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Generative adversarial networks (GANSs) can create realistic
synthetic faces, which have the potential to be used for
nefarious purposes. The synthetic faces produced by GANs
are difficult to detect and are often judged to be more realistic
than real faces. Training programmes have been developed
to improve human synthetic face detection accuracy, with
mixed results. Here, we investigate synthetic face detection
and discrimination in super-recognizers (SRs; who have
exceptional face recognition skills), and typical-ability control
participants. We also devised a training procedure which
sought to highlight rendering artefacts. In two different
experimental designs, we found that SRs (total N = 283)
were better at detecting and discriminating synthetic faces
than controls (total N = 381), where control participants were
below chance without training. Trained SRs and controls had
significantly better performance than those without training,
and the magnitude of the training effect was similar in both
groups. Our results suggest that SRs are using cues unrelated
to rendering artefacts to detect and discriminate synthetic
faces, and that an easily implementable training procedure
increases their performance to above chance levels. These
results have implications for real-world scenarios, where
trained SRs' performance could be harnessed for synthetic face
detection.

© 2025 The Authors. Published by the Royal Society under the terms of the Creative
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1. Introduction

Synthetic faces—faces that are completely artificial intelligence (Al)-generated —are now extremely
realistic (e.g. [1]), to the extent that human observers are highly error-prone at discriminating them
from real faces (e.g. [2—4]). This poses a problem, as synthetic faces have the potential to be used for
nefarious purposes in various domains, including digital security, social media and forensic investiga-
tions. For example, synthetic faces have been used to give credence to fake social media accounts
which have then been used to harass targets on social media [5].

Synthetic faces are generated through generative adversarial networks (GANSs; [6-8]). To achieve
this, GANs pit two networks against each other, one that generates face-like images and the other
that discriminates them from real faces. Over time, the generating network learns to create faces that
look more and more realistic. The synthetic faces produced by GANs seem to share some underlying
processing mechanisms with real faces [9]. They are not only difficult for humans to detect, but there
is research to suggest that people judge these synthetic faces to be more trustworthy [3], and more
realistic [1,3,4,10] than real faces. The latter has been coined AI hyperrealism [1]. Miller et al. [1] have
suggested that Al hyperrealism exists because synthetic faces are perceived as more ‘average’, more
familiar, and less memorable than real faces, which misleads people to perceive synthetic faces as real.
"Averageness’ is thought to be a consequence of the GAN production process [1]. One model of face
perception suggests that real faces are represented in a multidimensional space (i.e. face-space [11,12]),
where the average face is situated in the middle of the space, and distinctiveness is represented as
distance from the average on any particular dimension [11-13]. For real faces, because each dimension
is thought to follow a normal distribution, there is a statistical over-representation of features near
the middle (or ‘average’) of face space [11,12]. This over-representation of features near the average is
reinforced during the generative learning process.

Training programmes have been used to increase human detection accuracy of synthetic images,
with varying success [3,14-16]. For example, Nightingale & Farid [3] gave typical-ability participants a
short training procedure to highlight possible synthetic face rendering artefacts, as well as trial-by-trial
feedback throughout the experiment. They found an increase of approximately 10% in participants’
ability to classify images as real or not-real following training. Bray ef al. [14] developed three
training conditions in an attempt to increase individuals” ability to detect synthetic faces and compared
participants” detection accuracy in the three training methods against a control group with no training.
The training methods were: familiarization, where participants were shown synthetic images that
were labelled as such; one-time advice, where participants were given information on the types of
rendering problems that might occur with synthetic faces at the start of the experiment; and advice
with reminders, where participants were given advice on the types of rendering problems to expect,
with reminders throughout the experiment. They found that each group of participants was at around
60% accuracy, with no statistically significant differences between the training programmes and the
control group (51% accuracy).

Another suggested method of improving synthetic face detection, borrowed from the literature on
the identification of real faces, is to use a “‘wisdom of the crowds” approach whereby responses from
multiple observers are combined [17-19]. The success of this approach for the detection of synthetic
faces is mixed, with Kramer & Cartledge [2] reporting improvements, but with Dunn et al. [20] finding
no advantage for synthetic face detection in typical observers. There is also a large effort from the
computer science literature to address this problem by training Al to detect synthetic faces (e.g. [21]).
In applied practice, a human-in-the-loop approach (where human(s) are integrated into the algorithm
decision-making pipeline) is often used for the identification of real faces. As synthetic faces become
more commonplace, we expect that the detection of synthetic faces will also include both humans and
face recognition algorithms. Typical human observers are now worse at face matching (determining
whether two images show the same person or not) than top-performing algorithms, and the human
in the loop can introduce errors (e.g. [22]). One solution that has been applied to forensic face identifi-
cations for real faces (e.g. [23]) has been to exploit the capabilities of individuals who have exceptional
face recognition ability, known as ‘super-recognizers’ (SRs). It is yet to be seen if SRs’ skills extend to
the detection of synthetic faces.

SRs are people who perform well above typical levels on a range of face perception and recognition
tasks ([24]; see [25,26] for reviews). Their responses are described as fast and intuitive [27], and
as a group, they have outperformed typical-ability control participants on perceptual face identity
processing tasks [28-31], face memory tasks [28,29,31,32], tasks involving occluded faces [33,34],
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detection of hyper-realistic face masks [35] and morphed/other digitally manipulated images [36].
Currently, few studies have investigated SRs” ability to detect synthetic faces. One such study focussed
on dynamic “deep fake’ videos and showed no difference between SRs” and controls’ accuracy [37]. A
second study investigated synthetic face detection [20]. This recent synthetic face detection experiment
suggested that SRs were better able to detect faces generated by StyleGAN2 than control participants
[20]. This study showed that SRs’ detection of StyleGANZ2 faces was significantly above chance, and
that their confidence correlated with their accuracy.

Here, we investigated whether SRs were better able to detect synthetic faces than typical-ability
control participants and investigated whether a training procedure could enhance performance. Our
synthetic faces were generated using StyleGANB3 [38]. StyleGAN3 was the state-of-the-art system at
the time of data collection and supersedes StyleGAN2, which has been used in previous research on
synthetic face detection [1-3,20]. In experiment 1a, we asked participants to make a binary response,
indicating whether a singular, centrally presented face was Al-generated (‘not real’ or ‘real’). In
experiment 1b, we trained a new sample of participants to detect synthetic faces and gave them
feedback before testing their synthetic face detection ability in the same forced-choice paradigm. In
this forced-choice procedure, we used signal detection theory to model the differences in sensitivity
and bias related to participant group and training. In experiment 2a, we conducted a two-alternative
forced choice (2AFC) task, where participants were required to indicate which of two simultaneously
presented faces was the Al-generated (‘not real’) face. In experiment 2b, a new sample of participants
was trained to discriminate synthetic faces and given feedback before completing the 2AFC task.
We used this 2AFC task to investigate whether participants’ performance was better when a direct
comparison image was presented simultaneously. The 2AFC task has an additional benefit: because
both stimuli are presented simultaneously and participants are required to choose one image, the
effects cannot be driven by decisional biases.

We predicted that (i) SRs would be better at detecting and discriminating synthetic faces than
typical-ability controls, (ii) our training procedure would improve synthetic face detection and
discrimination in both groups, and (iii) the effects would be driven by differences in sensitivity,
rather than decisional bias. We predicted that if SRs were better than control participants because they
identify rendering artefacts, they may benefit less from training than control participants. On the other
hand, if SRs use other cues to identify synthetic faces, they may benefit as much or more from training
than control participants.

2. Experiment 1
2.1. Methods

2.1.1. Participants

We recruited three groups of participants for the non-training experiments (SRs, prolific controls and
database controls), and two groups of participants for the training experiments (SRs and prolific
controls). SRs and database controls were invited from the Greenwich Face and Voice Recognition
Laboratory volunteer database and had previously completed three to four screening tests at the time
of invite, including the Cambridge Face Memory Test Long form (CFMT+; [24]), and the Glasgow Face
Matching Task (GEMT; [39]) and at least one of the Kent Face Matching Task (KFMT; [40]) and the
Adult Face Memory Test (AFMT; [41]; table 1). The majority of participants self-identified as White
(SRs = 90.5%, prolific controls = 86.9%, database controls = 77.4%), followed by mixed (SRs = 4.8%,
prolific controls = 3.3%, database controls = 9.7%), Black (SRs = 0%, prolific controls = 9.8%, database
controls = 1.6%) and Asian (SRs = 0%, prolific controls = 0%, database controls = 8.1%). A small
number of participants (SRs = 4.8%, prolific controls = 0%, database controls = 3.2%) selected ‘other” or
preferred not to disclose their ethnicity. All participants gave informed consent, and ethical clearance
was granted by the local ethics committee (project code: 2024-016-KG).

2.1.1.1. Super-recognizers group

To be eligible for invitation SRs were required to have previously scored 2 s.d. above the mean on at
least three of the above-listed tests, and at least 1.5 s.d. above the mean on the fourth test if they had
completed a fourth test. SRs were not compensated for their time.
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2.1.1.2. Database control group

These were individuals who had participated in previous face processing experiments and had
indicated that they would like to be contacted for future experiments. Database controls were invited if
they scored between +1.0 and 1.5 s.d. from the mean on three tests, and between +1.5 and -2.0 s.d. on a
fourth test, if they had completed a fourth. Note a slight asymmetry in the scores around the mean; this
was put in place to balance the tendency of the database control participants to score above the mean
generally (e.g. [20]). Database controls were not compensated for their time. Both the SR group and
the database control group were able to complete additional screening tests between invite and data
collection finalization. Any additional test scores collected subsequently to the invite are presented in
our data repository (https://osf.io/4pv8f), alongside the test scores for each individual across the range
of screening tests collected.

2.1.1.3. Prolific control group

Finally, we recruited a control group from Prolific.co. For the non-training tasks, we did not collect face
processing screening data for this group. For the training tasks, prolific controls also completed the
KFMT [40]. They were compensated £3 or £3.50 for their time on the non-training and training tasks,
respectively, and were required to be UK residents with English as a first language, and aged 18-60.

Previous research has indicated that the difference between SRs and controls’ synthetic face
detection ability has a medium effect size (Cohen’s d = 0.55 [20]). We calculated that a sample size of 60
in each condition was required when running a one-way ANOVA with three independent groups, with
a medium effect size (f = 0.25), and power of 0.85 (G*Power 3 [42]). Therefore, we collected at least 60
participants per condition.

2.1.2. Stimuli

Our real faces were taken from the Flickr-Faces-HQ Dataset (FFHQ [7]; https://github.com/NVlabs/
ffhq-dataset; figure 1). This is a set of high-quality face images taken from the website Flickr.com
under appropriate licenses and originally used as a benchmark image set for StyleGAN synthetic
faces [7]. We selected 80 faces from the set (40 judged by the authors to be male and 40 judged to be
female). Thirty of the male and female faces were selected to be White, with the final 10 selected to be
non-White, again as judged by the authors. All images included only one person (i.e. no other people
pictured in the background of the image), all were selected to have no occlusions such as hats, glasses
or hands over the face.

Our synthetic faces were generated using StyleGANB3 ([38]; https://github.com/NVlabs/stylegan3;
figure 1). StyleGAN3 was trained using the FFHQ dataset [7] a demographically diverse set of face
images that we used for our real faces, and the MetFaces dataset ([8]; https://github.com/NVlabs/
metfaces-dataset), a set of artworks from the Metropolitan Museum of Art. Full details of the train-
ing process for StyleGAN3 can be found in the original paper and the accompanying GitHub site
([38]; https://github.com/NVlabs/stylegan3). We selected 80 StyleGAN3 faces which fitted the same
demographic constraints as outlined above for the real faces (i.e. 40 judged to be male, 30 of which
were judged to be White), and the same image constraints as the real faces (one person, no occlusions).
Both our real and synthetic images were broadly front-facing and were cropped to be 1024 x 1024
pixels.

In addition to the experimental stimuli, four real and four synthetic faces were used for
practice trials—none of these images were used in the experimental trials. An additional six
synthetic faces were selected for the training task. These images all had rendering artefacts to
the face. We selected another 10 real and 10 synthetic faces for the feedback component of the
training task.

We investigated the low-level properties of the stimuli, comparing the synthetic and real images’
colour saturation, brightness and contrast. We computed these parameters individually for each
synthetic (n = 80) and real (1 = 80) face image using the SHINE_color toolbox [43]. Saturation, reflecting
the vividness or purity of colour, was computed as the mean saturation value across pixels, ranging
from O (fully desaturated/grey) to 1 (fully saturated). Brightness, reflecting the overall lightness of the
image, was defined as the mean of the maximum red, green, blue (RGB) channel intensity at each pixel,
ranging from 0 (black) to 255 (maximum brightness). We obtained a measure of contrast by calculating
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Figure 1. Example stimuli. Female synthetic faces (a), male synthetic faces (b), female real faces (c) and male real faces (d). The final
row (e) contains some of the synthetic images used in the training task, each of which has rendering artefacts that were highlighted to
participants. For example, the first image has hair that is poorly rendered, and the second image has three, rather than four incisors.

the s.d. of these pixel intensities, with higher values reflecting greater variability in brightness across
the image.

Independent samples t-tests were conducted to assess whether saturation, brightness and contrast
differed between the synthetic and real face image sets. A significant difference was observed for
saturation. The real face images (M = 0.36, s.d. = 0.12) were found to be more saturated than the
synthetic face images (M = 0.33, s.d. = 0.08), (t158 = 2.312, p = 0.022, d = 0.619). We observed no
significant difference in brightness between the image sets (real: M = 138.89, s.d. = 29.82; synthetic: M
= 134.85, s.d. = 20.06; (t158 = 1.005, p = 0.316, d = 0.313)). There was also no significant difference in
contrast between the image sets (real: M = 63.95, s.d. = 12.04; synthetic: M = 61.37, s.d. = 10.73; (t158 =
1.431, p = 0.154, d = 0.226)).

2.1.3. Design

Experiment 1 consisted of a forced-choice experiment, where one stimulus was presented per trial,
and participants indicated whether it was ‘real’ or ‘not real’. In the training version of the task,
the identical experiment was run, but first, participants were given a short training and feedback
session. All experiments described were conducted online. Carefully designed online tests of cognitive
and perceptual processing can yield high-quality data, indistinguishable from that collected in the
laboratory [44,45]. The experiments were conducted using Gorilla Experiment Builder, a cloud-based
research platform that allows researchers to create and deploy experiments online and collect precise
behavioural data [46]. Participants were instructed to use only desktop computers or laptops and to
complete the experiment in a single session.
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2.1.4. Procedure

Forced-choice task: to begin each trial, a fixation cross was presented centrally for 500 ms. Faces were
presented individually; participants were asked to respond whether the face was ‘real’ or ‘not real’.
Trials timed out after 10 s, and stimuli were presented for the whole duration unless a response was
given. The experiment was separated into six blocks, with the first block constituting the practise trials;
the first block was preceded by a set of instructions, including how to respond to catch trials. Four
practise trials were given at the start of the experiment (two real, two synthetic faces), and one practise
catch trial. Five catch trials were presented throughout the blocks (one in each additional block), where
participants were asked to withhold their response (i.e. not respond) if they saw an object that was not
a face, e.g. a chair or a lamp.

Forced-choice training: prior to completing the main task, participants were given a short training
session. First, they were given examples of the type of artefacts that can be used to identify computer-
generated faces (as in [3] with synthetic faces and [15] with deepfakes). The synthetic images in the
training trials all had artefacts in the images which were drawn to the attention of the participants
via the following text “‘When computers generate faces, sometimes there are tell-tale signs left in the
images. Here are some examples of computer-generated faces with different things “wrong” with
them’. The images were presented individually with additional text pointing out the specific artefacts
in each, e.g. ‘This face has a “middle tooth”’, and “Where this person’s hair meets their face, it looks
odd’. None of these images was re-used in any part of the experiment. Participants then completed 10
trials in a forced-choice design and were given feedback on their accuracy after each trial. Following
the feedback trials, participants were again shown the artefact examples. The training and feedback
procedure took around 5 min to complete.

2.1.5. Data analysis

Participants were included if they completed at least 3 out of 5 catch trials accurately. In the non-train-
ing task, 27 SRs, 13 database controls and 13 prolific controls were excluded on this basis. In the
training task, seven SRs and 12 prolific controls were excluded on this basis. The participants described
in table 1 are the final samples, after these exclusions had taken place. We report accuracy using
percentage correct, and we also assessed sensitivity using the signal detection theory framework.
Sensitivity (d4") and criterion (C) were calculated using the Palamedes toolbox [47] in MATLAB, where
a hit was defined as correctly identifying a synthetic face as ‘not real” and a false alarm was defined
as incorrectly responding that a real face was ‘not real’. Median reaction times were calculated per
participant and then averaged at the group level and are reported rounded to the nearest millisecond.
Effect sizes are given as Cohen’s d (t-tests) or partial eta squared (ANOVA). Where equal variances
were not assumed, degrees of freedom were corrected. Post-hoc t-tests were Bonferroni-corrected.

2.2. Results

2.2.1. Forced-choice task

Synthetic face detection accuracy (i.e. hits) on the task was low for all three groups: SRs = 41% (s.d. =
23%), prolific controls = 31% (s.d. = 18%) and database controls = 30% (s.d. = 20%).

Given that participants” decisional strategies could affect their accuracy, we analysed their sensitiv-
ity (d’; figure 2a), which is calculated from hits (as above) and false alarms (real faces categorized
as synthetic; descriptive statistics for hits and false alarms are given in the electronic supplementary
material, S1). There was a significant difference in sensitivity scores between the groups (F,183 =
12.509, p < 0.001, np* = 0.120). SRs (M = 0.024, s.d. = 0.627) were significantly more sensitive than both
prolific controls (M = -0.489, s.d. = 0.557; (t122 = 4.809, p < 0.001, d = 0.864)) and database controls (M =
-0.466, s.d. = 0.742; (t123 = 3.982, p < 0.001, 4 = 0.712)). No significant difference was found between the
control groups (t121 = 0.201, p =1.00, d = 0.036).

SRs’ sensitivity did not differ significantly from chance (i.e. d" = 0) (t¢2 = 0.299, p = 0.766, d = 0.038),
indicating that they were not reliably distinguishing synthetic from real faces—but crucially, they also
did not show evidence of AI hyperrealism once response biases were controlled for. By contrast, both
the prolific (tgo = 6.861, p < 0.001, d = 0.878) and database (tg; = 4.939, p < 0.001, d = 0.627) controls had
sensitivity scores significantly worse than chance performance, suggesting a role for AI hyperrealism
in their responses.
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Figure 2. Sensitivity (a), decisional biases (b) and response times (c) for the forced-choice task and the forced-choice training task
across the five participant groups. Note that the no-training and training tasks were run in independent sets of participants. ***p <
0.001; n.s.: non-significant. Error bars: standard error of the mean; dashed line: chance performance.

To further investigate decisional strategies, we next analysed criterion (C; figure 2b). There was
no significant difference between the groups (Fp 183 = 0.243, p = 0.785, np* = 0.003); SRs (M =
0.317, s.d. = 0.585), prolific controls (M = 0.342, s.d. = 0.522) and database controls (M = 0.381,
s.d. = 0.416) adopted a similar, conservative response criterion. In each case, the criterion was
significantly greater than 0, indicating a general bias towards judging faces as real (SRs: (g2 =
4.309, p < 0.001, d = 0.543); prolific controls: (t,9 = 5.120, p < 0.001, d = 0.656) and database
controls: (tg1 = 7.210, p < 0.001, 4 = 0.916)).

Lastly, we analysed response times (figure 2c). There was a significant difference between the
groups (Fp 183 = 10.768, p < 0.001, np* = 0.105). Prolific controls (M = 1649 ms, s.d. = 867 ms) responded
significantly faster than both SRs (M = 2246 ms, s.d. = 867 ms; (122 = 4.156, p < 0.001, d = 0.746)) and
database controls (M = 2325 ms, s.d. = 1031 ms; (121 = 4.208, p < 0.001, 4 = 0.759)), suggesting they may
have been less deliberative in their responses. However, there was no significant difference between
SRs and database controls (t123 = 0.469, p = 1.00, d = 0.084), indicating that this is unlikely to account for
the performance differences observed between SRs and the control groups in the preceding analyses.
Further supporting this interpretation, there were no significant correlations between participants’
response times and sensitivity scores within any group (SRs: (rg3 = —0.038, p = 0.765); prolific controls:
(r61 =0.166, p = 0.201) and database controls: (rgp = -0.048, p = 0.712)).
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2.2.2. Forced-choice training

With training, synthetic face detection accuracy was 64% (s.d. = 16%) for SRs and 51% (s.d. = 15%) for
prolific controls.

As participants’ decisional strategies could affect their accuracy, we analysed their sensitivity (d’;
figure 2a). With training, SRs (M = 0.738, s.d. = 0.570) were significantly more sensitive than prolific
controls (M = -0.066, s.d. = 0.504; (t144 = 7.527, p < 0.001, d = 1.247)). SRs’ sensitivity was significantly
above chance (t75 = 11.292, p < 0.001, d = 1.295), suggesting that the training procedure improved
synthetic face detection ability. The prolific controls’ sensitivity did not significantly differ from chance
(te9=1.092, p=0.279, d=0.131).

To investigate decisional strategies, we next analysed criterion (C; figure 2b). SRs (M =-0.023, s.d. =
0.328) and prolific controls (M = -0.004, s.d. = 0.303) adopted a similar criterion (f144 = 0.372, p = 0.710,
d = 0.062). With training, both groups adopted a criterion that did not significantly differ from zero
(SRs: (t75 =0.617, p = 0.539, d = 0.071); prolific controls: (g9 = 0.102, p = 0.919, d = 0.012)), suggesting the
absence of a systematic bias in responding.

Lastly, we analysed response times (figure 2c). Prolific controls (M = 2971 ms, s.d. = 1291 ms)
responded significantly faster than SRs (M = 4342 ms, s.d. = 1293 ms; (t144 = 6.432, p < 0.001, d = 1.066)).
A significant correlation between response times and sensitivity scores was found within prolific
controls (r79 = 0.321, p = 0.007), but not within SRs (17 = 0.110, p = 0.343).

2.2.3. No-training versus training

To directly compare the performance measures obtained on the no-training and training versions of the
task, we ran a 2 x 2 independent ANOVA with training (no training, training) and group (SR, prolific
control) as between-participant variables. We could not include database controls in this analysis, as
they did not complete the training version of the task.

For d’, there was a main effect of group (Fy,2¢6 = 73.741, p < 0.001, np* = 0.217), whereby SRs were
more sensitive than prolific controls. There was also a main effect of training (Fj 266 = 84.589, p < 0.001,
np* = 0.241), whereby trained participants exhibited superior sensitivity than non-trained participants.
There was no significant interaction between group and training (F1 266 = 1.335, p = 0.249, njp* = 0.005).

For C scores, there was no main effect of group (F1266 = 0.167, p = 0.683, np* = 0.001), suggesting
SRs and prolific controls generally exhibited similar decisional biases. However, there was a main
effect of training (F1 266 = 40.426, p < 0.001, 1jp* = 0.132), whereby trained participants were significantly
less likely to judge that a target face was real than non-trained participants. There was no significant
interaction between group and training (F1266 = 0.002, p = 0.962, 1p><0.001). Note that the effect of
training on criterion does not account for the effect of training on sensitivity —these are separable
constructs within signal detection theory.

For response times, there were main effects of group (F1266 = 54.527, p < 0.001, np* = 0.170), with SRs
tending to respond more slowly than prolific controls, and of training (Fq,2¢6 = 164.660, p < 0.001, np*
= 0.382), with trained participants responding more slowly than non-trained participants. A significant
interaction between group and training was observed (F1 266 = 8.432, p = 0.004, np* = 0.031), indicating
that training disproportionately slowed responses among SRs.

3. Experiment 2

We next investigated the discrimination of synthetic from real faces when two images were presented
simultaneously (one real, one synthetic) in a 2AFC procedure.

3.1. Methods

3.1.1. Participants

We recruited a new sample of SRs, prolific controls and database controls (table 2), using the same
criteria as experiment 1. We used the same power analysis as experiment 1 and aimed to recruit at
least 60 participants per condition; we succeeded in each condition aside from the database control
sample (for which we recruited 54 participants). The majority of participants self-identified as White
(SRs = 79.9%, prolific controls = 73.1%, database controls = 88.9%), followed by Black (SRs = 1.4%,
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prolific controls = 12.7%, database controls = 1.9%), Asian (SRs = 3.5%, prolific controls = 8.2%, database
controls = 5.6%) and mixed (SRs = 9.7%, prolific controls = 3%, database controls = 0%). A small
number of participants (SRs = 5.6%, prolific controls = 3%, database controls = 3.7%) selected “other” or
preferred not to disclose their ethnicity.

3.1.2. Design and procedure

Experiment 2 consisted of a 2AFC experiment, where two stimuli were randomly assigned to each side
of the screen per trial (one synthetic, one real), and participants were required to indicate which face
was ‘not real’. The synthetic and real face images presented on each trial were selected such that they
appeared to be the same gender and ethnicity. This 2AFC task is best considered as a discrimination
task, rather than a detection task (e.g. experiment 1), as observers were required to discriminate
between the two stimuli presented simultaneously. Performance on this task is unlikely to be driven
by decisional bias, as the signal is always present and observers are always indicating that one of the
images is ‘not real’. The training version of the task followed the same training procedure described
above.

3.1.3. Data analysis

Participants were included if they completed 3 out of 5 catch trials accurately. In the non-training task,
four SRs, six database controls and 10 prolific controls were excluded on this basis. In the training task,
seven SRs and 15 prolific controls were excluded on this basis. The participants described in table 2
are the final samples, after these exclusions had taken place. For ease of comparison with experiment
1, we also calculated sensitivity for the 2AFC task. The signal detection measures d' and C cannot
be calculated in the traditional way (as in experiment 1) for these data as each response is a single
response to two images; therefore, we cannot calculate hits and false alarms for synthetic faces or real
faces. Perceptual bias in this task is driven by observers preferring to select the image on one side of the
screen, so it is not related to discrimination criteria. Therefore, we calculated unbiased d' in MATLAB
using the Palamedes toolbox [47], this time directly from the percent correct accuracy scores.

3.2. Results

3.2.1. Two-alternative forced choice task

Accuracy on the task was low for all three groups: SRs = 54% (s.d. = 20%), prolific controls = 42% (s.d. =
15%) and database controls = 42% (s.d. = 11%), although somewhat higher than experiment 1.

We analysed participants’ sensitivity (d'; figure 3a) and found a significant difference in d' scores
between the groups (F 185 = 12.058, p < 0.001, np* = 0.115). SRs (M = 0.182, s.d. = 0.849) were signifi-
cantly more sensitive than both prolific controls (M = -0.317, s.d. = 0.614; (f133 = 3.873, p < 0.001, d =
0.669)) and database controls (M = -0.307, s.d. = 0.404; (t121 = 3.898, p < 0.001, d = 0.708)). No significant
difference was found between the control groups (f117 =0.097, p = 1.00, d = 0.018).

SRs’ sensitivity did not differ significantly from chance (43 = 1.776, p = 0.080, d = 0.214), indicating
that they were not reliably distinguishing synthetic from real faces. By contrast, the sensitivity scores
of both control groups fell significantly below chance—again, consistent with susceptibility to Al
hyperrealism (prolific controls: (t4 = 4.158, p < 0.001, d = 0.516); database controls: (t53 = 5.593, p < 0.001,
d=0.761)).

Next, we analysed response times (figure 3b). There was a significant difference between the groups
(Fp185 = 27.441, p < 0.001, np* = 0.229). Prolific controls (M = 2229 ms, s.d. = 944 ms) responded
significantly faster than both SRs (M = 3642 ms, s.d. = 1174 ms; (132 = 7.648, p < 0.001, d = 1.322)) and
database controls (M = 3287 ms, s.d. = 1293 ms; (t117 = 5.150, p < 0.001, 4 = 0.948)), suggesting they may
have been less deliberative in their responses. However, there was no significant difference between
SRs and database controls (t127 = 1.590, p = 0.228, d = 0.289), indicating that this is unlikely to account
for the performance differences observed between SRs and controls in the preceding analyses. There
were no significant correlations between participants’ response times and sensitivity scores within the
SR (19 = —0.133, p = 0.277) and prolific control groups (r¢5 = —0.124, p = 0.323); however, this correlation
was significant within database controls (r54 = 0.306, p = 0.025)).
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Figure 3. Sensitivity discriminating synthetic faces (a) and response times (b) for the 2AFC task and the 2AFC training task across the
five participant groups. Note that the no-training and training tasks were run on independent sets of participants. ***p < 0.001; **p
< 0.07; n.s. non-significant. Error bars: standard error of the mean; dashed line: chance performance.

3.2.2. Two-alternative forced choice training

With training, accuracy was 64% (s.d. = 17%) for SRs, and 48% (s.d. = 15%) for prolific controls.

We analysed participants” sensitivity (d’; figure 3a) and found that SRs (M = 0.576, s.d. = 0.692) were
significantly more sensitive than prolific controls (M = —0.092, s.d. = 0.560; (t142 = 6.333, p < 0.001, d =
1.056)). SRs’ sensitivity was significantly above chance (t74 =7.214, p <0.001, d = 0.833), whereas prolific
controls’ sensitivity did not significantly differ from chance (fgg =1.361, p =0.178, d = 0.164).

We then analysed response times (figure 3b). Prolific controls (M = 4129 ms, s.d. = 1509 ms)
responded significantly faster than SRs (M = 4867 ms, s.d. = 1432 ms; (t142 = 3.009, p = 0.003, d = 0.502)).
No significant correlation between response times and sensitivity scores was found within either group
(SRs: (r75 =-0.216, p = 0.063); prolific controls (rg9 = 0.050, p = 0.685).

3.2.3. No-training versus training

To directly compare the performance measures obtained on the no-training and training versions of the
task, we ran a 2 x 2 independent ANOVA with training (no training, training) and group (SR, prolific
control) as between-participant variables.

For sensitivity, there was a main effect of group (Fq74= 49.715, p < 0.001, np* = 0.154), whereby
SRs exhibited superior ability to discriminate synthetic faces from real faces than prolific controls.
There was also a main effect of training (F1274 = 14.029, p < 0.001, np* = 0.049), whereby trained
participants exhibited superior sensitivity than non-trained participants. There was no significant
interaction between group and training (Fy 274 = 1.051, p = 0.306, np” = 0.004).

For response times, there were main effects of group (Fy,274 = 48.009, p < 0.001, np* = 0.149), with SRs
tending to respond more slowly than prolific controls, and of training (Fq 274 = 101.434, p < 0.001, np*
= 0.270), with trained participants responding more slowly than non-trained participants. A significant
interaction between group and training was observed (F1 74 = 4.734, p = 0.030, np* = 0.017), indicating
that training disproportionately slowed responses among prolific controls.

4. Additional analyses
4.1. Effects of ethnicity

Although not a focus of the current experiment, our stimuli included faces that were both White and
non-White. Additional descriptive statistics, broken down by stimulus ethnicity, participant ethnicity
(defined as White and non-White), and task, are given in the electronic supplementary material, S2.
To summarize these descriptive statistics, the pattern of effects reported in the preceding analyses is
largely consistent. However, there was a general tendency for participants—regardless of their own
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reported ethnicity —to exhibit greater sensitivity at detecting synthetic faces when these identities were n

non-White compared to White. This is in line with previous findings [1].

4.2. Effects of low-level stimulus properties

As previously mentioned, we observed a difference between the stimuli in their level of saturation,
with real face images being more saturated than synthetic face images. To investigate whether
saturation level was related to participants’ accuracy, we conducted additional analyses (electronic
supplementary materials, S3). In brief, we found little evidence that the images’ saturation levels were
being used by some/all participants to complete the tasks.

4.3. Items analysis

To explore whether the observed training effects applied to a minority of images or were evident for
all synthetic images, we plotted the training effect on image accuracy (trained — untrained percent-
age accuracy rates) for SRs and prolific controls. Taking this approach meant that approximately 60
observations contributed to the mean accuracy of each item.

For the forced-choice task, we found that some images benefited more from training than others
(figure 4). Images that benefited from training were not necessarily the same in the SR and the prolific
control group. In both groups, the majority of images benefited from training by more than 10%
(SRs: 55 out of 80; prolific controls: 47 out of 80), and many benefited by more than 20% (SRs: 45
out of 80; prolific controls: 41 out of 80). For a small number of images (SRs: n = 3; prolific controls:
n =9), training decreased accuracy. To explore whether training effects were most likely driven by
non-White faces, we coded the effect of training depending on whether the synthetic face presented
was non-White or White, with no systematic differences being clear.

In the 2AFC task (figure 5), this measure is affected by the real face images in a way that is not the
case for the forced-choice task, as each trial contains both a synthetic and a real image. Images that
benefited from training were not necessarily the same in the SR and prolific control group, and some
images benefited more from training than others. In the SR group, around half of the images benefited
from training by more than 10% (40 out of 80), whereas only around a third of images benefited from
training by more than 10% in the prolific control group (30 out of 80). Training decreased accuracy for a
number of images (SRs: n = 20; prolific controls: n = 28) in the 2AFC task. Again, the training effect did
not appear to systematically affect White or non-White face images.

5. General discussion

We investigated SRs' and typical-ability control participants” ability to (i) detect and (ii) discriminate
synthetic faces from real faces. New samples of SRs and typical ability control participants were
then given a training task and completed the same detection and discrimination tasks. In the first
experiment, we used a task where participants were presented with only one face on each trial and
asked to detect whether it was ‘real’ or ‘not real’. In the second experiment, we used a discrimination
task, where both a real face and a synthetic face were simultaneously presented on each trial and
participants were asked to select which face was ‘not real’. In both tasks, SRs outperformed typical-
ability control participants, although the groups performed at and below chance, respectively. We
then introduced a training procedure to the start of both experiments and collected new samples
of participants. In this training procedure, we pointed out potential rendering artefacts and gave
trial-by-trial feedback on a block of trials. Trained SRs and controls had significantly better perform-
ance than those without training, and the magnitude of the training effect was similar in both groups.
In the non-training tasks, SRs” performance was around chance level; however, they performed
significantly better than control participants. Our control participants performed significantly below
chance, showing evidence of AI hyperrealism in their responses, where synthetic faces tended to be
perceived more real than real faces. Participants performed worse on our task compared to previous
studies (e.g. [20]), probably owing to differences in stimuli. We used the latest iteration of StyleGANS3,
whereas previous research used its predecessor StyleGAN2 (e.g. [3,14,20]). Consistent with this, the
Al hyperrealism effect was also larger in our study than others (e.g. [20]), and our SRs performed at
chance, whereas previous results have shown SRs’ performance to be better than chance [20]. This
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Figure 4. Training effect on image percentage accuracy for super-recognizers (a) and prolific controls (b) for White and non-White
faces. Synthetic face images are ordered by the magnitude of the training effect in super-recognizers.

indicates that developments in GANSs are predictably making synthetic faces look more realistic and
are therefore less easy to detect. As a research field, we must attempt to keep up with the develop-
ments in synthetic face generation by using the most up-to-date GAN face stimuli in our experiments.

Trained SRs performed better than chance, whereas trained control participants’ performance was
not significantly different from chance. As trained control participants” sensitivity was not significantly
below chance, our training eliminated the AI hyperrealism effect. The success of our training technique
relies on the presence of artefacts in the images. The majority of previous training studies using
synthetic faces have also relied on GAN artefacts (e.g. [3,14,15]). The need to detect image manipula-
tions is not unique to fully synthetic GANs. Morphed face images—where images of different people
are combined into a single image for the purpose of allowing multiple people to use the image in
formal documentation—are also important to detect. Previous attempts at training observers to detect
morphed face images have only succeeded when obvious image artefacts were present in the images.
Robertson et al. [48] did not remove artefacts such as blurred hair and jawlines and found that training
focused on identifying these artefacts improved detection. Conversely, Kramer ef al. [49] removed these
artefacts and focussed training on more subtle artefacts such as skin smoothness and did not find
a training effect. As GAN systems improve, the artefacts remaining in images are likely to become
increasingly less obvious; therefore, training effects may become smaller. Our research suggests that
training SRs to identify synthetic faces could help overcome this issue.

Overall, SRs were better at the tasks than typical-ability participants, but the typical-ability
participants were at chance at best. SRs outperform typical ability control participants on a range
of different face tasks [28,30,32-35], and also non-face tasks [28,29], suggesting that they have better
perceptual abilities across domains. SRs may process local information differently from controls [50],
whilst evidence suggests that they use faces” spatial frequency information similarly to controls, albeit
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Figure 5. Training effect on image percentage accuracy for super-recognizers (a) and prolific controls (b) for White and non-White
faces. Synthetic face images are ordered by the magnitude of the training effect in super-recognizers.

more consistently [51]. It is possible that without training, SRs are better than controls at detecting
GAN rendering artefacts. However, we think this is an unlikely mechanism of the group effect, as our
training procedure, which was specifically targeted at identifying GAN face rendering artefacts, had
a similar impact on SRs” and controls’ performance. If SRs were already attuned to these rendering
artefacts, we would have expected the training effect to be smaller in SRs than controls. An alternative
possibility is that SRs use other aspects of their face perception abilities to detect synthetic faces.
Interestingly, Dunn ef al. [20] found that SRs were less likely to use familiarity and memorability to
drive their judgements than control participants and were thus less likely to be misled by these cues.
This suggests that SRs are naturally using different face-related cues than controls to detect synthetic
faces, but both groups’ abilities can be enhanced with specific training that targets a different set of
detection cues (e.g. rendering artefacts). The finding that SRs” ability can be enhanced with training is
positive, as it suggests that we can combine training with ability to improve synthetic face detection.

We found similar effects in both tasks, despite them requiring different decisions. In the training
tasks, both versions were preceded by training that was in the format of a forced-choice task. As the
training for both the forced-choice and the 2AFC task worked well, this shows that our training can
be generalized to different task designs. We also found that the training effect tended to be evident for
the majority of synthetic images, rather than just a small selection of the images with more obvious
artefacts. Recently, a study has developed a training procedure that has a large effect size on synthetic
face detection in typical ability groups, with the training effect lasting at least 20 days [16]. Future
experiments could further elucidate and target the most effective aspects of training for SRs and test
the extent to which the training generalizes to different tasks and is maintained over time.

An interesting pattern in the data was that SRs took longer to respond on the tasks than prolific
controls, as in most research, SRs have tended to provide faster and more accurate responses than
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controls (e.g. [27]). In addition, previous research on deepfake detection found that accuracy and
response times were negatively associated, such that an increase in response times was associated
with a decreased likelihood of making a correct response [37]. One might assume that SRs’ superior
synthetic face detection and discrimination were therefore driven by general factors such as greater
conscientiousness, deliberation, or scrutinization of the target faces, rather than their superior face
processing abilities. However, two aspects of our data challenge this interpretation. First, while SRs’
reaction times differed significantly from the prolific control group, they did not differ from the
database control group—despite SRs outperforming both control groups on the tasks in terms of
accuracy and sensitivity. Moreover, prolific controls and database controls achieved comparable levels
of performance despite varying significantly in response speed. This makes it difficult to argue that
slower responses alone explain SRs' performance advantage. Second, correlations between response
times and sensitivity were generally not significant within each of the participant groups and for
either task format. This suggests that prolonged response time was not reliably associated with better
synthetic face detection/discrimination and thus cannot explain the group differences in performance
observed.

Our SRs were recruited based on their scores on at least three objective face recognition tests, where
they were required to be at least 2 s.d. above the mean on three of the tests, and at least 1.5 s.d.
above the mean on a fourth test, if they had completed a fourth test. All had completed the CFMT+
[24], and the GFMT [39]; most had also completed the KFMT [40] and the AFMT [41]. While some
previous research has used performance on one test [25,28] to screen SRs, newer recommendations
suggest superior performance should be demonstrated on at least two out of three face processing
tasks [52]. The CEMT+ is recommended [52,53], as is the cut-off of 2 s.d. above the mean [53]. We used
the GFMT, which tends to have ceiling effects [54], and is now not recommended for SR screening
[52,53]. Where we have scores on additional tests (including the more sensitive GFMT?2 [54]), we have
included these in our data repository. The trained SRs tended to have slightly (but significantly) lower
scores on some of the face processing screening tests than the non-trained SRs. This supports that our
training was effective, as the results cannot be attributed to better face recognition ability in the trained
SR groups. We believe that had our screening procedure been more conservative, we may have found
larger effects between SRs and typical ability control participants.

Our stimuli were composed of faces from different ethnicities. This was purposeful, as we wanted
to portray a realistic face-diet. We did not set out to systematically investigate demographic effects
in our experiments. However, individuals’ ability to recognize faces can be impacted by ethnicity,
such that own-ethnicity faces are better recognized than faces from 'other’ ethnicities [55-57]. In
addition, synthetic faces have tended to be trained primarily on White faces, such that their rendering
of non-White faces may be less likely to be perceived as realistic [1]. Descriptive statistics for the
different participant ethnicity groups (White, non-White) and stimulus ethnicity (White, non-White)
are provided in the electronic supplementary material. There is some suggestion from these that
non-White synthetic faces may have been easier to detect and discriminate than White faces, as
indicated by previous research [1]. Our inclusion of non-White faces could therefore have made our
tasks easier than tasks that have only used White faces (e.g. [1,20]), making the fact that our tasks were
more difficult than these studies particularly striking.

In the future, our brief and easily implementable training procedure could be combined with
another intervention or effect, such as wisdom of the crowds [17-19], to further improve SRs’ perform-
ance. As previously noted, our training cannot be considered a lasting intervention, as we have not
yet completed a follow-up; this will be an important next step. An exciting and currently unexplored
possibility is using trained SRs to interpret the output from Al detection algorithms, which could have
a large impact on real-world synthetic face detection scenarios. For example, to best detect synthetic
faces, it may be possible to use Al detection algorithms with a human-in-the-loop approach — where
that human is a trained SR.

In conclusion, we found that detecting and discriminating synthetic faces is an extremely difficult
task, for which typical-ability participants perceive synthetic faces as more real than real faces. SRs
consistently outperformed typical-ability participants, where without training they were less suscepti-
ble to this Al hyperrealism effect. A training and feedback procedure was able to increase performance
to a similar extent for both SRs and typical-ability participants. Our results suggest that SRs are using
cues unrelated to rendering artefacts to detect synthetic faces. The performance of trained SRs could be
harnessed for real-world applications, such as online identity verification.
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