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Abstract
Phosphoinositides are a group of interconvertible lipids that are located in the mem-
brane of eukaryotic cells. They turnover via complex network of reactions (called the
phosphoinositide pathway) that respond rapidly to regulate many aspects of a cell’s
response to their environment. Given their low-abundance they are difficult to charac-
terise experimentally. Here we utilise a new experimental method to generate an unusu-
ally large dataset that characterises the time-dependent changes in five membrane
bound phospoinositides and a soluble inositide in platelet, downstream of its GPVI recep-
tor, where we know the phosphoinositide pathway is particularly active. To shed light on
regulatotory steps that are often opaque to experimentation we use this data within a
mathematical and computational framework. We construct and assess eleven mathe-
matical models that represent competing interpretations of the dominant mechanisms
that regulate the pathway. We find that while four of the models can generate the avail-
able data only one model, that incorporates an additional pool of PtdIns, is consistent
with the data and is able to successfully predict the effects of an inhibitor. We publish all
models openly in a form that is easily usable and adaptable for other researchers to use
alongside our or their own data. We studied how changes in the shape and magnitude
of events that stimulate the phosphoinositide pathway affect its dynamics. Despite these
perturbations, the abundance of Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)
remained stable, consistent with findings reported in the literature.
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Author summary
Cells use signalling molecules called phosphoinositides to control essential func-
tions like movement, shape, and communication. These molecules are present in
very small amounts and change rapidly, making them difficult to study. Here, we
focused on platelets, blood cells where phosphoinositide signalling is especially active,
using data generated by a new experimental method that describes how six different
phosphoinositides change over time after stimulation.
To interpret this complex data, we built and tested eleven mathematical models that rep-
resent different ideas about how the phosphoinositide pathway is regulated. Most models
could reproduce the data, but only one — featuring a secondary pool of a key molecule
(PtdIns) — made accurate predictions, including responses to a known inhibitor. This
model suggests that internal buffering slows down precursor availability, helping to keep
the system stable.
We also found that levels of PtdIns(4,5)P2, a critical signalling molecule, remained stable
even when stimulation was reduced, highlighting the pathway’s resilience. Our models
simplify many aspects of biology but still offer useful insights into how phosphoinositide
levels are controlled.
All our models and code are freely available, allowing other researchers to reuse, adapt,
and extend them. This work is a step toward better understanding a key signalling system
in health and disease.
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1. Introduction
Inositol phosphoinositides (PPIs) and their metabolites form a finely tuned network of lipids
(depicted in Fig 1) that coordinate many cellular responses in eukaryotic cells, such as cellu-
lar signalling, membrane dynamics, and trafficking [1–3]. The membrane bound phospho-
inositides comprise a distinct family of eight interconvertible phospholipid subclasses. Their
generation is mediated by phosphorylation and dephosphorylation of phosphatidylinosi-
tol (PtdIns), which is composed of an inositol head group attached to a glycerol backbone,
and two fatty acyl chains that allows it to anchor to cellular membranes. The inositol head
group can be phosphorylated at three different positions (numbered 3, 4, and 5), producing
the seven additional phosphoinositides: the phosphatidylinositol monophosphates (PtdIns3P,
PtdIns4P, and PtdIns5P), bisphosphates (PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2), and
a trisphosphate (PtdIns(3,4,5)P3) [3]. The sequential interconversion and regulation of the
eight phosphoinositides is commonly termed the phosphoinositide pathway, the shift in avail-
ability of each species in time and space being controlled via a host of lipid kinases and phos-
phatases that add or remove the phosphate groups. The soluble inositol phosphates are located
in a cells cytosol and contain only the insositol ring phosphorylated with one or more phos-
phates in various combinations. Among these inositides IP3 is the most well studied, it is the
cytosolic product of receptor-stimulated hydrolysis of the membrane bound phosphoinosi-
tide PtdIns(4,5)P2 and it mediates Ca2+ release. It can be phosphorylated to higher or lower
phosphorylated inositiols, the lower forms eventually being recycled back to the membrane as
PtdIns to participate again in phosphoinositide turnover at the membrane.

Mathematical models have long been used to investigate such dynamical systems as the
phosphoinositide and inositol pathways, helping researchers to test hypothesis against exper-
imental data, systematically analyse perturbations and disruptions and help guide further
experimental design. Given the ubiquitous role of these lipids in subcellular processes it is
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Fig 1. A simplified depiction of the phosphoinositide and inositol pathways.The phosphoinositide species are shown in purple, the
inositides in green. Phosphatidylinositol (PtdIns) is shown with the 3’,4’ and 5’ -hydroxy groups indicated, the suffix indicating the total
number. Addition and removal of these phosphate groups at these three positions (by kinases and phosphatases) creates seven further
phosphoinositide species. The metabolism of inositol phosphate molecules are shown starting with Ins(1,4,5)P3 (IP3) formation via the
hydrolysis of PtdIns(4,5)P2 by phospholipase C (the stimulus) that also produces membrane bound diacylglycerol (DAG). IP3 is broken
down into lower inositol phosphates that are eventually recycled to the membrane via interactions with products generated from DAG,
such as phosphatidic acid (PA). Arrows indicate phosphorylation, dephosphorylation or hydrolysis.

https://doi.org/10.1371/journal.pcbi.1013477.g001

unsurprising that they are included, often in reduced subsets, in numerous mathematical
models that capture subcellular processes (for example [4–8]). The isolation, identification
and quantification of phosphoinositides are challenging because of their low abundance, their
amphipathic nature, with two hydrophobic acyl chains and a negatively charged hydrophilic
isositol phosphate headgroup [1,9]. Therefore, up until recently, experimental data charac-
terising the changes in phosphoinositide and inositol pathways have been difficult to obtain.
This has meant that mathematical models that include PPIs have yet to be compared to large
dynamic datasets, instead they have been validated to data that is at steady state, lacking
dynamic changes, or is inconsistent, being from many cell types. Of the mathematical mod-
els constructed that include many details of the phosphoinositide and inositol pathways, per-
haps Olivença et al [10] is the most comprehensive. They focussed on the phosphoinositides
and their inter-converting enzymes, adjusting parameter values from literature so that out-
puts agreed with experimental data describing the steady state values that had been collated
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from many sources (and cell types). Hille and coworkers [11–13] focused on utilising vari-
ous models that capture the key steps in G protein–coupled receptors mediated hydrolysis and
resynthesis of phosphoinositides to interpret their experimental results generated by Fluo-
rescence Resonance Energy Transfer (FRET), their findings include insight into the robust-
ness of PtdIns(3,5)P2 concentrations in response to receptor activation. Suratekar et al [14]
constructed models capturing the network underlying synthesis of PtdIns(3,5)P2. They com-
pared outputs to their own mass spectrometry data that describes lipid ratios in wild-type
and mutant flies, alongside data from other sources. The models supported a scenario where
the network supporting PtdIns(3,5)P2 synthesis is not closed but includes at least one source
and sink. Work by Mazet et al [15] involved the construction of models of key components
of the phosphoinositide pathway downstream of platelet thrombin and ADP receptors. While
compared to time-dependent data from platelets, the predictions used reactions rates gleaned
from multiple literature sources under differing experimental conditions.

Here we wanted to construct a comprehensive model of the phosphoinositide pathway,
validated against a single, consistent and comprehensive dataset, that could be used as a for-
mal representation of the current understanding of how the phosphoinositide pathway func-
tions. This is in the expectation that the model can be used and adapted by researchers, modi-
fying to their own experimental setups and cell types as knowledge and data evolve. We focus
on the pathway as it occurs within platelets, downstream of one of its principal receptors,
glycoprotein VI (GPVI).

Platelets are small anuclear blood cells that are of great importance in haemostasis, their
activation and subsequent aggregation into platelet plugs underlie blood clots that stop bleed-
ing. But, blood clots formed inappropriately also play a critical role in coronary artery dis-
eases and platelets contribute to many other physiological processes including inflammation,
wound healing and antimicrobial host defence. A platelet’s lack of a nucleus (removing the
complexities of gene transcription and translation) make them an ideal focus for mathemat-
ical models of subcellular interactions [16]. The phosphoinositide pathway is known to be
highly active in platelets [17,18]. Its central role in platelet activation being consistent with
mutations in the enzymes responsible for their synthesis and degradation having been linked
to a variety of diseases and phosphoinositide 3-kinase inhibitors having been proposed as
novel antiplatelet agents to prevent thrombotic events in stroke and cardiovascular diseases
[19]. The evidence of the importance of the phosphoinositides to a platelet’s response has
spurred the development of methods capable of measuring changes in these low-abundant
lipids [9]. Here, we take advantage of this by developing models of the phosphoinositide path-
way and inferring and validating the models against experimental data collected under this
new workflow. The dataset is unusual not only in its consistency, describing the changes in
lipids within this single cell type under consistent experimental conditions, but also in its den-
sity, capturing the dynamic changes (measured at seven individual time-points) in five phos-
phoinositides and an inositide. With the aim of increasing understanding of the mechanisms
that dominate the regulation of the phosphoinositide pathway in platelets eleven alternative
models were constructed, each including differing methods of regulation. The models were
systematically inferred from, and compared to, the experimental data using a computational
framework that allows for the comprehensive testing of beliefs in the evidence of data. It pro-
vides, over other techniques such as genetic algorithms and simulated annealing, the estima-
tion of kinetic parameters (rather than reliance on single point values from literature) and
information on uncertainties both in the parameter values and in model predictions. Mod-
els able to replicate the experimental dataset were checked for their ability to constrain rates
of reactions, make biologically feasible predictions for experimentally opaque components
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before being validated against additional data describing the effect of an phosphatidylinosi-
tol 4-kinase inhibitor with further investigations predicting the effect of varying the shape and
magnitude of stimulating events.

The structure of this work is as follows. In Sect 2 we describe the methods used to collect
the data, the development of the eleven mathematical models and the computational frame-
work used to integrate the models to the experimental data. In Sect 3 we discuss the results,
reporting on the data, which models are able to generate it and why. We then validate the
models against a new dataset generated under the effect of an inhibitor and predict the effects
of changes in the signalling events that trigger changes in the pathway. We conclude in Sect
4 with a discussion. To facilitate use of the models by researchers who may be unfamiliar
with mathematical techniques publicly available code to run the models in the format of R
notebooks is available.

2. Methods and model
2.1. Experimental data
The experimental data describes the changes within human platelets downstream of the prin-
cipal collagen receptor GPVI. The data is time-dependent, characterising the levels of one sol-
uble inositide (IP1) and five of the eight phosphoinositides (PtdIns, PtdIns4P, PtdIns(4,5)P2,
PtdIns(3,4,5)P3 and PtdIns(3,4)P2), these being the most abundant and easiest to detect. This
initial dataset is supplemented with data characterising the surrounding signalling events
that stimulate changes in the phosphoinositides. A second, smaller dataset is then generated,
under the effect of an inhibitor, and used for model validation.

The phosphoinositides were measured via a newly developed method that utilises a quan-
titative targeted ion chromatography-mass spectrometry-based workflow, described in [9],
that separates phosphoinositide isomers and increases the quantitative accuracy of measured
phosphoinositides. In summary washed platelets from healthy donors were pretreated with
apyrase and indomethacin, and subsequently stimulated with CRP. High concentrations of
collagen related peptide (CRP, Cambcol Laboratories), at 30μg/mL, was used to improve the
detection of the low abundance phosphoinositides, especially PtdIns(3,4,5)P3. Stimulation
was stopped at specified time points (0,30,60,90,120,180 and 600s), with ice cold 1M HCI
[20] and the samples were analysed and quantified using ion chromatography tandem mass
spectrometry system.

To characterise changes in the inositol 1-phosphate washed platelets (at 8 × 108 cells/mL)
were pre-treated for 10 min with vehicle and measured using IP-ONE ELISA (Cisbo) in the
presence of apyrase (2.5 U/mL), indomethacin (20 𝜇M) and 50 mM LiCl. The concentration
of platelets, inhibitors and LiCl was based on similar studies and manufacturer’s instructions.
[21,22].

Stimulation of a platelet through the GPVI receptor initiates many downstream signalling
events that predominantly stimulate the phosphoinositide network through Phospholi-
pase C (PLC𝛾2), which acts preferentially on the polar head group of the phosphoinosi-
tide PtdIns(4,5)P2 to generate the soluble inositol IP3, and phosphatidylinositol 3-kinase
(PI3K) which catalyses PtdIns(4,5)P2 to PtdIns(3,4,5)P3. To characterise these stimulating
events time-courses of phosphorylation of Spleen tyrosine kinase (Syk), the adaptor pro-
tein linker for activation of T cells (LAT), at Y200, Bruton’s tyrosine kinase (Btk) and PLC𝛾2
(Y1217) were measured, the phosphorylation of LAT being chosen as a proxy for PI3K which
it recruits and activates [23]. In summary, washed platelets (at 4 × 108 cells) were stimulated
with 30μg/mL CRP in the presence of 9μM eptifibatide, and were lysed at the stated time
after the addition of CRP. The cell lysates were probed against phospho-specific antibodies
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to determine the extent of tyrosine phosphorylation. The addition of eptifibatide prevented
the interference of integrin 𝛼IIb𝛽3 outside-in signalling, which acts through Syk, and hence
prevented platelet aggregation under the stirring conditions [24].

Similar experiments to these conducted above where carried out to determine the effect of
1 𝜇MGSK-A1 on CRP-induced accumulation of IP1 and the phosphoinositides PtdIns4P and
PtdIns(4,5)P2.

2.2. Model development
The first step in the modelling process is to organise the key components and known inter-
actions into a network diagram. We start by refining the steps presented in Fig 1, excluding
parallel pathways (such as the resynthesis of DAG) and intermediate steps for which we have
no experimental data. We aim to simulate the time-dependent changes of the PPIs and their
metabolites within a single platelet, matching the spatially averaged experimental data. We
ignore regulation of the pathway via spatial effects and the phosphoinositide kinases and
phosphatases that add and remove phosphate groups, investigating their effects with later
model modifications. There are eight phosphoinositides, we have experimental data describ-
ing the dynamics for five of these, and include these in the model. The remaining three inter-
converted low abundance species (PtdIns5P, PtdIns(3,5)P2 and PtdIns3P) for which we have
no data are captured by a single variable (Pp). In platelets, signal transduction through the
GPVI receptor leads the activation of the protein Syk, the formation of a signalosome cen-
tred around the transmembrane adaptor protein LAT, and the recruitment of PI3K and Btk
[25]. The latter proteins play a role in facilitating PLC𝛾2 activation that leads to the cleavage
of PtdIns(4,5)P2 in to the second messengers diacylglycerol (1,2-DAG) and the Inositol 1,4,5-
triphosphate (IP3), PI3k also phosphorylates PtdIns(4,5)P2, generating PtdIns(3,4,5)P3 [23].
Because of its central role in signal transduction, PtdIns(3,4,5)P3 is generated exclusively by
PI3K-mediated phosphorylation of PtdIns(4,5)P2 and cannot be formed from PtdIns(3,5)P2
or PtdIns(3,4)P2. We neglect these upstream signalling events and instead model stimulus
through these proteins with a function (s(t)) that captures the qualitative form of data show-
ing phosphorylation of Syk, LAT, Btk and PLC𝛾2 (see Fig A in S1 Text). The generation of
IP3 has a direct influence on Ca2+ flux and its inositol derivatives (including IP1), which are
recycled, forming PI before being re-incorporated into the plasma membrane. In our model
we include a valid but simple form of inositol metabolism, capturing IP3, neglecting its slow
metabolism to higher forms but including its faster conversion to IP1 (for which we have
data), which is a subsidiary step (with variable Ip) that precedes the return to PI. This simplis-
tic view of the phosphoinositide pathway, that we hereafter call A0, is depicted in Fig 2 (top
panel), a summary of the model variables is given in Table 1 and the parameters in Table 2.
The model, described by the following equations, uses ordinary differential equations of sec-
ond order and relies on mass action kinetics due to its mechanistic simplicity and general-
ity, avoiding Michaelis-Menten, power-law, or S-system formulations that require additional
assumptions or parameters not accessible by available data, a useful review of alternative
approaches is given by Voit [26].

d[PI]
dt
= 𝜃2 [Ip] – r1 [PI] + r–1[PI4P] – 𝜃3 [PI] + 𝜃–3 [Pp], (1a)

d[PI4P]
dt

= r1 [PI] – r–1[PI4P] – r2 [PI4P] + r–2 [PIP2], (1b)

d[PIP2]
dt

= r2 [PI4P] – r–2 [PIP2] – s2s(t) [PIP2] + s–2 [PIP3] – s1s(t) [PIP2] + 𝜃5[Pp] – 𝜃–5 [PIP2],
(1c)
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Fig 2. A schematic of the reactions captured in the original model (named A0) of the phosphoinositide pathway (top) and modi-
fications (bottom) which are summarised in Table 3. Boxes indicate the phosphoinositides and inositols included in the models, the
corresponding model variables being shown in brackets. Arrows connecting boxes represent conversion from one species to another,
arrows directed at lines represent processes that promote a reaction with those in green depicting promotion of the pathway by surround-
ing signalling events captured in s(t). Model names and arrows shown in red are reactions introduced in the modification (marked
alongside). The broken line represents a reaction that is removed in model A03. Dimensional parameters associated with particu-
lar processes are placed next to the relevant arrows. These are described in Table 2 and the model variables in Table 1. Created with
BioRender.com.

https://doi.org/10.1371/journal.pcbi.1013477.g002
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Table 1. Variable names used in the mathematical models. With descriptions of their biological counterpart,
initial conditions (copy numbers) and their source. All units are molecules platelet–1. Additional variables [PIc],
[PIP2b] and [PIP3b] are included in models A03, A05 and A04 respectively. In model A03 the initial condition
for PtdIns is assumed to be split evenly between PI and newly introduced [PIc]. In model A05 the initial condition
for PtdIns(4,5)P2 is assumed to be split evenly between [PIP2] and [PIP2b]. In model A04 the initial condition for
[PIP3b] is set to zero.
Variable Description Initial conditions Source
[PI] PtdIns 2,700,000 In house and [27]
[PI4P] PtdIns4P 64,000 In house
[PIP2] PtdIns(4,5)P2 310,000 In house
[PIP3] PtdIns(3,4,5)P3 1,900 In house
[PI34P2] PtdIns(3,4)P2 5,200 In house
[Pp] Pool of unmeasured phosphoinositides 25,000 [28], [29]
[IP3] Inositol trisphosphate 0 In house
[IP] pool of unmeasured Inositol 100,000,000 [30]
[IP1] Inositol phosphate 0 In house

https://doi.org/10.1371/journal.pcbi.1013477.t001

Table 2. Parameter descriptions. All models use the first seventeen parameters, except model A03 where param-
eter 𝜃2 represents the reaction [PIc]→ [PI], the final eight parameters placed after the break (𝜃6 through to 𝜃–2)
are introduced in the model indicated in brackets alongside the relevant reactions. All units are sec–1 except where
indicated by asterisks. r1, r–1, r2 and 𝜃4 has units sec–1 in all models except for A06, A07, A02 and A08 respectively
where units are molecules platelet–1 sec–1. Parameter s–5 is introduced in model A5 and parameter 𝜃–2 in model A10
where their units are molecules platelet–1 sec–1. A graphical depiction of the interactions that these parameters govern
is given in Fig 2.
parameter reaction parameter reaction
r1 (*) [PI]→ [PI4P] 𝜃–5 [PIP2]→ Pp
r–1 (*) [PI4P]→ [PI] s1 [PIP2]→ [IP3]
r2 (*) [PI4P]→ [PIP2] s2 [PIP2]→ [PIP3]
r–2 [PIP2]→ [PI4P] s–2 [PIP3]→ [PIP2]
r3 [IP1]→ [Ip]
r4 [PIP3]→ [PI34P2] 𝜃6 [Ip]→ [PIc] (A03)
𝜃1 [IP3]→ [IP1] 𝜃–6 [PIc]→ [Ip] (A03)
𝜃2 [IP1]→ [PI] s4 [PIP3]→ [PIP3b] (A4)
𝜃3 [PI]→ [Pp] s–4 [PIP3b]→ [PIP3] (A4)
𝜃–3 [Pp]→ [PI] s5 [PIP2]→ [PIP2b] (A5)
𝜃4 (*) [Pp]→ [PI34P2] s–5 (*) [PIP2b]→ [PIP2] (A5)
𝜃–4 [PI34P2]→ [Pp] r6 [PI4P]→ [PI34P2] (A9)
𝜃5 [Pp]→ [PIP2] 𝜃–2 (*) [PI]→ [Ip] (A10)

https://doi.org/10.1371/journal.pcbi.1013477.t002

d[PIP3]
dt

= s2s(t) [PIP2] – s–2 [PIP3] – r4 [PIP3], (1d)

d[PI34P2]
dt

= r4 [PIP3] + 𝜃4[Pp] – 𝜃–4 [PI34P2], (1e)

d[Pp]
dt
= 𝜃3 [PI] – 𝜃–3 [Pp] – 𝜃5[Pp] + 𝜃–5 [PIP2] – 𝜃4[Pp] + 𝜃–4 [PI34P2], (1f)

d[IP3]
dt

= s1 s(t) [PIP2] – 𝜃1 [IP3], (1g)

d[IP1]
dt

= 𝜃1 [IP3] – r3[IP1], (1h)

d[Ip]
dt
= r3[IP1] – 𝜃2 [Ip]. (1i)
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This is a conserved system where

s(t) = (a1t exp(–a2t2) + a3 tanh(a4t)) (2)

captures the time-dependent dynamics of upstream events. The parameters of s(t) are adjusted
to capture the qualitative shape of phosphorylation following stimulation with CRP (see Fig
A in S1 Text for details). The parameters of this function can be adjusted so that model sim-
ulations can be generated under different forms of stimulation of the pathway, such as the
changes to the magnitude and shape that are investigated in Sect 3.5.

Based on literature we produce a list of alternate biological hypotheses that capture differ-
ent modes of regulation of the phosphoinositide pathway, some of these describe regulation
of the pathway via the action of phosphoinsitide kinases or phosphatases while others attempt
to introduce means of sequestration or spatial effects. These hypotheses are labelled A01-10,
they are depicted graphically in Fig 2 (bottom panel) and are described in detail in Table 3.
The full equations for the alternative models are provided in S1 Text (Sect S1).

2.3. Connecting models and data
We are interested in which of the competing hypotheses are important in explaining the
experimental data. To test this we use a hybrid approach as described previously [16]. Param-
eter values for the rate of IP1 accumulation from IP3 and its transfer to IP are available from
literature [48,49], allowing us to set 𝜃1 ∼ 0.04 and r3 ∼ 0.0002 sec–1. Prior parameter ranges
for all other parameters were set to cover biologically feasible values (10–4–102). From these
wide ranges parameter values are drawn randomly via a Latin Hypercube and passed to a con-
strained local optimisation routine (MATLAB’s fmincon) that varies all unknown parameters
to minimise the differences between the model structures and experimental data via the cost
function

Sum Squared due to Error (SSE) = (yji(𝜃) – Data
j
i)

2
(3)

where yji(𝜃) is the model’s prediction for the relevant model variable j at time points i (which
depends on the parameters 𝜃) and Dataji represents the respective experimental observa-
tions. This cost function allows us to define each models ability to fit the data where we miti-
gate against a more complex model, with more parameters, being able to better fit the data by
using Akaike Information Criteria (AICc).

AICc =AIC +
2K(K + 1)
n – K – 1

where AIC = n(ln(SSE/n)) + 2K, (4)

where K is the number of parameters and n the number of observations. This modified cri-
terion taking into account the experimental sample size by increasing the relative penalty
for model complexity with small datasets. The value of AICc has no meaning in isolation,
its relevance only becoming apparent when it is used to compare (and rank) models fitted to
the same experimental data [50]. Parameter values that enable the model to ’best’ describe
the experimental data are saved, the process being repeated 20,000 times for each model.
The numerical simulations generated from these parameter values are then compared to
assess if they produce biologically consistent and feasible predictions. The ranges of the best-
fitting parameter values provide insight into the mechanisms that enable a particular model to
describe the data better than alternative models.
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Table 3. Summary of modifications to the model A0. These are depicted in Fig 2, bottom panel. Full equations
detailing all modifications are given in S1 Text. UOM - unit of measure (see Table 2 for their values); PM - plasma
membrane; PH - pleckstrin homology.
Model Description
A01 The role of SHIP1/2 in promoting the conversion of PtdIns(3,4,5)P3 ([PIP3]) to PtdIns(3,4)P2

([PI34P2]). Activation of platelets with thrombin has been shown to lead to the translocation of
SHIP1/2 to the actin cytoskeleton where they promote the dephosphorylation of PtdIns(3,4,5)P3 to
PtdIns(3,4)P2, this being supported by evidence from SHIP-1 knockouts where thrombin activation
leads to the accumulation of PtdIns(3,4,5)P3, and reduced production of PtdIns(3,4)P2 [31]. SHIP-1
phosphorylation has been shown to occur rapidly in platelets after stimulation with CRP [32]. Imple-
mentation introduces no new parameters. Stimulation (through the function s(t)) now promotes r4. Eqs
(1d,1e)

A02 The role of PKC and Rac1 in regulation of the synthesis of PtdIns4P. Activation of protein kinase
C by Ca2+ has previously been shown to lead to the phosphorylation and activation of Rac1, a small
GTPase, which in turn translocates the kinase PIP5K to the actin cytoskeleton where it can promote
phosphorylation of PtdIns4P to PtdIns(4,5)P2 [33]. No new parameters are required to implement this
modification. Variable [IP3] is used as a surrogate for Ca2+ and Rac1 activation, where it now promotes
r2 (UOM adjusted). Eqs (1b,1c)

A03 The spatial distribution PtdIns (PI). PI, the precursor of phosphoinositides, is thought to be synthe-
sized primarily in the inner membrane of the endoplasmic reticulum (the dense tubular system (DTS)
in platelets) [34,35]. This precursor of the other phosphoinositides is then thought to be delivered to
other membranes either by vesicular transport or via cytosolic PI transfer proteins, with PI transfer
proteins (PITP) having been shown to facilitate the transfer of PI from one membrane to another in
platelets [36]. Implementation introduces 1 new variable [PIc], that represents PI in the DTS, and 2 new
parameters (𝜃6, 𝜃–6). Eqs (1a,1i)

A04 The stabilisation of PtdIns(3,4,5)P3 through PH binding domains. PtdIns(3,4,5)P3 regulates an array
of PH domain-containing proteins, including bruton tyrosine kinase (Btk) which plays a role in platelet
activation through GPVI [37–39]. We hypothesize that the binding of Btk to PtdIns(3,4,5)P3 may dis-
rupt PtdIns(3,4,5)P3 synthesis [39]. Implementation introduces 1 new variable [PIP3b] representing
PtdIns(3,4,5)P3 bound to Btk and 2 new parameters (s4, s–4), the stimulus promotes s4. Eq (1d)

A05 The binding and sequestration of PtdIns(4,5)P2.Myristoylated alanine-rich C kinase substrate (MAR-
CKS) is known to attach to the plasma membrane of quiescent cells where it protects and sequesters
PtdIns(4,5)P2 until cytosolic calcium increases lead to MARCKS shape change and the release of
PtdIns(4,5)P2 [40,41]. Implementation introduces 1 new variable [PIP2b] representing MARCKS bound
[PIP2] and 2 new parameters (s5,s–5), using variable [IP3] as a surrogate for Ca2+ which promotes s–5.
Eq (1c)

A06 PtdIns4P kinase regulation.Membrane contact sites (MSCs) are formed by Ca2+ recruitment of pro-
teins such as E-Syts, ORPs, bringing the plasma membrane and inner membrane close together [35].
Once formed PIP lipid transfer proteins and PIP kinase/phosphatase are in close proximity, which we
hypothesise fuels the resynthesis of PtdIns4P from PtdIns to enable replenishment of PtdIns(4,5)P2.
Implementation uses [IP3] as a surrogate for Ca2+ and the recruitment of proteins that promote r1
(UOM adjusted). No new parameters.

A07 The ability of Osh proteins to promote dephosphorylate of PtdIns4P.The oxysterol-binding homol-
ogy (Osh) proteins, which localize to the PM dependent upon PtdIns4P levels, has been shown
to regulate the activity of Sac1, a phosphatase that can dephosphorylate PtdIns4P back to PI [42].
Implementation allows [PI4P] to promote r–1 (UOM change).

A08 The role of Ptdlns 4-kinase. An enzyme which phosphorylates PtdIns3P to PtdIns(3,4)P2 has been
found in platelets [43]. Subsequently PtdIns(4,5)P2 has been shown to inhibit the activity of this kinase
(by approximately 50%) [44]. Noting that PtdIns3P is incorporated into the variable Pp implementation
introduces no new parameters, instead [PIP2] increases [Pp]→ [PI34P2] (UOM change to 𝜃4). Eqs
(1e,1f)

A09 Inclusion of synthesis of PI(3,4)P2 from PtdIns4P.The synthesis of PI(3,4)P2 from PtdIns4P was
included in a previous model of the phosphoinositide pathway [10] and the kinase PIK3C2A that has
been shown to catalyse this reaction is known to exist in platelets [45]. 1 new parameter (r6) to represent
the rate of transfer from [PI] to [PI34P2]. Eqs (1a, 1e)

A10 The influence of lysophosphatidylinositol. Platelets contain phospholipase A02 (cPLA2) [46], an
enzyme that can catalyse the hydrolysis of PI (PM) into (LPI) and arachidonic acid (precursor of throm-
boxane A02) which can be recycled back to PA and PI [47]. This reaction can provide an alternative
pathway to slow down the flux of PI to PI4P. Introduce 1 new parameter (𝜃–2) for the flux from [PI] to
[PI4P] that is promoted by IP3 (acting as a surrogate for Ca2+). Eqs (1a,1i)

https://doi.org/10.1371/journal.pcbi.1013477.t003
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2.4. Assessing the effect of perturbations
We perform a local sensitivity analysis, where key parameters are varied by 50 percent above
and below their initially estimated value, and compute the normalised local sensitivity of the
steady state (or endpoint) according to

Sensitivity Score = Oa –Oi

Oa
, (5)

where Oi and Oa represent the model output (e.g. the steady state achieved in simulations) in
respect of the initial parameter set (obtained from parameter fitting) and the adapted parame-
ter respectively.

Simulations are produced that assess the effect of perturbing the pathway via the inhibitor
GSK-A1. To simulate this the parameter governing the rate of conversion of PtdIns to
PtdIns4P (r1) is set to 10 percent of its original value and predictions are compared to the
experimental data.

Simulations to predict the effect of varying the magnitude and shape of stimulus (s(t)) have
parameters (a1 = 0.001, a2 = 0.0002, a3 = 1.0 and a4 = 0.02) from Eq 2 adjusted to produce i)
a stimulus with a magnitude fifty percent lower than the original used in model calibration
(a1 = 0.001, a2 = 0.0002, a3 = 0.5 and a4 = 0.02); ii) to produce a stimulus with an alternative
time-dependent profile, introducing an early transient peak (a1 = 0.03, a2 = 0.002, a3 = 1 and
a4 = 0.02); iii) and to produce a combination with a reduction in magnitude and an early peak
(a1 = 0.03, a2 = 0.0002, a3 = 0.5 and a4 = 0.02).

3. Results
3.1. Time-dependent experimental data
The experimental data describing the time-dependent changes in five phosphoinositides and
the inositol IP1, following stimulation of platelets through the GPVI receptor, are shown in
Fig 3. PtdIns, the precursor of all phosphoinositides shows the highest abundance, it rises
from 2.3 ± 0.5 to 2.9 ± 0.6 × 106 molecules/platelet over the first 60s before declining to
a steady state below basal level (1.5 ± 0.2 × 106 molecules/platelet). The maximal levels of
PtdIns4P and PtdIns(4,5)P2 are an order of magnitude less than PtdIns. While no signif-
icant change was observed for PtdIns4P, its level remaining near the basal, the amount of
PtdIns(4,5)P2 gradually increased 1.7-fold over the first 120 s (from 2.9 ± 0.6 to 4.8± 0.4× 105

molecules/platelet), and remained elevated. PtdIns(3,4)P2 shows the greatest change among
the phosphoinositides, increasing 6-fold (from 0.5 ± 0.2 to 3.0 ± 0.8 × 104 molecules/platelet)
over the first 180 s to levels still an order of magnitude lower than PtdIns(4,5)P2 with this
elevated level being maintained. PtdIns(3,4,5)P3 was the least abundant phosphoinositide
measured here, a 2.6-fold increase was observed over the first 180 s, from 2.2 ± 0.8 to 5.8
± 2.8 × 103 molecules/platelet, the large data variance can be attributed to donor variabil-
ity and/or the low abundance of PtdIns(3,4,5)P3 which increases the impact of background
noise and lowers the accuracy of the measurement. The inositol IP1 linearly increases to 2.1 ×
103 molecules/platelet over 10 minutes, which align with previous reports by Chen et al. who
showed CRP-induced accumulation of IP1 rising from 200 nM to 600 nM in 2 min (using
washed platelets at 8 × 108 cells/mL) [51].

Collectively the data emphasise that the inositol phosphoinositides and their metabo-
lites are highly dynamic, reacting rapidly to stimulation on a time scale of seconds to a few
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Fig 3. Experimental data showing the time-dependent changes in five phosphoinositides and one inositide. Results are means from 3
experiments. The variable names used in the mathematical models are shown in brackets. See Sect 3.1 for details of data collection.

https://doi.org/10.1371/journal.pcbi.1013477.g003

minutes. They can be seen to be maintained at levels of abundance that vary by orders of mag-
nitude generally decreasing with each species downstream of PtdIns and this raises questions
about how the phosphoinositide pathway acts to maintain these disparate levels.

3.2. Model comparisons to data identify the importance of spatial
regulation and trafficking

We are interested in which, if any, of the mathematical models, each representing a unique
hypothesis concerning the key mechanisms driving the phosphoinositide pathway, are sup-
ported by the experimental data. The first step is to determine if a model is able to generate
the data via adjustments in the rates of the reactions (parameters). Table 4 provides informa-
tion on this via the cost function (SSE), which summarises the distance between the exper-
imental data and the models simulations, a lower number reflecting a closer fit to the data.
This number is supplemented with the AICc which adjusts the SSE to account for the added
complexity induced by adding parameters to the models. Sorting the models in order of their
AICc gives

A0∼A01∼A03∼A09 <A07∼A04∼A02∼A10 <A06 <A05≪A10

indicating that the simplest model A0 and three alternative models (A01, A03, A09) can gen-
erate the data equally well (AICc in the range of –94 to –90). The complexity of these models
varies, with model A09 having one more parameter than A0 and models A03 and A04 hav-
ing two extra parameters. Models A03 and A04 also add an additional variable, representing
cytosolic levels of PI and stabilised PtdIns(3,4,5)P3 respectively.

Simulations generated from model A0 are shown in Fig 4 (top 2 rows) against the exper-
imental data, those from model A03 are below this (similar simulations for all other models
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Table 4. Results of fitting each model to the data. SSE = distance of model simulations from experimental observa-
tions (as defined in the cost function (Eq 3)), n = the number of experimental observations (7 timepoints ×6 datasets
= 42) and K = the number of the model’s parameters that are inferred from the data. Median indicates the median of
the lowest 100 results. Metrics in bold denote the models with the lowest SSE or AICc.
Model A0 A01 A02 A03 A04 A05 A06 A07 A08 A09 A10
Min. SSE/n 0.054 0.054 0.072 0.048 0.054 0.094 0.082 0.063 0.372 0.055 0.068
Median SSE/n 0.064 0.069 0.093 0.082 0.069 0.272 0.11 0.128 0.628 0.072 0.087
Min. AICc –94 –91 –82 –91 –85 –59 –75 –87 –2 –90 –80
K 15 15 15 17 17 17 15 15 15 16 16

https://doi.org/10.1371/journal.pcbi.1013477.t004

are given in Figs C-H in S1 Text). Here, as in all future plots, we show the simulations gener-
ated using the 10 parameters sets with the lowest SSE, demonstrating the uncertainty inherent
in inferring complex models from data. Most models are able to produce similar simulations,
though models with a higher AICc (A02, A05, A06, A07, and A10) often produce simulations
with early, short lived spikes in PtdIns, PtdIns4P and PtdIns(4,5)P2. The simulations from
model A8 are highly variable and inconsistent with the data reflecting its high AICc.

Three of the models components (variables [Ip], [Pp] and [IP3]) were not measured exper-
imentally. Model predictions for these are shown in the lower two rows of Fig 4. Again, simi-
lar predictions generated from the other models are given in Figs C-H in S1 Text. Predictions
for changes in the inositol [IP3] that is a key step in releasing calcium from internal stores, are
generally consistent, showing a sharp rise over the first 100 seconds before settling to a steady
state of approximately 600 molecules/platelet. Some models (A03, A05 and A07) have more
variability in predictions but are of a similar pattern. Simulations generated by model A08 are
highly variable and inconsistent.

Most models predict a quick change in concentration of the soluble pool of inositol (vari-
able [Ip]) that drops from 1 × 108 to 0 molecules/platelet in under 300 seconds and there is a
related rise in the pool of phosphoinositides ([Pp]) rising from 2 × 104 to approximately 1 ×
108 (see Model A0 simulations for an example (Fig 4, 5th row)). These predictions seem too
drastic to be plausible and the steady state of the variable Pp too high given that it captures
the group of phosphoinositides that couldn’t be measured because of their low-abundance.
Model A03 is the exception (Fig 4, bottom row), predicting that the pool of inositols is rela-
tively stable with a gradual increase in Pp, which is supported by reports of a 3-fold increase in
PtdIns3P following CRP stimulation [52]. In all but Model A03 the large pool of soluble inosi-
tides is readily available to be reincorporated at the cell membrane to form PtdIns - fueling
the phosphoinositide pathway. Model A03 allows a brake to be placed on this process by hav-
ing some of the pool of PtdIns located in a separate intracellular compartment, this highlights
the importance of spatial regulation and trafficking on regulating the cycle and equilibrium of
the phosphoinositides.

In summary, four of the models (A0, A01, A03 and A09) are able to simulate the data
equally well. But, model A03, that incorporates a simplistic distribution of PtdIns, generates
predictions that are more biologically plausible than those from models A0 (a model with no
additional regulation), A01 (a model that has regulation in the synthesis of PtdIns4P) and
model A09 that introduces synthesis of PtdIns(3,4)P2 from PtdIns4P. Model A08, that cap-
tures the role of PtdIns 4-kinase in phosphorylating PtdIns3P to PtdIns(3,4)P2, is unsup-
ported by this experimental. Noting this, and that implementation of this model was a simpli-
fication that may have influenced its ability to simulate the data, model A08 is discarded.
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Fig 4. A selection of model simulations. Top two rows shows simulations from model A0 (black lines) compared to
data (red), middle two rows show simulations from model A03. Lower panels show simulations of IP3, Ip and Pp for
A0 and A03. All simulations show the 10 best fits, the solid line indicating the simulation with the lowest SSE.

https://doi.org/10.1371/journal.pcbi.1013477.g004
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3.3. Inferred rates of reactions highlight points of regulation
The rates of the reactions captured in the models are generally unknown, instead these were
inferred from the experimental data. 20,000 possible combinations of reaction rates where
sampled from a wide range of values (called priors), with the ’best’ values, those that allowed
the model to generate the data (lowest SSE), forming the uncertainty ranges depicted in Fig 5.
These sets hold information on which parts of the signalling pathway can be best inferred
from the data as well as a parameters influence on the general ability of the model to fit the
data, two concepts that are intimately linked. If an uncertainty range is broad and, therefore,
not very different from the prior, then the parameter is not inferable from the data and the fit-
ting process is insensitive to its variation. In contrast, parameters with a narrower uncertainty
range (lower values, denoted by asterisks, indicate the best constrained) they have had infor-
mation returned from the experimental data, and the predictions for the data are sensitive to
its variation.

Generally parameter uncertanty ranges are well dispersed. Yet, despite this unidentifiability
that is present in all of the models some models are better at constraining the data than oth-
ers. It is worth noting that model A08, that was discarded for its inability to fit the data, has
wide uncertainty ranges for most parameters in combination with parameters at identified
to be at the extremes of the priors for some reactions. This is particularly true for parameters,
such as 𝜃4, that counteract A08’s newly introduced mechanism that promotes the rate that the
unmeasured phosphoinosities ([Pp]) are converted to PtdIns(3,4)P2. Models A0, A01 and A09
(and indeed many others) infer fast rates around the pathway and into the pool of unmea-
sured phosphoinosities, with rates out of the pool generally 4 orders of magnitude slower.
Model A03 constrains the reactions rates differently, having slower rates into the pool. The
differences in rates inferred by models A0, A01, and A09 compared to A03 are evident in their
simulations, with the former showing increases in the pool of unmeasured phosphoinositides.
This variation in rates between the models is further illustrated in the schematics in the lower
panels of Fig 5, where red arrows indicate faster reaction rates and blue arrows denote slower
ones. Specifically, the reactions governing the progression from [PI] through [PI4P], [PIP2],
[PIP3], and [PI34P2] to [Pp] (r1, r–1, r2, r4, 𝜃–4) fall within the range of 0.1–10 per second,
significantly faster than those observed in model A03.

In summary, most models that fit the data well predict a fast flow through the phospho-
inositide pathway to the unconstrained pool of unmeasured phosphoinositides, this facilitat-
ing model fits to data. This is not the case for model A03. Here, the concentration of PtdIns,
the precursor of the other phosphoinositides, is reduced at the membrane. The newly intro-
duced cytosolic of PtdIns being protected from rapid incorporation. This provides a break on
the pathway and limits the fast early spikes often seen in simulations from other models and
increases in the pool of unmeasured phosphoinositides.

3.4. Model predictions under the effect of inhibitors and perturbations
Alterations in phosphoinositide metabolism have been found to underlie many disease states,
this being supported by the discovery of mutations in the kinases that regulate the pathway
that lead to disease progression [53]. To perform model validation, experimental data was
generated under the effect of the PI4KA inhibitor (GSK-A1) that blocks conversion from
PtdIns [54], reducing levels of PtdIns4P.

Simulations of all models were run using the 10 parameter sets with lowest SSE while
adjusting the parameter governing the rate of conversion of PtdIns to PtdIns4P (r1). In-
vitro experimental data is shown in Fig 6, A where it can be seen that treatment with GSK-
A1 greatly reduced CRP-induced IP1, PtdIns4P and PtdInss(4,5)P2 production so that they
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Fig 5. A comparison of the reaction rates inferred by the models. The uncertainty ranges (top) are based on the
100 best (as defined by Eq 3) fits where blue, black and red colours indicate 5 to 95, 25 to 75 and 45 to 55 quantiles
respectively and circles represent medians. The prior distributions, from which possible parameter values are drawn,
are 10–4 to 102 for all parameters. Only parameters common to all eleven models are shown, other posteriors are
depicted in S1 Text (Fig B). The lower panels show two schematics of the key reactions around the pathway. These
highlight the relative rates of the parameter vales inferred for Models A0, A01, A09 and A03, these being the models
best able to fit the data.

https://doi.org/10.1371/journal.pcbi.1013477.g005
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Fig 6. The effects of inhibitors and perturbations.. A) Experimental data demonstrating the effect of the inhibitor GSK-A1 on IP1 accumulation, PtdIns4P
and PtdIns(4,5)P2. Results without inhibitor shown in red, treated with GSK-1 in cyan. B) A comparison of predictions for the effect of the inhibitor GSK-A1
from models A0 and A03. Simulations (black) are from the 10 best fits, the solid line indicating the simulation with the lowest SSE. Experimental data is in
cyan. C) Heatmap demonstrating the results of a local sensitivity analysis on the 10 best fits from model A03. The heatmap shows the effect of varying key
parameters (by 50% up (+) and down (-)) on model outputs. Red indicates a positive effect, blue a negative effect. The intensity of the colour corresponding to
the magnitude of the effect.

https://doi.org/10.1371/journal.pcbi.1013477.g006
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remained at near basal level for 10 minutes. Model predictions for the effect of the inhibitor
are shown in Fig 6, B (outputs for models A0 and A03 are shown, others are provided in Fig
I-N in S1 Text). Model A03 is the only model to consistently have predictions that agree with
the new data, predicting only small increases in the accumulation of IP1 and rapid decreases
in PtdIns4P and PtdIns(4,5)P2 from their initial conditions so that they align with the data.
Model A03 also predicts large reductions in PtdIns(3,4,5)P3 and PtdIns(3,4)P2 (to approxi-
mately 20% of their original level) with IP3 accumulation reduced to 30 of that achieved in
simulations without the inhibitor. This is accompanied by slight increases in PtdIns, reflect-
ing its lack of conversion to PtdIns4P and its downstream phosphoinositides. Most models
other than A03 produce variable predictions for many species, but generally models that show
a reduction in IP1 also predict a reduction in IP3.

We have seen above that varying the rate of a single parameter (r1) can effect the whole
posphoinositide pathway. The effects of varying other parameters are investigated via a local
sensitivity analysis (of model A03). The results are presented in the heatmap (Fig 6, C) where,
for simplicity, only the effects of varying forward reactions are shown, each varied by fifty
percent above and below their original value. As we saw r1 affects the whole pathway and
r2, the rate of synthesis of PtdIns(4,5)P2 from PtdIns4P, can be seen to have a similar effect,
although PtdIns4P ([PI4P]) is now increasing. Other parameters have a less global effect. The
parameter that governs the degradation of IP1 so it can be reincorporated at the membrane
(r3) predictably effects IP1 accumulation and 𝜃1, the rate of transfer from IP3 to IP1 effects
mainly IP3 levels. The parameter which controls the rate of conversion from PtdIns(3,4,5)P3
to PtdIns(3,4)P2 (r4) has more effect on the latter, reflecting their relative abundance’s. A03’s
the newly introduced parameter (𝜃6) that controls the transfer from the inositols to the sec-
ondary pool of PtdIns, only effects levels of PtdIns and is not passed through to the other
phosphoinositides. Variation in parameters 𝜃3, 𝜃4 and 𝜃5 show little effect, reflecting their
inability to be inferred from the experimental data.

In summary model A03 is the only model to successfully predict the effect of the GSK-
A1 inhibitor. The effects of varying other parameters on the outcomes generated from model
A03 show that the model’s outputs are most sensitive to the rate of conversion from PtdIns,
through PtdIns4P, to PtdIns(4,5)P2.

3.5. Phosphoinositide pathway responses under changing receptor
stimulation

In our models the stimuli (Eq 2) promotes hydrolysis of PtdIns(4,5)P2 to IP3 and its catalysis
to PtdIns(3,4,5)P3. Fig 7 provides three examples of changes in the magnitude and shape of
this stimuli, and the effect they have on model simulations (others are provided in Figs O-Q
in S1 Text). In the first example s(t) is adjusted so that there is a 50% drop in magnitude from
that used for model calibration, the second has an alternative non-linear time-dependent pro-
file characterised by an early transient peak and the third combines the two effects having an
early transient peak before settling to a lower steady state.

Model predictions to these changing stimuli are generally consistent. They show that
stimuli affects the magnitude and the dynamics of PtdIns(3,4,5)P3, IP3 and IP1 but not
PtdIns(4,5)P2. A 50% reduction in the magnitude of the stimulus leads to a similar drop in the
magnitude of PtdIns(3,4,5)P3, IP3 and IP1 and the introduction of an early peak in the stim-
ulus was replicated in the profiles of PtdIns(3,4,5)P3 and IP3 but not IP1 where accumulation
has a monotonic profile that saturated at later time points. There are variations to these pre-
dictions, especially in PtdIns(3,4)P2 which is predicted to drop and/or display an early peak in
simulations from models A0, A01, A02, A03, A04 and A07.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013477 September 30, 2025 18/ 25

https://doi.org/10.1371/journal.pcbi.1013477


ID: pcbi.1013477 — 2025/10/4 — page 19 — #19

PLOS COMPUTATIONAL BIOLOGY A computational framework for the investigation of phosphoinositide regulation

Fig 7. Model predictions under changing levels of stimulus. Simulations shown are predictions generated from two models (A0 and A03), others
are provided in S1 Text, to the levels of stimulus. A) a stimulus with a magnitude fifty percent lower than the original used model calibration. B) a
stimulus with an alternative time-dependent profile, introducing an early transient peak. C) a combination of the stimulus for the simulations in
panels A and B introducing an early peak and a reduction in the steady state.

https://doi.org/10.1371/journal.pcbi.1013477.g007
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Ligand specific regulation of signalling events in platelets (or indeed other cell types) are
thought to alter phosphoinositides composition [3]. The mathematical models developed here
offer a way of exploring how differing cellular activities may alter the phosphoinositides path-
way. We find that while signals are generally quickly propagated through the phosphoinosi-
tides, PtdIns(4,5)P2 remains remarkably robust in the face of changing stimuli.

4. Discussion
The study of phosphoinositides brings with it major challenges, not least is their measurement
that is made difficult by their low abundance and high polarity [1,9]. Here we have utilised
a new dataset that describes the time-dependent changes of five phosphoinositides and an
inositol in platelets following stimulation with a single ligand, CRP. To extract the most infor-
mation from this unusually dense dataset we have used mathematical and computational
techniques that allow us to test our ideas on how the phosphoinositide pathway is regulated
against the data. Mathematical models of such complex biological systems combine uncer-
tainty in their structure, there often being competing ideas about how molecules interact, and
in the rates of these reactions. We constructed eleven alternative representations of the path-
way and use a computational technique that alleviates the need to base reaction rates on liter-
ature where they would necessarily have been measured in other cell types and experimental
conditions, to generate simulations. This framework allows us to compare and assess which
model structures are supported by the data while at the same time inferring rates of reactions
and quantifying uncertainty in their and the models predictions.

Our models capture and test many different methods of regulation, both those that are
known to exist in platelets and those found to play a role in regulating the phosphoinosi-
tides in other cell types. We found that while all but one of the models was able to generate
the experimental data only a model with a secondary pool of PtdIns (model A03) was able
to provide realistic predictions. The secondary pool acted as a brake on the availability of
PtdIns, slowing its conversion to the other phosphoinositides. It was this model that resulted
in realistic predictions that compared favourably to those from other models that predicted a
sharp decline in the inositols and a respective rise in phosphoinositides, the later being known
to occur in low abundance. Model A03 was also able to successfully generate predictions in
line with the data under the influence of the inhibitor GSK-A1. It has long been known that
PtdIns(4,5)P2 has a high turnover rate, which has been linked to the so-called futile cycles of
dephosphorylation and rephosphorylation that are thought to occur on the plasma membrane
[55]. This is demonstrated by the rapid labelling kinetics of PtdIns(4,5)P2 and PtdIns4P that
is in contrast to the slower labelling kinetics of PtdIns and other phospholipids [56]. Control-
ling the recycling of the phospholipids such as PtdIns(4,5)P2 that make up only a tiny pro-
portion of all cellular PtdIns is crucial for regulating signalling and membrane dynamics [57].
Our investigation into the response to changing levels and shape of stimulation to the path-
way found that these differentially affected phosphoinositide species. With a 50% drop in
the magnitude of the stimulating signalling events the phosphoinositides PtdIns(4,5)P2 and
PtdIns(3,4,5)P3 dropped by a similar amount. But, in agreement with Hille and coworkers
[13], PtdIns(4,5)P2 levels were robust in the face of changing levels of stimulation, not being
depleted. It was only by disrupting the rates of internal phosphoinositide conversion (with the
inhibitor GSK-A1) that levels of PtdIns(4,5)P2 could be reduced.

The models presented here represent a necessary simplification of a process that is evi-
dently more complex, particularly in the spatial events that underpin and regulate the avail-
ability of individual lipid pools [34,57]. In our models, spatial events have been incorpo-
rated in a rudimentary manner, as exemplified by model A03, where a secondary pool of

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013477 September 30, 2025 20/ 25

https://doi.org/10.1371/journal.pcbi.1013477


ID: pcbi.1013477 — 2025/10/4 — page 21 — #21

PLOS COMPUTATIONAL BIOLOGY A computational framework for the investigation of phosphoinositide regulation

PtdIns is introduced to limit the amount of inositol available at the cell membrane. Devel-
oping and testing models that include a more detailed representation of spatial localisation
would require either a better understanding of the reaction rates between spatial locations or
localised experimental data, neither of which is currently available.

In our present models, the general lack of knowledge regarding the rates of conversion
between various species is reflected in the broad priors used when comparing model simula-
tions to data. This results in large uncertainties in parameter estimates that span several orders
of magnitude, demonstrating the insufficiency of experimental data to constrain parameter
values effectively. It is crucial to remember that no model is entirely accurate or fully identi-
fiable, as the identifiability of parameter values heavily depends on the model structure. We
have deliberately kept our models as simple as possible, for example aggregating low abundant
species PtdIns5P, PtdIns(3,5)P2 and PtdIns3P into a single variable and this aids our ability
to optimise models to the available data. Also, while it is biologically plausible that combi-
nations of our ten regulatory regulatory mechanisms—or indeed alternatives—could play a
role in regulating the phosphoinositide pathway, there is currently insufficient data to sup-
port such complexity. Consequently, these models should be regarded as incremental steps
towards a better understanding of phosphoinositide signalling, which is why we publish the
accompanying code to enable researchers to modify and extend these models.

The insights gained from validating the models against data obtained under the influence
of inhibitors, as well as the differential responses predicted under varying levels of stimula-
tion, suggest that such additional data could be highly informative in constraining the range
of approximated parameters. This approach represents a more achievable goal than attempt-
ing to measure other phosphoinositide species (PtdIns3P, PtdIns5P, and PtdIns(3,5)P2), where
experimental challenges are compounded by their low abundance.

The availability of code to run these models, provided in a widely used programming lan-
guage among biologists, ensures that researchers can readily adapt the models for their own
studies and test them against experimental data. While advances in mass spectrometry-based
profiling and imaging techniques have significantly improved our ability to study cellular pro-
cesses, our quantitative understanding of transient and unstable phosphoinositides remains
limited [1]. Nevertheless, our approach of using mathematical models to formalise hypothe-
ses about the regulation of phosphoinositides, combined with a computational framework
that allows testing these ideas against a new, experimentally consistent dataset, offers valu-
able insights. This work provides a step forward in understanding how the delicate balance
between phosphoinositide levels is maintained and regulated in platelets, paving the way for
further research in this field.

Supporting information
S1 Text. S1 Text includes the equations detailing the changes to model A0 incorporated
into models A01–A10 and additional figures.
(PDF)
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