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Remote sensing 
of lichens with 
drones for detecting 
dinosaur bones
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Melissa Dergousoff1, Teri Gilmar1, 
Phil R. Bell6,7, and Derek R. Peddle5

Advances in palaeontology and 
evolutionary biology are often linked to 
the discovery of new fossils, yet these 
discoveries are typically serendipitous1. 
Here, we report that lichens can serve as 
biological indicators of vertebrate fossils 
in western North America and can be 
identifi ed using remote sensing. Lichens 
are symbioses between fungi and algae 
(and/or cyanobacteria) that play important 
ecological roles2 and colonise many 
substrates, including fossils3. Preferential 
colonisation of dinosaur bones by lichen 
with vibrant orange pigmentation (Figure 
1A,B) has been recognised anecdotally 
for decades (Darren H. Tanke, personal 
communication). We found that the 
spectral refl ectance profi les of these 
lichen pigments and the preferential 
association between modern lichens and 
ancient bones can be used to detect 
dinosaur fossils by remote sensing, for 
which we propose new spectral indices. 

Our work took place in Dinosaur 
Provincial Park (DPP; Alberta, Canada) 
in the Dinosaur Park Formation (DPF; 
76.47–74.44 million years ago (Ma))4. 
We analysed lichen colonisation in 
three different multi-taxic microfossil 
bonebeds5, including acquisition of 
spectral refl ectance profi les of lichens 
and bonebed substrates. Within 
bonebeds, fossil bone comprised 2–6% 
and ironstone 92–98% of all substrates 
(median values). Using generalised linear 
models, we found a strong and signifi cant 
positive association between lichen 
colonisation, primarily Rusavskia elegans 
and Xanthomendoza trachyphylla, and 
fossilised bone density across four spatial 
scales (4 cm2, 100 cm2, 0.04 m2, 1 m2; 
p < 0.001; Supplemental information). 
By contrast, we found no signifi cant 
relationship between lichen colonisation 

Correspondence

and ironstone density, which was two to 
three orders of magnitude more common 
than fossilised bone (p > 0.170 at all 
scales). The exponential increase in lichen 
colonisation with increasing fossil density 
that we observed may denote time since 
exposure and reinforces the potential for 
using lichens as indicators of productive 
bonebeds.

Spectral refl ectance profi les of lichen 
pigments have previously been used as 
ecological indicator targets, for example 
to map caribou habitat6. Here, lichen 
refl ectance profi les differed signifi cantly 
from all other tested substrates (fossil 
bones, fossil teeth, ironstone, sandstone), 
exhibiting lower refl ectance in the blue 
portion (400–500 nm) of the visible 

spectrum, and higher refl ectance within 
the near-infrared to shortwave infrared 
regions (e.g., at 800–1400 nm; Figure 1C). 
Fossil bone spectra were not signifi cantly 
different from those of surrounding 
sediment. These two fi ndings highlight 
the important role of lichen detection, 
which we demonstrate is viable using 
Remotely Piloted Aircraft System (RPAS, 
a.k.a. drone) missions. Using these 
methods, we successfully detected 
lichen colonisation of vertebrate fossils, 
primarily ornithischian dinosaurs, in RPAS 
images taken from 30 m above ground 
level with 2.5 x 2.5 cm pixel spatial 
resolution (Figure 1D–F). The distinct 
spectral signal enabled detection using 
an unsupervised classifi cation algorithm. 
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Figure 1. Preferential colonisation of dinosaur bones by lichens with distinctive spectral 
profi les and their detection in drone (RPAS) images.
(A) Photograph of mixed faunal bonebed (BB 209) in Dinosaur Provincial Park (DPP) showing 
extensive lichen colonisation of two exposed hadrosaur limb bones (white arrows), but absent on 
surrounding sediment (2005). (B) Photograph of the Centrosaurus Bonebed (BB 43) in DPP prior to 
excavation showing extensive lichen colonisation of abundant surface-exposed dinosaur bones 
(1979). (C) Spectral refl ectance plot of major components of the Alberta badlands environment 
including rock substrates, Rusavskia elegans lichen, and vertebrate fossils. (D–F) RPAS image 
of mixed faunal bonebed (BB23) in DPP acquired at 30 m above ground; (E) and (F) are zoomed 
in with each pixel measuring ~2.5 x 2.5 cm and blue pixels in (F) indicating positive detection 
of lichen-colonised fossil dinosaur bones from the spectral classifi cation. Photographs in (A,B) 
courtesy of Royal Tyrrell Museum of Palaeontology.
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Further refi nements and improvements 
are possible as these distinct refl ectance 
signatures of lichen can drive more 
advanced classifi cation algorithms, 
as well as being suitable endmember 
spectra for spectral mixture analysis6 
to detect lichen (and therefore possible 
fossil) targets from images at sub-pixel 
scales. While RPAS based sensors have 
been used at palaeontological sites7, our 
work demonstrates that these can be 
used for fossil identifi cation via detected 
lichen associations. Furthermore, 
our measurements and observations 
form the foundation of two newly 
proposed spectral indices (LSR, NDLI; 
Supplemental information) that can 
support larger area reconnaissance and 
classifi cation at spatial scales available 
from airborne and spaceborne sensors. 

In the DPF, lichen colonisation is most 
apparent on large ornithischian bones 
(e.g., Hadrosauridae, Ceratopsidae), 
especially large limb bones (e.g., femur, 
tibia) (Figures 1A and S1B). This may be 
a true preferential colonisation pattern, 
perhaps due to the high porosity, large 
absolute size, and/or high surface areas 
of ornithischian bones. Alternatively, this 
may partly be a sampling bias due to 
the high abundance of these taxa and 
elements, large absolute size increasing 
their visibility or lower collection 
frequency, which potentially increases 
their surface residency time relative to 
rarer taxa. Within DPP, the lichen–bone 
association appears to occur throughout 
the DPF, with a higher abundance of 
lichen lower in the formation (~0–30 m), 
owing to the pattern of higher overall 
bone density in the lower DPF8. Field 
observations confi rm that the association 
of lichen with exposed dinosaur bone 
in the DPF is not unique to any specifi c 
location or taphonomic mode (Figure S1). 

The tight association between fossil 
density and lichen colonisation is likely 
due to the lichen species’ preferences for 
alkaline calcareous substrate9. We believe 
that, in addition to alkaline pH, the surface 
structure of fossil bone is favourable for 
these lichens due to fi ne-scale porosity 
and mineral nutrient content. Given the 
similarity in the (inorganic) chemical 
make-up of bone vs. dentine and 
enamel (all primarily composed of apatite 
biominerals10) and the observation that 
lichen on colonised teeth was always 
restricted to the cementum of the tooth 
root (Figure S1G), we suggest that lichen 
preference for bone is not purely due 

to the inorganic chemistry. The highly 
porous nature of bone may provide 
increased surface area for anchorage or 
higher retention of water in the semi-
arid environments of southeastern 
Alberta, and badlands more generally. 
Alternatively, the higher proportion of 
endogenous organic compounds in 
bone compared to enamel may produce 
diagenetically altered end products that 
are also suitable to support lichen growth. 

Our analysis demonstrates that lichens 
are a signifi cant indicator of ancient 
vertebrate fossils in the Late Cretaceous 
bonebeds of western North America 
and are suitable for detection via remote 
sensing. These approaches offer new 
opportunities for dinosaur fossil discovery 
at DPP and other rugged or remote 
fossil-bearing outcrops. This research 
also highlights the unexpected role that 
fossils can play as host substrates for 
modern biological communities, and the 
interplay between modern ecology and 
ancient bones.
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