure that 
quantifies the inconsistency among study findings, the ‘heteroge-
neity’ among true effect sizes, is estimated to contextualize study 
findings. Finally, effect modifiers or moderator variables that are 
hypothesized to explain variation in effect sizes—and how much of 
it is identified (context-specific effects; Nakagawa & Santos, 2012). 
Crucially, heterogeneity indicates the degree of inconsistency or 
‘context dependence’ of study findings, with high heterogeneity in-
dicating high variability among effect sizes that underpin the mean 
population effect. Without quantifying heterogeneity, it is not possi-
ble to properly interpret both the overall trends and context-specific 
effects (Senior et al., 2016; Spake et al., 2022).

While meta-analyses of a collection of studies using similar pro-
tocols for single species allow for clearer interpretations, the inter-
pretation of average population effects across diverse taxonomic 
groups and spatiotemporal contexts can be difficult. However, ecol-
ogists and evolutionary biologists often either explicitly or implicitly 
interpret the mean population effect and context-specific effects as 
consistent across contexts (Spake et al., 2022), and thus transferable 
to a broad, largely unspecified target context. The mean population 
effect size is only generalizable across the contexts when the meta-
analytic evidence base accounts for informative effect modifiers, 
leading to a low amount of variability around the true effect size 
(i.e. low heterogeneity). Until now, the significance of heterogeneity 
in interpreting meta-analytic evidence has been largely overlooked 
in practice. Indeed, surveys have revealed that heterogeneity sta-
tistics are not routinely reported (Nakagawa et  al.,  2023; Senior 
et al., 2016; Yang et al., 2022).

Currently, measuring and interpreting meta-analytic heterogene-
ity is challenging for two major reasons. First, no single heterogene-
ity metric provides a holistic interpretation of inconsistency among 
study findings (Cairns & Prendergast, 2022). Currently, the I2 statis-
tic is a popular metric that quantifies the proportion of variance due 

to differences between effect sizes rather than by statistical noise 
(i.e. sampling error variance; Higgins & Thompson,  2002; Rücker 
et al., 2008). The biological interpretation of I2, however, is ambig-
uous (IntHout et  al.,  2016) because a small absolute heterogene-
ity can lead to a high I2 due to small statistical noise (see Figure 1; 
Borenstein et  al.,  2017; IntHout et  al.,  2016; Rücker et  al.,  2008). 
Second, meta-analytic practice typically focuses on estimating 
total heterogeneity only (Nakagawa & Santos,  2012), despite the 
hierarchical nature of real biological data structures (Nakagawa 
et al., 2023; Noble et al., 2022). Explicitly decomposing effect size 
heterogeneity across hierarchical levels (i.e. stratification) enables a 
more nuanced configurative account of the meta-analytic evidence 
and helps identify contextual factors that drive context dependence 
(Nakagawa & Santos,  2012). For example, in a multi-taxon meta-
analysis, if stratification of studies by species yields low heterogene-
ity at the taxon level, the focal effect can still be generalizable across 
taxon (Figure 2). This is so, even if the total heterogeneity remains 
high (Senior et al., 2016).

Here, we present a pluralistic framework designed to quantify 
heterogeneity, incorporating two intertwined strategies: stratifi-
cation and the estimation of complementary measures of hetero-
geneity. We begin by introducing a general method for stratifying 
heterogeneity, which applies to any effect size metric. We then eval-
uate commonly used heterogeneity metrics and propose two sets of 
new metrics, which capture different dimensions of heterogeneity 
and inform cross-context generalizability of the meta-analytic mean 
effect size. To ground our framework empirically, we undertake a 
large-scale synthesis, generating new benchmarks for interpreting 
heterogeneity and generalizability (Table 1), leveraging a big dataset 
spanning 512 ecological and evolutionary meta-analyses (cf. Costello 
& Fox, 2022; O'Dea et al., 2021). We also present meta-scientific ev-
idence on (in)congruence between different heterogeneity metrics 
and outline approaches for developing useful extensions of hetero-
geneity quantification for phylogenetic multilevel meta-analyses. 
The replication materials for this study are available on the GitHub 
repository (https://​github.​com/​Yefen​g0920/​​heter​ogene​ity_​bench​
mark) and Zenodo (Yang, 2025). To facilitate researchers in navigat-
ing the intricate landscape of heterogeneity, we conclude by offering 
practical recommendations and a tutorial with R functions (https://​
yefen​g0920.​github.​io/​heter​ogene​ity_​guide/​​). The proposed 

4.	 Our large-scale synthesis also provides new benchmarks for the interpretation 
of heterogeneity and recommendations on how to quantify and report 
heterogeneity. New extensions for stratifying heterogeneity metrics will clarify 
our understanding of the generalisability, and at what level of meta-analytic 
effects in ecology and evolution.

K E Y W O R D S
context dependence, effect size, heterogeneity, linear models, meta-analysis, mixed effects 
model
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framework and large-scale synthesis aim to empower researchers in 
their quest to unravel the complex patterns underlying the general-
izability of ecological and evolutionary phenomena.

2  |  METHODS

2.1  |  Database

The ecological and evolutionary databases used in this study 
were originally compiled by Costello and Fox  (2022) and O'Dea 
et  al.  (2021). For more information on data collection, see the 
relevant data sources (Costello & Fox,  2022; O'Dea et  al.,  2021). 
After de-duplicating, our database included 522 meta-analytic 
datasets (Yang,  2025). We dropped meta-analysis datasets that 
could not achieve convergence when fitted to the multilevel model. 
Table S1 reports a descriptive summary of these datasets that were 
excluded due to model convergence issues. Convergence could not 
be reached for nine meta-analytic datasets, even after adjusting key 
parameters of the iterative methods to maximize the log-likelihood 
function (see below for details). Therefore, our database contained 
512 meta-analysis datasets encompassing 17,770 primary studies 

and 109,495 effect size estimates. Each meta-analysis dataset 
included, on average, 240 effect size estimates (first quartile = 30, 
median = 68, third quartile = 201) from 40 studies (first quartile = 12, 
median = 24, third quartile = 49).

2.2  |  Stratifying heterogeneity using a multilevel 
meta-analytic modelling framework

Data used in meta-analyses often exhibit a complex hierarchical 
structure (Nakagawa & Santos, 2012; Noble et al., 2017), with paper 
(or study) identity serving as a typical clustering variable, forming two 
strata (i.e. between- and within-study levels; Equation 1). Ecological 
and evolutionary meta-analyses typically report around six effect 
size estimates per study (median). However, traditional random-
effects meta-analytic approaches do not account for heterogeneity 
driven by such data stratification (Nakagawa et  al.,  2023; Noble 
et  al.,  2022; Yang et  al.,  2022), and multilevel meta-analysis is 
required to model heterogeneity at different strata or multilevel in 
a meta-analysis (see Appendix S1 for the theoretical background).

In the simplest multilevel model, the effect size estimate ES[i] 
is modelled as a combination of the population mean effect or 

F I G U R E  1  The interpretation of total I2 can be ambiguous and can lead to incorrect conclusions about the magnitude of heterogeneity. 
(a) The value of the total I2 is dependent on sampling error variances. (b) A large estimated total I2 value could be due to small ‘typical’ 
sampling error variances � (Equation 3). (c) In contrast, a large total I2 value could also result from a large true heterogeneity. Values of �2

total
 

and � were derived from their empirical distributions based on 512 meta-analyses. Total I2 values were calculated using Equations (2) and (3). 
High, medium and low �2

total
 (and �) denote the 25%, 50% and 75% percentiles of their empirical distributions (Table 1). Three horizontal lines 

denote the conventional thresholds for the use of I2 to interpret the magnitude of heterogeneity.
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    |  2713YANG et al.

meta-analytic overall mean effect size � (overall mean of an outcome 
of interest), random effects at two strata (i.e. between- and within-
study levels) and sampling error effect:

The typical assumptions for Equation  (1) are as follows: (i) between-
study-level random effect ubetween[j] follows a normal distribution with 
mean zero and variance �2

between
: ubetween[j] ∼ 

(

0, �2
between

)

, (ii) within-
study-level random effect uwithin[i] follows a normal distribution with 
mean zero and variance �2

within
: uwithin[i] ∼ 

(

0, �2
within

)

 and (iii) sampling 
error e[i] follows a normal distribution with mean zero and variance in 
effects defined by the sampling variance (v[i]) associated with each ef-
fect size i, such that e[i] ∼ 

(

0, v[i]

)

. The assumption of homogeneous 
variances for the random effects can be relaxed to allow for heterosce-
dasticity (Viechtbauer & López-López, 2022). Similarly, the assumption 
of independent sampling errors (e[i]) can be relaxed to allow for sampling 
error covariance v[i] (Noble et al., 2017; Yang et al., 2022). Note that 
in the context of the traditional random-effects model, the between-
study variance, often termed �2, is treated as the �2

total
. In contrast, a 

multilevel model (essentially a random-effects model with multiple ran-
dom effects) treats between-study variance as one of the components 
of the �2

total
. Therefore, �2 = �

2
between

= �
2
total

 , when �2
within

= 0.
Statistical analyses were carried out using R 4.0.3 computing 

platform (R Core Team, 2020). We used the rma.mv() function from 
the metafor package (v4.7.53; Viechtbauer, 2010) to fit all 512 meta-
analysis datasets to the multilevel meta-analytic model (Equation 1). 
We employed restricted maximum likelihood REML (embedded in 

metafor package) as the variance estimator and the quasi-Newton 
method as the optimizer to maximize the likelihood function over 
variance estimation (�2

between
 and �2

within
), with a threshold of 10−8, a 

step length of 1 and a maximum iteration limit of 1000. We con-
firmed the identifiability of variance estimation (�2

between
 and �2

within
) 

by checking their likelihood profiles. The R code for model fitting can 
be accessed on the website (see Supporting Information; https://​
yefen​g0920.​github.​io/​heter​ogene​ity_​guide/​​). In the following sec-
tions, we will elaborate on how to use Equation (1) to stratify hetero-
geneity information for different metrics.

2.3  |  Complementary measures of heterogeneity

2.3.1  |  Unstandardized heterogeneity metrics

Cochran's Q is a widely used metric for assessing heterogeneity in 
meta-analyses (Cochran, 1954). It serves as a test statistic to determine 
whether the true effects are homogeneous or not, informing a binary 
decision as to whether the effect sizes come from a common underly-
ing population or not (i.e. is there variability around the true effect 
size?). In contrast, the variance of true effects (�2

total
= �

2
between

+ �
2
within

)  
provides a direct measure of absolute heterogeneity (hereafter re-
ferred to as ‘raw heterogeneity’). The square roots of �2

total
, �2

between
 

and �2
within

 represent the standard deviation of the true effect size 
and can also be used as a direct measure of absolute heterogeneity. 
In Equation (1), the variance of the observed effects (Var

[

ES[i]

]

) is the  

(1)ES[i] = � + ubetween[j] + uwithin[i] + e[i],

F I G U R E  2  A cross-taxa meta-analysis with a high total variance can have a small amount of species-level heterogeneity. It is still possible 
that the focal effect will be generalizable at the species level. The circles represent the replicated species-specific effects. The red dashed 
lines denote the meta-analytic mean effects. See a real example in Extended strategies: Non-phylogenetic and phylogenetic species-level 
heterogeneity and generality.
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sum of the sampling error variance and the true effect variance (�2
total

).  
In meta-analyses with infinite sample sizes, Var

[

ES[i]

]

 is larger than 
�
2
total

. Importantly, Equation  (1) provides a general way to partition  
�
2
total

 into different strata, such as between-study (�2
between

) and  
within-study strata (�2

within
). By considering additional strata, such as 

variation in effects among species or geographical locations, the total 
variance in true effects (�2

total
) can be further decomposed to assess 

generalizability at these specific strata (Figure  2). For example, low 
variation among species implies effects are similar, on average, across 
species. Nonetheless, relying solely on absolute variance does not 
provide practical intuition regarding the magnitude of heterogeneity. 
For example, in a meta-analysis with �2

total
 = 1, it is unclear whether this 

amount of variance is large and meaningful because absolute variance 
is not unitless and comparable across effect size statistics. Importantly, 
interpreting �2

total
 in context is crucial because its magnitude depends 

on the research field, study designs and measurement scales. A proper 
contextual interpretation requires a thorough understanding of the 
topic, including typical effect size ranges, study characteristics and 
sources of variability. However, if contextual interpretation is unclear 
or difficult due to limited subject knowledge, researchers can resort 
to empirical benchmarks, such as median or quartile �2

total
 values from 

similar meta-analyses (see Section 3.2). These benchmarks provide a  
reference point, helping to assess whether observed heterogeneity 
is typical, moderate or extreme relative to comparable syntheses.  
While empirical benchmarks can be a practical guide, they should 
complement, not replace, efforts to understand heterogeneity in the 
specific context of the research question.

2.3.2  |  Variance-standardized heterogeneity 
metrics

The heterogeneity index, I2 has emerged as the most popular heter-
ogeneity metric as it provides a standardized measure of heteroge-
neity that accounts for the scale dependence (i.e. unitless; Higgins 
et al., 2003). I2 is a variance-scaled heterogeneity metric that meas-
ures the proportion of total variance beyond sampling error variance 
(Higgins & Thompson, 2002). The total I2 (denoted as I2

total
 ) can be com-

puted by dividing the variance in the true effects (�2
total

) by the variance 
in the observed effects (Var

[

ES[i]

]

). Therefore, I2
total

 is given by

where � represents the ‘typical’ sampling error variance, representing 
the average level of sampling error variance. � can be computed using 
different estimators (Cheung, 2014; Takkouche et al., 1999), with the 
common one being (Higgins & Thompson, 2002):

where k denotes the number of observations (in this case, effect 
size estimates). Within the multilevel modelling framework, the total 
I2 can be stratified, for example, by estimating I2 at between-study 
(I2
between

) and within-study (I2
within

) levels (Cheung,  2014; Nakagawa & 
Santos, 2012):

However, as mentioned earlier, large I2 values do not necessarily 
imply a practically relevant amount of heterogeneity (see Figure 1; 
also see a case study in ‘Extended strategies: Non-phylogenetic and 
phylogenetic species-level heterogeneity and generality’). Stratified 
I2 metrics range from 0 to 1 (or can be rescaled to a percentage rang-
ing from 0 to 100 percent), providing a clearer intuition of the rel-
ative sources of heterogeneity and aiding in assessing the drivers 
of context dependence at different strata. For example, a I2

within
 of 

0.9 means within-study variation accounts for 90% of I2
total

, there-
fore, indicating that within-study level predictors are more likely to 
drive context dependence. I2 and its stratified variants can also be 
transformed into the ratio of the variance of true effect to typical 
sampling error variance (σ

2

�

=
I2

(1− I2)
 or log

(

σ2

�

)

= logit
(

I2
)

), which 
represents heterogeneity as a proportion of the sampling error 
variance.

2.3.3  |  Mean-standardized heterogeneity metrics

Evolutionary biologists and behavioural ecologists are familiar with 
variance-scaled metrics such as heritability (h2) and repeatability 
(R), which are statistically comparable to the variance-scaled 
heterogeneity index, I2. Less commonly used but equally relevant are 
mean-scaled counterparts, such as evolvability or the coefficient of 
variation (CV) for additive genetic variance (CVA) and CV for between-
individual variance (CVB) (Hansen et al., 2011). Here, we introduce 
a mean-scaled heterogeneity metric, CVH2total (‘H’ and ‘2’ denoting 
‘heterogeneity’ and ‘squared version’, respectively) that can be used 
in meta-analysis, which standardizes heterogeneity by comparing 
the variance of true effects (�2

total
) to the square of the overall mean 

effect size (�2) (Takkouche et al., 1999):

CVH2total can be easily interpreted as it expresses heterogene-
ity as a proportion of the overall mean effect size, or as a percent-
age when multiplied by 100. A value of CVH2total = 1 indicates that 
the heterogeneity (variance among true effects) equals the overall 
mean effect size. Assuming a normal distribution this means ~16% 

(2)I2
total

=
�
2
total

Var
[

ES[i]

] =
�
2
total

�
2
total

+ �

,

(3)
� =

(k − 1)
k
∑

i= 1

1∕v[i]

�

k
∑

i=1

1∕v[i]

�2

−
k
∑

i= 1

1∕v[i]
2

,

(4)I2
between

=
�
2
between

Var
[

ES[i]

] =
�
2
between

�
2
total

+ �

,

(5)I2
within

=
�
2
within

Var
[

ES[i]

] =
�
2
within

�
2
total

+ �

,

(6)CVH2total =
�
2
total

�
2

.
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of effects would have opposite sign to the overall mean effect 
(Figure S1). To assist with interpretation, we provide rule-of-thumb 
and empirically derived benchmarks to classify heterogeneity as 
‘very small’, ‘small’, ‘medium’ or ‘large’ (Tables 1 and 2). In addition, 
we provide an R helper function (het_interpret()) that can help deter-
mine the percentile range in which the heterogeneity estimates for a 
particular meta-analysis fall, based on the heterogeneity distribution 
of the published meta-analyses.

For a more precise breakdown of heterogeneity, we propose 
two variants of CVH2total under the multilevel model framework 
(Equation  1). We express the between-study, CVH2between, and 
within-study, CVH2within, versions of CVH2total as follows:

These variants quantify between- and within-study heterogeneity 
relative to the effect being measured. Additionally, we provide mean-
standardized metrics based on standard deviation (e.g. �within) rather 

than variances (e.g. �2
within

), CVH1total, CVH1between and CVH1within (see 
Appendix S1). To estimate CVH2total and its two variates, we suggest 
using the maximum likelihood estimates for �2

between
 , �2

within
 and � de-

rived from Equation (1), and substitute them into Equations (6–8). For 
simplicity, throughout the paper, we use population parameters (e.g. 
�
2
between

, �2
within

 and �) and their estimators (e.g. �2
between

, �2
within

 and �)  
interchangeably. Notably, these mean-scaled variance metrics have 
the limitation of becoming arbitrarily large as the magnitude of overall 
mean effect � approaches zero (Kvålseth, 2017; Lobry et al., 2023).

2.3.4  |  Variance–mean-standardized heterogeneity 
metrics

To remedy the limitations of I2
total

 and CVH2total as illustrated above, 
we introduce a more robust heterogeneity measure, M2total, which 
combines the strengths of mean-scaled and variance-scaled metrics 
(Cairns & Prendergast, 2022; Kvålseth, 2017):

(7)CVH2between =
�
2
between

�
2

,

(8)CVH2within =
�
2
within

�
2

.

(9)M2total =
�
2
total

�
2
total

+ �
2
.

Metric

Tentative interpretation benchmarks

Rule-of-thumb Empirically-deriveda

Category Range Percentile Range

I2 Very small 0 to 0.25 0th to 25th 0 to 0.79

Small 0.25 to 0.50 25th to 50th 0.79 to 0.91

Moderate 0.50 to 0.75 50th to 75th 0.91 to 0.97

Large 0.75 to 1 75th to 100th 0.97 to 1

CVH2 Very small 0 to 0.04 0th to 25th 0 to 1.03

Small 0.04 to 0.19 25th to 50th 1.03 to 3.45

Moderate 0.19 to 0.56 50th to 75th 3.45 to 12.43

Large 0.56 to ∞ 75th to 100th 12.43 to ∞

M2 Very small 0 to 0.04 0th to 25th 0 to 0.51

Small 0.04 to 0.16 25th to 50th 0.51 to 0.78

Moderate 0.16 to 0.36 50th to 75th 0.78 to 0.93

Large 0.36 to 1 75th to 100th 0.93 to 1

Note: Table S3 provides empirically derived benchmarks for the full set of standardized 
heterogeneity metrics. The rule-of-thumb was retrieved from the literature, with slight 
modifications (Higgins et al., 2003; Kvålseth, 2017). Empirically derived interpretation benchmarks 
are proposed based on the empirical distribution of different heterogeneity measures. Table 2 
provides the empirically derived benchmarks corresponding to the commonly used effect size 
measures (e.g. Cohen's d). Given the differences between different effect size measures, we 
recommend using effect size type-specific benchmarks (but see the limitations of using empirically 
derived benchmarks in Section 3.2). Definitions of heterogeneity measures can be found in both 
the main text and the Appendix S1. For simplicity, the subscript for each heterogeneity measure 
was removed in Table 1. The precise percentile range in which the heterogeneity estimates for a 
particular meta-analysis fall can be obtained via the R helper function het_interpret().
aThe distributions and percentiles could be underestimated if publication bias existed. While the 
existing technique allows for publication bias to be taken into account to obtain bias-corrected 
estimates of the population mean effect (Yang, Lagisz, et al., 2024), there is not yet any method to 
obtain bias-corrected estimates of heterogeneity.

TA B L E  1  Rule-of-thumb and 
empirically derived benchmarks for the 
interpretation of heterogeneity based on 
I2, CVH2 and M2.
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We also propose stratified versions of M2total for between-study 
(M2between) and within-study (M2within) heterogeneity, allowing for a 
more precise quantification of heterogeneity at specific strata:

Similar to CVH2total, M2total and its stratified variants provide 
a standardized measure of heterogeneity relative to the overall 
mean effect size. Importantly, M2total offers the advantage of being 
bounded between 0 and 1, making interpretation more intuitive and 

simpler. For example, �total = 0 leads to M2total = 0, indicating the 
population mean effect is fully generalisable, and replicable across 
different contexts (see a case study in ‘Extended strategies: Non-
phylogenetic and phylogenetic species-level heterogeneity and 
generality’). Conversely, a value near 1 suggests that heterogeneity 
is maximized relative to the overall mean effect size. Additionally, 
M2total can be transformed into a coefficient of variation by apply-
ing the logit transformation: logit

(

M2total
)

= 2 log(CVH2). Unlike 
CVH2total, M2total and its stratified variants avoid the problem of over-
inflation when the magnitude of overall mean effect � approaches 
zero, making it a more robust and reliable measure of heterogeneity.

In the Appendix  S1, we describe additional metrics, M1total , 
M1between and M1within, where the squared terms in the numer-
ator and denominator are replaced by their square roots. In the 

(10)M2between =
�
2
between

�
2
total

+ �
2
,

(11)M2within =
�
2
within

�
2
total

+ �
2
.

TA B L E  2  Summary of heterogeneity measures and their stratified counterparts. SMD denotes standardized mean difference.

Types Metrics Interpretation and examples Empirically derived benchmarka

Test statistic Q Null-hypothesis test. Statistical test of 
heterogeneity in effect sizes

Not applicable

Unstandardisation �
2 family Absolute magnitude measure of heterogeneity. 

Variance (square of standard deviation) of the 
meta-analytic overall mean effect (�2

total
) and 

its stratification in between- and within-study 
contexts (�2

between
 and �2

within
).

25th, 50th and 75th percentiles (Figure S4): 
0.54, 1.25 and 3.03 for SMD; 0.11, 0.27 and 
0.57 for lnRR; 0.06, 0.12 and 0.25 for Zr; 
1.04, 1.20 and 2.51 for the 2-by-2 table; 0.01, 
0.04 and 0.27 for uncommon measures. The 
percentiles of typical sampling variance � are 
reported at Figure S5.

Variance-standardization I2 family Heterogeneity source measure. Proportion of 
variance not due to sampling error variance. 
It measures the source of heterogeneity. For 
example, I2

total
= 95% denotes that 95% of 

variation is the result of heterogeneity (i.e. 
differences in contexts). I2

between
= 0.8 and 

I2
within

= 0.15 indicates differences in between-
study contexts dominate the heterogeneity, 
pointing towards between-study level 
predictors as the likely drivers of context-
dependent variation.

25th, 50th and 75th percentiles (Figure 3):
0.78, 0.89 and 0.96 for SMD; 0.88, 0.95 and 
0.99 for lnRR; 0.73, 0.87 and 0.95 for Zr; 0.71, 
0.73 and 0.89 for the 2-by-2 table; 0.74, 0.91 
and 0.98 for uncommon measures.

Mean-standardization CVH 
family

Heterogeneity magnitude measure, including 
CVH1 and CVH2. Variance is expressed as 
the proportion of the mean effect. It is the 
measure of the magnitude of heterogeneity 
in the context of the mean effect. For 
example, CVH2total = 1.5, CVH2between = 0.8 and 
CVH2within = 0.5 denotes that total, between- 
and within-study variance are 150%, 80% and 
50% of the mean effect.

25th, 50th and 75th percentiles for CVH2 (and 
CVH1):
1.1 (1.05), 3.94 (1.98) and 15.4 (3.93) for SMD; 
1.36 (1.16), 3.76 (1.94) and 12.1 (3.48) for 
lnRR; 0.67 (0.82), 2.77 (1.66) and 8.54 (2.92) 
for Zr; 1.57 (1.21), 4.96 (2.19) and 7.04 (2.65) 
for the 2-by-2 table; 0.47 (0.69), 1.22 (1.11) 
and 1.7 (1.3) for uncommon measures.

Variance–mean-standardization M family Heterogeneity magnitude measure, 
including M1 and M2. Variance is expressed 
as the proportion of the mean effect and a 
transformation of CVH family designed with 
better properties. It is the measure of the 
magnitude of heterogeneity in the context of 
the mean effect.

25th, 50th and 75th percentiles M2 (and M1): 
0.52 (0.51), 0.8 (0.66) and 0.94 (0.8) for SMD; 
0.58 (0.54), 0.79 (0.66) and 0.78 for lnRR; 0.4 
(0.45), 0.73 (0.62) and 0.9 (0.75) for Zr; 0.57 
(0.54), 0.82 (0.68) and 0.88 (0.73) for the 
2-by-2 table; 0.32 (0.41), 0.55 (0.52) and 0.62 
(0.56) for uncommon measures.

Note: lnRR denotes log response ratio. Zr denotes Fisher's r- to z-transformed correlation coefficient. 2-by-2 table denotes often dichotomous 
(binary) effect size measures, such as log odds ratio and log risk ratio. Uncommon measures represent less frequently used effect size measures, such 
as raw mean difference and regression coefficients. For simplicity, the subscript for each heterogeneity measure was removed in Table 2.
aThe distributions and percentiles could be underestimated if publication bias existed. While the existing technique allows for publication bias to be 
taken into account to obtain bias-corrected estimates of the population mean effect (Yang, Lagisz, et al., 2024), there is not yet any method to obtain 
bias-corrected estimates of heterogeneity.
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    |  2717YANG et al.

statistical literature (Kvålseth, 2017), M1total and M2total are known 
as second-order coefficients of variation, derived from the ratio 
of second-order moments. Statisticians interpret these measures 

in terms of Euclidean distances (a measure of deviation) between 
true effect sizes and the overall mean effect relative to the dis-
tance between true effect sizes and the origin (see geometric 

F I G U R E  3  The distribution of heterogeneity estimates derived from 512 meta-analyses was systematically assessed using multiple 
measures and stratified across different strata. Total heterogeneity measures (a–c): I2

total
, CVH2total and M2total. Between-study heterogeneity 

measures (d, e): I2
between

, CVH2between and M2between. Within-study heterogeneity measures (g–i): I2
within

, CVH2within and M2within. Three dashed 
lines correspond to the 25th, 50th and 75th percentiles, respectively. In panels (b, e and h), the CVH2 was truncated at five for figure clarity, 
as very large CVH2 values can be challenging to interpret when the meta-analytic mean effect is small. For example, the maximum CVH2 
observed in the 512 meta-analyses was 106, which was inflated by a small meta-analytic mean effect of 0.03. For unstandardized (raw) 
heterogeneity and typical sampling error variance, please refer to Figures S4 and S5. The density of heterogeneity distribution was based 
on Gaussian kernel density estimation. The degree of smoothing (bandwidth) was determined using a rule-of-thumb method (Heidenreich 
et al., 2013), which uses 0.9 times the minimum of the standard deviation and the interquartile range divided by 1.34 times the sample size 
to the negative one-fifth power. Given that density estimates are sensitive to bandwidth selection (Pick et al., 2023), we also provided the 
histograms corresponding to panels (a–i) (Figure S2).
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2718  |    YANG et al.

formulation in Kvålseth, 2017). For example, a value of M2total = 0.5 
means that, in an n-dimensional space, the distance (deviation) 
between a collection of effect sizes and the overall mean effect 
is 50% of the distance (deviation) to the origin. Although this 
distance-based interpretation feels unfamiliar, it is worth noting 
that standard deviation and variance—the most commonly used 
measures of dispersion—are also based on distances. Standard de-
viation represents the ‘standard’ or ‘typical’ distance (deviation) of 
a value from the mean value, while variance measures the aver-
age of the squared distances from the mean. To further aid in the 
interpretation of these variance–mean-standardized metrics, we 
provide both rule-of-thumb and empirically derived benchmarks 
to categorize heterogeneity as ‘small’, ‘medium’ or ‘large’ (Tables 1 
and 2, and R help function het_interpret()).

3  |  RESULTS AND DISCUSSION

3.1  |  Empirical 
patterns of heterogeneity and implications for the 
generalizability of the meta-analytic effects

3.1.1  |  Source of heterogeneity

To examine the magnitude and sources of heterogeneity across the 
512 ecological and evolutionary meta-analyses, we first used the 
variance-standardized metric I2, which quantifies the proportion of 
total observed variance attributable to variation in true effects (as 
opposed to sampling error). Across the full dataset, which includes 
meta-analyses using different effect size metrics, the 25th, 50th and 
75th percentiles of total heterogeneity (I2

total
) were 0.79, 0.91 and 

0.97 of I2
total

, respectively (Figure 3; Table 1). Importantly, however, 
these summary values should not be interpreted as universal 
benchmarks that apply across effect size metrics. The magnitude of 
I2
total

, the raw heterogeneity measure (variance of true effects; σ2) and 
the average sampling error variance (�) are inherently influenced by 
the scale and statistical properties of the effect size metric used. 
Indeed, differences emerged when stratifying by effect size type 
(Table 2): 0.78 (25th), 0.89 (50th) and 0.96 (75th) for standardized 
mean difference (SMD), 0.88, 0.95 and 0.99 for log response ratio 
(lnRR), and 0.73, 0.87 and 0.95 for Fisher's z-transformed correlation 
coefficient (Zr). These differences stem from variation in the 
magnitude of σ2 an � across effect size types.

The observed distribution of I2
total

 contrast with the conventional 
thresholds for interpreting I2, which typically categorize heterogene-
ity as small, moderate or high at 0.25, 0.50 and 0.75 of I2

total
 (Higgins 

et al., 2003), respectively. Thus, on average (50th percentile), 91% of 
the variance in effect sizes can be attributed to the ‘true’ biological or 
methodological differences in research contexts, and may therefore 
be explainable using appropriate predictor variables (i.e., modera-
tors). It also indicates that the variance in true effect sizes is 10 times 
larger than the typical sampling error variance (σ

2

�

=
I2

(1− I2)
= 10; see 

Figures S4 and S5 for empirical distributions of σ2 and �).

While I2
total

 displayed a left-skewed and single-modal distribution, 
its stratified counterparts, I2

between
 and I2

within
, demonstrated a right-

skewed distribution with multi-modal patterns (Figure 3). There was 
no consistent trend suggesting neither type of stratified heterogene-
ity consistently outweighed the other across the 512 meta-analyses 
(Figure 3). Intriguingly, 47% (242 out of 512) of the meta-analyses 
exhibited smaller between-study level heterogeneity than within-
study level heterogeneity (I2

between
< I2

within
; Figure 4). Within this sub-

set of meta-analyses, the median values for I2
total

, I2
between

 and I2
within

 
were 95%, 21% and 63%, respectively.

We note that the above results were drawn from fitting a ge-
neric model to meta-analytic datasets without contextualizing any 
specific ecological and evolutionary topics. Therefore, the above 
conclusion about heterogeneity accounting for 91% of total vari-
ance does not necessarily imply that a given meta-analysis included 
in our dataset exhibits a high level of heterogeneity and thus a low 
level of generalizability, although on average this is the case. In con-
trast, the degree of heterogeneity and generalizability of a specific 
meta-analysis is linked to the characteristics (e.g. taxonomic cov-
erage, outcomes, study design) of primary studies included in the 
meta-analysis. Ecologists and evolutionary biologists are encour-
aged to identify sources of heterogeneity specific to their meta-
analyses, testing relevant hypotheses and drawing conclusions 
about the generalizability of a given effect of interest. For exam-
ple, telomere length measurements are affected by the laboratory 
assay (Monaghan et  al.,  2018; Salmón & Burraco,  2022), with the 
in-gel hybridization-based TRF method yielding different measure-
ments compared to Southern blot-based TRF and qPCR methods 
(Chik et al., 2022; Remot et al., 2022). Meta-analysing results of pri-
mary studies using different laboratory assays would naturally lead 
to a high amount of heterogeneity, resulting in low generalizability 
across studies. However, if the laboratory assay could account for 
heterogeneity driven by the method of choice (Remot et al., 2022), 
generalizability could then be concluded as high when conditioned 
on the method used.

3.1.2  |  Magnitude of heterogeneity

When the mean-standardized metric CVH2total was used to quantify 
the magnitude of heterogeneity, the calculated 25th, 50th and 75th 
percentiles of CVH2total values were 1.0, 1.8 and 3.5, respectively 
(Figure  3). Therefore, the variance (raw heterogeneity) was, on 
average (50th percentile), nearly twice that of the square of the 
overall mean effect. The distributions of both CVH2total and its 
stratified versions, CVH2between, and CVH2within, displayed a right-
skewed pattern with a single-mode (Figure  3). In contrast, the 
distribution of the mean–variance-standardized metric M2total 
exhibited a more symmetrical pattern, with the 25th, 50th and 75th 
percentiles of M2total values being 0.5, 0.6 and 0.8, respectively 
(Figure 3), albeit with a minor peak around zero.

Notably, stratification analysis revealed that MH2between 
and MH2within had patterns similar to those observed for 
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    |  2719YANG et al.

CVH2between and CVH2within. This similarity is expected as 
they can be mathematically transformed into one another 
using equations MH2total = CVH2total ∕

(

1 + CVH2total
)

 and 
logit

(

MH2total
)

= log
(

CVH2total
)

. The median values for both CVH2total 

and MH2total across the 512 meta-analyses signify a high amount of 
heterogeneity, thereby warranting a thorough exploration into the 
drivers influencing such context dependence. However, stratifica-
tion of MH2total also suggests that meta-analyses with high hetero-
geneity can possess a considerable likelihood of generalizability at 
the between-study level, given the low MH2between (as we pointed 
out above with I2 family metrics). On average, there was a median 
MH2between = 0.3 (SD is 43% of the overall mean effect) observed in 
47% of the meta-analyses (242/512) with smaller MH2between values 
compared to MH2within values (Figure 4).

3.1.3  |  Meta-scientific evidence on (in)congruence 
between different metrics

We found only moderate agreement between heterogeneity 
measured as I2 and the newly proposed metrics (CVH2total: 
rspearman = 0.319, 95% CI = [0.237, 0.396], MH2total: rspearman = 0.319, 
95% CI = [0.237, 0.396]; Figures  2b and 5a). In cases of meta-
analyses with I2 larger than 0.75 or smaller than 0.25 (identified as 
large and small heterogeneity by conventional benchmarks; Higgins 
et  al.,  2003), the disagreement between I2 and CVH2, as well as I2 
and MH2, became even more pronounced (see Figures S8–S10 for 
additional results about inter-rater agreement test). In contrast, 
a near-perfect–though non-linear–relationship was observed 
between CVH2total and MH2total (rspearman = 1, 95% CI = [0.999, 1]; 
Figure 5c). Therefore, cross-meta-analysis (meta-scientific) evidence 
suggests that I2 as a measure of heterogeneity does not always agree 
with magnitude measures (CVH2total and MH2total) for ecological and 
evolutionary data. We also found that out of the 512 meta-analyses 
featuring medium to large I2

total
 values (>0.50 based on conventional 

guidelines), 80 had small CVH2total (Figure  5), indicating that more 
than 20% of the large I2

total
 values were caused by small sampling 

errors rather than a larger amount of heterogeneity. These findings 
emphasize the importance of considering multiple metrics to obtain 
a holistic understanding of heterogeneity in meta-analyses (see 
Section 3.2).

3.2  |  Heterogeneity interpretation benchmarks and 
a pluralistic framework

To support the interpretation of the newly proposed mean-
standardized and variance–mean-standardized heterogeneity 
metrics, we derived empirical benchmarks based on their observed 
distributions across 512 ecological and evolutionary meta-analyses 
(illustrated in Figure  3). We tentatively classify heterogeneity 
as ‘very small’, ‘small’, ‘moderate’ or ‘large’ based on quartiles 
(specifically, the 0th to 25th, 25th to 50th, 50th to 75th and 75th to 
100th percentiles). Table 1 presents these percentiles for variance-
standardized heterogeneity (I2 family metrics), mean-standardized 
(CVH2 family metrics) and variance–mean-standardized (M2 family 
metrics) heterogeneity. For example, for M2, the benchmarks for 

F I G U R E  4  Comparison of stratified heterogeneity estimates 
across 512 meta-analyses for three heterogeneity metrics: 
(a) I2, (b) coefficient of variation (CVH2 ) and (c) M2. Each point 
represents an estimate from an individual meta-analysis. Linear 
regression was applied to visualize trends (fitted lines), with shaded 
bands indicating the 95% confidence intervals. The correlation 
coefficients between between-study heterogeneity and within-
study heterogeneity were −0.567, 95% CI = [−0.627, −0.500] 
for I2; 0.482, 95% CI = [0.408, 0.549] for CVH 2; and −0.382, 
95% CI = [−0.456, −0.303] for M2, respectively. Figures S6 and 
S7 present between- and within-study heterogeneity through 
alternative visualizations. Refer to Figure 3 for additional details.
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2720  |    YANG et al.

very small, small, moderate and large heterogeneity corresponded 
to values of 0 to 0.51, 0.51 to 0.78, 0.78 to 0.93 and 0.93 to 1, 
respectively (Table  1). Additionally, Table  2 offers a more fine-
grained interpretation of these benchmarks for commonly used 
effect size measures, including SMD, lnRR and Zr. These empirically 
derived benchmarks are intended to provide general guidance for 
interpreting heterogeneity in ecological and evolutionary studies.

However, it is essential to recognize that these benchmarks 
should not replace contextual interpretation, which remains critical. 
Because effect size metrics differ in scale and statistical properties, 
heterogeneity estimates are inherently influenced by the metric used. 
Therefore, empirical benchmarks are most informative when applied 
to commonly used, standardized effect sizes (e.g. SMD, lnRR, Zr) and 
we discourage their application to less frequent metrics in our data-
set (e.g. odds ratios or raw means), where coverage is too sparse for 
reliable guidance. When domain-specific knowledge is insufficient, 
these empirical benchmarks can serve as a starting point (rather than 
a substitute) for interpreting heterogeneity. In this spirit, we propose 
a pluralistic framework that encourages a comprehensive assessment 
of biological generalizability by jointly quantifying and contextualizing 
heterogeneity. Our key recommendations are as follows.

1.	 Adopt a multilevel meta-analytic framework: We strongly rec-
ommend modelling heterogeneity using multilevel meta-analysis 
(e.g. Equation  1) rather than a standard random effects model. 
The multilevel structure enables partitioning of heterogeneity 
across nested levels, and additional random effects (e.g. study 
ID, phylogeny, species) can be incorporated as needed. For 
instance, the phylogenetic multilevel model (Equation  12) can 
disentangle species-level sources of heterogeneity.

2.	 Quantify and stratify heterogeneity using complementary 
metrics: We encourage transparent reporting of all variance 
components, including average sampling error variance. From 
these components, multiple heterogeneity metrics can be 

computed, including I2, M and CVH (the latter derivable from 
M), along with stratified versions. These measures provide 
complementary information, for example, I2 quantifies the 
proportion of observed variance due to heterogeneity, whereas 
M and CVH place heterogeneity in the context of the mean. 
When there is not enough contextual information to guide 
the interpretation of heterogeneity, we encourage using the 
empirically derived benchmarks (Tables  1 and 2) as a starting 
point, particularly for commonly used effect size types such as 
SMD, lnRR and Zr. However, these benchmarks should not be 
used for less frequently used metrics in our dataset, such as 
2 × 2 table-based measures (e.g. odds ratios) or non-standardized 
metrics like raw means, due to insufficient data coverage.

3.	 Use the R function (het_interpret()) to help obtain precise percentile 
ranges of heterogeneity estimates for a given meta-analysis based 
on empirical benchmarks (see online tutorial). The uncertainty 
(e.g. 95% CI) of each of the heterogeneity measures should 
be reported along with the point estimate, until a time when 
extensive simulation studies can provide a clear recommendation 
on which estimation methods provide the most reliable estimate 
of the uncertainty. Instead, we encourage researchers to conduct 
sensitivity analyses to understand the potential influence of 
heterogeneity (see ‘Unresolved issue: quantifying the uncertainty 
around the point estimate of heterogeneity measure’).

4.	 Check model parameter identifiability: When including multiple 
random effects, issues of parameter identifiability may arise, 
wherein unique variance estimates that maximize the likelihood 
function may not exist (see Section  2; Raue et  al.,  2009). 
Identifiability issues may arise in models with limited data 
or overlapping random effects. We recommend evaluating 
parameter identifiability (e.g. using profile likelihoods) before 
proceeding with the interpretation of heterogeneity estimates. 
If identifiability is uncertain, heterogeneity estimates should be 
interpreted with caution.

F I G U R E  5  Comparison of heterogeneity measure estimates across 512 meta-analyses. A local polynomial regression was applied to 
illustrate trends (fitted lines), with shaded bands representing 95% confidence intervals. (a) I2 exhibits moderate consistency with CVH2total. 
(b) I2 exhibits moderate consistency with M2total. (c) CVH2total and M2total show a near-perfect-though non-linear-relationship. See Figure 3 
for further details.
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In conclusion, we advocate that ecologists and evolutionary biol-
ogists treat heterogeneity with the same importance as mean effect 
sizes when drawing biological inferences (Higgins et al., 2009). Our 
pluralistic approach provides the conceptual and practical tools to 
achieve this goal. We illustrate its implementation through two ap-
plied examples in our online tutorial (https://​yefen​g0920.​github.​io/​
heter​ogene​ity_​guide/​​).

3.3  |  Extended strategies: Non-phylogenetic and 
phylogenetic species-level heterogeneity and 
generality

In ecological and evolutionary datasets, complexity often arises 
from the inclusion of diverse species, temporal and spatial variations 
(Gurevitch et al., 2018). Tackling such complexity can be achieved 
by embracing a flexible random effects structure within the 
multilevel meta-analytic framework (Nakagawa et  al.,  2023; Yang 
et al., 2022). As an example, we extend our models by introducing 
how heterogeneity can be decomposed into non-phylogenetic and 
phylogenetic species-level strata—a common set of random effects 
included in multilevel models (Cinar et al., 2022). Such an approach 
offers a unique opportunity for further disentangling heterogeneity 
and understanding generalisability.

In the case of datasets encompassing multiple species, incorpo-
rating species-relevant random effects terms into Equation (1) would 
lead to the phylogenetic multilevel meta-analytic model as follows 
(Cinar et al., 2022; Nakagawa & Santos, 2012):

where uspecies[k] denotes the non-phylogenetic species random ef-
fect, which follows a normal distribution with mean zero and variance 
�
2
species

 ; uphylogeny[k] denotes the phylogenetic species random effect, 
which follows a normal distribution with mean zero and variance–co-
variance matrix �2

phylogeny
A (where �2

phylogeny
 is the phylogenetic species 

variance, and A is the phylogenetic correlation matrix based on the dis-
tance between species on a molecular-based phylogenetic tree).

With Equation (12) in hand, the total variance can be stratified 
into the phylogenetic (�2

phylogeny
) and non-phylogenetic species level 

(�2
species

). Such stratification allows for the assessment of the hetero-
geneity within these strata, as illustrated in the empirical example 
below. Phylogenetic and non-phylogenetic species-level heteroge-
neity can be measured using I2

phylogeny
 and I2

species
, respectively. These 

metrics are defined as follows:

where all notations are as previously defined. These expressions can 
also provide insights into the phylogenetic effect or signal, which re-
flects how shared evolutionary histories among species explain pat-
terns of similarity (e.g. in trait values; Freckleton et al., 2002). One 
key parameter representing this concept is phylogenetic heritability, 
H2 (Lynch,  1991; Nakagawa & Santos,  2012). While the definition 
of h2 is not consistent in the literature (Pearse et al., 2023), a simple 
way to define H2 is to exclude the sampling error variance � from 
equations (Nakagawa & Santos,  2012), resulting in the following 
expression:

Here, H2 represents the proportion of variance attributed to phylog-
eny (�2

phylogeny
) relative to the total variance of the true effect sizes in 

the model. Therefore, when H2 = 0, there is no phylogenetic effect or 
signal, whereas H2 = 1 indicates that the effect sizes (or traits) among 
species are entirely determined by their phylogenetic relatedness. 
Another widely used parameter for assessing the phylogenetic signal is 
Pagel's � (Cinar et al., 2022; Freckleton et al., 2002; Pagel, 1999), which 
is given by

Unlike h2 (Equation  15), � specifically reflects the proportion 
of phylogenetic variance (�2

phylogeny
) relative to the variance across 

species (�2
species

). Together, these parameters provide complemen-
tary perspectives on the role of phylogeny in shaping effect sizes 
or traits of interest (see Appendix S1 for the extended metrics for 
phylogenetic signal).

Following the same principle of Equations (7, 8, 10 and 11), we 
can derive the stratified version of mean-standardized and variance–
mean-standardized heterogeneity measures. Mean-standardized 
heterogeneity metrics are given by

Variance–mean-standardized heterogeneity metrics are given by

(12)

ES[i] = � + uspecies[k] + uphylogeny[k] + ubetween[j] + uwithin[i] + e[i],

(13)I2
phylogeny

=
�
2
phylogeny

�
2
phylogeny

+ �
2
species

+ �
2
between

+ �
2
within

+ �

,

(14)
I2
species

=
�
2
species

�
2
phylogeny

+ �
2
species

+ �
2
between

+ �
2
within

+ �

,

(15)H2 =
�
2
phylogeny

�
2
phylogeny

+ �
2
species

+ �
2
between

+ �
2
within

.

(16)� =
�
2
phylogeny

�
2
phylogeny

+ �
2
species

.

(17)CVH2phylogeny =
�
2
phylogeny

�
2

,

(18)CVH2species =
�
2
species

�
2

.

(19)

M2phylogeny =
�
2
phylogeny

�
2
phypogeny

+ �
2
species

+ �
2
between

+ �
2
within

+ �
2
,

(20)M2species =
�
2
species

�
2
phypogeny

+ �
2
species

+ �
2
between

+ �
2
within

+ �
2
.
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One can also easily derive the variance—mean-standardized 
version of the phylogenetic signal index (see Appendix  S1). To il-
lustrate the insights gained through these extended measures, we 
present two case studies. The first case involves the phylogenetic 
meta-analysis originally conducted by Risely et al. (2018). Our focus 
centres on a subset of this analysis, specifically examining the impact 
of infection status on the cost (e.g. movement capacity) of migra-
tory animals using standardized mean difference (SMD) as the effect 
size measure. The second case study involves the publicly available 
meta-analytic dataset about the impact of artificial light at night 
on the suppression of melatonin in wildlife (Yang, Liu, et al., 2024). 
While we reported our re-analysis of the first case study in the main 
text (Table S2), we reported the second one in the online tutorial due 
to limited space.

In our first case study, our re-analysis yielded two observations. 
Firstly, I2

total
= 0.97 exceeded the 85th percentile of the empirically 

derived heterogeneity distribution specific to SMD (Figure 6). This 
suggests a high amount of heterogeneity according to the con-
ventional benchmarks (Higgins et  al.,  2003). However, when we 
employed magnitude metrics to measure heterogeneity, they fell 

between the 25th and 50th percentiles of the empirically derived 
heterogeneity distribution specific to SMD via the R helper func-
tion het_interpret() (CVH2total = 1.3 and M2total = 0.6). This amount of 
heterogeneity can be tentatively interpreted as ‘small to medium’, 
compared to the heterogeneity of ecological and evolutionary meta-
analyses using SMD as the effect size measure. This discrepancy was 
attributed to the tiny typical sampling variance �, which was found 
to be 0.001 in this case, underscoring I2

total
's limitation of relying on 

� to capture relative magnitude of heterogeneity. On the contrary, 
we emphasize that the proper interpretation of I2

total
 is to use it to 

indicate the source of heterogeneity rather than the magnitude, as 
it represents the variance of the true effect in the context of the 
variance of the observed effect. For example, I2

total
= 0.97 suggests 

the heterogeneity can explain most (97%) of the variability in the 
observed effect (only 3% is explained by the sampling error variance, 
or the heterogeneity is 32 times larger than that of sampling error 
variance).

Secondly, the effect of interest is highly likely to be general-
izable and replicable at the between-study level when account-
ing for within-study variance. This conclusion is supported by the 

F I G U R E  6  Heterogeneity quantification and stratification for multiple metrics. (a) Heterogeneity is quantified using the raw variance, (b) 
source measure, I2, (c) magnitude measure, CVH2 and (d) magnitude measure M, and stratified at phylogenetic (Phylo), non-phylogenetic (Spp), 
between-study (Between) and within-study (Within) levels. The source measure I2 sometimes aligns well with the raw variance, as observed 
in this example (a, b). However, we note that I2 values can be challenging to interpret as the magnitude of heterogeneity, especially when the 
typical sampling error variance is extremely small or large. This challenge is often encountered with variance-based effect size measures, 
such as the variation ratio and coefficient of variation ratio, as demonstrated in a real example at https://​yefen​g0920.​github.​io/​heter​ogene​
ity_​guide/​​.
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stratification analysis, which reveals that between-study hetero-
geneity is extremely low, even though traditional benchmarks sug-
gest substantial overall heterogeneity. An emerging approach in 
ecology and evolutionary biology, coordinated distributed exper-
iments (Fraser et  al.,  2013), holds promise for controlling within-
study variance by employing standardized and controlled protocols. 
Traditional meta-analytic practices risk overlooking such nuanced 
insights into heterogeneity and generalizability, potentially leading 
to erroneous conclusions. For instance, while random effects meta-
analysis indicates high overall heterogeneity (I2

total
= 0.96; Figure 4; 

Table 1), stratification analysis shows that this heterogeneity is not 
driven by between-study differences. Instead, it is predominantly 
explained by phylogenetic effects (I2

phylogeny
= 0.76), which suggests 

that the mean effect is still generalizable across studies despite high 
total heterogeneity.

3.4  |  Unresolved issue: Quantifying the uncertainty 
around the heterogeneity estimate

It is well recognized that the overall mean effect size for an outcome 
of interest should be reported with an uncertainty measure, such as 
a (95%) confidence interval, to indicate the precision of the estimate. 
In contrast, reporting confidence intervals for heterogeneity 
estimates is still uncommon. There are significant challenges to 
address before the routine construction of confidence intervals for 
heterogeneity becomes feasible. Several methods for constructing 
confidence intervals for unstandardized heterogeneity estimates 
(e.g. �2

total
) have been proposed and tested (Viechtbauer,  2007). 

However, no established methods currently exist for standardized 
heterogeneity measures. Two simulation studies reveal that 
most approaches for constructing confidence intervals around 
unstandardized heterogeneity do not consistently achieve nominal 
coverage probabilities (Veroniki et  al.,  2016; Viechtbauer,  2007). 
For example, Wald-type and profile likelihood methods frequently 
yield coverage probabilities that deviate from the nominal level, 
while the Q-profile method can provide more accurate coverage 
under conditions that are closer to practical applications. However, 
the empirical performance of Q-profile remains untested in the 
multilevel modelling context (Equation 1).

For standardized heterogeneity measures, there are no estab-
lished closed-form solutions or iterative procedures to construct 
confidence intervals. One straightforward approach involves 
using the confidence interval bounds for �2

total
 to calculate bounds 

for variance-standardized heterogeneity measures like I2
total

. 
Alternatively, the multivariate delta method could derive sampling 
variances and construct Wald-type confidence intervals for stan-
dardized heterogeneity measures, relying on the asymptotic nor-
mality of maximum likelihood and restricted maximum likelihood 
estimates. However, extensive simulation studies are necessary to 
assess the empirical performance of such intervals (e.g. power, Type 
I error rates) under conditions representative of multilevel models, 
which is beyond the scope of this paper. Bootstrapping methods also 

offer a possible solution for constructing confidence intervals for 
standardized heterogeneity measures. Yet, simulation studies indi-
cate that both parametric and non-parametric bootstrap confidence 
intervals for unstandardized heterogeneity measures often exhibit 
suboptimal properties (Veroniki et  al.,  2016; Viechtbauer,  2007). 
Parametric bootstrapping assumes that parameter estimates (e.g. � 
and �2

total
) represent population parameters, disregarding their inher-

ent uncertainty, while non-parametric bootstrapping fails to account 
for the multilevel structure of data.

Future research should focus on deriving uncertainty measures 
for the newly proposed standardized heterogeneity measures and 
conducting simulations to evaluate their performance in the con-
text of a multilevel model. For now, researchers might conduct sen-
sitivity analyses to address the limitations of ignoring uncertainty 
around heterogeneity estimates. For instance, a trace plot can illus-
trate the sensitivity of meta-analytic conclusions (e.g. the overall 
mean effect size estimate and its confidence interval) to changes in 
any heterogeneity measure (Röver et al., 2024). In such a plot, the 
x axis can represent different values of �2

total
 (or CVH2total and M2total),  

while the y axis displays the corresponding overall mean effect 
size estimate (�). Confidence intervals for �2

total
 based on Q-profile 

methods could facilitate these sensitivity analyses by suggesting a 
plausible range of values for consideration. Importantly, until reli-
able and validated methods for computing uncertainty ranges for 
standardized heterogeneity measures in the context of multilevel 
meta-analysis, reporting 95% confidence intervals or other un-
certainty estimates for these metrics should be interpreted with 
caution.
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