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Video is Worth a Thousand Images: Exploring the Latest
Trends in Long Video Generation

FARAZ WASEEM, Department of Computer Science, University of Reading, Reading, RG6 6DH, United
Kingdom of Great Britain and Northern Ireland

MUHAMMAD SHAHZAD, Department of Computer Science, University of Reading, Reading, RG6 6DH,
United Kingdom of Great Britain and Northern Ireland

An image may convey a thousand words, but a video, composed of hundreds or thousands of image frames, tells
a more intricate story. Despite significant progress in multimodal large language models (MLLMs), generating
extended videos remains a formidable challenge. As of this writing, OpenAI’s Sora [1], the current state-of-
the-art system, is still limited to producing videos of up to one minute in length. This limitation stems from the
complexity of long video generation, which requires more than generative Al techniques for approximating den-
sity functions. Critical elements, such as planning, narrative construction, and spatiotemporal continuity, pose
significant challenges. Integrating generative Al with a divide-and-conquer approach could improve scalability
for longer videos while offering greater control. In this survey, we examine the current landscape of long video
generation, covering foundational techniques such as GANs and diffusion models, video generation strategies,
large-scale training datasets, quality metrics for evaluating long videos, and future research areas to address the
limitations of existing video generation capabilities. We believe it would serve as a comprehensive foundation,
offering extensive information to guide future advancements and research in the field of long video generation.
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1 Introduction

The year 2022 marked a significant milestone in the field of the generative Al era with the release
of ChatGPT [2]. ChatGPT is an advanced language model that produces human-like text from
user input, supporting tasks like answering questions, creative writing, and conversation. This
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Fig. 1. Example of semantic content not changing with the progress of frames [10].
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Fig. 2. Example of semantic content changing with the progress of frames [11].

technology uses complex deep neural networks based on large language models trained on extensive
text data to capture intricate linguistic patterns and contextual nuances for precise text generation
and understanding. Since then, major tech companies have introduced their large language
models (LLMs), such as Facebook’s LLama series [3], Google’s Gemini [4], and a few other notable
models, including Claude [5] and Mistral [6].

The success of LLMs brought a transformative breakthrough in image generation. DALL-E 2 [7]
surpassed traditional GANs and VAEs by interpreting natural language and generating diverse
concepts and styles, excelling in photorealistic outputs. Other systems, such as Stable Diffusion
3 [8] and MidJourney [9], also demonstrate strong capabilities in creating realistic visuals.

Video generation is far more complex than text or images due to dynamic elements like motion,
occlusion, and evolving semantic content-the conceptual mapping of objects, actions, and inter-
actions. Single-scene videos (e.g., a girl dancing against a static background, Figure 1) maintain
consistent semantics, while multi-scene videos (Figure 2) introduce new objects or actors, altering
semantic content over time.

Due to the complexities of dynamic scenes, early video generation models were limited to
producing short clips lasting only a few seconds, often animating a single static frame without
incorporating varying backgrounds or objects. For example, Make-A-Video [12] and RunwayML
Gen-2 [13] generate 4-5 second videos using a single animated frame with little change in semantic
content. CogVideo [14] is among the first long video generation models to create extended videos
using autoregressive transformers. However, it operated based on a single prompt and also exhibited
minimal changes in the semantic content of the video. Phenaki [15], which employs autoregressive
video transformers, is one of the first models to generate long videos with dynamic semantic
content based on multiple prompts. Similarly, Gen-L-Video [16] employs a diffusion model to
merge short video clips into a seamless, continuous video. Sora [1] has established a new state-
of-the-art in video generation. Sora [1], developed by OpenAl, is a “ChatGPT moment” for video
generation, utilizing diffusion transformers [17] to sample from a compressed spatiotemporal space,
producing photorealistic, coherent videos with complex dynamics. Operating in a similar tier,
RunwayML’s Gen-4 Alpha [18] is a commercial diffusion transformer model generating 10-second
videos, marking progress toward practical use. Despite these advances, models remain nascent
compared to human-made videos, struggling with extended coherence, consistent characters, and
narrative organization over long sequences (Figure 4).
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Fig. 3. Most articles focusing on long video generation were published in 2023-2025.
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Fig. 4. Evolution of long video generation models. Later models, such as SORA [1] and Gen-4 Alpha [18],
focus more on video quality than duration.

1.1 Survey Contributions—Need for Summarizing Long Video Generation Methods

Long video generation presents numerous challenges beyond crafting and maintaining consistent
storylines across scenes. These include the lack of large-scale video datasets with detailed captions
and the requirement of significant computational resources. Despite these challenges, long video
generation has emerged as a transformative frontier in generative Al, unlocking novel possibilities in
various fields, including entertainment, education, healthcare, marketing, and gaming. This potential
has sparked substantial research attention, and publication rates have accelerated dramatically in
recent years. As illustrated in Figure 3, the field has experienced explosive growth, with more than
two-thirds of all academic work produced within the past 24 months—a testament to its dynamic
transformation.

Given these interests and opportunities, it is time to summarize the state-of-the-art in long video
generation and discuss the associated challenges, progress, and future directions that will support
the advancement of the field. To our knowledge, there are only two related long video-generation
surveys [19] and [20]. The former [19] explores the latest trends in long video generation, highlight-
ing the divide-and-conquer and autoregressive approaches as two primary themes. It also examines
photo-realism trends and generative paradigms, such as VAE, GAN, and diffusion-based models.
However, while it highlights the divide-and-conquer approach, which simplifies the complexity of
long videos by breaking them into smaller, manageable chunks, a detailed exploration of this method-
ology, such as how short videos can be seamlessly integrated into longer narratives, is lacking. Our
work aims to bridge this gap by thoroughly analyzing the various dimensions of the divide-and-
conquer strategy and its role in addressing the challenges of long video generation. In contrast, the
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latter [20] provides a broader overview of the video generation field, encompassing topics such as
long videos, video editing, super-resolution, datasets, and metrics. However, long-video generation
is only one of many topics discussed. It highlights the need for a focused and in-depth study on
the generation of long videos. Our contribution addresses this need by providing a comprehensive
analysis of this emerging field and highlighting key approaches, challenges, and prospects.

This work addresses literature gaps by incorporating recent studies and providing a compre-
hensive analysis of the divide-and-conquer approach. We focus on underexplored aspects, such as
agent-based networks and methods for transitioning from short to long videos, which are currently
absent from reviews. Our examination extends to methodologies outside the divide-and-conquer

and autoregressive categories, as well as the latest research, offering a more holistic perspective on
the field.

1.2 Survey Focus—Techniques, Challenges and Key Questions in Long Video Generation

Video generation utilizes various techniques, such as sampling from latent space [21], creating small
video segments or images, generating intermediate frames (“divide and conquer”)[3.2], employing
autoregressive methods [3.1] to predict future frames based on initial ones, and improving latent
state representations for longer videos. Training video generation models presents challenges due
to the higher computational requirements and more extensive memory needs for video datasets.
Many video generation models are based on pretrained image models [ [22-24]], which enhance
attention mechanisms to ensure consistency between adjacent frames, as video is essentially a
sequence of frames. Some long video models are developed by extending short video generation
models[ [16, 25, 26]] and improving control mechanisms for longer content. Another significant
aspect of video generation is input guidance[[5.1, 5.3, 5.2] ]. Long video generation requires stronger
guidance than images or short clips, typically anchored in text embeddings, such as CLIP [27].
Here, LLMs (Section 3.2.1) take center stage: they decode physical world dynamics, forecast object
interactions, and choreograph multistep actions, leveraging their pre-trained knowledge to steer
generation toward coherent, long-form outputs. When evaluating the quality of the generated
videos[[7.1, 7.2, 7.3, 7.4]], it is important to assess the quality of the individual frames, the fluidity
of motion, and the overall aesthetic appeal. Ensuring that generated videos remain faithful to the
input text while preserving entity consistency (e.g., cars and actors) across frames is a critical
challenge. Long Video generation has motivated researchers to explore novel directions in the field,
raising key questions that warrant further investigation.

(1) How can we generate long videos with multiple semantic segments with different actors,
actions, and objects?

(2) How can we ensure semantic consistency across long video segments, such as maintaining
consistent models of objects like cars?

(3) Discussion of Long-video generation strategies covering segmented stitching, auto-regressive
frames, and full latent-space synthesis.

Our survey article centers around these critical questions, providing insights to guide researchers
and practitioners in addressing these challenges.

1.3 Survey Methodology

For this survey, we conducted searches across several conferences, including but not limited to
CVPR, ICLR, NeurIPS, IJCV, IEEE-TVCG, TPAMI, AAAI, CVIU, IEEE Neural Networks, ICML, ACM
Multimedia, IEEE-WACV. We used keywords such as “video generation,” “long video generation,”
and “LLM-guided video generation” Additionally, we searched academic databases, including
arXiv, Google Scholar, IEEE Xplore, ACM Transactions, and Scopus, focusing on the term “long
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video generation” for our survey. Our survey covers articles published between 2021 and 2025
(as of May 2025), with a focus on “video generation” and “generative AI”. We gathered over 190+
articles through snowball sampling, using keywords such as text-to-video, generative Al, visual
interpretation, and extended video generation.

1.4 Survey Organization

We will begin by discussing the foundational frameworks for video generation, including embedding
and LLMs, to set the stage for more advanced topics. The goal is to familiarize readers with these
fundamental components, enabling them to explore these building blocks according to their level of
expertise and interest. Next, we will explorebackbone mechanisms for video generation, including
divide-and-conquer autoregressive models and the use of implicit latent spaces. We will then explore
Tokenization Strategies. We will explore input guidance mechanisms, including strategies such as
LLM guidance, and categorize them into different levels based on the depth of control the LLM
exerts over them. We will also address the necessary modifications to the image and video diffusion
models to facilitate such control. We will also discuss the post-processing pipelines required to
achieve high temporal and spatial quality in videos generated by diffusion models. We will then
discuss the datasets used to train video generation models, as outlined in Section datasets. We will
then discuss the metrics used to measure generated video quality, as outlined in Section metrics.
Finally, we will talk about future trends and open challenges.

2 Long Video Generation: Backbone Architectures and Methods

Progress in long-video generation builds on advancements in many foundational building blocks.
These include GANs-based architecture Section 2.1, Autoencoders Section 2.2, Transformers-based
models Section 2.3, LLMs and language understanding Section 2.4, and Image and Video Diffusion
models Section 2.5.

2.1 GAN-based Video Generation

GANSs [28] dominated generative tasks from 2014 until the early 2020s, although diffusion models
and transformer-based approaches in terms of performance and versatility have since surpassed
them. The fundamental GAN framework [28] consists of two competing components: a Generator
that creates samples from random noise and a Discriminator that evaluates their authenticity. While
this adversarial architecture established the foundation for image and video generation, newer
methods have advanced beyond its capabilities, as discussed in subsequent sections.

GAN Based Image Generation GANS initially revolutionized image generation, dominating the
field. Here, we examine key ideas and milestones in GAN literature, organized by timeline.

Early GANS: GANSs [28] was the first to generate images using adversarial networks, but employed
simple feedforward neural networks for both the Generator and the Discriminator. DCGANSs [29]
extend the GAN architecture by incorporating convolutional layers, making them more suitable
for image data. They generated images with a resolution of 64x64. LAPGAN [30] increased the
resolution of images by developing them at multiple scales. It consists of various GANs, each
generating images at different resolutions. GANs, DCGANSs, and LAPGAN are primarily designed
to create images based on random noise vectors. These models lack text guidance, but text-based
GANs incorporate text-based control, which we will discuss in the next section.

GAN Text Input: StackGAN [31] is a multistage text-to-image GAN that generates high-quality
images. It has two GAN stacks stacked on top of each other. The first one takes the text and generates
a low-resolution image. The second one takes both text and input images and creates high-quality
images. AttnGAN [32] uses attention mechanisms to create images from text, allowing it to focus
on specific words or phrases in the input description.
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Style/Image Transfer: StyleGAN [33] was the first generative model to generate high-quality
artistic images, and one of the key innovations was transferring an artistic style like Vincent
Van Gogh’s to real-world pictures and image translation. CycleGAN [34] does image-to-image
translation and consists of two generators and two discriminators. StyleGAN2 [35] primarily focuses
on generating high-quality, diverse images, particularly faces. It introduced a disentangled latent
space. Latent space is where a vector of N dimensions represents each image. Projecting different
high-level attributes, such as skin color and hairstyle, onto distinct dimensions in a latent space
provides excellent editing capabilities for realistic image generation, semantic manipulation, and
local editing. StyleGAN2[35] opened the doors for high-level image manipulation. StyleGAN2 [35] is
an improvement over StyleGAN, producing higher-quality images. pix2pix [36] specifically designed
for image-to-image translation tasks. It learns a conditional generative model and generates an
output image conditioned on the input image. GAN also revolutionized video generation, which
we will explore in Section 2.1.1.

2.1.1  Video/Multi Frame Generation.

Early Attempts: [37], which generated future frames from observed sequences. [38] advanced
this by using separate 2D and 3D convolutional networks for static backgrounds and moving
foregrounds, producing 32-frame unconditional videos of various scenes. Further development
came with [39]’s two-stage model, which first generated 128x128 resolution time-lapse videos from
a single frame and then enhanced them with dynamic motion information. These early works laid
the important foundations for unconditional video generation before the advent of prompt-based
approaches.

Prompt-based Guidance: Numerous studies have explored the use of conditional inputs in GAN
to guide and refine the generation process. These conditions can take various forms, including
audio signals, text prompts, semantic maps, images, or other videos. TGANs-C [40] incorporate
text guidance using LSTM-based latent vectors. TGANs-C was designed to input a single sentence.

Long Video Generation Using GAN: DIGAN [41] can create a 128-frame video. It introduced an
INR (Implicit Neural Representations) based video generator that improves motion dynamics by
manipulating space and time coordinates differently and a motion discriminator that efficiently
identifies unnatural motions without requiring long frame sequences. StyleGan-V [42] improved the
state-of-the-art and was built on StyleGAN2 [35]. It can generate high-resolution 1024-long videos
by designing a holistic discriminator that aggregates temporal information by simply concatenating
frame features, thereby decreasing the training cost.

2.2 Autoencoder-based Video Generation

Autoencoders [43], variational autoencoders [44], and masked autoencoders [45] belong to the
family of models that compress information into a compact latent space and serve as building
blocks for image and video generation pipelines. Masked autoencoders can generate videos from
this learned latent space. We will discuss the foundations of autoencoders and build up the video
generation process via masked autoencoders.

2.2.1 Autoencoder Formulation. An Autoencoder is an unsupervised neural network that com-
presses its input into a compact latent layer and then learns to reproduce its input through back-
propagation. The autoencoder is trained to minimize the reconstruction loss between the input x
and the reconstructed output X. The most common application of an autoencoder for long videos
and video generation is the construction of a compressed latent space. For example, in [46], the
authors use an encoder and decoder to project images from pixel space to latent space, thereby
decreasing the computational complexity of learning the image distribution.
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Variational Autoencoders (VAEs) [44] address the limitations of traditional autoencoders
by learning latent distributions instead of fixed representations, allowing new data generation.
The VQ-VAE variant [47] has become foundational for video/image generation pipelines like
VideoGen [48], VQGAN [49], and DALL-E [50]. Hybrid approaches like Hierarchical Patch VAE-
GAN [51] combine VAEs with GANSs, while applications extend to anomaly detection through
architectures like LSTM-Convolutional VAEs [52].

2.2.2  Masked Autoencoders. Masked autoencoders [45] serve as scalable self-supervised back-
bones for video generation by reconstructing randomly masked image patches. The approach
extends to video through models like VideoMAC [53], which uses convolutional networks to
reconstruct symmetrically masked frame pairs at high masking ratios (0.75). The framework has
evolved into advanced variants, such as MAGVIT [54], which achieves significantly faster inference
than diffusion models, and MAGVLT [55], which unifies vision-language generation under this
paradigm.

2.3 Transformer-based Video Generation

GANSs have limitations, such as mode collapse [56], training instability, which requires fine-tuning
of parameters, and a significant amount of training time and resources. Transformers, introduced
in 2017 [57], made inroads into image and generation via autoregressive and masked encoding.
Some of the key concepts to understand are Vision Transformers and Video Transformers.

2.3.1 Transformer-based Image Generation. Vision Transformers (ViTs) [58] revolutionized
computer vision by processing images as patch-based tokens, similar to NLP transformers. DALL-
E [59] pioneered this approach for image generation, using a Discrete VAE [60] to compress images
into 32x32 tokens and training a GPT-style transformer on 250M image-text pairs. CogView [61]
later surpassed DALL-E in FID scores but maintained weaker complex prompt rendering. Both
autoregressive models suffered from slow generation due to token-by-token processing, a limitation
addressed by CogView2 [62] through masked cross-modal training.

2.3.2 Autoregressive-based Video Generation. Video transformers (VViTs) [63] extend ViTs
[58] by tokenizing video patches. Phenaki [64] generates long videos from text prompts using T5X
embeddings [65] and C-ViViT, a variant of VVIiT [63] that compresses tokens and employs masked
and autoregressive prediction for long sequences. CogVideo [14] builds on CogView?2 [62], using
hierarchical training for better text-video alignment and a two-stage process involving keyframe
generation and interpolation.

2.4 Language Understanding in Video Generation

2.4.1 Text to Image Feature Representation. The core principle behind text-based visual gener-
ation tasks is effectively pairing text with the visual content. Many visual generation pipelines
leverage pre-existing image-text pair models, such as CLIP (Contrastive Language-Image Pretrain-
ing) [27]. CLIP has been pre-trained using a contrastive learning approach that optimizes the
cosine similarity between image and text embedding. Given CLIP’s robust performance, many
visual generation models, such as DALLE 2 [7], incorporate CLIP’s text embedding to leverage
its superior semantic understanding. It allows these models to enhance their ability to generate
visually relevant and contextually appropriate content, effectively bridging the gap between text
and visual representation.

2.4.2 LLMs-based Video Guidance. Many visual generation models, such as LLM Director [66],
leverage standalone LLMs [67] to enhance their performance. By integrating LLM, visual generation

ACM Comput. Surv., Vol. 58, No. 6, Article 154. Publication date: December 2025.



154:8 F. Waseem and M. Shahzad

models can benefit from advanced natural language processing capabilities, enabling them to
interpret and generate more nuanced and contextually relevant descriptions of captions in single
or multiple prompts, along with detailed scenes. One example of this design is LLM-grounded
VDM [68]. When paired with visual inputs, LLMs can transform simple image descriptions into more
elaborate storytelling, adding layers of meaning and context that enhance the viewer’s experience.
LLM can also act as the director of the entire video generation process and create a coherent script,
as shown by Vlogger [69]. The details on how the recent long video generation methods leverage
LLMs are explained in Section 3.2.1.

2.5 Diffusion Models

Diffusion models have emerged as the state-of-the-art approach for image and video genera-
tion, combining components such as VAEs, transformers, and language models. The foundational
work [70] established key principles by applying non-equilibrium thermodynamics to unsuper-
vised learning, while [71] advanced the field through parameterized Markov chains trained by
variational inference. These breakthroughs created the basis for modern diffusion architectures in
visual generation tasks.

2.5.1 Image Diffusion. Image diffusion models generate images through iterative denoising,
with [72] contributing gradient-based estimation methods and [71] establishing the foundational
DDPM framework. For a text-conditioned generation, models typically employ a U-Net with
cross-attention layers using embeddings from CLIP [27], BERT [73], or T5 [74]. Robin Rombach et
al. implemented this in [46] through modified attention layers that combine multimodal embed-
dings [57].

2.5.2  Video Generation from Diffusion Models. Video generation models primarily use two
architectures: 3D U-Nets and Transformers. The U-Net approach extends 2D diffusion models
to handle 4D tensors (frames x height x width x channels) through factorized spatial-temporal
attention, where spatial attention focuses on intra-frame regions and temporal attention captures
inter-frame dependencies. Alternatively, Sora [75] implements a Transformer-based diffusion model.
A Diffusion Transformer (DiT) [17] replaces the traditional U-Net backbone in a diffusion model
with a Transformer architecture, which is better at processing images as sequences of patches.
Sora [75] generates videos efficiently by compressing them into latent spacetime patches that
capture both appearance and motion, serving as visual tokens for video construction [17] that
processes videos as spacetime patch tokens, as detailed in [75]. These architectural approaches for
long-video generation are further explored in subsequent sections.

3 Long Video: Generation Paradigm

We summarize various video generation approaches into three core paradigms.

— Auto-Regressive Paradigm: Videos are generated sequentially, with each frame conditioned
on the frames generated before.

— Divide-and-conquer approach: Videos are produced by creating keyframes or short video
segments guided by storyline prompts, often with the aid of an LLM.

— Implicit Video Generation: Videos are generated implicitly from the model without needing
explicit extrapolation (autoregressive approach) or explicit interpolation (divide-and-conquer)
by designing a latent space to represent variable-size videos.

These approaches will be explained in the following sections.
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Fig. 5. The basic theme of the auto-regressive approach is that it generates new frames, given the initial
anchor frame, previous frames, and optional progressive prompts [81].

3.1 Auto Regressive Approaches

The autoregressive generation paradigm creates videos by sequentially predicting future frames from
previous ones, ensuring temporal coherence through this frame-by-frame approach [ [15, 76, 77]].
While effective for maintaining consistency (Figure 5), this method faces computational limitations
for long videos due to its sequential nature. Key implementations include CogVideo [14], which
extends CogView2 [78] but is constrained by sequence length and resolution (160x160, upscalable
to 480x480), and NUWA-Infinity [79], which improves resolution through hierarchical generation.
Phenaki [15] advances the paradigm by handling multiple prompts through C-ViViT [63] compres-
sion and T5X embeddings [65], though its bidirectional training requires significant memory.

A paradigm shift emerged with VideoPoet [80], which demonstrated that multimodal training—
combining text, images, and audio in a decoder-only transformer—could overcome these quality
limitations. By pretraining on diverse objectives and fine-tuning for specific tasks, VideoPoet
achieved state-of-the-art zero-shot generation, proving that autoregressive models can produce
high-fidelity videos when augmented with rich multimodal signals.

All approaches discussed [ [15, 76, 79]] are based on transformers. Grid Diffusion [82] is based on
diffusion. Grid Diffusion first used compression and represented video using an image created from
keyframes, which covers the primary motions or events of the video. It is called a ‘grid image, which
consists of 4 subframes representing video keyframes. During the training phase, they masked these
frames and learned to produce masked frames conditioned on previous grid images and non-masked
images. This design paradigm is illustrated in Figure 6. As they replaced the challenge of video gen-
eration with image generation, they can create long videos up to 128 frames autoregressively with
high image quality (low FVD scores [83]. They utilized transfer learning from a pre-trained stable
diffusion model [46] and trained on only two Nvidia A100 GPUs. Figure 6 explains this architecture.
Building on this insight, ARLON [84] combines the strengths of autoregressive transformers and
diffusion models through its Asymmetric Diffusion Transformer (AsymmDiT) and latent
VQ-VAE, achieving 128x compression (8x spatial + 6x temporal downsampling) in a 12-channel
latent space. This hybrid approach maintains motion fidelity while enabling scalable, high-quality
synthesis—effectively bridging diffusion models (Section 2.5) and token-based methods.

Long video generation faces critical challenges in memory management and temporal coherence
across extended sequences. ARLON [84] addresses this via a training-free autoregressive inference
method using pre-trained diffusion models. Its sliding-window queue mechanism processes frames
with progressively increasing noise levels: fully denoised frames are removed from the head of
the queue, while new noisy frames are added to the tail. This approach enables the unbounded
generation of infinitely long videos without retraining, maintaining computational efficiency
through a fixed-size queue that prevents memory overload.
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Fig. 6. Grid Diffusion Model. It first generates a grid image and then learns a spatial auto-regressive model
by learning to predict masked subframe conditions on previous images and unmasked frames. [82].

Previous methods for video generation, including NUWA-Infinity [79], CogView [76],
Phenaki [15], and GRID [82], face limitations in rendering complex compositional prompts that
describe dynamic spatiotemporal interactions—such as “a man walking with a black dog on his
right while a blue car drives from the opposite direction.” VideoTetris [77] addresses this challenge
by introducing spatiotemporal Compositional Diffusion, which manipulates cross-attention maps
in denoising networks to synthesize videos that adhere to intricate or evolving instructions. This
approach enables the generation of long videos with progressive compositional prompts, where
“progressive” refers to continuous changes in object positions, quantities, and attributes, ensuring
precise alignment of interacting entities across space and time.

Autoregressive video generation has progressed from CogVideo [76]’s single-prompt, low-
resolution outputs to modern systems like VideoTetris, which can model complex scientific dynamics
with multiple prompts while preserving quality. While autoregressive methods excel at smooth
motion transitions, their sequential nature results in slow generation and limited control over com-
plex scene elements (actors, bounding boxes, spatial relationships). Divide-and-conquer approaches
(Section 3.2) address these limitations by enabling parallel frame generation and leveraging LLMs
for structured video blueprints, improving the handling of dynamic scenes. Key articles and insights
are cataloged in Table 1.

3.2 Divide and Conquer Paradigms

The divide-and-conquer approach generates keyframes or short clips from prompts and interpolates
between them, often using an anchor image as a reference. Each keyframe is generated indepen-
dently, enabling parallel processing. Challenges include maintaining semantic consistency, ensuring
smooth motion, and achieving high quality. A key theme is the separation of planning and video
generation stages, differentiating it from autoregressive methods (Figure 8). Its paradigms are: LLM
as Director, Intermediate Transition Model, and Agent-Based Framework. Some milestone articles
with timelines are illustrated in Figure 7.

3.2.1 LILM as Director. The LLM-as-Director paradigm [11, 94, 97, 98] revolutionizes video
generation by employing a two-stage process: (1) an LLM Planner creates detailed narrative
blueprints (keyframes, layouts, actions) and (2) a Video Generator Backbone produces intermediate
frames (Figure 9). This framework supports both zero-shot (training-free) and training-based
approaches.

Free-Bloom [22] demonstrates zero-shot capability through innovative techniques like joint
noise sampling and DDIM-based dual-path interpolation [99], though its LLM scripting potential is
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Table 1. Auto Regressive Approaches
Model Theme Month/Year

StyleGAN-V [85] Time-continuous signals [86] [87] extended from StyleGAN2 [35]. Dec 2021
DIGAN [41] Implicit neural representation-based [86] video generation model. Feb 2022
CogVideo [14] Long videos using autoregressive and interpolation stages. May 2022
NUWA-Infinity [79] Long videos with hierarchical autoregressive modeling. July 2022
Phenaki [15] Compresses videos into discrete tokens for efficient frame generation. Oct 2022
PVDM [88] PVDM uses diffusion in latent space for video generation. Feb 2023

MeBT [89] Memory-efficient transformer for long-range dependency videos. March 2023
ART-V [81] Auto-regressive using keyframes and image diffusion. Nov 2023

StreamingT2V [90] Long videos with consistent transitions and scene preservation. March 2024

Grid Diffusion Models [82] | Video generation by merging four keyframes into images. March 2024
ViD-GPT [91] GPT-style autoregressive generation into video diffusion models. June 2024
FlexiFilm [92] Long videos with temporal conditioning and resampling strategy. June 2024
VideoPoet [80] An autoregressive LLM for high-quality synthesis from multi modal | June 2024

inputs.

VideoTetris [77] Text-to-video generation with spatio-temporal compositional diffusion. Oct 2024
Arlon [84] AR for long-range temporal guidance and DiT for high-fidelity synthesis. |  Jan 2025

LLM-grounded Video

Diffusion Models SEINE

Align your Latents Free-Bloom Mora Vidgen Kubrik

Oci 2023 March 2024

April 2023

Sept 2023 Jan 2024 April 2024

_ Sept2023 Nov 2023 August 2024 |

Gen-LVideo VideoDirectorGPT FlowZero Vlogger DreamFactory

Fig. 7. Divide-and-conquer timeline: We used the dates these articles were published in online resources, such
as arXiv or https://openreview.net/. Articles catalog here are Align your Latents [24], Gen-L-Video [16], Free-
Bloom [22], VideoDirectorGPT [11], LLM-grounded Video Diffusion Models [68], SEINE [26], FlowZero [23],
Mora [93], Vlogger [69], Vidgen [94], DreamFactory [95], and Kubrik [96].

underutilized. VideoDirectorGPT [11] enhances this with GPT-4’s comprehensive planning (layouts,
bounding boxes) executed via Layout2Vid [97]. The training-based LLM-grounded model [100]
further improves realism by learning spatiotemporal dynamics from the text.

Like VideoDirectorGPT, FlowZero [23] adopted a zero-shot (training-free) approach; however,
the LLM plays a more detailed role than VideoDirectorGPT. It generates a detailed dynamic scene
syntax (DSS), including scene descriptions, object arrangements, and background motion patterns.
The DSS components direct an image diffusion model to generate videos with smooth object
movements and consistent frame transitions. The theme of using dynamic scene layout is illustrated
in Figure 8. The LLM as a director approach has limitations, as it is a two-stage architecture, and
adding speech or integrating short clips will require modifications in the pipeline. We can extend
the LLM-based divide-and-conquer approach by incorporating more specialized components, such
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Fig. 8. The LLM as director approach utilizes LLM as the spatiotemporal director of the script, along with a
separate video generation module that can understand the DSL (metadata) generated by LLM [68].
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Fig. 9. VideoDirectorGPT: GPT-4 generates a blueprint for video generation, including scene and entity
description. Separate module Layout2Vid generates video from this video plan [11].

as a model for generating reference images, a module for video creation, and a plug-and-play
module for adding transitional clips and speech. That is achieved using the multi-agent framework,
as described in Section 3.2.2.

3.2.2 Multi-stage/Agent-based Divide and Conquer Approach. An Agent-based LLM Frame-
work [101] is a system where LLM serves as the “brain,” responsible for overseeing complex
operations, while simpler models function as tools, executing more specific, supportive tasks. A
multi-agent framework for video generation represents a multi-layered approach to text-to-video
generation. It produces high-quality long videos like those generated by Sora [102] by dividing
the video creation challenge into multiple systems, each specializing in some aspect of the video
generation pipeline, as illustrated in Figure 10.

3.2.3 Divide and Conquer Compositional/Transition Approach. Early long-video generation
methods stitched short clips from standard models (diffusion/autoregressive) but struggled with
transitions. SEINE [26] innovated by framing transitions as masked diffusion, jointly denoising
overlapping segments conditioned on boundary frames—though still requiring independent segment
generation. Subsequent work improved continuity: MEVG [103] anchored new clips to the final
frames of predecessors, while MAVIN [25] formalized transition learning as “video infilling” by
training on corrupted intermediates. Encoder-Empowered GAN [104] enforced temporal coherence
via recall mechanisms but sacrificed dynamic content flexibility.

These incremental advances culminated in VideoMerge [105], which reimagined the paradigm
entirely. Instead of post hoc stitching, it preemptively ensures coherence through (1) adaptive noise
blending to unify short and long temporal scales, (2) latent fusion for boundary-free transitions,
and (3) prompt refinement for persistent identity. By addressing consistency at noise, latent, and
semantic levels, VideoMerge [105] achieves what prior segment-and-merge methods could not:
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instructions, the text-to-image agent generates images from input prompts, the image-to-image agent
improves the quality of photos, the text-to-video agent generates video segments, and the video transition
agent integrates these videos into a longer video [93].

holistic long-video synthesis without retraining, marking a shift from compositional fixes to native
long-form generation.

The autoregressive approach ensures smooth transitions between frames by generating each
frame conditioned on the previous ones, but its sequential nature makes it inherently slow for long
video generation. The divide-and-conquer approach (see Section 3.2.1) can generate keyframes
in parallel but faces challenges involving interpolation between frames with smooth transitions
and achieving higher video quality while maintaining semantic consistency. Implicit generation
Section 3.3 approaches combine the best of both worlds by generating complete videos directly
from a model conditioned on user input without the need for interpolation (divide and conquer) or
extrapolation (autoregressive) between frames. A summary of key articles exploring themes related
to the Divide and Conquer approach is provided in Table 2.

3.3 Implicit Video Generation Using Compressed Latent Space

Implicit video generation synthesizes complete videos simultaneously through compact latent rep-
resentations, employing spacetime compression, enhanced attention mechanisms, and hierarchical
denoising [21]. Unlike sequential approaches, models like Sora [21] process entire videos via: (1)
Spacetime compression to latent patches (visualized in Figure 12), (2) ViT-based denoising, and
(3) LLM-augmented CLIP-like conditioning. Open-source advances include FreeNoise [108] for
tuning-free semantic preservation, and GLOBER [109] for efficient latent reconstruction. Hunyuan-
Video [107] Figure 11 advances the field through a diffusion-VAE hybrid architecture in compressed
latent space, enabling both quality and long-form coherence—demonstrating implicit generation’s
unique temporal synthesis capabilities from Sora to multimodal implementations.

Latent-space transformer-based video generation has progressed through key architectural
innovations, beginning with Goku [110]’s flow-based transformers for efficient joint image-video
learning. Subsequent advances include REDUCIO! [111]’s 3D VAE compression (64x more efficient
than 2D VAEs) and Mochi 1 [112]’s 10B-parameter Asymmetric Diffusion Transformer for improved
coherence. Meta’s Movie Gen[113] is a unified foundation model that generates high-quality images
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Table 2. Divide and Conquer Paradigms: Catalog of Key Articles

Model Theme Month/Year | category
Align your Latents [24] | Diffusion models for interpolation and upsampling. April 2023 | training-based
Gen-L-Video [16] Integrate short videos into long, consistent video. June 2023 | training-based
Free-Bloom [22] LLMs and LDMs [46] for consistent video generation. Sept 2023 training-free
VideoDirectorGPT [11] | Consistent multi-scene videos using GPT-4 guidance. Sept 2023 | training-free
LVD [68] Dynamic video scenes using LLM-guided diffusion. Sept 2023 | training-free
SEINE [26] Long video with smooth transitions from short videos. Oct 2023 integration
Encoder GAN [104] Connects short video by temporal relationships. Oct 2023 integration
FlowZero [23] Multi-frame story and aligns spatiotemporal layouts. Nov 2023 | training-free
MEVG [106] Multiple prompts, preserving visual coherence. Dec 2023 training-based
Vlogger [69] Specialized models to generate long videos in stages. Jan 2024 multi-stage
Mora [93] Collaborative models for script, image, and video. March 2024 | multi-stage
Vidgen [94] LLM for story pre-processing and textual Inversion April 2024 | training-based
Memory Module.
MAVIN [25] Transition videos creating a cohesive sequence. May 2024 integration
DreamFactory [95] LLM collaboration for script and movie creation. August 2024 | multi-stage
Kubrick [96] Agent collaborations to generate Blender scripts. August 2024 | multi-stage
VideoMerge [105] training free, merges short clips generated by pretrained | March 2025 | multi-stage
text-to-video models.

In the Category Column, Training-free or Training-based Represents Section 3.2.1 Pattern, ‘multi-stage’ Represents the
Section 3.2.2 Pattern and ‘integration’ Represents the Section 3.2.3 Pattern.
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Fig. 11. Using a Causal 3D VAE, Hunyuan Video compresses data into latent space. LLM-encoded text
conditions Gaussian noise inputs, generating latents decoded into images/videos via the VAE decoder [107].

and videos from text prompts using efficient joint training in compressed latent space. The field’s
current pinnacle is Cosmos [84] World Foundation Model with 128x latent compression and two-
phase training. However, persistent challenges in motion consistency and semantic alignment
remain, evidenced by SORA’s [1] one-minute generation limit and documented artifacts [114].
Table 3 compares models using compressed latent spaces for video generation.

Beyond generation strategies, long video modeling requires effective tokenization, which repre-
sents videos as compact units for efficient processing, as discussed in the following section.

4 Long Video: Tokenization Strategies

Long video tokenization strategies employ frame-level Section 4.1, Temporal-spatial (3D Conv/VQ-
VAE) Section 4.2, and Hierarchical Section 4.3 approaches to efficiently encode spatiotemporal
information while balancing computational demands and representation fidelity, which is critical
for both generative and discriminative tasks, as detailed below.
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Fig. 12. Transformer-based Diffusion Model Sora compressed video of variable length into a fixed space-time
latent compressed representation [75].

Table 3. Implicit Video Generation: Milestone Models Catalog

Model Theme Year
GLOBER [109] Global features to synthesize coherent video frames. Sept 2023
FreeNoise [108] Extended videos using pre-trained video diffusion models. Oct 2023
SORA [21] Compact latent and patch-based representations. Feb 2024
Mochi 1 [112] Asymmetric Diffusion Transformer (AsymmDiT) design. October 2024
Hunyuan-Video [107] | Open source, MLLM Text Encoder, and multiple video resolution. Dec 2024
Goku [110] Flow-based transformer and Vector-quantized VAE. Feb 2025
REDUCIO! [111] Radical latent space compression, 3D VAE that compresses | Nov 2024
videos into ultra-compact motion representations.
Cosmos [115] Physical Al based on world foundation models. March 2025

4.1 Frame-level Tokenization

Early approaches to video generation framed the problem as modeling a sequence of images. The
introduction of VQ-VAE [47] was pivotal, as it compressed images into discrete token representations
that autoregressive models could efficiently process. Building on this, early video generation systems,
such as CogVideo [14], utilized a VQ-VAE [47] architecture to achieve frame-based tokenization for
video. NUWA [116] and HARP [117] are based on VQ-GAN [49] and are also built on frame-level
tokenization as shown in Figure 13 [117]. Some other methods [118] represent images not as
2D grids but as compact and highly efficient 1D token sequences, achieving semantically rich
representations that are compact for generation. The limitation of frame-level tokenization is
the repetition of information in adjacent frames, which will be discussed in Temporal-Spatial
Tokenization Section 4.2.

4.2 Temporal-spatial Tokenization

Temporal tokenization compresses video into motion-aware latent representations, a concept
pioneered by Phenaki [15] using its C-ViViT architecture [15]. This spatio-temporal approach
was also adopted by VideoGPT [48] and Hunyuan-Video [107], which utilize 3D convolutional
VAEs. A common implementation involves a VQ-VAE encoder trained on video data that uses 3D
convolutions for spatiotemporal downsampling before attention residual blocks. Other frameworks
like MAGVIT [54] model dynamics with a 3D-VQGAN architecture, extending the standard VQGAN
encoder-decoder—comprising cascaded residual blocks with down- and upsampling layers—into
the temporal domain. In contrast, OmniTokenizer [119] first divides data into patches and then uses
a decoupled spatial-temporal transformer architecture, leveraging both VAE and VQ-VAE encoders.
Although VQ methods often face training instability [120], techniques like Index Backpropagation
Quantization [121] can resolve this with a differentiable codebook. While these methods improve
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Fig. 13. Comparison of tokenization methods: ViViT [63] (top) uses a spatiotemporal strategy, while the
bottom image [63] illustrates a frame-level approach.
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Fig. 14. This figure from [124] compares tokenization strategies. The encoder network of CViViT [15] is
a Transformer-based tokenizer, MAGVIT [125]employs a causal 3D convolution-based tokenizer, and the
Mamba-based tokenizer [124] introduces a new encoder architecture, with all models designed for spatio-
temporal compression [123].

motion capture, modeling the hierarchical storyline of long videos remains a challenge, a topic
explored further in Section 4.3.

4.3 Hierarchical Tokenization

Hierarchical video tokenization captures multi-scale spatiotemporal dependencies. Early models,
such as HERO [122], employ a two-level transformer to capture both local and global context.
HiTVideo [123] utilizes a multilayer codebook to strike a balance between semantics and detail.
MambaVideo [124] represents an evolution from prior works like C-ViViT [15] and MAGVIT [125]

as shown in Figure 14. It advances spatiotemporal feature encoding through a hierarchical encoder-
decoder with 3D convolutions.
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Fig. 15. A latent diffusion model with input conditioning generates data by applying a reverse diffusion
process on latent representations, conditioning the generation of additional input information (e.g., text or
images) to guide output [46].

In addition to the tokenization strategy, another theme in the long videos is the use of input
control mechanisms, such as text, bounding boxes, and images, for video guidance. We will discuss
that in the next section.

5 Long Video: Input Control

Input conditioning involves diffusion models, GANS, or autoencoders using signals from user text
prompts, entity layouts, bounding boxes, and images to condition video generation. Although
long video generation utilizes many of the same techniques for input control as image and video
generation models, it also faces the additional challenge of preserving long-term dependencies.
Video generation models utilize innovative strategies like the use of LLM to create progressive
prompts from a single input prompt [11, 22, 68, 126, 127] and enhancement in generation mechanism
to create semantic consistency between frames [22, 23, 126].

Popular mechanisms for input conditioning of long videos include User Textual Prompt, User
Textual Prompt with Scene Layout, and Image Input with Textual Prompt and Scene Layout, which
we will discuss next.

5.1 User Textual Prompt

Text prompts serve as the primary conditioning method for video generation models, with im-
plementations ranging from single-prompt to multi-prompt approaches. Early transformer-based
models, such as DALL-E [50] and CogVideo [10], utilized autoregressive transformers on joint
text-image token distributions, albeit with limitations to single prompts. Phenaki [64] advanced
this by incorporating T5X embeddings [65] for sequential prompt conditioning, though facing
coherence challenges in transitions. Contemporary solutions address these limitations through var-
ious approaches: Free-Bloom [22] employs LLM-generated coherent prompts with spatial-temporal
attention; LLM-Grounded Video Diffusion [68] alternates between language guidance and denoising
steps; VideoStudio [128] modifies cross-attention mechanisms; and DirecT2V [126] utilizes GPT-4
for step-by-step prompt generation. Figure 16 illustrates the DirecT2V architecture [126], which
modifies the attention block of U-Net and incorporates modulated self-attention. Text-only prompts
can guide long video generation, but they lack the semantics necessary for fine-grained control
over this process. In addition to frame descriptions, adding metadata, such as bounding boxes for
entities like persons and cars, as well as background information, can help generate a more accurate
depiction of videos and facilitate fine alignment between text and video.
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DirecT2V: Large Language Models are Frame-Level Directors for Zero-Shot Text-to-Video Generation
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Fig. 16. DirectT2V Modulated self-attention for capturing interactions between frames [126].

5.2 User Textual Prompt with Scenes Layout

Multi-modal input control mechanisms extend beyond text prompts to include images, edge maps,
bounding boxes, and music, thereby enhancing generation with metadata such as entity trajectories
and layouts (Figure 8). Stable Diffusion [46] pioneered this via cross-attention in UNet backbones
(Figure 15), while ControlNet [129] introduced a trainable copy linked via zero convolutions to
preserve pre-trained features. This architecture enables diverse applications [130-133]. Further
advances include Layout2Vid in [11] (extending ModelScopeT2V [97] with layout/entity metadata),
LLM-Grounded VDM'’s training-free dynamic scene layouts [68], and FlowZero’s spatiotemporal
scene indices [23]. Dynamic scene layout increases control and detail alignment between text
and video, but does not provide aesthetic infusion. Images can guide aesthetics if generated by a
high-quality text-to-image diffusion model or provided as a reference. We will discuss a few articles
incorporating images as a guidance mechanism.

5.3 Image Input with Textual Prompt and Scenes Layout

Images enhance video generation by providing high-quality spatial and aesthetic details (e.g., object
textures and entity positions) beyond text descriptions. NUWA-Infinity [79] supports both text and
image inputs, while VideoStudio [134] leverages reference images (e.g., actors and objects) alongside
text prompts to guide generation. Microcinema [127] employs a multi-stage pipeline, first generating
images via SDXL [135] or DALL-E [50], then using them for video synthesis. Similarly, Video-
Booth [136] projects reference images into CLIP [27] text space, and VideoDrafter [128] uses a two-
stage control pipeline (text-to-image, then image+text-to-video). Key works are compared in Table 4.

User textual prompts, additional metadata for scene layouts, entity descriptions, and reference
images provide a rich context for the video generation model, facilitating fine alignment between
user intention and generated videos. We also require extensive video datasets with labels or captions
to train the long video generation and input control mechanisms, which will be discussed in the
next section.

6 Existing Datasets

The existing datasets for long video generation can be categorized as classification datasets Sec-
tion 6.1 and captions datasets Section 6.2.

6.1 Classification Datasets

Video classification datasets have evolved significantly in scale and annotation granularity.
Early datasets like UCF-101 [138] (13,320 clips, 101 action classes) were limited to single-label
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Table 4. Input Conditioning: Milestone Articles. ‘Text Prompt’ Represents Section 5.1, ‘Text, Scene Layout’
Represents Section 5.2, and ‘Image, Text, Layout’ Represents Section 5.3

Model Theme input control Year
Free-Bloom [22] LLM prompts with cross-attention and step-blocks. Text Prompt 2023
MEVG [103] Initial latent code, cross-attention. Text Prompt 2023
SEINE [26] Transition frames using CLIP and Lavie [137]. Text Prompt 2023
GLOBER [109] CLIP encoder, cross-modal instructions with attention. | Text Prompt 2023
FlowZero [23] Frame sequences using LLM with cross-frame attention. | Text, Scene Layout | 2023
VideoDirectorGPT [11] | LLM generates video plan, interpreted by U-Net. Text, Scene Layout | 2024
LLM grounded VDM [68] | LLM story with attention maps and bounding layouts. Text, Scene Layout | 2024
VideoTetris [77] ControlNet for autoregressive video generation. Text, Scene Layout | 2024
VideoDrafter [128] LLM scripts scenes with CLIP embeddings and prompts. | Image, Text, Layout | 2024
MAVIN [25] 3D UNET with cross-attention and CLIP embeddings. Image, Text, Layout | 2024
VideoBooth [136] Video from images and prompts using latent space. Image, Text, Layout | 2024
MicroCinema [127] LLM scripts multi-stage 3D Unet with cross-attention. Image, Text, Layout | 2024
Sora [21] LLM prompts with optional visual input encoding,. Image, Text, Layout | 2024

1. A child is cooking in the kitchen.

2. A girl is putting her finger into a plastic cup
containing an egg.

3. Children boil water and get egg whites ready.

4. People make food in a kitchen.

5. A group of people are making food in a kitchen.

Fig. 17. Here are examples from the MSR-VTT dataset showcasing video clips paired with labeled sentences.
Each example includes four frames representing the video clip and five human-generated sentences that
describe the content [142].

categorization. The Kinetics series [139] expanded this to 306,245 videos across 700 classes while
maintaining single-label classification. YouTube-8M [140] introduced multi-label annotation at scale
(8M videos, 350k+ hours). HowTo100M [141] further advanced this with 136M clips featuring 23k
tasks and narrative descriptions. The shift toward richer annotations is exemplified by captioning
datasets like MSR-VTT [142], which pairs video frames with descriptive sentences. This progression
reflects a broader trend from constrained single-label datasets to large-scale, multi-modal video-text
collections.

6.2 Captions Datasets

MSR-VTT pioneered natural language video descriptions with 41.2 hours of videos and 200K
clip-sentence pairs (Figure 17). Later datasets dramatically scaled up volume through automated
methods: WebVid-2M [143] compiled 2M videos with algorithmic captions (similar to Conceptual
Captions [144]). In contrast, InternVid [145] expanded to 234M clips with 4.1B words. However,
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Table 5. Datasets for Long Videos

Dataset Size Month/Year | Avg dura-| Category
tion

UCF-101 [138] 13,320 Dec 2012 7.21 sec classification
Kinetics-400 [139] 306,245 May 2017 10 sec classification
Kinetics-600 [149] 480,000 Aug 2018 10 sec classification
HowTo100M [141] 136 million June 2019 | 6.5 min classification
YouTube 8M [140] 6.1 million Sept 2016 230 sec classification
YouTube 8M Segments [140] 237k June 2019 | 25 sec classification
WebVid-2M [143] 2.5 million April 2021 | 18 sec captions
Pandas 70m [150] 70.8 million Feb 2024 8.5 sec captions
HD-VG-130M [151] 130 million May 2023 | 10 sec captions
InternVid [145] 234 million July 2023 39 sec captions
VidProM [152] 6.69 million Sept 2024 | 2.5 sec captions
Ego4D [153] 3,670 (hours) Oct 2021 180-300 sec captions
E-SyncVidStory [154] 6k May 2024 | 39(s) captions
LGVQ [155] 2,308 July 2024 8-96 sec captions
Videolnstruct-100K [146] 100k June 2024 2-3 min captions
MiraData [148] 788k July 2024 72.1(s) captions
Vimeo25M [137] 25M Sept 2023 19.6(s) captions

these lack detailed spatiotemporal context due to limitations in automated captioning. Recent
datasets address this quality gap: VideoInstruct-100K [146] enriched ActivityNet [147] subsets
with human-annotated spatial/temporal details, and MiraData [148] employed GPT4-V to generate
structured “dense captions” covering subjects, motion, and scene attributes. Examples from the
MSR-VTT dataset show video clips paired with descriptive sentences, each with four frames and five
human-labeled captions [142]. Using such datasets presents the challenge of measuring generated
video quality, including frame fidelity, transition smoothness, and text-video alignment, as discussed
in Section 7.3. Table 5 catalogs milestone datasets for long video generation.

Long Video generation needs extensive metrics to measure aesthetic, motion, and semantic
alignment between text prompts and video. We will discuss these metrics in the next section.

7 Performance Measures

Video generation metrics can be mainly categorized into four categories, including Image Quality
Metrics Section 7.1, Video Quality Metrics Section 7.2, Semantics Quality Metrics Section 7.3, and
Composite Metrics Section 7.4.

7.1 Image Quality Metrics

Image quality metrics are critical for evaluating generative models, with the Inception Score
(IS) [156] being a widely adopted measure. IS uses a pre-trained Inception model [157] to assess
quality (classification accuracy) and diversity (variety of classes), but fails to capture perceptual
quality or generalize beyond ImageNet domains. To address these limitations, Fréchet Inception
Distance (FID) [158] was introduced, which compares feature distributions between generated
and authentic images for a more robust evaluation of perceptual and statistical fidelity. While
these metrics excel for individual frames, they cannot assess temporal dynamics, such as motion
transitions, a gap addressed by video-specific metrics.
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Fig. 18. Dover score. Samples from a dataset with human labeling of aesthetics and technical aspects of
images. Dover score could be computed by aggregating or averaging the human-assigned aesthetic and
technical scores [159].

7.2 Video Quality Metrics

Video quality assessment requires metrics that evaluate both spatial and temporal coherence,
extending beyond traditional image metrics such as FID. The Fréchet Video Distance (FVD) [83]
extends FID to videos by using 3D convolutions to capture temporal dynamics (motion, transitions),
though it remains computationally intensive and doesn’t assess aesthetic/technical flaws. To address
this, Dover [159] evaluates technical quality (blur, noise, flicker) and aesthetics, leveraging its
DIVIDE-3k dataset with 450K+ subjective annotations (Figure 18). For motion analysis, RAFT [160]
measures optical flow to quantify object movement and temporal alignment between frames.
Together, these metrics provide complementary insights into visual fidelity, temporal coherence,
and motion quality.

While video quality metrics like FVD and Dover work well for assessing the technical quality of
generated videos, they have limitations in measuring how well a generated video aligns with the
user’s intentions or the semantic content outlined in the prompts. To address this gap, we must
explore semantic alignment metrics and composite metrics, which combine technical quality and
alignment with user-defined content. The metrics presented in Table 6 evaluate the accuracy with
which the generated videos align with the intentions described in their input prompts. Addition-
ally, Table 7 highlights the evolution of video quality and semantic alignment metrics over time,
showcasing advancements in generative models.

7.3 Semantics Alignment Metrics

Semantic quality metrics assess how well-generated videos align with user intent, particularly
in response to text prompts. CLIP [27] is a foundational tool for image-text alignment, using
contrastive learning to embed both modalities into a shared space and measure their semantic
similarity. Its extension, CLIPScore [161], leverages CLIP’s embeddings to provide a reference-free
metric for assessing image-text correspondence without ground-truth labels, making it efficient for
evaluating generation models.

CLIPSIM [162] extends this paradigm for videos. CLIPSIM computes the similarity between the
text and each video frame and then averages these scores to measure semantic matching. Table 7
shows how models have been improved on these frame-level metrics and their derivatives over
time.

While CLIP and CLIPScore effectively measure basic image-text alignment through embeddings,
they struggle with complex object interactions or nuanced descriptions (e.g., attributes and actions).
GRIT [163] addresses this by leveraging region-to-text understanding, enabling finer-grained
interpretation of scenes (e.g., “a brown dog running”) and better alignment with user intent.
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Fig. 19. The prompt dataset is designed to evaluate the model by focusing on three key quality aspects: (1)
spatial quality (frame appearance), (2) temporal quality (frame coherence), and (3) text-to-video alignment
(content-text correspondence) [155].
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Fig. 20. GRIiT locates different entities in scenes with their relations and matches with dense captions [163].

Table 6. Metrics for Video Quality Evaluation. In the “Direction” Column, 1 Represents
Higher Score Is Better, while | Represents That a Lower Score Is Better.

Metrics Type Year Direction
IS [156] frame June 2016 0
FID [158] frame Jan 2018 l
FVD [83] video March 2018 l
CLIPScore [161] image March 2021 1
FETV [164] video Nov 2023 )
VBench [165] video Nov 2023 1
T2VQA [166] frame March 2024 1
FVD Motion [167] video June 2024 l
UGVQ [155] video July 2024 T
T2V-CompBench [168] video July 2024 0
MiraBench [148] video July 2024 1
Cross-Scene Face/Style video August 2024 T
Consistency Score [95]

As illustrated in Figure 20, GRiT employs a transformer-based architecture to learn the rela-
tionships between different image regions and their corresponding textual descriptions. It enables
the model to break down the image into distinct regions and understand how each part corre-
sponds to specific components of the prompt. In conclusion, while CLIP and CLIPScore provide
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Table 7. Comprehensive Benchmark Comparison of Video Generation Models Ordered by Publication Year
(2017-2024) [11, 22, 23, 95, 96, 100, 103, 108-111, 136, 137, 169-175]

Model (Citation) Year Zero-Shot Samples FVD FID CLIPSIM IS
2021 Models

GODIVA [162] 2021 No 30 - - 0.2402 -
NUWA [176] 2021 X 0.97M - 28.46 - -
VideoGPT [48] 2021 - - 103.3  24.69 - 24.69
Video Transformer [63] 2021 - - 94+ 2 - - -
TGAN-F [177] 2021 - - - 7817 - 2291
LVT [178] 2021 - - 1258 - - -
VGAN [179] 2021 - - - - - 8.31
2022 Models

Make-A-Video [170] 2022 Yes 1 367.23 13.17 0.3049 33.00
CogVideo (Chinese) [14] 2022 Yes 1 701.59 23.59 0.2614 23.55
CogVideo (English) [14] 2022 Yes 1 701.59 - 0.2631 25.27
VideoFusion [180] 2022 - - 639.90 - - -
LVDM [171] 2022 - - 372.00 - - -
Video Diffusion [181] 2022 - - - 295 - 57
Phenaki [64] 2022 Yes 15M - 37.74 - -
MagicVideo [182] 2022 - - 655.00 - - -
2023 Models

PYoCo [183] 2023 - - 355.19 - 0.3204 47.76
VideoPoet (Pretrain) [169] 2023 - - 355 - 0.3049 38.44
VideoFactory [184] 2023 - - 410.00 - 0.3005 -
ModelScope [185] 2023 - - 410.00 12.32 0.2930 -
LaViE [186] 2023 - - 526.30 - 0.2949 -
Video LDM [187] 2023 - - 550.61 - 0.2929 33.45
Vlogger [172] 2023 Yes 10M 292.43 37.23 - -
ModelScopeT2V [185] 2023 - - - 1232 0.2909 -
VideoDirectorGPT [174] 2023 - - - 12.22 0.2860 -
InternVid [188] 2023 - - 617 - 0.2951 21.04
MicroCinema [173] 2023 - - 342.86 - - -
PixelDance [189] 2023 - - 242.82 - - 42.10
Emu-Video [190] 2023 - - 317.10 - - 42.70
2024 Models

Lumiere [191] 2024 - - 332.49 - - -
Reducio-DiT [111] 2024 - - 318.50 - - -
Goku-2B (256x256)[110] 2024 Yes - 24617 - - 45.77 + 1.10

FVD: UCF-101 metrics (from Video LDM comparison table).
BAIR FVD scores shown in FVD column.

 ModelScope replication results.

FID/CLIPSIM: MSR-VTT metrics.

X: Not applicable, Yes: Zero-shot capable.
Bold: Best results in each category.

practical methods for measuring the similarity between images and text, GRiT offers a significant
advancement by enabling a deeper semantic understanding of the content within images. By
considering not only individual objects but also their relationships, attributes, and actions, GRiT
enhances the ability to evaluate generated content on a much more complex and nuanced level.
These advances in semantic quality metrics are crucial for enhancing the alignment of videos
generated with user intentions, ensuring that the videos are both visually accurate and semantically

meaningful.
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Fig. 21. FETV is multi-faceted, classifying prompts into three distinct aspects: the main content, controllable
attributes, and prompt complexity [164].

Table 8. Comparative Analysis of Video Generation Models Across 12 VBench Dimensions [164, 165]

Models Subj. Cons. Bkg. Cons. Temp. Flicker Motion Aesthetic  Obj. Class
LaVie [193] 91.41 97.47 98.30 96.38 54.94 91.82
ModelScope [194] 89.87 95.29 98.28 95.79 52.06 82.25
CogVideo [14] 92.19 96.20 97.64 96.47 38.18 73.40
VideoCrafter [195] 96.85 98.22 98.41 97.73 63.13 92.55
Gen-2 [196] 97.61 97.61 99.56 99.58 66.96 90.92
AnimateDiff [197] 95.30 97.68 98.75 97.76 67.16 90.90
Latte-1 [198] 88.88 95.40 98.89 94.63 61.59 86.53
Pika-1.0 [199] 96.94 97.36 99.74 99.50 62.04 88.72
Kling [200] 98.33 97.60 99.30 99.40 61.21 87.24
Gen-3 [196] 97.10 96.62 98.61 99.23 63.34 87.81
CogVideoX [201] 96.23 96.52 98.66 96.92 61.98 85.23
Models Mult. Obj. Human Act. Color Spatial Temp. Style  Overall

LaVie [193] 33.32 96.80 86.39 34.09 25.93 26.41
ModelScope [194] 38.98 92.40 81.72 33.68 25.37 25.67
CogVideo [14] 18.11 78.20 79.57 18.24 7.80 7.70

VideoCrafter [195] 40.66 95.00 92.92 35.86 25.84 28.23
Gen-2 [193] 55.47 89.20 89.49 66.91 24.12 26.17
AnimateDiff [197] 36.88 92.60 87.47 34.60 26.03 27.04
Latte-1 [198] 34.53 90.00 85.31 41.53 24.76 27.33
Pika-1.0 [199] 43.08 86.20 90.57 61.03 24.22 25.94
Kling [200] 68.05 93.40 89.90 73.03 24.17 26.42
Gen-3 [196] 53.64 96.40 80.90 65.09 24.71 26.69
CogVideoX [201] 62.11 99.40 82.81 66.35 25.38 27.59

These semantic alignment metrics have limitations in the video domain because the video may
contain hundreds of frames, and they must match caption boundaries with corresponding frames.
Composite metrics, aggregates of many individual algorithms, and manual scoring address this
limitation.
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7.4 Composite Metrics

Composite metrics combine multiple evaluation approaches to assess text-to-video generation
across diverse categories (animals, objects, people) and dimensions (spatial, temporal, motion
alignment). FETV Bench [164] pioneered this approach with its three-aspect prompt system (content,
attributes, complexity Figure 21) and hybrid evaluation using both manual labeling and automated
metrics like CLIPScore [161] and BLIPScore [192]. UGVQ [155] expanded this framework through
its LGVQ dataset, evaluating spatial quality, motion coherence, and text-video alignment with
partitioned prompts (foreground/background/motion) and manual scoring of six models (Figure 19).
Subsequent benchmarks, such as T2V-CompBench, VBench/VBench++, and MiraBench, have
further developed comprehensive evaluation protocols, although they reveal persistent gaps in the
reliability of automated metrics—particularly for assessing long video temporal consistency and
semantic fidelity (Table 8).

8 Conclusion and Future Trends

This survey equips users with a broad overview of the history, recent progress, and ongoing
challenges in long video generation, focusing on video generation strategies, datasets, metrics, and
open research areas. Long video generation is one of the actual north goals of generative Al, aiming
to produce coherent and realistic videos over extended durations. Some of the challenges to be
addressed by long video generation are maintaining temporal coherence and visual consistency
while ensuring that the generated video aligns with a narrative or specific user intentions. Several
strategies have been explored to tackle this challenge, including divide-and-conquer autoregressive
models and intrinsic methods. Despite progress in these areas, motion consistency, semantic
alignment, and parallel processing remain key obstacles to achieving scalable, high-quality long
video generation. Future research in long video generation can focus on enhanced autoregressive
models, novel frame and video segment merging techniques, and enhanced training paradigms.

One of the significant open research areas in long video generation is the generation of longer
videos that accurately reflect spatial, temporal, and physical dynamics. A key challenge is the need
for large-scale video datasets with comprehensive spatial, temporal, and physical context (e.g.,
trajectories, shadows, and interactions). Existing large-scale datasets, such as HD-VG-130M [151],
offer scale but have limitations in terms of caption quality (e.g., captions are restricted to 15-20
words and lack rich spatial and temporal contextual information). On the other hand, datasets
such as Videolnstruct-100K [146] provide rich spatial and temporal context but fall short in scale.
Developing datasets that balance both scale and rich context is critical for advancing long video
generation research. In addition to datasets, measuring the quality of generated videos presents
another challenge. Current state-of-the-art metrics, such as FETV [164], MiraBench [148], and
VBench [165], rely on manual human feedback to assess video quality, which is time-consuming,
subjective, and challenging to scale. Future research should focus on developing fully automated
metrics that can objectively evaluate the quality of generated videos in a more scalable manner.

Another open area of research in long video generation is the integration of audio. Currently, most
commercial video generation models, such as SORA and Stability Al, do not produce accompanying
audio. Developing methods to generate audio that aligns seamlessly with visual content is crucial
for creating immersive and comprehensive videos, making this a key focus in the field of long-form
video generation.

Long video generation promises to revolutionize multiple fields, including entertainment, educa-
tion, virtual reality, and game development. However, it also introduces significant challenges, such
as the potential for fake video creation, bias, violence, and moral concerns. Additionally, issues
like hallucinations can limit the applicability of generative videos, particularly in domains like
education and science. In conclusion, this survey provides readers with an in-depth overview of the
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current state-of-the-art in long video generation, highlighting key research areas and opportunities
for future exploration. Lastly, please find below the link containing a collection of video generation
projects and demo which the readers may find useful:

Long Video Generation Videos Home
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