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Abstract
A new methodology that uses exponentially modulated signals with arbitrary excitation
waveforms for the identification of fractional order transfer functions is proposed. In contrast to
previous approaches where initial conditions were not considered and the system was required
to be at rest for the identification procedure, the current contribution extends the formulation to
the case where the system has non-zero initial conditions, dispensing with the need to place it at
a resting state. This generalization is important in feedback instrumentation and metrology
applications where the measurement or control process may not be disrupted to perform
identification. Moreover, the procedure has a broader scope of applications because it
structurally contemplates the case when the model presents derivatives in the input. Full
identification of the system parameters as well as the fractional exponents associated with the
model dynamics are achieved through a grid search procedure with resolution adjustable by the
user. Two simulation examples are presented to illustrate the effectiveness of the proposed
approach. The first example is concerned with the effect of measurement noise at the observed
system output, whereas the second involves the identification of the impedance of a
three-dimensional RC network model. These types of RC networks have dynamics capturing
complex phenomena with emergent responses and are ideal for emulating the complex
dynamics encountered across physical sciences and in particular interdisciplinary subject areas
such as biomedical engineering.
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1. Introduction

Fractional order systems have drawn much interest in the lit-
erature and are in the process of becoming more embedded in
real-world applications because of their ability to capture com-
plex phenomena from a system dynamics perspective [1–3]. In
this context, the present work is concerned with the identific-
ation of fractional-order models through the use of exponen-
tially modulated input/output signals [4, 5]. This concept was
originally introduced in [4] for the identification of the para-
meters and fractional exponents of a transfer function from
step response measurements. A generalization that allowed for
the use of arbitrary input waveforms was later presented in
[5]. Both papers assumed that the system was initially at rest,
whichmay not be possible in actual identification experiments.
The current contribution extends the results of [5] to the case
where the system has nonzero initial conditions, which was
also addressed in [6], through the use of block pulse functions.
However, the approach proposed herein has a broader scope of
application compared with [6], because it can handle models
with derivatives at the input and also allows for the identifica-
tion of the fractional exponents. In [7], the block pulse method
developed in [6] was extended to deal with derivatives at the
input, as well as unknown time delays, but no example actu-
ally involving the input derivatives was presented. In addition,
the fractional exponents were assumed to be known, as in [6].
The issue of nonzero initial conditions was also considered in
a more recent paper [8] for models in pseudo-state space form.
However, that study was restricted to models of commensur-
ate order, whereas the present contribution allows for the use
of non-conmmensurate exponents in the transfer function to
be identified.

The remainder of this contribution is organized as fol-
lows. Section 2 introduces some mathematical concepts and
presents a theorem that serves as the basis for the identifica-
tion method proposed in section 3. A numerical example is
shown in section 4 and conclusions are given in section 5.
Throughout the text, the set of positive integers will be repres-
ented by N+ = {1,2, . . .}. Given α ∈ R, the smallest integer
greater than or equal to α will be denoted by ⌈α⌉.

2. Preliminary concepts

Different types of fractional-order derivatives are found in the
literature, including the Caputo, Riemann–Liouville (which
is equivalent to the Grünwald–Letnikov derivative under cer-
tain conditions) [9], and Hadamard [10, 11] definitions.Within
the scope of the present work, the Caputo derivative is more
convenient because the initial conditions can be expressed in
terms of integer-order derivatives [12] and the usual properties
of the Laplace transform apply. In contrast, the initial condi-
tions with the Riemann–Liouville derivative are expressed in
terms of fractional-order derivatives and the Hadamard deriv-
ative requires the use of a modified Laplace transform because

the differentiation begins at an initial instant different from
zero [13].

Consider the following fractional differential equation
using the Caputo derivative [9]:∑

n
i=1ai

cDαiy(t)+ y(t) =
∑

m
j=1bj

cDβju(t)+ b0u(t) (1)

with a given number of real-valued coefficients a1, . . ., an, b0,
b1, . . ., bm, and real-valued exponents 0< α1 < · · · < αn, 0<
β1 < · · ·< βm, with βm < αn.

Let U(s) = L{u(t)} and Y(s) = L{y(t)} denote the
Laplace transforms of the input and output signals, respect-
ively. The Laplace transform of cDαy(t) is L{cDαy(t)} =

sαY(s) −
∑pα−1

k=0 sα−k−1y(k)(0−), with pα − 1 < α < pα and
pα ∈ N+ [9]. By applying this transform in (1), with initial
conditions y(k)(0−), k = 0,1, . . . ,pαn − 1 and u(l)(0−) = 0,
l= 0,1, . . . ,pβm − 1, it follows that

Y(s) = G(s)U(s)+H(s) (2)

with

G(s) =
b0 + b1sβ1 + · · ·+ bmsβm

1+ a1sα1 + · · ·+ ansαn
, (3)

H(s) =

∑n
i=1 ai

∑pαi−1
k=0 sαi−k−1y(k) (0−)

1+ a1sα1 + · · ·+ ansαn

=

∑n
i=1

∑pαi−1
k=0 sαi−k−1fik

1+ a1sα1 + · · ·+ ansαn
(4)

where

fik = ai y
(k)
(
0−
)
; i = 1,2, . . . ,n; k= 0,1, . . . ,pαi − 1. (5)

The basic idea of the proposed identification method consists
of rewriting (2) in the form Y(s) = Ḡ(s)U(s), with

Ḡ(s) = G(s)+U(s)−1H(s) . (6)

Therefore, the problem can be recast as the identification
of an equivalent artificial system with transfer function Ḡ(s)
and null initial conditions. The proposed identification method
uses the auxiliary signals z(t) and w(t) (dependent on a pos-
itive parameter σ ∈ R), which are obtained by the exponen-
tial modulation procedure depicted in figure 1, similarly to the
approach presented in [5].

The following theorem provides the relationship among the
values limt→∞ z(t)= z∞, limt→∞w(t)=w∞ and the paramet-
ers in (3) and (4).

Theorem 1. If σ> 0 is such that z∞ and w∞ exist, then

z∞ = w∞G(σ)+σH(σ) . (7)

Proof 1. From figure 1, Z(s) = [(s+σ)/s]L{y(t)e−σt} =
[(s+σ)/s]Y(s+σ). Since Y(s) = Ḡ(s)U(s), it follows that
Z(s) = [(s+σ)/s]Ḡ(s+σ)U(s+σ). From the Final Value
Theorem, z∞ = lims→0 sZ(s), and thus z∞ = σḠ(σ)U(σ).
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Similarly, W(s) = (σ/s)L{u(t)e−σt} = (σ/s)U(s+σ), and
thus w∞ = lims→0 sW(s) = σU(σ). In view of these expres-
sions for z∞ and w∞, note that z∞ = w∞Ḡ(σ). Now, consid-
ering (6) and using U(σ)−1 = σ/w∞, one arrives in (7).

Remark 1. The assumption βm < αn adopted herein implies
that the transfer function (3) is strictly proper and thus the
frequency-domain gain |G( jω)| vanishes as ω →∞.

3. Proposed identification method

From (3), (4) and theorem 1, it follows that

z∞ (a1σ
α1 + · · ·+ anσ

αn)−w∞
(
b0 + b1σ

β1 + · · ·+ bmσ
βm
)

−
∑

n
i=1

∑ pαi−1
k=0 fikσ

αi−k =−z∞. (8)

By adopting q = 2(n+m+ 1+
∑n

i=1 pαi) different values
of the parameter σ = σi in figure 1, one obtains zi∞ , wi∞ , i =
1,2, · · · ,q, as in [5]. Therefore, the identification problem can
be addressed on the basis of the following equation:

Aθ = c+ e (9)

A=


z1∞σα1

1 · · · z1∞σαn
1 −w1∞ −w1∞σβ1

1 · · · −w1∞σβm
1

z2∞σα1
2 · · · z2∞σαn

2 −w2∞ −w2∞σβ1
2 · · · −w2∞σβm

2
...

...
...

...
...

...
...

zq∞σα1
q · · · zq∞σαn

q −wq∞ −wq∞σβ1
q · · · −wq∞σβm

q

−σα1
1 · · · −σ

α1−pα1+1
1 · · · −σαn

1 · · · −σ
αn−pαn+1
1

−σα1
2 · · · −σ

α1−pα1+1
2 · · · −σαn

2 · · · −σ
αn−pαn+1
2

...
...

...
...

...
...

...

−σα1
q · · · −σ

α1−pα1+1
q · · · −σαn

q · · · −σ
αn−pαn+1
q

 (10)

θ =
[
a1 · · · an b0 · · · bm f10 · · · f1pα1−1 · · · fn0 · · · fnpαn−1

]T
(11)

c=−
[
z1 (∞) z2 (∞) · · · zq (∞)

]T
(12)

where A ∈ Rq×q/2 is the matrix of regressors and e is the
model error associated to the presence of noise in the meas-
urements. A least-squares estimate of the parameter vector θ
is then obtained as

θ̂ =
(
ATA

)−1
ATc. (13)

Now, let ê= Aθ̂− c be the vector of identification residuals. In
order to determine suitable values for the fractional exponents
α1, . . . ,αn, β1, . . . ,βm, we shall consider the sum square error
E= êTê derived from (13) as

E=
(
Aθ̂− c

)T(
Aθ̂− c

)
= cT

[
A
(
ATA

)−1
ATA

(
ATA

)−1
AT−2A

(
ATA

)−1
AT + I

]
c

= cT
[
I−A

(
ATA

)−1
AT
]
c. (14)

A gridding procedure similar to [5] can then be employed as
described below. To this end, it is assumed that βm < αn, as
stated in section 2, and that an upper bound αmax ∈ N+ on the
values of αi is known.

Step 1) Find the minimum value of E over a grid of val-
ues for the fractional exponents, with 0< α1 < · · · < αn, 0<
β1 < · · ·< βm < αn, and αi < αmax, i = 1,2, . . . ,n. At each
grid point, the number of parameters fik is given by pαi = ⌈αi ⌉
for each i = 1,2, . . . ,n.

Step 2) Let θ̂ =
[
â1 · · · ân b̂0 · · · b̂m f̂10 · · · f̂npαn−1

]T
be the

vector of parameter estimates obtained as the result of Step 1.
Now let Sk be an index set defined as

Sk = { i ∈ {1,2, . . . ,n} : pαi − 1⩾ k} (15)

for each k= 0,1, . . . ,pαi−1. In view of (5), one can write
regression equations for the estimation of y(k)(0−) in the form

f̂ik = âi y
(k)
(
0−
)
+ ẽik , i ∈ Sk (16)

where ẽik is an error term. From (16), a least-squares estimate
for y(k)(0−) is then given by

ŷ(k)
(
0−
)
=

(∑
i∈Sk

â2i

)−1∑
i∈Sk

âi f̂ik (17)

for k= 0,1, . . . ,pαn−1.

Remark 2. In practice, the identification outcome may be
affected by the choice of σi values owing to the presence
of measurement noise and the finite-length nature of the

3
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Figure 1. Generation of the signals used in the proposed method.
The transfer functions of the blocks ‘System to be identified’, ‘Filter
1’ and ‘Filter 2’ are, respectively, G(s), (σ+ s)/s and σ/s. The
circles with × and + signs indicate pointwise multiplication and
addition in the time domain. L−1{H(s)} represents the inverse
Laplace transform of H(s).

input/output data set. Indeed, small σi values will result in
a slow convergence of the auxiliary signals zi(t) and wi(t),
thus compromising the accurate determination of zi∞ and wi∞
within the time span of the data. In contrast, if the σi values are
too large, the determination of zi∞ andwi∞ will depend almost
exclusively on the early part of the input/output signals, as if
the identification data spanned a shorter time interval. This is
not convenient either, as the effect of measurement noise tends
to be more pronounced if shorter data sets are employed.

Remark 3. Other types of modulating functions f (t) could be
employed in the proposed method as an alternative to f(t) =
exp(−σt), provided that

´ t
0 y(τ)f(τ)dτ and

´ t
0 u(τ)f(τ)dτ con-

verge to limit values as t→∞ to warrant the use of the Final
Value Theorem. Examples include functions of the form f(t) =
exp(−(σ+ jω)t) with different values of σ and ω. However,
this possibility is left for future research.

Remark 4. As an alternative to a grid search procedure, suit-
able values of α1, . . . ,αn,β1, . . . ,βm could be determined by
using numerical optimization techniques such as the well-
knownNelder–Mead (also known as polytope) algorithm [14],
as discussed in [5].

4. Examples

4.1. Example 1

The proposed method was implemented in the MATLAB®

software. Moreover, the FOTF computational package [15]
was employed to generate identification data through numer-
ical simulations of a fractional-order system. Let G(s) =
(b0 + b1sβ1)/(1+ a1sα1) be the transfer function of the sys-
tem to be identified, with a1 = 5, b0 = 2, b1 = 3,α1 = 1.5,
β1 = 0.9, y(0−) = 1 and ẏ(0−) =−1. The system was excited
by using an input signal u(t) =

∑3
i=1 sin(π t/(5(i+ 1))) over

a time span of 200 s with a simulation time step of 0.005 s.
The resulting output y(t) was corrupted with Gaussian noise
of zero mean and standard deviation of 0.1. The input and out-
put signals thus obtained are presented in figures 3(a) and (b),
respectively.

Figure 2 presents the auxiliary signals z1(t) and w1(t) for
five different values of σ1. The central value σ1 = ln(100)/200
corresponds to a 100-fold decay of the exponential e−σ1t over
the identification time span. In order to reduce the error in the

Figure 2. Auxiliary signals z1(t) and w1(t) for five different values
of σ1 (indicated in the legend).

determination of the limit values z∞ andw∞, we adopted σ1 =
2ln(100)/200= 0.0461 (dash-dotted lines in figure 2), which
was also the recommendation stated in [5]. Again in line with
[5], the remaining σi values were calculated as σi = σ

1/2
i−1, i =

2,3, . . . ,q, so that σ1 < σ2 < · · ·< σq, thus ensuring a suitable
determination of zi∞ and wi∞ .

The grid search procedure in Step 1 was implemented with
αmax = 2 and a step of 0.1 in both α1 and β1. As shown in
figure 3(c), the minimal value E= 8.2× 10−10 was obtained
for α̂1 = 1.5 and β̂1 = 0.9, which correspond to the actual val-
ues of the fractional exponents. The identified transfer function
was

Ĝ(s) =
b̂0 + b̂1sβ̂1

1+ â1sα̂1
=

1.9992+ 2.9959s0.9

1+ 5.0043s1.5
. (18)

By following Step 2 of the proposed procedure, the ini-
tial conditions were estimated as ŷ(0−) = 1.0061 and ˆ̇y(0−) =
−0.9977.

The reproducibility of the results was investigated by
repeating the identification 2000 times, each timewith a differ-
ent noise realization, under the same conditions of the simula-
tion described above. As can be seen in table 1 and figure 4, the
estimates obtained with the proposed method did not exhibit
bias with respect to the actual values of the parameters and
initial conditions.Moreover, the estimates displayed small dis-
persion, with relative standard deviations no larger than 6 %.
For comparison, table 1 also presents the identification results
obtained with the method described in [5], which assumes null
initial conditions. Note that disregarding the initial conditions
led to considerable errors in the parameter estimates.

The effect of increasing the amplitude of the measurement
noise up to four times is illustrated in figures 5 and 6. As can
be seen, the outcome consists of a general degradation of the

4
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Figure 3. (a) Input signal, (b) output signal, (c) index E employed
in the determination of α1 and β1. The inset presents a top view of
the three dimensional plot, with the dark blue square corresponding
to the minimum value of E.

Table 1. Identification results (mean ± standard deviation over
2000 runs) obtained with the proposed method and with the method
presented in [5].

Proposed Method Actual
Parameter method in [5] value

α1 1.5± 0 1.1± 0 1.5
β1 0.90± 0.05 1.0± 0 0.9
a1 4.99± 0.08 −3.9± 0.1 5
b0 2.00± 0.06 0.860± 0.007 2
b1 3.0± 0.1 −2.93± 0.05 3
y(0−) 1.00± 0.01 − 1
ẏ(0−) −1.00± 0.04 − −1

Figure 4. Variation in the identification results using the proposed
method. The blue boxes comprise the 25th and 75th percentiles,
with the central red line corresponding to the median and bars
extending to extreme points. Outliers are indicated by cross markers.

estimates in terms of bias and dispersion. Interestingly, the
estimates of β1, b0, b1, which are associated with the numer-
ator of G(s), were more sensitive to noise compared with the
estimates ofα1 and a1, which are associated with the denomin-
ator of G(s). By using concepts from classical control theory
[16], one may argue that the dynamical features of the sys-
tem are more strongly related to the denominator of G(s).
Therefore, it stands to reason that the parameter estimates

Figure 5. Mean of the α1, β1, a1, b0, b1, y(0−), ẏ(0−) estimates as
identified through the proposed method. Plots show how an increase
in the standard deviation of noise in the output signal of the
fractional order system affects the calculated value for each
parameter. The actual value of the parameter is indicated by a
dashed line in each plot.

Figure 6. Relative standard deviation (standard deviation divided
by mean, in percentage) of the α1, β1, a1, b0, b1, y(0−), ẏ(0−)
estimates for increasing values of the standard deviation of noise in
the output signal y(t).

associated with the denominator are less affected by the meas-
urement noise. Figures 5 and 6 also reveal that the estimate of
y(0−) was less sensitive to noise compared with the estimate
of ẏ(0−). This finding can be interpreted by noting that y(0−)
is directly measured, whereas ẏ(0−) is not. Research is under
way to reduce the overall sensitivity of the proposed method
with respect to noise.

4.2. Example 2: three-dimensional RC network

This second example involves the three-dimensional RC net-
work model presented in [17], which was also used as a case
study in [4]. The network was configured with five layers of
3× 5 nodes between the external electrodes and an excita-
tion source with internal resistance RS = 0.1 Ω, as shown in
figure 7. Each dashed line connecting a pair of nodes in the
network represents either a resistor or a capacitor, with nor-
malized component values R= 1 Ω, C= 0.5 F. The R and C
components were randomly allocated throughout the network,
with equal fractions of each component type.

The system-theoretic approach employed in [17] yielded a
model of the form

dz(t)/dt= Fz(t)+NuS (t) (19)

5
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Figure 7. Three-dimensional network employed in example 2. Each
dashed line connecting a pair of nodes can be either a resistor or a
capacitor.

i(t) = Hz(t)+ LuS (t) (20)

where z(t) is the state vector, the scalars uS(t), i(t) are the
source voltage and the current entering the network at time t,
L= 1/RS, and F, N,H are matrices of compatible dimensions.
The complex network admittance (including the source resist-
ance RS) was then calculated as Y( jω) = H( jωI−F)−1N+L
at each angular frequency ω. As shown in [17], the magnitude
|Y( jω)| increases with ω from the resistive to the capacitive
percolation regimes.

In view of remark 1, the present example is actually con-
cerned with the network impedance, which has a decreasing
magnitude as the frequency increases. To this end, the output
equation (20) can be rewritten as

uS (t) =−(H/L)z(t)+ (1/L) i(t) . (21)

By replacing (21) for uS(t) in (19), it follows that

dz(t)/dt= (F−NH/L)z(t)+ (N/L) i(t) . (22)

Since the voltage v(t) across the network in figure 7 is given by
v(t) = uS(t)−RSi(t) and RS = 1/L, it follows from (21) that

v(t) =−(H/L)z(t) . (23)

Therefore, in light of (22) and (23), the complex network
impedance is calculated as

Z( jω) =−(H/L)( jωI−F+NH/L)−1N/L. (24)

The data for the present study were generated by using the
state-space model (22), (23) with the following current wave-
form:

i(t) = 0.2sin(0.04π t)+ sin(0.4π t)+ 5sin(4π t) , (25)

which comprises three sinusoids with angular frequencies ran-
ging from approximately 0.1 to 10 rad s−1. The states of the

Figure 8. Three-dimensional RC network example. (a) Input signal
employed in the identification procedure. (b) Output of the actual
network (black solid line) and the identified model (blue
dash-dotted line). The insets show enlarged details of the signals at
the initial and final parts of the simulation. (c) Magnitude and phase
of the actual network impedance (black solid line) and the identified
model (blue dashed line).

model were randomly initialized by using a normal distribu-
tion with zero mean and unit standard deviation. In what fol-
lows, a typical result is presented. The current input u(t) = i(t)
and voltage output y(t) = v(t) waveforms thus obtained are
presented in figures 8(a) and (b), respectively. In this example,
no noise was added to the output signal. The identification
was carried out to obtain an impedance transfer function of
the form

Z(s) =
V(s)
I(s)

=
b0 + b1sα

1+ a1sα + a2s
(26)

which has the same structure of the model adopted in [4], after
conversion from admittance to impedance form and exclusion
of the source resistance.

By using the method proposed in this paper, the identified
transfer function was

Ĝ(s) =
2.9539+ 3.5310s0.5303

1+ 1.5097s0.5303 + 8.3151s
, (27)

which exhibits good agreementwith the actual network imped-
ance, as shown in the frequency-domain plots presented in
figure 8(c). As can be seen in the insets in figure 8(b), the
model also provides a good match of the network output in
the time domain.

6
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On the other hand, the method presented in [5], which does
not take into account the non-null initial conditions of the net-
work, resulted in a very different model:

Ĝ(s) =
3.1719− 0.1137s0.9684

1+ 44.1407s0.9684 − 40.1192s
, (28)

whichwas found to be unstable, in clear contrast with the phys-
ical nature of the actual system. This result clearly justifies the
benefits of the current refinement from our previous formu-
lations; these are absolutely necessary for the unambiguous
identification of this type of system.

5. Conclusion

This contribution extended the exponential modulation tech-
nique presented in [5] to the identification of fractional order
systems with non-zero initial conditions. To this end, the prob-
lem was recast in terms of an artificial system with null initial
conditions. Compared to the method presented in [6], the pro-
posed approach has the advantages of handling models with
derivatives at the input and allowing for the identification of
the fractional exponents. In an example involving a Monte
Carlo simulation with measurement noise, the estimated para-
meters and initial conditions were found to be unbiased and
displayed small dispersion around the actual values. In con-
trast, by using the original method presented in [5], the errors
in the parameter estimates were much larger. The proposed
method also provided suitable results in an example con-
cerning the identification of the input impedance of a three-
dimensional RC network. In this case, the previously reported
method was severely affected by the presence of non-zero ini-
tial conditions and resulted in an unstable model, whereas this
is not the case in the current formulation. The precise iden-
tification of RC network dynamics taking into consideration
explicitly the initial conditions paves the way for new mod-
elling methodologies that should provide better understand-
ing of the dynamics associated with complex phenomena, as
encountered across a range of disciplines such as physics [18],
chemistry [19] and biomedical engineering [20–24].
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