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Abstract

Despite significant progress in our understanding of the pathophysiology of sepsis and extensive clinical research,
there are few proven therapies addressing the underlying immune dysregulation of this life-threatening condition.
The aim of this scoping review is to describe the literature evaluating immunotherapy in adult patients with sepsis,
emphasizing on methods providing a “personalized immunotherapy” approach, which was defined as the classifi-
cation of patients into a distinct subgroup or subphenotype, in which a patient’s immune profile is used to guide
treatment. Subgroups are subsets of sepsis patients, based on any cut-off in a variable. Subphenotypes are subgroups
that can be reliably discriminated from other subgroup based on data-driven assessments. Included studies were
randomized controlled trials and cohort studies investigating immunomodulatory therapies in adults with sepsis.
Studies were identified by searching PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov, from the first paper
available until January 29th, 2024. The search resulted in 15,853 studies. Title and abstract screening resulted in 1409
studies (9%), assessed for eligibility; 771 studies were included, of which 282 (37%) were observational and 489 (63%)
interventional. Treatment groups included were treatments targeting the innate immune response, the complement
system, coagulation and endothelial dysfunction, non-pharmalogical treatment, pleiotropic drugs, immunonutrition,
concomitant treatments, Traditional Chinese Medicine, immunostimulatory cytokines and growth factors, intravenous
immunoglobulins, mesenchymal stem cells and immune-checkpoint inhibitors. A personalized approach was incor-
porated in 70 studies (9%). Enrichment was applied using cut-offs in temperature, laboratory, biomarker or genetic
variables. Trials often showed conflicting results, possibly due to the lack of patient stratification or the potential
influence of severity and timing on immunomodulatory therapy results. When a personalized approach was applied,
trends of clinical benefit for several interventions emerged, which hold promise for future clinical trials using personal-
ized immunotherapy.
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Background

Despite a global decrease in sepsis burden, sepsis still
causes almost 20% of all deaths worldwide [1]. Over the
past few decades, significant progress has been made in
the understanding of the pathophysiology of sepsis [2],
however, treatment is still limited to tackling the patho-
gens and providing supportive care. To date, limited
proven therapies address the underlying mechanisms of
this life-threatening condition.

The host response to infection can be dysregulated in
multiple ways, resulting in a highly heterogeneous clini-
cal presentation, treatment response, and prognosis [3].
The pathophysiology of sepsis involves dysregulation
of the inflammatory response, but also catabolic, meta-
bolic and immune-suppressive features can be present,
together resulting in failure to return to homeostasis
[3-5]. Modulating these various immune responses to
infection represents a promising treatment option. Rea-
son for the numerous failed clinical trials [4—6] could be
the use of “one-size-fits-all” approaches, suggesting that
personalized immunomodulatory treatment tailored to
an individual patient’s immune profile may be a more
successful treatment approach. The first step towards
implementation of such a personalized strategy is provid-
ing a structured and in-depth overview of currently avail-
able evidence on immunotherapy in sepsis. The aim of
this scoping review is to describe and summarize the lit-
erature evaluating immunotherapy in adult patients with
sepsis, and to evaluate methods by which a personalized
immunotherapy approach has been studied so far.

Methods

In line with our previously published protocol [7], studies
were identified by searching PubMed, Embase, Cochrane
CENTRAL and ClinicalTrials.gov from the first paper
available until Janaury 29th, 2024. Inclusion criteria were:
1) randomized controlled trials (RCTs) or cohort stud-
ies (including case control studies and observational
cohorts); 2) investigating immunomodulatory therapies;
in 3) adult (>16 years) patients with sepsis, 4) written
in English or Dutch. We included studies that addressed
therapies with a potential or hypothesized immunomod-
ulatory effect (see Supplementary Methods). Exclusion
criteria were: 1) case reports or systematic reviews; 2)
animal studies; and 3) studies in healthy volunteers. We
deviated from the previously publish protocol [7] by
not including studies investigating coronavirus disease
2019 (COVID-19), since immunomodulatory treatments
and patient stratification in COVID-19 is explored in a
recently published review [8]. The full search strategies,
screening and data extraction can be found in the Sup-
plementary Methods. The results are organized in two
steps. First, separating observational from interventional
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studies; and subsequently into treatment groups [3].
Ongoing trials are reported separately. The text in the
main paper focusses on randomized controlled trials
and studies applying a personalized approach; an over-
view of observational studies and non-randomized inter-
ventional studies not using a personalized approach can
be found in the supplement. We defined a personalized
approach as the classification of patients into a distinct
subgroup or subphenotype. Subgroups are subsets of
patients with the same disease or syndrome, based on any
cut-off in temperature, laboratory, biomarker or genetic
variables. In particular, subgroups based on age, sex or
use of certain interventions (mechanical ventilation or
vasopressors) were not considered subgroups for a per-
sonalized approach. Subphenotypes are subgroups that
can be reliably discriminated from other subgroup based
on data-driven assessments including machine learning
techniques [9]. The use of disease severity scores was not
considered as personalized. Individualized interventions
were not included, since this review focused on personal-
ized treatments, defined as applying specific treatment at
subgroup or subphenotype level, and not at an individu-
alized or patient level.

Results

Study characteristics

The search resulted in 15,853 studies, including 43 stud-
ies identified through manual searching for the results of
protocols, abstracts and registered studies. Our search
was completed on January 29th, 2024. Title and abstract
screening resulted in 1409 studies that were assessed for
eligibility (Fig. 1). In total, 282 observational studies and
489 interventional studies were included (Figs. 1 and 2),
of which 70 (9%) applied a personalized approach. Fig-
ure 2 depicts a timeline with an overview of the included
studies in this review divided by study design, treatment
group and year of publication. Figure 3 depicts an over-
view of all interventions discussed in this review in order
to summarize all treatments that have been studied in the
research field of immunotherapy in sepsis. Treatments
in bold are discussed in the text and in the supplement,
treatment not in bold can be found in the supplement.

Strategies modulating excessive inflammation

Innate immune response

Since excessive activation of the innate immune response
causes host response dysregulation leading to sepsis,
there is a clear rationale to study blocking innate immune
activation [3]. Treatments targeting the innate immune
response were studied in 11 (15%) observational stud-
ies, 5 (7%) non-randomized interventional studies and
57 (78%) RCTs (Supplementary Table 2). Treatments
most studied were anti-tumor necrosis factor (TNF)
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Fig. 1 Flow diagram for study selection. RCT, randomized controlled trial

a antibodies (Abs) (n=17, 23%), anti-endotoxin Abs
(n=14, 19%) and interleukin (IL)-1 receptor antagonists
(ra) (n=10, 14%),

RCTs without a personalized approach Since 1981,
RCTs studying anti-endotoxin strategies, including anti-
serum raised in volunteers immunized with heat-killed
mutant E coli J5 (murine E5)) and humanized (HA-1A)
antibodies directed against the lipid-A part of endotoxin,
have been published almost without positive results. Two
studies showed a lower mortality in patients with gram-

negative bacteremia (30% vs. 49%, n=197, respectively,
22% vs. 39%, n=212) [10, 11]. However it has been stated
that the results should be interpreted cautiously [12], since
this effect was restricted to gram-negative bacteremia and
patients most likely to benefit are difficult to identify, and
none of the other anti-endotoxin trials showed similar
results (Supplementary Table 2). Since 2007, inhibiting
Toll-like receptor-4 (TLR4) has been examined using erit-
oran (a synthetic lipid A antagonist blocking lipopolysac-
charide (LPS) from binding at the cell surface MD2-TLR4
receptor) or TAK-242 (a small molecule-inhibitor specific
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Fig. 3 Overview of all immunomodulatory treatments studies in adult patients with sepsis. Immunomodulatory treatments investigated in sepsis
patients either modulate excessive inflammation (top op panel, in red) or aim at immune stimulation (bottom of panel, blue), furthermore there are
combinations of these treatment strategies (bottom of panel, in grey) or treatments not fitting into these categories (bottom of panel, in green). All
treatments displayed in this figure are included in this review; the treatments in bold are discussed in the text and in the supplement, treatment
not in bold can be found in the supplement. Abbreviations: Ab, antibody; ACE, angiotensin-converting-enzyme; anti-PD-1, anti-programmed cell
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for TLR4) [3]. Neither was found to be effective in large  Studies with a personalized approach In a retrospec-
RCTs in severe sepsis patients [13, 14]. Since 1995, anti-  tive RCT subgroup analysis, showing no survival benefit
TNFa Abs were examined in several trials yielding disap-  of anti-TNFa Ab CB0006 in 80 unselected severe sepsis
pointing results [15, 16]. In the 1990s, Anakinra, a recom-  patients, the patients with increased entry TNF-levels
binant human IL-1RA, was studied in 6 RCTs, without  appeared to benefit from the high dose anti-TNF Ab (sur-
effect on mortality (Supplementary Table 2). vival rate 86%, n=7) [17]. When the anti-TNF Ab afeli-
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momab was studied in a phase-III trial including sepsis
patients using stratification, only patients with IL-6 lev-
els > 1000 pg/mL had a reduced 28-day mortality (44% vs.
48%, n=998) [18]. In a similar trial [19], sepsis patients
with IL-6 levels > 1000 pg/mL were randomized to receive
either afelimomab or placebo, without mortality effect
(54% vs. 58%, n=446). One of the RCTs [20] studying
anakinra in 696 sepsis patients, failed to demonstrate a
mortality reduction, however in a post-hoc analysis [21]
treatment with anakinra provided a 30% decrease of
28-day mortality in patients who, at the start of treatment,
had both liver dysfunction and disseminated intravascular
coagulation which were interpreted by the authors as traits
of macrophage activation. Another post-hoc analysis of
this RCT showed that patients with higher baseline IL-1
levels showed mortality reduction compared to patients
with lower IL-1 [22]. In an RCT examining IL-11 ther-
apy in patients with thrombocytopenia, a less extensive
inflammatory response and lower mortality was observed
(31% vs. 14%, n=105) [23]. In an RCT with patients
treated with nangibotide, a triggering receptor expressed
on myeloid cells-1 (TREM-1) inhibitor, grouped accord-
ing to STREM-1 concentrations at baseline, no improve-
ment in sequential organ failure assessment (SOFA) score
was seen [24].

Non-pharmacological treatments

The primary non-pharmacological immunotherapy
treatment studied in sepsis is blood purification, which
may be beneficial through removal of endotoxin, alter-
ing cytokine levels, mobilization of cytokines from
local tissues, or through more complex processes of
immune modulation [25]. Non-pharmacological treat-
ments were studied in 63 (36%) observational studies,
51 (29%) non-randomized interventional studies and 59
(34%) RCTs (Supplementary Table 3). Treatments most
studies were blood purification (n=111, 64%), blood
filtration (n=47, 27%) and plasma treatments (e.g.
plasma filtration or exchange, n=12, 7%).

RCTs without a personalized approach  The clinical
effects of these studies are mixed. For instance, while in
the EUPHAS trial Polymyxin B hemoperfusion reduced
28-day mortality in 64 patients with severe abdominal
sepsis (32% vs. 53%, aHR 0.36; 95% CI 0.16, 0.80) [26], the
ABDOMIX trial in peritonitis-induced septic shock did
not show a reduction in 28-day mortality (28% vs. 20%,
n=243) [27].

Studies with a personalized approach ~ The EUPHRA-
TES trial, a multicenter RCT including 450 patients
using enrichment by including patients with endotoxin
activity assay (EAA) levels>0.6, did not find improve-
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ment in 28-day survival when applying Polymyxin B
hemoperfusion [28]. The trial showed that in some sep-
tic shock patients the burden of endotoxin activity was
extreme (EAA>0.9). Therefore, a post-hoc analysis of
the EUPHRATES trial was conducted in only patients
with EAA of 0.6-0.89, not leading to better survival rates
[29]. In a retrospective study using the EUPHRATES
trial Polymyxin B hemoadsorption was associated with
higher 28-day survival in patients with PT-INR>1.4 or
lactate >3 mmol/L (68% vs. 52%, p=0.02) [30]. Cytokine
adsorption and endotoxin hemoabsorption were studied
in two observational studies including patients with septic
shock and IL-6>1000 ng/l, one study found an increased
hazard of death of 1.82 (95% CI, 1.03-3.2) compared to
a matched control group [31]; the other compared survi-
vors and non-survivors and concluded that this treatment
could be beneficial when applied early after onset of shock
[32].

Complement system

The rationale for studying complement inhibitors is that
excessive complement system activation contributes to
sepsis-induced organ failure and death [33], which has
been studied in 4 RCTs (Supplementary Table 4).

RCTs without a personalized approach Treatment with
complement (C)l-inhibitors infusion was studied in
three RCTs and associated with reduced all-cause mor-
tality (12% vs. 45% in control, n=61) [34]. Furthermore,
a phase-Ila trial on a monoclonal Anti-C5a antibody in
72 severe sepsis and septic shock patients demonstrated
a dose-dependent neutralization of C5a. Complement
inhibition was not studied in trials using a personalized
approach.

Coagulation and endothelial dysfunction

The rationale for studies aiming at coagulation pathways
and endothelial dysfunction in sepsis patients is that
disseminated intravascular coagulation (DIC) and loss
of endothelial barrier integrity are both key phenom-
ena in the pathogenesis of sepsis [2]. Studies aiming at
coagulation pathways and endothelial dysfunction were
studied in 103 (62%) observational studies, 9 (5%) non-
randomized interventional studies and 55 (33%) RCTs
(Supplementary Table 5). The most studied treatment
interventions were activated protein C (APC; n=77,
46%), antithrombin (n=25, 15%) and soluble thrombo-
modulin (n=19, 11%).

RCT without a personalized approach In PROWESS,
a large phase-III trial in severe sepsis patients, a benefi-
cial effect on 28-day mortality of APC was observed (25%
vs. 31%, n=1690) along with an increased risk of bleed-
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ing (3.5% versus 2.0%) [35]. In patients with septic shock,
however, the phase-III PROWES-SHOCK trial did not
show mortality reduction from treatment with APC (26%
vs. 24%, n=1697) [36]. Even though antithrombin therapy
resulted in improvement of DIC [37, 38], it did not result
in a decreased mortality in patients with severe sepsis or
septic shock (39% vs. 39%, n=2314) [39]. In the SCAR-
LET trial soluble thrombomodulin did not reduce mortal-
ity in unselected sepsis patient (27% vs. 29%, n=_800) [40].

Studies with a personalized approach In a predefined
subgroup analyzing patients with severe protein C defi-
ciency from the PROWESS-SHOCK, APC treatment did
not result in differences in 28-day mortality (28.7% vs
30.8%, n=673) [36]. However, in a retrospective cohort
study in 48 patients with severe sepsis and elevated tro-
ponin, treatment with APC did improve intensive care
unit (ICU)-mortality (30% vs. 72%, n=48) [41]. A post
hoc analysis of the SCARLET trial showed that patients
with higher baseline thrombin generation biomarker lev-
els showed reduced mortality when treated with recom-
binant human soluble thrombomodulin [42]. A study
using coagulation phenotypes as a secondary analysis of
multicenter registries on sepsis patients admitted to the
ICU, demonstrated that in one in four phenotypes, the
one with high fibrinogen/fibrin-degradation-products
and D-Dimer, treatment with thrombomodulin was asso-
ciated with lower mortality (adjusted risk difference -18%,
95% CI -29%,-7%, n=323) [43]. Antithrombin supple-
mentation therapy only reduced in-hospital mortality in
sepsis patients with very low anthithrombin activity (HR
0.603, 95% CI 0.368, 0.988) [44]. When applying molecu-
lar phenotypes previously identified in acute respiratory
distress syndrome (ARDS) different treatment response
to activated protein C were found, with survival benefit in
the hyperinflammatory and harm in the hypoinflamma-
tory phenotype [45].

Pleiotropic drugs

Pleiotropic drugs refer to substances exerting effects
other than for which it was initially developed. Corticos-
teroids (n=289, 57%) and antibiotics (n=18, 12%, mainly
macrolides are known for their immunomodulatory
effect [46, 47]) are the primary pleotropic drugs used in
sepsis (Supplementary Table 6). Pleiotropic drugs were
studied in 64 (41%) observational studies, 6 (4%) non-
randomized interventional studies and 85 (55%) RCTs.

RCTs without a personalized approach Corticosteroids
have been studied in sepsis patients in over 30 RCTs with
contradicting results. In septic shock patients receiving
hydrocortisone plus fludrocortisone compared to pla-
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cebo, mortality was lower (43% vs. 49%, n=1241) [48],
however hydrocortisone alone in septic shock patients
undergoing mechanical ventilation did not result in the
same effect (28% vs. 29%, n=3658) [49]. A recently pub-
lished RCT showed a lower 28-day mortality among ~ 800
patients with severe community-acquired pneumonia
treated in the ICU with hydrocortisone (12% vs. 6%)
[50]. In an RCT in sepsis patients receiving vasopressors
those who received intravenous vitamin C had a higher
risk of death or persistent organ dysfunction (44.5% vs
38.5%, n=2872) [51]. Trials investigating the combination
of vitamin C, thiamine, and hydrocortisone did not find
positive results on ventilator-free-days [52] or mortality
SPS:refid::bib53|bib54(53, 54). Treatment with clarithro-
mycin, next to standard-of-care antimicrobial treatment,
resulted in contradicting findings, the latest large trial did,
however, found an association with a decreased 90-day
mortality compared to placebo (43% vs. 60%, n=200) [55].

Studies with a personalized approach In an RCT includ-
ing patients with severe community-acquired pneumonia
and C-reactive protein (CRP)>150 mg/L methylpredni-
solone led to reduced treatment failure (development of
shock, need for mechanical ventilation or death) com-
pared to placebo (31% vs. 13%, n=60) [56]. Increased
mortality was observed in patients with sepsis response
signature-(SRS)2 endotype compared to SRS1 in patients
treated with hydrocortisone (n=176, OR 7.9, 95% CI 1.6,
39.9) [57]. When assigning patients to two previously
identified gene expression-based endotypes, corticoster-
oid exposure may be associated with increased mortality
among septic shock endotype A patients (OR 3.1, 95% CI,
1.0 — 9.6, n=97) [58]. When gene expression scores used
to identify the immune state of shock patients; patients
with the prevalent immune-adaptive state may be harmed
by hydrocortisone [59]. Expression of GLCCII was asso-
ciated with decreased time to shock reversal, and the
expression of BHSDI was associated with increased time
to shock reversal (n=494, HR 3.81 vs. 0.64 and HR 0.55
vs. 1.32, respectively) [60]. In two cohorts with>1200
and > 2500 patients, studying the use of machine learn-
ing for corticosteroid treatment decision showed positive
results [61, 62]. Another cohort study employing machine
learning identified interferon (IFN)y/IL10 as a theranostic
marker; a low serum IFNy/IL10 ratio predicted increased
survival in the hydrocortisone group whereas a high ratio
predicted better survival in the placebo group [63]. One
post-hoc analysis of an RCT examined the effect of sim-
vastatin in sepsis-induced ARDS in patients with high
baseline IL-18, which was associated with a higher sur-
vival probability (39% vs. 24%, n=511) [64].
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Immunonutrition, concomitant treatments and traditional
chinese medicine

See the Supplementary Results for the studies regarding
immunonutrition (Supplementary Table 7), concomitant
treatments (Supplementary Table 8) and Traditional Chi-
nese Medicine (Supplementary Table 9).

Strategies aiming at immune stimulation
Immunostimulatory cytokines and growth factors
Immunostimulatory cytokines and growth factors have
been studied in 2 (8%) observational studies, 7 (28%)
interventional non-RCTs and 16 (64%) RCTs (Supple-
mentary Table 10). Treatments most studies were gran-
ulocyte-colony stimulating factor (G-CSF) (n=11, 44%)
and granulocyte—macrophage colony-stimulating factor
(GM-CSEF) (n=7, 28%).

RCTs without a personalized approach  Six RCTs inves-
tigating G-CSF did not show an effect on mortality (Sup-
plementary Table 10). Even though likewise no survival
benefit was found for GM-CSF, one RCT did demonstrate
improved respiratory function (n=18) [65].

Studies with a personalized approach  Three RCTs
studied biomarker-guided (human leukocyte antigen DR
(HLA-DR) < 8000) GM-CSF treatment; one trial resulted
in a shorter time of mechanical ventilation (148 + 103 h vs.
207 +58 h, n=38) [66]; another in decreased indoleam-
ine 2,3-dioxygenase levels, possibly due to an improved
antibacterial defense (35.4+21.0 vs 21.6 +9.9 (baseline vs
day 9), n=36) [67]; another had no effect on the preven-
tion on ICU-acquired infections (11% vs 11%, n=98) [68].
In an RCT studying intramuscular recombinant human
IL-7 (CYT107) in 27 patients with severe lymphopenia,
CYT107 reversed the loss of CD4+and CD8+ cells [69].

Intravenous immunoglobulins

Immunoglobulins can opsonize and neutralize pathogens
and toxins resulting in immunostimulation and reduced
inflammation. Immunoglobulins have been studied in 17
(41%) observational studies, 4 (10%) interventional non-
RCTs and 20 (49%) RCTs (Supplementary Table 11).

RCTs without a personalized approach RCTs on immu-
noglobulins demonstrate contradicting results concern-
ing improving patient outcome and decreasing mortality
(Supplementary Table 11). For example, two RCTs on
immunoglobulin (Ig)G demonstrated a lower mortality
from septic shock in one trial (38% vs. 67%, n=62) [70];
while no mortality reduction was seen in another trial
(37% vs. 39%, n=653) [71].
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Studies with a personalized approach In an observation
study intravenous immunoglobulins (IVIG) administra-
tion in patients with sepsis and low serum IgG levels was
associated with improved prognosis (OR 0.15; 95%CI,
0.04-0.54; n=87) [72]. In sepsis patients with neutro-
penia, polyclonal immunoglobulin M-enriched immu-
noglobulins led to a decrease in endotoxin levels in
survivors, in non-survivors this was not seen [73]. In a
post-hoc RCT analysis, a reduction of all-cause mortal-
ity was observed in pneumosepsis patients with high
CRP and low IgM levels when administered trimodulin
(polyclonal antibody) (reduction of 25%, n=92) [74]. In
an RCT studying the use of IVIG, IGMA had no effect
on 28-day mortality in neutropenic patients (26% vs. 28%,
n=211) [75].

Mesenchymal stem cells

Mesenchymal stem cells enhance bacterial clearance and
modulate the immune response. Mesenchymal stem cells
have been studied in 1 (17%) observational study, 4 (67%)
non-randomized interventional studies and 1 (17%) RCT
(Supplementary Table 12).

RCTs with a personalized approach One RCT showed
that mesenchymal stem cells are safe and attributed to the
faster hemodynamic stabilization in 30 patients with neu-
tropenia [76].

Immune-checkpoint inhibitors

Immune-checkpoint inhibitors have been studied in 1
(33%) non-randomized interventional study and 2 (67%)
RCTs (Supplementary Table 13).

Studies with a personalized approach Immune-check-
point inhibitors, like anti-programmed death (PD)-1
antibodies, while not yet proven to enhance survival, also
appear safe and could improve immune recovery in one
non-randomized interventional study and two RCTs with
patients with absolute lymphocyte count <1.1x 10? cells/
uL [77-79].

Combination of therapies and other therapies

See the Supplementary Results for studies investigating
combination of therapies (Supplementary Table 14) and
treatments that could not be classified into the previously
mentioned treatment groups (Supplementary Table 15).

Ongoing trials

A search on ClinicalTrials.gov yielded 78 sepsis stud-
ies, reflecting ongoing research across the entire
immunotherapy spectrum (Supplementary Table 16).
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Notably, sixteen studies (21%) implement a personalized
approach. For the RCTs (n=14) applying a personalized
approach see Table 1. One of these trials, employing a
double-dummy design, is studying the impact of preci-
sion immunotherapy on sepsis phenotypes like hyperin-
flammation (using very high ferritin levels as a marker
for macrophage activation-like syndrome (MALS)) and
immunoparalysis (using low expression of HLA-DR on
monocytes as marker of immunoparalysis) [80]. Patients,
stratified by biomarkers are assigned to receive either pla-
cebo or active immunotherapy as an adjunct to standard
care. The active treatments include anakinra for MALS
and interferon-gamma for immunoparalysis.

Discussion

This scoping review provides a comprehensive overview
of immunomodulatory treatments investigated in adult
patients with sepsis, highlighting studies with a person-
alized treatment approach. Our results show that tri-
als often showed conflicting results. Possibly due to the
lack of patient stratification, requiring the need to con-
firm positive findings in large multicenter populations or
the potential influence of severity and timing on immu-
nomodulatory therapy results. Several immunomodula-
tory treatments described in this review suggest possible
efficacy, laying the groundwork for future trials to dem-
onstrate their effectiveness. If a personalized approach is
applied, clinical benefits of treatment appear to emerge
in several studies. This emphasizes the need to decipher
different host response endo-/phenotypes for the inter-
vention to modulate.

Over 700 studies investigating immunotherapy in
patients with sepsis have been performed and despite
this body of evidence, the 2021 surviving sepsis cam-
paign guidelines only include intravenous hydrocorti-
sone as an immunomodulatory treatment for patients
with vasopressor refractory septic shock [81]. Perhaps
patient stratification might be the way forward, in which
we have witnessed notable advancements in recent
years, including therapies targeted by biomarker meas-
urements. For instance, the ratio of IFN-y to IL-10 has
been used to guide corticosteroid therapy decisions [63],
while HLA-DR levels on monocytes and plasma IL-10
concentrations have been used for stratification of treat-
ment with either GM-CSF or IFN-y [82]. In ongoing
and upcoming sepsis trials, an increase in patient strati-
fication has been observed. The personalized approach
most applied is a cut-off value for inflammatory mark-
ers such as IL-6 or procalcitonin. Two studies use more
complex stratification methods. One is the ImmunoSep
trial (NCTO04990232) which uses biomarker stratifica-
tion to identify patients with either hyperinflamma-
tion or immunoparalysis [80]. Another example is the
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RECORDS trial, which aims at defining endotypes in
sepsis adults associated with responsiveness to corti-
costeroids [83]. This multicenter, placebo-controlled,
biomarker-guided, adaptive Bayesian design basket trial
will randomly assign 1800 adults to a biomarker stratum
to identify resistant or sensitive sepsis to corticosteroid
treatment. In our opinion, using biomarker-based proto-
cols for patient stratification will be the way forward in
sepsis research.

The strengths of this review include the systematic
search and comprehensive inclusion of all studies inves-
tigating immunomodulatory treatments in sepsis, includ-
ing studies on immunonutrition, Traditional Chinese
Medicine and concomitant treatments. Furthermore, it
gives an extensive overview of studies that used a person-
alized approach, which can be used as the foundation for
new study designs and aims. A few limitations should be
mentioned. Given that the objective of this review was to
provide a comprehensive overview of all studies examin-
ing immunomodulatory treatments in sepsis, a scoping
review was considered the most suitable approach. Con-
sequently, a risk of bias assessment was not conducted
[84]. Although inevitable, different criteria for sepsis have
been used over time [85], leading to heterogeneity in the
population included. In this review treatments are con-
sidered personalized when a subgroup of subphenotype
was selected based on biological characteristics possibly
making the patient benefit more from a specific treat-
ment, however, the is no uniform definition for ‘person-
alized medicine! Since no qualitative methods such as
qualitative text analysis, evidence maps or evidence gap
maps, were deployed, no information on the research
gaps in the field could be given. Due to the extensive
body of evidence, we refrained from reporting cohort
studies in a structured manner in the main text. Even
though these observational studies and non-randomized
interventional studies were included in the supplemen-
tary materials, not discussing them in the main text of
the paper could be perceived as selective reporting bias.
Lastly, since the search yielded a large amount of studies
there was only limited possibility for in-depth description
of important trials, including descriptions of the different
dosages given.

Conclusions

Decades of extensive investigation into immunomodula-
tory treatments has led to over 700 studies investigating
these treatment for sepsis, with often conflicting results.
The lack of therapeutic efficacy appears to be related to
the difficulty to enroll the right patients for the inter-
vention. Since it is highly unlikely that one single immu-
nomodulatory treatment will be universally effective in
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all sepsis patients, a personalized approach seems the
way forward. To date, only a small proportion of studies
have looked into enrichment strategies in sepsis, and for
several interventions the therapeutic efficacy appears to
emerge when a personalized approach was used. Patient
stratification will play a pivotal role in the identification of
patients that may benefit from targeted immunotherapy.
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APC Activated protein C

ARDS Acute respiratory distress syndrome

C Complement

COVID-19  Coronavirus disease 2019
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MALS Macrophage activation-like syndrome
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Ra Receptor antagonists
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