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Abstract

Mosquito-borne diseases (MBDs) pose significant public health risks, driven by environ-

mental changes and species interactions. This thesis takes a community-based approach to

understand how multiple drivers—both biotic and abiotic—shape mosquito distributions

across local and continental scales, using advanced Joint Species Distribution Models (JS-

DMs).

In Chapter 2, I analyse mosquito communities in managed UK wetlands, showing how

habitat modifications, such as changes in vegetation structure, impact mosquito populations.

The study highlights that biotic interactions, including predator-prey dynamics, play a crucial

role alongside environmental factors in determining community composition.

Chapter 3 scales up to a European dataset, exploring how environmental factors (e.g.,

temperature, precipitation) and biotic interactions drive mosquito communities. Importantly,

biotic interactions remain influential at large scales, challenging the assumption that environ-

mental variables dominate. This underlines the need to integrate species interactions into

disease modelling.

In Chapter 4, I enhance JSDMs by incorporating species traits and phylogenetic data.

Traits like thermal tolerance and host preferences improve predictions of mosquito distribu-

tion, while phylogenetic relationships provide insights into how evolutionary history shapes

community dynamics. These findings offer a deeper understanding of how species traits

influence disease risk.
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The thesis emphasises that community-based approaches provide a richer understanding

of mosquito ecology than single-species models. This is crucial for improving vector

surveillance and disease control strategies, particularly in anticipating how community

composition impacts disease transmission. Future research should focus on understanding

how communities may shape MBD potential, expanding our biological knowledge of lesser

studied mosquito species, and interrogating the impact of traits and biotic interactions across

different scales in their impact on shaping mosquito communities.

This research advances the field by integrating multiple ecological drivers and species

interactions, offering a more comprehensive framework for predicting mosquito distributions

and vector-borne disease risks across mixed scales and environmental conditions.
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Chapter 1

Introduction

1.1 Background and Context

1.1.1 The Burden of Mosquitoes

Vector-borne diseases (VBDs) cause substantial morbidity and mortality worldwide, account-

ing for one-sixth of illness and disability annually (WHO, 2017, 2014). Mosquito-borne

diseases (MBDs) are among the most significant contributors to the VBD burden, most

notably through the transmission of several diseases such as malaria (approximately 212

million yearly cases), dengue fever (approximately 96 million yearly cases), and lymphatic

filariasis (38 million yearly cases) (WHO, 2014). Globally, MBDs are predicted to rise in

both incidence and distribution as climatic changes, land use changes, and increased global-

ization lead to more favourable conditions for transmission and transport of both vectors and

disease pathogens to places where they were previously absent (Bakonyi and Haussig, 2020;

Bhatt et al., 2013; Bogoch et al., 2016; Zhang et al., 2017).

The impact of MBDs on human health has driven extensive research into the ecology and

bionomics of vector species (Becker et al., 2010). Building upon decades of work, we now

understand that the distribution of key vector species is critical to comprehending how these
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diseases spread and persist in various environments (Bhatt et al., 2013; Nanyingi et al., 2015;

Nsoesie et al., 2016). In Europe, this knowledge has become increasingly relevant as the

continent faces new challenges from both native and invasive mosquito species (Calzolari,

2016; Medlock et al., 2018).

1.1.2 A European Perspective

Europe has a longstanding history with mosquito-borne diseases (MBDs). The successful

eradication of malaria in the 1970s was achieved through significant changes in land use,

improved sanitation, and modified agricultural practices, including the deliberate drainage of

swamps and wetlands, which markedly reduced mosquito breeding sites (Piperaki and Daikos,

2016). Similar transformations in land management, coupled with rapid socioeconomic

development during the early 20th century, contributed to the near-elimination of dengue

across the continent from the mid-20th century onwards (Moreno-Madriñán and Turell,

2018). Efforts to increase the availability of agricultural land involved extensive drainage

projects that diminished mosquito habitats, while urbanization shifted populations from

rural to urban areas, reducing direct exposure to mosquito-prone environments. Changes in

agricultural practices, such as minimizing standing water, further altered landscapes to make

them less conducive to mosquito breeding. Additionally, socioeconomic progress played a

crucial role, as higher living standards and increased health awareness helped to lower the

risk of exposure.

Despite past achievements in controlling mosquito-borne diseases (MBDs) in Europe,

recent decades have witnessed a resurgence of threats, with sporadic cases and localized

outbreaks occurring in southern regions. The emergence of chikungunya, outbreaks of West

Nile Virus (WNV) and dengue, and even the return of autochthonous malaria transmission in

some European countries (Table 1.1) underscore the complex and evolving risk landscape

(Angelini et al., 2007; Piperaki and Daikos, 2016; Young et al., 2021). This re-emergence is



1.1 Background and Context 3

driven by multiple factors, including climate change influencing vector habitats and increased

international travel facilitating disease spread (Johnson et al., 2018; Semenza and Suk, 2018).

The situation has been further complicated by the introduction of invasive Aedes species from

Asia to Western Europe, primarily through human-mediated means such as international

trade (Kraemer et al., 2019a). These mosquitoes have not only established themselves in new

territories but have also played a critical role in introducing and amplifying the circulation of

both endemic and exotic diseases previously rare on the continent.

Among these invasive species, Aedes albopictus (Asian tiger mosquito) poses the most

significant threat to public health due to its adaptability and widespread presence. Since its

first appearance in Albania in 1979, it has spread to over 20 European countries and is now a

key vector responsible for most dengue outbreaks in Southern Europe (Ahmed et al., 2020;

Schaffner and Mathis, 2014). Its ability to adapt to temperate climates through cold-resistant

eggs has facilitated further northward expansion, raising concerns about broader disease

risks. A. albopictus has been implicated in the transmission of the Zika virus, with local

transmission reported in France (Brady and Hay, 2019), and has been linked to outbreaks of

the chikungunya virus in Italy and France (Grandadam et al., 2011; Vega-Rua et al., 2013).

The species’ spread is driven by global trade, particularly the used tyre and lucky bamboo

trades, and local dispersal through road networks, suggesting that further expansion across

Europe is likely (Benelli et al., 2020). Additionally, its preference for urban environments

increases the potential for human contact and transmission of other pathogens such as West

Nile Virus and Dirofilaria, further underscoring the need for robust surveillance and control

measures (ECDC, 2012).

Understanding these intricate relationships between environmental drivers, mosquito

ecology, and disease transmission is crucial for predicting and mitigating future MBD

risks. As we face ongoing environmental changes, including climate change and increasing

land use change, our ability to anticipate and respond to shifts in mosquito communities
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and associated disease risks becomes increasingly vital for public health and ecosystem

management. The added complexity of changing mosquito community compositions further

complicates this challenge. These changes, along with potential interactions between species

and communities, represent a poorly understood area of mosquito ecology.

Table 1.1 Viruses that appear on the European Centre for Disease Control mosquito-borne
diseases. These viruses and their vectors are of importance to European health officials and
policymakers. * Symbol indicates the potential implication of the vector in transmission but
has not been confirmed in the field/or are not considered to be primary vectors of the disease.

Pathogen Distribution Vectors Recent Impacts EU

Chikungunya

virus (CHIKV)

Endemic to Africa,

India, and South East

Asia. Multiple imported

cases present across

Central and Western

Europe (Powers and

Logue, 2007).

Aedes aegypti

(Gould and Higgs,

2009; Medlock

et al., 2012),

Aedes albopictus

200 confirmed cases in

Italy 2007 (Angelini

et al., 2008).

Autochthonous

transmission recorded

in Southern France,

2010 (Grandadam et al.,

2011).

Continued on next page
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Pathogen Distribution Vectors Recent Impacts EU

Dengue virus

(DENV)

Endemic lineages in the

Americas, Africa, and

Asia. Frequently

imported cases arising

in temperate regions of

Europe (Guzman and

Harris, 2015; Schaffner

and Mathis, 2014).

Aedes aegypti,

Aedes albopictus,

Aedes japonicus*

(Schaffner and

Mathis, 2014;

Schaffner et al.,

2013c)

Large epidemic in

Greece 1928 (Rosen,

1986). Autochthonous

transmission of dengue

in France, Nice, 2010

(Ruche et al., 2010),

with Croatia

experiencing a similar

case in the same year

(Gjenero-Margan et al.,

2011). Further

outbreaks in 2012 of

1,891 cases in Madeira

(Sousa et al., 2012).

Continued on next page
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Pathogen Distribution Vectors Recent Impacts EU

West Nile virus

(WNV)

Endemic to the Old

World, with high

densities of cases across

Europe, Africa, and

Asia, though

distribution decreases

with latitude (Rizzoli

et al., 2015). Recently

introduced into N.

America (Kilpatrick

et al., 2006).

Culex pipiens,

Culex modestus,

Culex perexiguus,

Culex theileri,

Aedes japonicus*,

Aedes aegypti*,

Aedes albopictus*

(Engler et al.,

2013; Muñoz

et al., 2012;

Sardelis et al.,

2002; Schaffner

et al., 2011;

Turell et al.,

2005)

Europe is accustomed

to dealing with several

cases of the endemic

diseases per year. Rapid

increases in the number

of cases have been

reported, up to a 7-fold

increase compared to

usual (Burki, 2018;

Haussig et al., 2018).

Yellow fever

virus (YFV)

Originating in Africa

and eventually

spreading to the

Americas and New

World.

Aedes aegypti,

Aedes albopic-

tus*(Bryant et al.,

2007; Medlock

et al., 2012;

Monath, 1994)

Imported cases of YFV

reported by several EU

countries; these cases

usually have high

mortality rates

(Colebunders, 2001;

Kiehl, 1999).

Continued on next page
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Pathogen Distribution Vectors Recent Impacts EU

Zika virus

(ZIKV)

Pacific, Asia, and

recently the Americas

(Evans et al., 2017;

Petersen et al., 2016).

Aedes aegypti

(Mayton et al.,

2020)

Imported cases have

been recorded, but local

transmission is absent

(Tappe et al., 2014;

Zammarchi et al.,

2015).

Japanese

Encephalitis virus

(JEV)

Found throughout Asia

and the Pacific island

regions.

Culex species,

Aedes

albopictus*,

Aedes japonicus*

(Gubler, 2002;

Medlock et al.,

2012; Schaffner

et al., 2011)

No reported cases of

JEV in Europe from

local transmission,

though JEV is

suspected to be

circulating between

birds in Southern

Europe (Platonov et al.,

2012).

Rift Valley fever

(RVF)

Americas and Southern

Europe (Kilpatrick and

Randolph, 2012).

Culex species

(Pepin et al.,

2010)

Few or no cases

reported in Europe, but

increasing cases of RVF

in Northern Africa

prompting concern and

subsequent risk analysis

for officials (Chevalier

et al., 2010).

Continued on next page
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Pathogen Distribution Vectors Recent Impacts EU

Sindbis fever

(SINV)

Endemic to Northern

Europe with occasional

outbreaks in Australia,

Asia (Lundström et al.,

2021). Analysis

suggests it was

introduced twice from

Africa into Europe

(Ling et al., 2019).

Culex species,

Culiseta species,

Aedes cinereus*,

Aedes rossicus*

(Bergqvist et al.,

2015; Hesson

et al., 2015;

Lundström et al.,

2019)

Clinical cases reported

almost exclusively at

Northern extremities of

Europe (Hesson et al.,

2015; Lundström et al.,

2019).

Drivers of Mosquito Distributions and Interactions — Consequences for Infection Risk

Environmental drivers profoundly shape mosquito ecology and, consequently, the dynamics

of MBDs. These drivers operate across multiple scales, influencing individual mosquito

traits, population dynamics, and community compositions (Becker et al., 2010; Lippi et al.,

2023a; Wilkerson et al., 2021). At the individual level, abiotic factors such as temperature,

humidity, and precipitation directly modulate mosquito development, survival, and behaviour

(Agyekum et al., 2021; Reinhold et al., 2018). Higher temperatures typically accelerate

larval development and adult mosquito metabolism, potentially ramping up biting rates

and shortening pathogen incubation periods (Mordecai et al., 2019). In contrast, extreme

temperatures or drought can increase adult mortality rates, reduce breeding site availability,

and shrink population sizes (Couret et al., 2014).

At intermediate scales, landscape features and land-use patterns significantly influence

mosquito communities (Estrada-Peña et al., 2014; Gleiser and Zalazar, 2010; Roiz et al.,

2015). Urban environments, replete with artificial container habitats, tend to favour species
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like Aedes albopictus and Culex pipiens, which are adapted to such environments (Koli-

menakis et al., 2021; Townroe and Callaghan, 2014), while more natural landscapes often

support a greater diversity of species (Ezenwa et al., 2007; LaDeau et al., 2015). Wetlands

and areas with persistent standing water serve as ideal breeding grounds for many Anopheles

and Culex species, which also support large populations of hosts for these species (Dale

and Knight, 2008; Hawkes et al., 2020). Land-use changes, such as deforestation or urban-

ization, can reshuffle mosquito species compositions and potentially spark new vector-host

interactions (Meyer Steiger et al., 2016).

Across both larger temporal and spatial scales, climate change is increasingly recognized

as a major driver of shifts in mosquito distributions and community compositions (Medlock

and Leach, 2015; Semenza and Suk, 2018). Warming temperatures are enabling some species

to push their ranges into previously inhospitable areas, increasing potential competition

with endemic species in traditional habitats (Bartlow et al., 2019; Reiter, 2001; Ryan et al.,

2019). These climate-driven changes can trigger novel species interactions and alter disease

transmission dynamics (Brass et al., 2024; Ewing et al., 2019). The northward march of

Aedes albopictus in Europe, for instance, carries implications not only for its potential as a

vector but also for its interactions with native mosquito species (Caminade et al., 2019).

A key concept in understanding disease transmission potential is vectorial capacity,

which quantifies a mosquito population’s ability to transmit pathogens. Vectorial capacity

is defined by several parameters: the mosquito biting rate, vector competence (the ability

of a mosquito to become infected and transmit a pathogen), mosquito survival rate, and

the extrinsic incubation period of the pathogen (Garrett-Jones, 1964; Macdonald. G, 1957).

These parameters are influenced by a myriad of factors, including life history traits, species

niches, and overall vector competence, which in turn are shaped by complex interactions

between species and population-level traits (Cator et al., 2020).
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In Europe, for example, Culex pipiens s.l. and Culex torrentium are competent vectors

for flaviviruses like West Nile Virus (WNV), Sindbis, and Usutu (Jansen et al., 2019). The

molestus form of Culex pipiens, with its anthropophilic tendencies, serves as a significant

bridge vector, feeding on both humans and birds. In contrast, Culex pipiens s.s. tends to

prefer avian hosts, lowering the risk of human spillover due to this reduced biting risk, but

still contributes to flavivirus persistence in wild bird populations (Bødker et al., 2014).

Mosquito community composition plays a pivotal role in shaping VBD transmission

dynamics through a range of mechanisms (Martínez-de la Puente et al., 2018; Roche et al.,

2013). The inclusion or exclusion of certain species within a community can either amplify or

mitigate the spread of pathogens, with variations in vector and host composition influencing

MBD circulation. Patterns in MBD prevalence have been linked to the richness and abundance

of these communities, which can both heighten or lessen transmission risks depending on the

specific ecological context (Ezenwa et al., 2007; Hermanns et al., 2023; Levine et al., 2017).

Moreover, the structure of mosquito and host species communities is affected by shifts in

abiotic factors, such as land-use changes, leading to complex interactions that shape overall

MBD pressure and risk, thereby impacting zoonotic disease spread and spillover dynamics

(Estrada-Peña et al., 2014; Roche et al., 2013).

The intricacy of these ecological relationships often fluctuates across temporal and spatial

scales, with shifts in community structure having potentially profound impacts on disease

dynamics. Native mosquito species, for example, may be instrumental in maintaining and

amplifying disease cycles through overwintering and residual pathogen circulation, as seen

in the case of flaviviruses (Folly et al., 2022; M’ghirbi et al., 2023; Sauer et al., 2023).

Some mosquito species function as maintenance vectors, perpetuating pathogen transmission

among reservoir hosts, while others act as bridge vectors, facilitating the spread of viruses

from highly competent hosts to susceptible populations (Muñoz et al., 2012; Rizzoli et al.,

2015).
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A multitude of mosquito species are known, or suspected, to be involved in the trans-

mission of various MBDs, with several implicated in the spread of more than one pathogen

(Figure 1.1). Understanding the intricate interplay between biotic factors (like species in-

teractions) and abiotic factors (such as climate and habitat features) that shape mosquito

community composition is vital for assessing disease transmission risks. As we continue to

face environmental changes, including climate shifts and intensified land use, anticipating

and responding to alterations in mosquito populations and the associated disease threats is

increasingly crucial for safeguarding public health and managing ecosystems.

The significance of community composition in understanding VBD ecology is a key

gap in our understanding of how wider factors influence MBD risk and transmission. The

interactions within and between vector and host species, modulated by environmental in-

fluences, fundamentally determine the potential for disease spread and spillover. Thus, a

holistic approach that takes into account the dynamics of community composition is essential

for the effective prevention and control of disease.

1.1.3 Modelling Mosquito Distributions

Building upon the understanding that ecological and biotic drivers shape mosquito distri-

butions and indeed their vectorial capacity, it is clear that effective management of MBD

requires a comprehensive understanding of mosquito distributions. To address the complex-

ities of MBD transmission and risk, researchers and epidemiologists often turn to species

distribution models (SDMs) to predict the occurrence of key mosquito vector species. By

correlating mosquito occurrence data with environmental variables, such as climate and land

use factors, SDMs can generate habitat suitability maps that identify areas at risk for vector

presence and subsequent MBD transmission (ECDC, 2021).

Current approaches for managing mosquito-borne diseases in Europe involve extensive

mosquito and arbovirus surveillance programmes, which play a critical role in monitoring
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Fig. 1.1 Potential associations between mosquito species and viruses in the western Palearctic
region are illustrated, based on data from the EID2 database. The connections indicate that
mosquito species may be involved in or linked to the transmission of the associated viruses:
West Nile virus (WNV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus
(SLEV), yellow fever virus (YFV), Murray Valley encephalitis virus (MVEV), and dengue
virus serotypes 1-4 (DENV 1-4). These relationships suggest possible roles for the mosquito
species in virus transmission. Details on the methodology used to derive these associations
can be found in Wardeh et al. (2015)
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vector populations and identifying areas at risk for outbreaks (Petrić et al., 2014; Schaffner

et al., 2013a; Zeller et al., 2013). Coupling these surveillance efforts with species distri-

bution modelling (SDM) techniques allows researchers to generate distribution maps for

key mosquito vectors, such as Aedes albopictus, to inform targeted vector control strategies

(ECDC, 2012).

Early Application of SDMs

Hutchinson (1957) provided the initial theoretical framework of SDMs by introducing

the ecological niche concept, suggesting that a multidimensional space of environmental

conditions was required for adequate species persistence and occurrence in a geographical

area (Pulliam, 2000). This idea was crucial for SDMs as it provided a theoretical basis for

linking species occurrences to environmental conditions. It laid the groundwork for early

interpretations of modelling the relationship between occurrence and environments, and

using these models to extrapolate known relationships to larger spatial scales. Hay et al.

(1998) presented one of the first SDM applications to mosquito modelling, using remote

sensing data to map the distributions of the malaria vector Anopheles gambiae. This work

showed that rainfall and climate were heavily correlated with An. gambiae occurrence and

laid the groundwork for the use of SDMs in potential malaria risk mapping across Africa,

guiding significant subsequent efforts to better understand the distribution and drivers of

MBD burden.

As computational power and data availability increased, a shift occurred in species

distribution modelling (SDM) methods. The field moved from simple statistical correlations

and generalized linear models towards more advanced techniques capable of handling

presence-only data, typically the most abundant and accessible type for mosquito studies.

MaxEnt emerged as a particularly useful tool, as highlighted in studies like those of Peterson

et al. (2005), who applied the model to project the potential distribution of Aedes albopictus in
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North America, a vector responsible for dengue and chikungunya transmission. The model’s

ability to handle complex species-environment relationships contributed to its popularity in

vector-borne disease research.

Building on these methodological advancements, researchers began applying SDMs to a

wider range of vector-borne disease problems. For instance, Rogers and Randolph (2000)

demonstrated how the spread of Aedes aegypti and potential suitability maps could help

predict vector presence and disease risk. Other studies applied predictions of future climate

data to show how changes in climate might affect the future distribution and burden of malaria

under shifting environmental baselines. Martens et al. (1999) further advanced the field by

combining global climate models with malaria distribution projections, marking early efforts

to incorporate climate change scenarios into vector-borne disease risk assessments.

Broad Application of SDM Approaches

The 2010s saw further refinement of SDM techniques, particularly with the integration of ma-

chine learning approaches. Studies began using techniques such as Boosted Regression Trees

(BRTs) to handle non-linear relationships between environmental variables and mosquito

distributions. Messina et al. (2019) applied BRTs to update global distribution maps for

Aedes aegypti and Aedes albopictus, combining occurrence records with environmental and

socioeconomic data to identify dengue risk areas. Bhatt et al. (2013) employed a combination

of climate models and spatial epidemiological data to estimate the global dengue burden,

illustrating the potential of SDMs to quantify not only vector distributions but also disease

impacts.

As the decade progressed, researchers developed more dynamic and comprehensive

modelling techniques (Lippi et al., 2023a). Recent advancements include the use of ensemble

models to improve predictive performance and uncertainty management. Kraemer et al.

(2019b) employed an ensemble of SDMs to project future Aedes distributions under various
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climate change scenarios, showcasing SDMs’ predictive power for anticipating disease risks.

In the same year, Ryan et al. (2019) demonstrated the integration of ensemble approaches

with citizen science data for real-time mosquito distribution modelling, addressing challenges

posed by climate change and human-induced landscape alterations. These studies highlight

the ongoing evolution of SDM techniques in response to the complex and dynamic nature of

vector-borne disease systems.

1.1.4 Challenges in Capturing the Complexity in Mosquito Distribution

Models

Despite the continual advancement in SDMs, the complexity of mosquito ecology in dis-

tribution models remains a significant challenge. A major issue is the paucity and bias

in occurrence data for many mosquito species; surveys are often spatially and temporally

limited, with efforts concentrated in areas of higher human population density or known

disease outbreaks (Kramer-Schadt et al., 2013; Phillips et al., 2009). This can lead to an

over-representation of common species or habitats, while others remain under-sampled or

undetected (Hughes et al., 2021). These data gaps hinder the development of reliable distri-

bution models, particularly for rare or cryptic species (Jeliazkov et al., 2022; Radomski et al.,

2022).

Additionally, many mosquito species, especially those considered non-competent or

inefficient vectors of diseases, suffer from scarce data at scales relevant for SDM application

(Khatchikian et al., 2011; Rhodes et al., 2023). This scarcity typically prevents us from under-

standing how communities contribute to disease dynamics, particularly when considering the

role of native species (Ferraguti et al., 2021). As such, we may be predisposed to overlook

the potentially important ecological roles of less-studied mosquito species and their impact

on overall community structure and disease risk.
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Moreover, mosquito occurrence data frequently lacks information on sampling effort and

detection probability, and is collected using diverse methods with different attractiveness

between species and habitats, introducing bias into model outcomes (Giordano et al., 2020).

Mosquito populations also exhibit significant spatial and temporal variability, influenced by

factors such as climate, breeding site availability, and pesticide control measures (Claflin and

Webb, 2017a; Luz et al., 2009; Wilke et al., 2017), and without accounting for this variability,

models may inaccurately reflect species distributions.

Multi-Scale Factors Influencing Mosquito Distributions

Another challenge in modelling mosquito distributions is the interplay of environmental

factors across different spatial and temporal scales. While broad-scale climatic variables such

as temperature and precipitation are influential drivers of mosquito distributions, local-scale

factors such as land use, vegetation cover, and host availability can also have a significant

influence on overall species prevalence and abundance (Ferraguti et al., 2016; Reiskind et al.,

2017; Steiger et al., 2012). Integrating representations of these multi-scale processes into

distribution models requires careful selection of predictor variables and modelling approaches

that can capture the hierarchical structure of ecological data and how mosquitoes interact

with their environment across multiple life stages (Hartemink et al., 2015).

Furthermore, biotic interactions such as competition, predation, and host-vector rela-

tionships play a crucial role in shaping mosquito communities (Alto et al., 2005; Juliano,

2009; Saha et al., 2012; Smith et al., 2004). However, incorporating these interactions into

distribution models remains challenging, as they often require detailed knowledge of species’

ecological relationships and can vary across spatial and temporal scales (Wisz et al., 2013).

Traditional SDMs, which focus on individual species’ responses to environmental factors,

may overlook the importance of these biotic interactions in determining the presence and

abundance of mosquito species (Dormann et al., 2018).
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The rapid evolution and adaptability of mosquito populations to changing environmental

conditions and control measures can also complicate efforts to model their distributions.

Mosquitoes have demonstrated the ability to adapt to new habitats, develop insecticide

resistance, and shift their biting behaviours in response to interventions (Carrasco et al., 2019;

Medley et al., 2019). Traits can provide insights into the mechanisms underlying species

co-occurrence and the distribution of mosquito communities.

For example, mosquito traits related to host preferences and biting behaviour are strongly

linked to historical phylogenetic relationships between species, and in turn, these traits can

strongly influence the role of mosquito species in the transmission of pathogens such as

malaria, dengue, or Zika virus (Peach and Gries, 2020; Soghigian et al., 2017). Incorporating

these traits into distribution models will require an understanding of the factors driving

adaptation and the ability to predict how populations will respond to future environmental

changes (Caminade et al., 2019, 2012).

The Current State of Modelling Mosquito Communities

Mosquito ecology and community dynamics are largely understudied at smaller, local, and

laboratory scales, especially for species considered not to be primary vectors of MBD. This is

despite the fact that interspecific competition between mosquito species is a key driver in both

vector competence and the abundance of important mosquito vectors (Alto, 2011; Amatulli

et al., 2018; Atwood et al., 2014; Carver et al., 2009). Furthermore, interactions between

predators and mosquitoes influence life history parameters such as oviposition site selection,

overall fecundity, and larval behaviour (Alto et al., 2012; Bond et al., 2005; Griswold and

Lounibos, 2006; Saha et al., 2012). However, a common theme in the current understanding

of wider mosquito interactions, particularly biotic ones, is the local nature of these studies

and the focus on relatively few mosquito species rather than communities.
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When considering intermediate scales, several authors have demonstrated how habitat

fragmentation, microclimate variation, vegetation, and land usage can affect overall mosquito

community composition (Cardo et al., 2013; Chaves et al., 2011; Ferraguti et al., 2021;

Flores Ruiz et al., 2022a). These studies are crucial for understanding the wider impacts that

urbanization typically has on mosquito communities, and in some cases, have demonstrated

or hypothesized that these changes could result in differential risks of disease prevalence

(Brugueras et al., 2020; Roche et al., 2013). These intermediate studies begin to bridge

the gap between interactions at local and mesocosm scales and those measurable on the

human scale, where, for instance, the urbanization of current land could lead to an increase

in potential vectors of MBDs (Burkett-Cadena and Vittor, 2018; Ortiz et al., 2022; Perrin

et al., 2023).

Yet, while we have some limited local, and in some cases regional, understanding of the

drivers of mosquito communities, scaling up our models to predict community distributions

over larger areas requires a more integrated approach that incorporates both local biotic

interactions and large-scale abiotic factors. While small-scale models excel at capturing

direct interactions like competition and predation, these relationships do not always translate

consistently when expanded to larger areas (Araújo and Rozenfeld, 2014; Belmaker et al.,

2015). As such, holistic, large-scale mosquito community models remain scarce, and

integrating fine-scale ecological interactions with broader landscape processes within a single

framework presents significant challenges.

Despite this, large-scale community methods have been successfully applied to other

well-studied species groups. For instance, comprehensive community models have been

developed for vertebrates (Roberts et al., 2022; Whalen et al., 2023), plants (Briscoe Runquist

et al., 2021; Mod et al., 2020), and arthropods (Facon et al., 2021; Planillo et al., 2021). These

studies have demonstrated the potential for integrating multiple sources of ecological data

and drivers of distributional processes in community ecology across larger spatial extents.
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To advance mosquito community modelling, we must utilize community methods to

integrate these multiple types of data into a holistic representation of mosquito community

responses to various factors and processes. This approach should account for both local

interactions (such as species competition and habitat selection) and regional factors (like

climate and human land use) within a unified framework. Such an approach would enable

more accurate predictions of mosquito species distributions and enhance our understanding

of how environmental changes impact disease transmission dynamics across larger areas.

While challenging, this integration is essential for comprehensively understanding mosquito

ecology and assessing and predicting disease risk at meaningful scales.

1.1.5 Applying Advances in Community Modelling to Mosquitoes

Recent advancements in computational power and statistical methods have allowed for

more comprehensive approaches to understanding distributions of communities (Golding

and Harris, 2015; Hui, 2016; Niku et al., 2019; Pichler and Hartig, 2021; Pollock et al.,

2014; Rahman et al., 2024). These developments aim to address the confounding factors

driving mosquito distributions by integrating multiple data types and modelling techniques

(Figure 1.2), offering a more ecologically realistic and holistic understanding of these

important disease vectors (Wilkinson et al., 2019, 2021).

At the forefront of these advancements are Joint Species Distribution Models (JSDMs),

which have emerged as a powerful tool for simultaneously modelling multiple species

(Wilkinson et al., 2021). Unlike traditional single-species Species Distribution Models

(SDMs), JSDMs aim to capture community-level patterns and provide insights into the

factors shaping community patterns and structure, including the potential to infer interactions

between species and examine shared species responses to environmental factors (Ovaskainen

et al., 2016a; Pollock et al., 2014).
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Fig. 1.2 Simplified Directed Acyclic Graph (DAG) of a Joint Species Distribution Model
(JSDM) using a latent variable approach. This diagram illustrates the statistical framework
used in JSDMs like HMSC and jSDM (Tikhonov et al., 2020b; Vieilledent and Clément,
2023). Orange boxes represent input data, blue circles indicate parameters to be estimated,
and arrows depict functional relationships. The model incorporates latent variables (unob-
served factors capturing species interactions or unmeasured environmental influences) to
account for spatio-temporal variance (variation across locations and time) and dispersal site
predictors (e.g., distance to water, elevation). Factor loadings link the predictors to latent
variables, indicating their influence.
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Integrating Biotic Interactions into Distribution Models

The key distinction between traditional SDMs and JSDMs lies in the latter’s ability to

model species jointly and capture inter-species covariation across sample sites. While

SDMs consider the relationship between species occurrences and environmental variables as

independent for each species, JSDMs model these relationships simultaneously for multiple

species. This approach means that JSDMs can potentially infer biotic interactions, such as

competition or facilitation, through the covariation of species responses to the environment or

to one another. This covariation between species is referred to as species residual correlations,

representing the nuanced effect that unaccounted-for environmental variables can manifest

as covariance between species. As such, more moderate language is needed to describe these

relationships with caution when interpreting (Blanchet et al., 2020; Poggiato et al., 2021;

Wilkinson et al., 2021; Zurell et al., 2018).

The development of JSDMs was driven by the recognition that biotic interactions play

an important role in influencing community abundance and occurrence patterns (Wisz et al.,

2013). Early approaches to modelling communities relied on Stacked Species Distribution

Models (S-SDMs), where individual species models were combined to predict community

composition. However, this “predict first, assemble later” approach often led to oversimplified

predictions of species interactions because of the lack of ability to measure how species may

show similar responses to environmental variables (Calabrese et al., 2014).

In contrast, JSDMs represent a shift towards an “assemble and predict together” approach,

marking a fundamental change in how we model and understand ecological communities

(Ovaskainen and Abrego, 2020; Warton et al., 2015). This method allows for a more

nuanced understanding of communities, taking into account the interplay between species

and their environment. However, it is critical to understand that JSDMs are not thought to be

inherently better in raw predictive performance compared to S-SDMs (Zurell et al., 2018),

and interpretation of the results from JSDMs requires significant understanding of species
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drivers and expected associations to draw out biological interpretations (Poggiato et al., 2021;

Wilkinson et al., 2021).

However, this “assemble and predict together” paradigm is particularly relevant for

mosquito ecology, as it allows us to consider the entire community as an interconnected

system rather than a collection of independent species. By representing the entire community

structure and using this information to make predictions, there is potential to capture ecologi-

cal processes such as competitive exclusion and facilitation, thereby helping to understand

the different environmental drivers that shape overall community composition. This wider

view and utilization of ecological data is crucial for understanding assembly processes and

interactions with both biotic and abiotic factors that shape overall mosquito community

composition.

Incorporating Traits and Evolutionary Relationships

Additionally, extensions of early versions of JSDM frameworks have been developed to

integrate more types of community data typically collected by ecologists, such as traits and

phylogenetic relatedness (Ovaskainen et al., 2017b). By incorporating traits such as body

size, feeding behaviour, and habitat preferences, there is potential to identify the functional

characteristics that determine the spatial distribution and co-occurrence patterns of mosquito

species, and these traits can in turn provide information on how species might respond to

unmeasured environmental drivers (Niku et al., 2019; Ovaskainen et al., 2016a; Warton

et al., 2015). Similarly, phylogenetic information can serve as a proxy for unmeasured traits

and shared evolutionary histories, which can influence the responses of mosquito species

to environmental factors and these relationships might be leveraged to improve predictions

for rare or undersampled mosquito species (Ovaskainen et al., 2017b; Tikhonov et al., 2017;

Zhang et al., 2020).
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1.1.6 Current Limitations of Applying Community Methods to Mosquito

Distribution Modelling

One key challenge is the breadth of data required to generate community-level predictions.

Such data are often lacking, particularly for rare or poorly sampled species, and this issue is

exacerbated in mosquito sampling data, which often targets medically relevant or invasive

species rather than whole communities of mosquitoes. The ability of JSDMs to use shared

relationships of phylogeny and traits to help share information across poorly resolved species

is an exciting prospect for alleviating some of these challenges, but first requires consideration

of how we can best assemble mosquito communities from sparse sampling data across large

spatial scales (Poggiato et al., 2021).

Another challenge is dealing with the computational complexity of these models. JSDMs

traditionally use Bayesian methods because of their flexibility in model specification, but

this flexibility comes at the computational cost of sampling complex posterior distributions

(Pichler and Hartig, 2021). This complexity arises from the need for JSDMs to have multiple

thousands of parameters, each accounting for different interacting variables influencing

the overall distribution of communities of multiple species (Ovaskainen and Abrego, 2020;

Wilkinson et al., 2019).

Latent variable models have been utilized in some cases to try to limit the number of

parameters needed to fully model a community across all aspects that limit their distribution

(Ovaskainen et al., 2016b). Researchers have also explored different approaches to tradi-

tional Markov Chain Monte Carlo (MCMC) simulation, including more advanced sampling

algorithms to better estimate complex posterior distributions, such as Stan, which uses Hamil-

tonian Monte Carlo sampling for high-efficiency exploration of these spaces (Carpenter et al.,

2017; Hoffman et al., 2014; Vieilledent and Clément, 2023). Additionally, analytical methods

for solving and predicting these distributions have been developed, including techniques

such as variational approximation, which provides a fast alternative to MCMC sampling for
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estimating parameters from complex posterior distributions (Hui et al., 2017; Niku et al.,

2019).

However, despite these advances, frameworks that can fully explore how environment,

traits, biotic factors, and relatedness impact mosquito community composition are only just

emerging (Pichler and Hartig, 2021). Even among these emerging approaches, relatively

few operate at the spatial scales required for estimating overall community diversity across

regions (Pichler et al., 2020; Rahman et al., 2024; Tikhonov et al., 2020a). Leveraging these

new methods is key to understanding the drivers of mosquito communities across relevant

epidemiological scales, from local breeding sites to regional distributions. Understanding

how the importance of these drivers varies across different scales is crucial in developing a

comprehensive picture of mosquito ecology. For instance, the factors influencing larval and

adult mosquito populations are likely to differ, as these life stages experience environmental

resources differently and disperse over different scales in the landscape (Hartemink et al.,

2015). Consequently, certain traits might be highly relevant at one scale but less so at another

(Gianuca et al., 2017; Krasnov et al., 2011; Suárez-Castro et al., 2018). This scale-dependent

variation in the importance of different factors underscores the complexity of mosquito

ecology and highlights the need for multi-scale modelling approaches that can capture these

nuanced relationships (Fournier et al., 2017; Laporta and Sallum, 2014).

A multi-scale, multi-data approach could provide insights into how both biotic and

abiotic factors influence mosquito assembly processes, and ultimately the perceived risk

of MBD (Zobel, 1997). As these methods are refined and continue to incorporate more

advanced modelling approaches and broader ecological data sources, we must also remember

the human dimension of mosquito ecology. The distribution and abundance of mosquito

species have profound impacts on human health and well-being, particularly in regions where

mosquito-borne diseases are endemic. By improving our ability to predict and understand
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Fig. 1.3 A conceptual model adapted from Zobel (1997) and Ovaskainen et al. (2017b),
illustrating the multi-scale filtering of mosquito species from unrealised niche space through
global, regional, and local levels to form the realised community. Abiotic factors, biotic inter-
actions, and species traits shape community composition across these scales, with feedbacks
from speciation and adaptation. The realised community directly influences mosquito-borne
disease (MBD) risk along with traits influencing vectorial capacity, highlighting the impor-
tance of integrating multiscale environmental and ecological factors to understand vector
dynamics and disease transmission.

mosquito distributions, we can develop more effective and targeted strategies for vector

control and disease prevention.

1.2 Overview of the Thesis

This thesis addresses key challenges in understanding mosquito ecology and distributions, fo-

cusing on how biotic and abiotic factors impact mosquito community composition across mul-

tiple spatial scales. By leveraging advanced Joint Species Distribution Model (JSDM) frame-

works and high-performance computing, this research utilizes diverse ecological datasets

to provide a multi-scale and multi-data approach to understanding mosquito assemblages

across Europe.
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The key contributions of this thesis include:

1. Demonstrating the impacts of wetland management on local mosquito populations and

their interactions with potential mosquito predators at local scales, highlighting the

complex interactions between conservation practices and vector dynamics.

2. Applying JSDMs to large-scale, sparse mosquito occurrence data to understand the im-

pacts of biotic interactions, abiotic drivers, and spatial factors on mosquito communities

at continental scales, and across fine to coarse study grains.

3. Integrating species traits and evolutionary relationships into mosquito community

models to investigate how mosquitoes interact with environmental drivers and how

community composition both explains and is influenced by biological traits and inter-

species relationships.

4. Applying high-performance computational methodologies for working with hetero-

geneous and sparse data to model mosquito distributions at multiple spatial scales,

investigating mosquito community interactions at scales not previously explored, and

addressing common challenges in vector surveillance.

5. Providing a framework for assessing potential changes in mosquito communities and

associated disease risks in response to both environmental and biotic interactions,

demonstrating how predictions of species distributions can be improved when leverag-

ing this information.

This research progresses from local-scale studies to continental analyses, culminating

in the development of integrated, trait-based community models. The insights and method-

ologies developed here have implications for vector control strategies, wetland management

policies, and public health interventions in the face of ongoing global environmental change.

The following chapters present this research in detail:
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Chapter 2: Vegetation Structure Drives Mosquito Community Composition in the UK’s

Largest Managed Lowland Wetland. This chapter establishes the foundation of the thesis by

examining the local-scale impacts of wetland management on mosquito communities, using

JSDMs as a basis for modelling biotic and abiotic interactions simultaneously. It focuses

on how different management tiers in the Somerset Levels and Moors affect mosquito

breeding habitats and community composition. The study reveals that biodiversity-focused

management creates conditions favouring certain mosquito species, including shifts from

West Nile Virus vectors to other nuisance biting species. This chapter highlights the complex

interactions between conservation practices, vegetation structure, and mosquito ecology,

setting the stage for broader investigations.

Chapter 3: Environmental and Biotic Drivers of Mosquito Communities Across Europe:

A Multi-Scale Joint Species Distribution Modelling Approach. Building on the local insights

from Chapter 2, this chapter expands the scope to a continental scale. It introduces the

application of JSDMs to predict mosquito communities across Europe using data from the

VectorNet consortium of national agencies involved in mosquito surveillance. The study

compares JSDMs with Multi-Species Distribution Models (MSDMs) across multiple spatial

resolutions, assessing the relative importance of environmental, spatial, and biotic factors

in shaping mosquito distributions. This chapter demonstrates the value of community-level

modelling approaches in capturing complex ecological interactions at larger scales and with

sparse data.

Chapter 4: Integrating Traits and Community Data in Joint Species Distribution Mod-

els: Insights into Mosquito Ecology This chapter further refines the modelling approach

introduced in Chapter 3 by incorporating species traits, phylogenetic information, and en-

vironmental data into the JSDMs. It explores how these additional data types can improve

our understanding of mosquito community assembly and distribution. The study assesses

the potential of trait-based approaches to predict changes in mosquito communities under
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various environmental scenarios, and examines how conditional predictions from JSDMs can

be used to simulate the impact of invasive species on native communities. Together, these

chapters progress from local to continental scales, and from environmental drivers to a more

integrated ecological perspective.

Chapter 5: Here I discuss the value of multi-scale, multi-data approaches in under-

standing mosquito community dynamics and their potential implications for future sampling

strategies, changes in disease risk assessment, and vector control. The thesis provides broad

recommendations for vector ecologists on the application of community modelling tech-

niques, the integration of diverse data types, and the importance of considering community-

level interactions in mosquito research. By showcasing these approaches, this work lays a

foundation for a more comprehensive and nuanced understanding of vector ecology, which

could inform both public health policies and conservation strategies in the face of changing

environments and species invasions.



Chapter 2

Vegetation structure drives mosquito

community composition in UK’s largest

managed lowland wetland

This chapter has been published as an article in Parasites & Vectors:

Smith, D.C., Schäfer, S.M., Golding, N. et al. Vegetation structure drives mosquito

community composition in UK’s largest managed lowland wetland. Parasites & Vectors, 17,

201 (2024). https://doi.org/10.1186/s13071-024-06280-y

2.1 Abstract

Purpose: The rising burden of mosquito-borne diseases in Europe extends beyond urban

areas, encompassing rural and semi-urban regions near managed and natural wetlands,

evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management

policies focus on biodiversity and ecosystem services, few studies explore the impact on

mosquito vectors.

https://doi.org/10.1186/s13071-024-06280-y
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Methods: Our research addresses this gap, examining juvenile mosquito and aquatic

predator communities in 67 ditch sites within a south England coastal marsh, subjected to dif-

ferent wetland management tiers. Using joint distribution models, we analyse how mosquito

communities respond to abiotic and biotic factors influenced by wetland management.

Results: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and

Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes.

Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen),

and Zygoptera (Damselfly) larvae. Models reveal that “Tier 3” management sites (higher

winter water levels, lower agricultural intensity) associated with shade and less floating

vegetation are preferred by specific mosquito species. All mosquito species, except Anopheles

maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows

positive associations with shaded and turbid water, contrary to preferences of Corixidae

predators.

Conclusion: Tier 3 areas managed for biodiversity, characterized by higher seasonal

water levels and reduced livestock grazing intensity, provide favourable habitats for key

mosquito species that are known vectors of arboviruses like Usutu and West Nile. Our find-

ings emphasize the impact of biodiversity-focused wetland management, altering mosquito

breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs

is crucial for comprehending the broader implications of wetland management.

2.2 Background

The burden and risk of mosquito-borne diseases (MBDs) is increasing across Europe, not

only in urban areas, driven by invasive Aedes mosquitoes (e.g., Dengue, Chikungunya, Zika,

Medlock et al. (2012)), but also by native species in more rural or peri-urban areas, at the

interfaces between human habitation, agriculture, and natural ecosystems (e.g., West Nile

virus, Usutu, Sindbis, Buckley et al. (2003); Cheng et al. (2018)). These changes in risk are
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attributed to multiple interacting global drivers including climate change (Brugueras et al.,

2020), increased trade and travel (Benelli et al., 2020; Kilpatrick, 2011), and land use change,

including agricultural intensification and urbanization (Gottdenker et al., 2014; Meyer Steiger

et al., 2016; Townroe and Callaghan, 2014). At local scales, human activities in areas

with long-standing mosquito presence can be a driver of MBD risk, by increasing potential

contact rates between people and competent vectors (Lambin et al., 2010). Man-made

habitat modification that leads to shifts in abundance and species composition of mosquito

populations can also alter the interaction dynamics between mosquitoes, humans, and animal

reservoir hosts, increasing the relative risk of zoonotic disease spillover (Meyer Steiger et al.,

2016).

In parallel, there is an increased policy focus on managing natural ecosystems such as

wetlands to maximize the provision of ecosystem services and enhance biodiversity (Acreman

et al., 2011; DEFRA, 2023a; Gibbs, 2000). Within the UK, for example, government policies

and payment schemes to landowners encourage the creation, restoration, and management

of existing wetlands to increase biodiversity and foster local and regional flood resilience

programs (DEFRA, 2018, 2023a,b). Water is a requirement for mosquito breeding and so

there is an urgent need to understand how policy-driven changes in wetlands impact mosquito

communities, as well as their interactions with animal and human hosts, and how this trades

off with disease transmission risk (Dale and Knight, 2008; Hanford et al., 2020; Martinou

et al., 2020; Medlock and Vaux, 2015b).

There is growing evidence globally that wetland management for biodiversity can affect

mosquito communities (Rey et al., 2012), not only by changing aquatic breeding site char-

acteristics and vegetation but also via impacts on mosquito predators (Griffin and Knight,

2012; Saha et al., 2012), and that this can lead to public health co-benefits or dis-benefits

depending on local context. Some studies have found that mosquito density increases after

wetland construction and management (Jiannino and Walton, 2004; Schäfer et al., 2004), but
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if implemented correctly, wetland management schemes that create diverse and permanent

wetland habitats can decrease mosquito populations by simultaneously decreasing habitats

suitable for larval mosquitoes while increasing those suitable for known mosquito predators

(James-Pirri et al., 2009; Rochlin et al., 2012b).

Altering wetland water levels during the mosquito breeding seasons, including complete

drying of water bodies can lead to desiccation of mosquito larvae and prove an adequate

control method, but these strategies can negatively impact other aquatic flora and fauna

of wetlands (Russell, 1999). In Australia, draining and re-filling of urban wetlands to

manage an invasive fish species, led to increased abundance of mosquito species compared to

undrained urban wetlands (Hanford et al., 2020). In some contexts, integrated management

for biodiversity and reduced public health risks and nuisance biting from mosquitoes has

been possible. For example, integrated Marsh Management Schemes employed in salt

marshes in the USA, combine tidal flow restoration and vegetation management favouring

fish and wildlife biodiversity, with management of open water surfaces (Open Marsh Water

Management) to enhance habitats for larvivorous fish predators (Rochlin et al., 2012a).

In Europe and the UK, there is a dearth of data regarding the influence of wetland man-

agement on mosquito communities, encompassing both nuisance biters and potential disease

vectors (Hawkes et al., 2020). There is some evidence that wetland creation can promote in-

creased populations of various mosquito species, as demonstrated by studies on Aedes vexans

in river flood plains (Vaux et al., 2021), and on Aedes detritus in newly created saltmarshes

in England (Clarkson and Enevoldson, 2020). However, existing research is limited in its

examination of the potential trade-offs between conservation-oriented management practices

aimed at preserving biodiversity and the subsequent implications for public, animal, and

wildlife health (Martinou et al., 2020).

This knowledge gap is increasingly pressing for Europe, particularly considering the

recent outbreaks of West Nile Virus (WNV). Between 2010 and 2018, there were over 3,500
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reported human cases of West Nile fever in Europe, with infections distributed from Turkey to

Spain and as far north as Germany, resulting in 379 deaths (Young et al., 2021). Furthermore,

the heightened circulation of the Usutu virus across central western and Central Europe,

associated with mosquitoes in and around wetlands, adds urgency to the need for a better

understanding of the impacts of wetland management on mosquito communities (ECDC,

2021; Ferraguti et al., 2016).

Specifically, recent detection of Usutu virus in Southern England, impacting blackbird

populations (Folly et al., 2022), combined with the proximity to ongoing West Nile virus

transmission in Germany and the Netherlands (Bakonyi and Haussig, 2020), underscores

an increased risk of further mosquito-borne pathogen incursions in the region. This risk

is heightened by the high prevalence and overlap of the primary vector, Culex pipiens s.l.,

across Europe (Medlock et al., 2018). Studies conducted in UK fenlands have explored the

links between wetland management and mosquito abundance, and revealed that emergent

vegetation and sediment build-up can lead to warmer waters and increased densities of

Culicine mosquito species, while drainage of water levels can decrease Culicine abundance

but create a more suitable habitat for Anopheles maculipennis s.l., a species complex known

for its nuisance biting behaviour (Medlock and Vaux, 2015a).

Combining empirical mosquito surveys with statistical spatial modelling of abiotic and

biotic drivers of mosquito community composition across wetland management gradients

may lead to a more detailed understanding of impacts of wetland management on candidate

vector species and biting risks. Utilizing such an approach in marshes in the east of England

(North Kent Marshes), Golding et al. (2015) found that ditch shrimp and fish predators

reduced the prevalence of mosquito larvae, namely of An. maculipennis sensu lato (a species

complex thought to include minor and historical malaria vectors) and Culex modestus (a

bridge vector for WNV) and suggested that habitat management for these species could both

increase biodiversity and reduce mosquito numbers.
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Species distribution models have been applied at national, sub-national and local scales to

study the impacts of wetland changes on individual mosquito vector species, but these ignore

important species community interactions. However, community modelling approaches such

as joint species distribution models (Golding and Harris, 2015; Ovaskainen et al., 2017b;

Pichler and Hartig, 2021) may offer great advantages. These models can help identify shared

responses to environmental conditions (Poggiato et al., 2021) and account for potential biotic

interactions such as competition and predation. Such interactions can strongly influence

mosquito population dynamics and persistence (Beketov and Liess, 2007; Braks et al., 2004;

Saha et al., 2012) and will likely modulate individual vector species responses to wetland

changes (Rey et al., 2012). This study applies community joint modelling methods to

sampled larval and adult mosquito population data in a large UK wetland that has been

subject to management changes under agri-environmental schemes, where water levels,

livestock grazing pressure and mechanical interventions are differentially managed, with the

following objectives:

1. To understand the role of abiotic (physico-chemical water parameters, ditch morphol-

ogy, vegetation structure) and biotic factors (predator communities) in determining

larval mosquito community composition.

2. To determine whether wetland management changes under recent agri-environmental

schemes are likely to have increased the larval abundance and diversity of key UK

mosquito vectors of important mosquito-borne viruses.

2.3 Methods

2.3.1 Study site

The Somerset Levels and Moors (SLM), the largest remaining lowland wet grassland in the

UK, spanning 650 km2 in the southwest of England, holds unique ecological significance.
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Designated under the European Commission Habitats Directive and the UK Biodiversity

Action Plan, it serves as an exemplary coastal grazing marsh habitat (JNCC, 1994). The

SLM’s structure consists of interconnected water-filled ditches, locally known as rhynes.

This coastal habitat, lying largely below or at sea level forms a large catchment area for

Somerset, and this matrix of rhynes drain land that would otherwise be too boggy for farming.

The area plays a crucial role in providing essential ecosystem services to local communities

and tourists, boasting high biodiversity with a notable presence of wading and migratory

birds year-round (Acreman et al., 2011).

The SLM’s history is marked by periodic winter inundation over the past 10,000 years,

contributing to the development of fertile peat soils and rich biodiversity. However, human

activities, such as drainage and ditching for seasonal grazing pastures, began as early as the

9th century and intensified in the mid-20th century, reaching a peak with peat extraction

and agricultural practices. Recognizing its environmental sensitivity, the SLM received

designation as an Environmentally Sensitive Area (ESA) in 1987. Subsequently, agri-

environmental schemes were implemented to support farmers in adopting management

practices beneficial to biodiversity and flood management (Morris et al., 2008). This led to

the transformation of arable land back into wet grassland.

Operating within a tiered system, these agri-environment schemes prescribe different mea-

sures (Table 2.1). The entry-level option, Tier 1, aims to preserve the plant and invertebrate

communities in permanent grassland, which are sensitive to disturbance caused by ploughing

and arable cropping. In contrast, Tier 3, the most demanding management option, focuses on

enhancing plant species diversity and habitat for breeding waders and overwintering wildfowl

by promoting wet winter and spring conditions in permanent grassland. This tier encourages

lower grazing pressure, minimizes mechanical intervention in fields and surrounding ditches,

and maintains higher minimum water levels, particularly during the winter months (Tier 3

versus Tier 1).
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We anticipate that these tiered prescriptions will influence various ecological factors, such

as shading, vegetation structure, ditch morphology, and the presence of macro-invertebrate

predators. Consequently, these conditions are expected to have a significant impact on

mosquito species composition and abundance. Our study aims to sample and investigate

the key drivers of mosquito community composition in Tier 3 versus Tier 1 sites across the

Somerset Levels and Moors (SLM), shedding light on the ecological dynamics influenced

by these contrasting wetland management practices. By comparing mosquito communities

between the two tiers, we hope to gain valuable insights into how different management

approaches affect mosquito populations and their associated ecological interactions.

2.3.2 Ecological Survey

We randomly selected 17 ditch locations across two management regimes, eight in Tier 1

management and nine in Tier 3 of the SLM (Fig 1). At each site, we selected four sampling

sites (ditches) within a 500m radius of the location, often part of an interconnected ditch

system. We surveyed these sampling sites using a standard dipping protocol across three

time points: spring (May), summer (June/July) and autumn (August/September) for three

years, from 2009 to 2011. We set up six dip-points, for which we took GPS locations, at each

sampling site along the ditch from one to six meters, randomly determined by the throw of

a die. During each visit, we took a complete submersion dip sample from both water-body

margins and the centre of the ditch using a 1-litre volume mosquito dipper at each of the dip

points.

We recorded the abundance of mosquito larvae and pupae, and that of potential mosquito

predator groups, at each dip point. Aquatic macroinvertebrate species were identified in situ

to order and suborder, where possible, using Dobson et al. (2012). Mosquito larvae and

pupae were preserved in 70% ethanol and identified to species or species complex level in the

laboratory using the morphological keys by Becker et al. (2010); Cranston (1987); Schaffner
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Table 2.1 Key differences in management prescriptions for Tier 1 (permanent grassland) and
Tier 3 (raised water level areas). For a comprehensive overview, refer to A.1.

Prescription Category Tier 1 Tier 3

Fertilizer Application No more than 75kg nitrogen,
37.5kg phosphate, and 37.5kg
potash per hectare. Only home-
produced organic fertilizer al-
lowed.

No inorganic fertilizer. Or-
ganic manure restricted to home-
produced cattle manure (max 25
tonnes/ha per annum). No slurry.

Grazing Graze with cattle or sheep, avoid-
ing poaching, under- or over-
grazing.

Cattle grazing only, not before
20 May. Max density of one ani-
mal per 0.75 ha from 20 May to
8 July. Avoid poaching and im-
proper grazing.

Mowing and Hay Mak-
ing

After cutting grass for hay or
silage, graze the aftermath.

No silage. Mow at least one-third
of the land (or one year in three),
but not before 8 July. No grazing
before mowing.

Mechanical Operations Chain harrowing or rolling al-
lowed. Maintain existing field
gutters, ditches, and piping by
mechanical means. No additional
surface piping allowed.

Same as Tier 1, but no mechani-
cal operations between 31 March
and 1 July. Maintain field struc-
tures without sprays.

Herbicide Use Herbicides allowed only for spe-
cific weeds (e.g., thistles, docks,
ragwort) via spot treatment or
weed wiper.

Same as Tier 1, but no herbicides
for creeping buttercup.

Water Levels Maintain at least 15 cm of water
in ditches/rhynes at all times.

Maintain water levels not more
than 30 cm below field level from
May to November, and not less
than field level from December
to April.
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et al. (2001); Snow and Terzi (1990). During each visit, details of bankside, emergent

and floating channel vegetation were recorded with reference to Cope et al. (2009); Jermy

et al. (1995). Plants within and at the edges of the ditch were identified to genus or species

level, and their percentage cover and height estimated. Vegetation height and percentage

cover values were averaged across species in three groups based on their functional impact,

bank, emergent, and floating vegetation, since these vegetation structures are likely to have

differential impacts on habitat suitability across mosquito species (Table 2.2). We measured

the physicochemical characteristics of the ditch at each sampling site, assessing ditch width,

and area of the ditch shaded (a proxy for habitat openness) as well as pH, temperature,

turbidity, and salinity of the water. Average values for the covariates listed in Table 2.2 were

summarized across the six dip-points per ditch site in each season.

2.3.3 Statistical Analysis

We used a joint multivariate hierarchical generalized mixed linear model approach, to account

for the interdependency of species responses to the environment and species responses to

each other in the ecosystem, by modelling all species simultaneously and accounting for

each species’ response to measured and unmeasured environmental covariates through

latent variable factors (Wilkinson et al., 2019). We fitted our model using the R package

Hierarchical Modelling of Species Communities (HMSC; Ovaskainen and Abrego (2020);

Ovaskainen et al. (2017b)) framework, to explore how biotic and abiotic interactions drive

mosquito larval distribution across the SLM.

The multispecies generalized linear latent variable model (with probit link function) was

fitted to the presence-absence data for four mosquitoes and eight predator groups obtained

from our 320 sampling sites with abiotic covariates on a linear scale (Table 2.2). We excluded

any species that occurred fewer than ten times to increase statistical stability (Ovaskainen and

Abrego, 2020), leading to the exclusion of one mosquito species and four predator groups
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Table 2.2 Effect of Environmental Variables on Mosquito Abundance: Impact and expected
ecological implications of key environmental factors on mosquito populations, including
vegetation cover, water characteristics, and habitat structure.

Variable Description Impact on Mosquito Abundance

Floating Vegetation
Cover (%)

Percentage of water surface cov-
ered by floating plants.

Negative impact expected, as dense
floating vegetation (e.g., Lemna spp.)
may inhibit larvae and pupae from ac-
cessing air Cuthbert et al. (2020); Eid
et al. (1992).

Bank Vegetation
Height (cm)

Height of vegetation along ditch
margins and banks.

Increases microhabitats for adult
mosquitoes and provides sheltered
resting places Sauer et al. (2021).

Bank Vegetation
Cover (%)

Percentage of banks covered by
plant matter.

Similar benefits to height, offering shel-
ter and resting spots.

Emergent Vegetation
Height (cm)

Height of vegetation emerging
from the water.

Provides shelter for ovipositing females
and enhances larval survival by preda-
tor avoidance Saha et al. (2009).

Emergent Vegetation
Cover (%)

Percentage area of emergent veg-
etation.

Similar benefits as height, with in-
creased shelter for mosquito develop-
ment.

Shaded Water (%) Percentage of water surface
shaded.

Positively impacts species prefer-
ring vegetated or cool breeding sites
Hawkes et al. (2020).

Width (cm) Width of the waterbody. Wider waterbodies may support more
predators, reducing mosquito density
Sunahara et al. (2002). Some species,
like An. maculipennis, prefer more
open habitats.

Water Temp (°C) Water temperature at sampling. Warmer temperatures shorten larval de-
velopment time and improve survival
Bayoh and Lindsay (2004).

Dissolved O2 (ppm) Concentration of dissolved oxy-
gen.

Impact uncertain as most species toler-
ate a wide range of oxygen levels.

pH Water acidity/basicity. Most mosquitoes prefer neutral pH and
are tolerant of moderate changes Emidi
et al. (2017).

Turbidity Water clarity, indication of flow. Higher turbidity may enhance larval
survival by reducing predator efficiency
Cano-Rocabayera et al. (2020).

Salinity (ppt) Salt content in water. Tolerance varies across species, directly
affecting mosquito presence Medlock
et al. (2012).
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Fig. 2.1 A Map of Somerset Levels and Moors study site. Extent of coastal grazing marsh in
green with Tier 1 and Tier 3 locations with sampling sites superimposed (black and white
circles respectively). B Location of the study site (red hatching) in South England. C Inset
frame showing detailed hierarchical spatial sampling design for each sampling site (circles)
in which four ditches were sampled within a 500m square radius for each location.
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(see results). To account for potential spatial biases in the sampling data, we generated a

distance matrix, calculated from the average coordinates across the six dip points that make

up each sampling site, to represent the spatial scales between each sampling unit as a spatially

structured random effect (Dormann et al., 2007). We considered the impact of temporal

effects on sampling methods by including a nested random effect for both year and time point.

In this case we consider the height and cover area of three different plant functional groups,

bank, emergent, and floating vegetation, as an abiotic driver as we expect them to function as

a regulator of population fitness through shielding of predation or similar processes (Saha

et al., 2009).

The model was fitted using four Monte-Carlo Markov Chains (MCMC) with a transient

period of 5000 samples and target of 1000 samples per chain using a thinning rate of 1000

for a total of 4 million MCMC post-transient in samples in total. Parameter convergence was

measured using Gelman and Rubens potential scale reduction factor (PSRF, Gelman and

Rubin (1992)). We used five-fold cross validation to validate model performance, comparing

predictive and explanatory values of Tjur’s R2 and the area under curve (AUC) statistic

for each species (Lobo et al., 2008; Tjur, 2009). We examined the importance of different

sets of covariates in our model by partitioning the variation explained by fitting of partial

models (Borcard et al., 1992; Ovaskainen and Abrego, 2020). Furthermore, we originally

aimed to construct abundance models that included the same covariates, as we hypothesized

that biotic interactions would have a greater impact on species abundance than species

presence. However, due to the high complexity of the model, it was deemed computationally

infeasible to achieve an acceptable fit and run-times exceeded one month without reasonable

convergence for all species (Howard et al., 2014).

To understand if management tiers influence potential abiotic drivers of mosquito popula-

tions, we estimated the marginal effect of management tier on each covariate measured in our

sampling procedure (Table 2.2). We modelled each covariate separately against management
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level as a categorical factor, with both a random effect for site and a nested random effect of

season within year to account for temporal differences in covariate distribution. Bayesian

multivariate models were built in the probabilistic programming language Stan using the

BRMS package in R (Bürkner, 2017; Carpenter et al., 2017). Covariates measured on a

percentage scale (metrics of vegetation cover and shaded area) used a Zero-One Inflated Beta

response distribution. Bank and emergent vegetation height used log-normal hurdle mixed

response distributions to account for over-dispersion and the influence of zero values. All

other covariates used a student-t distribution for robust estimation of parameter values. Sig-

nificance was measured across the 95% CI using mean equal tailed intervals of the posterior

distribution.

2.4 Results

2.4.1 Differences in environmental conditions between management

tiers

Metrics of ditch vegetation structure differed significantly between sites subject to Tier 1

versus Tier 3 management, whilst physicochemical properties of the waterbody and ditch

structure parameters did not (Table 2.3). Though water-bodies were on average 8 cm wider

in Tier 3 managed areas, this difference was not statistically significant (95% CI [-23.94,

6.31]). There was no measurable difference in turbidity (95% CI [-0.15, 0.18]) or salinity

(95% CI [-0.12, 0.15]) between the management tiers, and pH values were on average -0.3

lower in Tier 3 areas, but this was also non-significant (95% CI [0.03, 0.65]).

Bank vegetation was more likely to be present (95% CI [-0.29, -0.10], Table 2.3), and

when present it was significantly taller, by 25 cm on average (95% CI[-55.78, -4.24]), in Tier

3 ditches than Tier 1 ditches, but we found no differences in the levels of bank-side vegetation

percentage area cover between tiers (Mean = 0.01, 95% CI[-0.05,0.07]). Similarly, we found
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that emergent channel vegetation was 29% more likely to be present in Tier 3 areas (95%

CI [-0.39, -0.18]), and when emergent vegetation was present it was 5 cm taller on average

than in Tier 3 areas than Tier 1 areas (95% CI [-12.39, -0.34]). There was no measurable

difference in the probability of floating vegetation cover being 0% (95% CI[-0.15, 0.06])

or 100% (95% CI[-0.1, 0.04]) between tiers, but on average there was 10% less floating

vegetation cover in Tier 3 areas than in Tier 1 areas and this was significant (95% CI[0.01,

0.19]). The percentage shaded area of the channel did not vary significantly between tiers

(Mean = 0.12, 95% CI[-0.01, 0.27]), but the probability of a waterbody being completely

shaded was 48% higher in Tier 3 areas than Tier 1 (95% CI[-0.8, -0.2]), and the probability

of a waterbody having no shade was 10% more likely in Tier 3 areas (95% CI[0.03, 0.016]).

Table 2.3 Differences in environmental variables between the Tier 1 (T1) and Tier 3 (T3)
wetland management regimes. Table shows the marginal effect of Management Tier for each
environmental covariate from pairwise posterior distribution contrasts of T1-T3 values. PD
(Probability of Direction) estimates above 97.5 are deemed significant and highlighted in
bold. MPE (Mean Parameter Estimates) with Lower MPELow and Upper MPEHigh estimates
represent the equal tailed 95% CI estimate across the model’s posterior distribution. Full
parameter estimates for each model covariate are given in Table A.1.

Model Covariate Effect of Tier 3 PD (%) MPE MPElow MPEHigh

Salinity – 57.40 0.01 -0.12 0.15
Emergent Vegetation Height (HeightEmerg) Taller Emergent Vegetation 98.41 -5.30 -12.39 -0.34
Dissolved Oxygen (DO2) – 89.17 6.59 -4.10 17.40
pH – 96.53 0.30 -0.03 0.65
Turbidity – 59.00 0.02 -0.15 0.18
Floating Vegetation Cover (CoverFloat) Less Floating Vegetation Cover 98.33 0.09 0.01 0.19
Bankside Vegetation Cover (CoverBank) – 76.62 0.01 -0.05 0.07
Emergent Vegetation Cover (CoverEmerg) – 70.88 -0.01 -0.04 0.02
Water Temperature – 88.33 -0.82 -2.24 0.59
Shaded – 96.37 0.12 -0.01 0.27
Ditch Width – 87.67 -8.58 -23.94 6.31
Bank Vegetation Height (HeightBank) Taller Bank Vegetation 99.62 -25.28 -55.78 -4.24

2.4.2 Abundance and prevalence of sample mosquito and predator taxa

We recorded twelve different aquatic macroinvertebrate taxa in the SLM, of which five were

mosquitoes (Table 2.4). We identified 6896 mosquito larvae in total. Culiseta annulata (n
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= 3250, 47.13%) and Culex pipiens (n = 3248, 47.10%) made up the highest proportion of

these larvae, followed by Anopheles claviger (n = 292, 4.23%) and Anopheles maculipennis

s.l. (n = 105, 1.52%). Anopheles maculipennis s.l. were most prevalent, occurring in 13% of

the sample sites, followed by Cs. annulata (12%), An. claviger (11%), Cx. pipiens (10%),

and lastly Aedes (Ochlerotatus) caspius which was present in just a single sampling site

(<0.1%). Because of the low abundance and low prevalence, Ae. caspius was omitted from

the subsequent analysis.

We identified eight potential predator taxa that were present in at least 10 sites to be

included in this statistical analysis (Table 2.4). Of these taxa, adult Coleoptera (water beetles)

were most prevalent, being present in the most sampling units (27%, n = 308), followed by

Corixidae (water boatmen) which were also the most abundant predator species (26%, n =

647), Zygoptera larvae (damselflies, 25%, n = 349) and Coleoptera larvae (19%, n = 139).

The other four taxa had a much lower prevalence and abundance across all sampling units,

including Gammaridae (ditch shrimp, 8%, n = 103), Anisoptera larvae (dragonflies, 5%, n =

31), Ilyocoris cimicoides (saucer bugs, 3%, n = 19) and Nepa cinerea (water scorpions, 3%,

n = 11).

Table 2.4 Relative prevalence (rate of occurrence across all sites) and total (and proportional)
abundance of mosquito and predator taxa across sampled sites among sampled individuals
across study sites.

Taxon Prevalence (%) Abundance (Total) Mean Abundance per Sample Site

Anopheles maculipennis s.l. 13 105 2.44 ± 2.22
Anopheles claviger 11 292 8.11 ± 11.84
Culex pipiens s.l. 10 3248 101.50 ± 244.43
Culiseta annulata 13 3250 81.25 ± 160.62
Corixidae 26 647 7.70 ± 20.89
Coleoptera larvae 19 139 2.24 ± 1.70
Coleoptera adults 27 308 3.58 ± 3.30
Zygoptera larvae 26 349 4.20 ± 5.55
Anisoptera larvae 5 31 1.82 ± 1.42
Ilyocoris cimicoides 3 19 1.90 ± 2.18
Nepa cinerea 3 11 1.10 ± 0.32
Gammaridae 8 103 4.29 ± 4.65
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2.4.3 Overall accuracy of community models and partitioning of vari-

ance between key sets of drivers

Parameter convergence of the HMSC model was satisfactory, with all chains generating

sufficient effective samples and PSRF values (Fig A.1). Explanatory AUC values (for

the training dataset) were high for all mosquito species (0.86-0.99) and predictive AUC

values (from the cross-validation) were reasonable (0.75-0.89). Explanatory AUC values

were similarly high for potential predator taxa (0.78-0.99), but predictive AUC values were

much lower for some less abundant taxa (Nepa cinerea = 0.4, Ilyocoris cimicoides= 0.55,

Anisoptera larvae = 0.55, Coleoptera larvae = 0.57). All other predator taxa had adequate

predictive AUC values above 0.69 (Table 2.5).

Metrics of variance explained for the training dataset were higher for Culicine species

(Cx. pipiens s.l. Tjur’s R2 = 0.47 ; Cs. annulata Tjur’s R2 = 0.55) than Anopheline species

(An. maculipennis s.l. Tjur’s R2 = 0.12; An. claviger Tjur’s R2 = 0.23). When examining the

importance of different sets of covariates for mosquito species, we found that spatiotemporal

effects accounted for on average 43% (SD 29%) of all variation explained by the models (Fig

2.2, Table A.2). Tjur’s R2 values for predator taxa were much lower than for the mosquito

species, except for Corixidae (Tjur’s R2 = 0.27) and Zygoptera (Tjur’s R2 = 0.28) larvae.

Random effects accounted for substantial variation in Culicine species and low amounts

of variation for Anopheline species (Fig 2.2). For the Anopheline species, a higher proportion

of variance was explained by chemical and channel structure covariates than for Culicine

species. Temporal effects of year and season explained less variation in presence of mosquito

species compared to the predator taxa, and little in Anopheline species (Table A.2)

2.4.4 Larval mosquito responses to environmental drivers

Culex pipiens was significantly positively associated with bank vegetation cover (Mean

= 0.03, 90% CI[0.01, 0.04]), negatively associated with bank vegetation height (Mean =
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Fig. 2.2 Variance partitioning and total variance explained by each component for larval
mosquitoes and predator species prevalent in the study side. Random effects are the variance
explained by year season and the spatial component of the model summed for each species.
The “chemical” category includes the physicochemical covariates pH, dissolved oxygen,
salinity, turbidity and water temperature, the “structural” category includes the width and
relative shadiness of the water body, and the “vegetation” category includes all vegetation
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variance explained by the random effects is provided in Table A.2.
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Table 2.5 Accuracy with which community models explained and predicted the distributions
of mosquito and predator taxa including Area Under the Curve (AUC) and Tjur’s R2 values
for explanation and prediction.

Taxa Explanatory Predictive

AUC R2 AUC R2

Anopheles maculipennis s.l. 0.86 0.12 0.75 0.06
Anopheles claviger 0.91 0.23 0.84 0.14
Culex pipiens s.l. 0.98 0.40 0.84 0.22
Culiseta annulata 0.99 0.53 0.89 0.38
Corixidae 0.88 0.27 0.82 0.21
Coleoptera larvae 0.78 0.08 0.57 0.02
Coleoptera 0.81 0.15 0.69 0.08
Zygoptera larvae 0.89 0.27 0.80 0.19
Anisoptera larvae 0.86 0.03 0.55 0.00
Ilyocoris cimicoides 0.87 0.03 0.50 0.00
Nepa cinerea 0.99 0.04 0.40 -0.01
Gammaridae 0.87 0.14 0.76 0.08

-0.006, 90% CI[-0.017, -0.001], and negatively associated with floating vegetation cover

(Mean = -0.01, 90% CI[-0.018, -0.001]) (Fig 2.3). Culiseta annulata was significantly

positively associated with more bankside vegetation cover (Mean = 0.02, 90% CI[0.001,

0.035]) and high turbidity areas (Mean = 1.41, 90% CI[0.28, 2.65]). Anopheles maculipennis

s.l. showed strong preference for habitats with little shade (Mean = -1.13, 90% CI[-2.20,

-0.13]) and higher levels of emergent vegetation (Mean = 0.015 90% CI[0.004, 0.026]) (Fig

2.3). Anopheles claviger exhibited a strong preference for shaded habitats (Mean = 1.23,

90% CI[0.34,2.17]), and ditches with little floating vegetation cover (Mean = -0.015, 90%

CI[-0.025, -0.006]) (Fig 2.3).

Several potential predator taxa were also significantly correlated with an array of physic-

ochemical and vegetation drivers (Fig 2.3), but we only interpret these further for those

predatory taxa for which a larger percentage of variance in occurrence was explained by the

model, namely water boatmen and damselfly larvae, (Fig 2.2). The probability of occurrence

of water boatmen was significantly negatively associated with lower shading of water bodies
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(Mean = -0.96, 90% CI[-1,74, -0.23]). The probability of occurrence of damselfly larvae was

significantly positively impacted by higher levels of floating (Mean = 0.009, 90% CI[0.003,

0.015]) and height of bank vegetation (Mean = 0.005, 90% CI[0.001, 0.009], Fig 2.3).
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2.4.5 Residual association between species

We found significant positive residual species associations between all mosquito species

except An. maculipennis s.l. after accounting for environmental responses in the HMSC

community model (Fig 2.4). Additionally, we found that all species of mosquito except An.

maculipennis s.l. show significant negative associations with potential predator taxa including

water beetle larvae and adults, and damselfly larvae, water boatmen and Gammarus spp.

Saucer bugs, dragonfly larvae and water scorpions do not show any significant associations

with any other species. All other predator taxa show significant positive associations with

one another (Fig 2.4).

2.5 Discussion

2.5.1 Vegetation structure as a key driver of mosquito communities,

including potential vectors.

Increased water levels in Tier 3 areas have been previously shown to favour the establishment

of wetland meadow plant species, which increase the diversity and quality of vegetation

in these areas compared to Tier 1 areas (Acreman et al., 2011). Our study supports this,

with Tier 3 areas leading to significant increases in emergent and bankside vegetation height,

increasing the structural complexity of vegetation compared to Tier 1 areas (Table 2.3).

Areas such as wetlands and marshes tend to harbour a wide variety of mosquito species,

due to the presence of a variety of suitable water bodies for oviposition, and aquatic plants

that provide shelter, food, and protection from predators, as well as a diverse set of host

species from which to draw bloodmeals (Becker et al., 2010; Medlock et al., 2005). Adult

mosquitoes benefit from vegetation that is structurally complex, consisting of plant species

communities that create shaded and sheltered micro-habitats that protect the mosquitoes from
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direct sunlight, wind, and other environmental stressors. Such conditions enhance overall

habitat suitability for adult mosquitoes (Becker et al., 2010). Juvenile mosquitoes may also

perceive similar benefits from the underwater structures of algae and plant roots as refuges

from predators (Collins et al., 2019).

A review by Rey et al. (2012) found that wetlands with high vegetative complexity

had a greater diversity of mosquito species compared to wetlands with low vegetative

complexity. Consistent with these prior studies, we found that the occurrence of three of

the key mosquito species in the study area (An. claviger and An. maculipennis s.l., and to

a lesser extent, the Cx. pipiens complex) was favoured by more complex ditch vegetation

structure characteristic of Tier 3 management (increased height and cover of emergent and

bankside vegetation, Table 2.3). Consistent with the associations described by Hawkes et al.

(2020), An. maculipennis s.l. showed significant preference for less shaded environments,

suggesting a preference for open-style habitats, while An. claviger showed a preference

for heavily shaded habitats (Fig 2.3). For Cx. pipiens and An. claviger, both of which can

cause significant biting nuisances, Tier 3 areas are likely to offer more favourable conditions

because of these species’ preferences for little floating vegetation cover (Fig 2.3, Table 2.3).

Floating vegetation can provide a physical barrier between mosquitoes and oviposition sites,

as well as larvae and air, dissuading oviposition in these areas (Eid et al., 1992). Yet, previous

studies have found positive associations between floating vegetation cover and mosquito

species presence, suggesting the impacts of this factor on mosquito larvae are complex and

context-dependent (Cuthbert et al., 2020; Golding et al., 2015).

Except for the association of turbid water with Cs. annulata presence, no significant

effects of physicochemical characteristics of the water on mosquito occurrence were found

(Fig 2.3). This aligns with prior knowledge that Culicine species Cx. pipiens and Cs. annulata,

utilize a breadth of oviposition sites, including drainage ditches, artificial containers, and

small stagnant waters that vary widely in water parameters (Hawkes et al., 2020). We
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found that physicochemical factors had a larger contribution to variance explained for

the Anopheline species, Anopheles maculipennis s.l. and An. claviger, at 11% and 6%,

respectively, suggesting more restricted oviposition site preferences. The SLM system is an

interconnected network of ditches that covers an area over several hundred square kilometres,

leading to relatively homogeneous water chemistry across our study area. This means that

the range of conditions experienced by our sampled species might not be large enough to

elucidate any meaningful differences in water parameter preferences (and indeed the Tier

management regimes did not differ significantly in physico-chemical conditions).

2.5.2 Biotic drivers of larval mosquitoes

Consistent with prior studies of mosquito community composition at the landscape level,

we found that biotic interactions may affect the distribution of mosquitos across a wetland

environment (Golding et al., 2015). Many of the potential predator taxa, such as dragonfly

and damselfly larvae, are frequently observed as effective larval mosquito predators in other

contexts, and indeed some, such as dragonfly larvae, have been investigated for biological

control of mosquitoes (Medlock and Snow, 2008; Onyeka, 1983; Saha et al., 2012). Water

beetles and water boatmen have also been implicated in mosquito larval predation, but their

relative predation pressure is thought to be linked to the vulnerability of mosquito larvae

(Jeffries, 1988; Medlock and Snow, 2008).

As described above, vegetation structure in and around water bodies modifies the avail-

ability of refugia from predators and consequently the effectiveness of predator avoidance

strategies of immature mosquitoes (Saha et al., 2009). Environments with complex underwa-

ter vegetation limit the space for predators and mosquito larvae to interact and reduce overall

predator efficiency (Saha et al., 2009; Sunahara et al., 2002). The higher cover and height of

emergent vegetation detected in Tier 3 areas could provide complex vegetation structure both
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above and below the water level, providing shady refugia that improve predator avoidance in

these sites.

It’s crucial to recognize that the species interactions deduced from residual correlations

in joint occurrence models are not as dependable as direct observations of predator-prey

interactions. Instead, these inferred interactions may be indicative of unmeasured factors

such as shared or non-shared environmental preferences between species (Poggiato et al.,

2021). In essence, while joint occurrence models provide valuable insights, caution should

be exercised in attributing the correlations solely to direct predator-prey interactions, as

other environmental factors might contribute to the observed patterns (Zurell et al., 2018).

For example, though some mosquito species were found to be negatively correlated with

Gammarus species, we suspect this may reflect different preferences for unmeasured envi-

ronmental conditions. Gammarus pulex and other Gammarus species are omnivorous and

occupy different depths of the waterbodies compared to mosquito larvae, leading to limited

potential predation opportunities (P. Scarlett, pers. comm., June 2023).

The community models exhibited relatively low performance for predator species com-

pared to mosquito species. Therefore, to comprehensively grasp how wetland management

may influence predator effects on mosquito populations in this context, additional and more

detailed data on predators, with improved taxonomic resolution, could be valuable. Prior

studies seem to suggest that management plans targeting biodiversity, like Tier 3, have been

suggested to positively impact the abundance of key predator taxa, including fish (Chandra

et al., 2008; Griffin and Knight, 2012). Increased predator abundance would provide a

potential control agent for mosquito populations, but few studies have shown this in the field,

and none in the UK (Griffin and Knight, 2012; Medlock and Snow, 2008; Saha et al., 2012).

Our study indicates that water beetle larvae and adults, dragonfly and damselfly nymphs, and

water boatmen may be key predator taxa that play a role in regulating mosquito populations



54 Chapter 2

within lowland wet grasslands, and that these roles should be investigated further to fully

understand trade-offs between biodiversity management and mosquito biting risk.

2.6 Conclusion

We have shown here how management schemes directed at increasing the biodiversity of

grazed wetlands could increase the suitability of those habitats for immatures of some key

mosquito vectors and nuisance biters, and encouraging diverse vegetation structure in and

around water bodies may reduce their vulnerability to predators. However, thinning or

removal of vegetation is not a viable strategy to control mosquito populations, being at

odds with the targets of wetland management strategies. Vegetation removal impinges upon

important wetland ecosystem functions by decreasing biodiversity, lowering water quality

and reducing flood resilience of an area (Acreman et al., 2011; Rochlin et al., 2012a).

Furthermore, to interpret disease risk given future incursions of viruses such as West Nile

virus, Sindbis virus or Usutu virus into the UK, it would be necessary to understand how

these impacts of wetland management on juvenile mosquito populations cascade through

into impacts on the ratio of adult vectors to susceptible hosts (a key parameter in disease

transmission, see Smith et al. (2004)), by sampling adult vectors, hosts, and their interactions

(e.g., via blood meal analysis) across wetland gradients into areas of human habitation

(Hanford et al., 2020). This would provide the evidence-base for co-development of integrated

mosquito management and risk awareness strategies among cross-sectoral stakeholders that

would minimize risk of exposure while aligning with environmental wetland management

goals (Martinou et al., 2020). Given the diverse and growing mosquito-borne pathogen

threats to people living in and around wetland ecosystems, and the diverse assemblages of

potential mosquito vector species involved, the combination of joint models with empirical

surveys provides an effective way of inferring the complex ecological interactions that will

underpin the trade-offs between disease risk and wetland management.
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Environmental and Biotic Drivers of

Mosquito Communities Across Europe: A

Multi-Scale Joint Species Distribution

Modelling Approach

This manuscript is currently undergoing revision for future submission. While the final

published version will be significantly condensed, this thesis presents the full, detailed

methodology for the examiners’ benefit. The extended version provided here offers a

comprehensive overview of the research process and findings.

3.1 Abstract

Mosquito-borne diseases pose a significant threat to public health in Europe, with their risk

intrinsically linked to vector distribution. This study presents the first application of joint

species distribution models (JSDMs) to predict mosquito communities across Europe. We

utilized data from the VectorNet consortium to generate community-level data for mosquitoes
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at four spatial resolutions (1, 2, 5, and 10 km), comparing JSDMs with Multi-Species

Distribution Models (MSDMs) to assess the relative importance of environmental, spatial,

and biotic factors in shaping mosquito distributions. Our results demonstrate that JSDMs can

effectively predict distributions for nearly half of the analysed species, despite relatively low

average community richness. Notably, model performance was not significantly influenced

by species prevalence, contrasting with findings from other taxa. JSDMs attributed a large

proportion of variance to the biotic component (10%), highlighting the potential of using this

community data to generate better predictions. Invasive Aedes species displayed consistent

negative associations with native species across all spatial scales, potentially indicating niche

differentiation or differential environmental responses compared to native species. This study

demonstrates the value of JSDMs in leveraging sparse data to explore complex community

dynamics, emphasizing the need to integrate potential species interactions and unmeasured

environmental variables in mosquito distribution models. Our findings underscore the

challenges in accurately reflecting species interactions and environmental responses at

appropriate scales, especially given biases in mosquito surveillance data. These insights,

coupled with continued refinement of JSDM approaches and improved data collection

methods, hold promising potential for enhancing vector surveillance and predicting future

disease risks within the context of community ecology.

3.2 Introduction

Mosquitoes are the primary drivers of vector-borne diseases (VBDs) globally, and the rising

VBD burden is expected to significantly strain public health finances (Bhatt et al., 2013;

Medlock et al., 2012; Stanaway et al., 2016). Land use changes, climate change, biological

invasions and globalization are altering the distribution and composition of mosquito vector

species across Europe, increasing the risk of disease transmission (Calzolari et al., 2015;

Medlock et al., 2018). Several mosquito borne diseases (MBDs) have re-emerged in Europe,
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such as Dengue (Schaffner and Mathis, 2014), Chikungunya (Delisle et al., 2015; Grandadam

et al., 2011; Rezza et al., 2007), West Nile Virus (Bakonyi and Haussig, 2020), Sindbis Virus

(Suvanto et al., 2022), and Usutu Virus (Weissenböck et al., 2013). However, significant

knowledge gaps remain regarding the complex interactions between environmental factors,

vector ecology, and disease transmission dynamics, underscoring the need for continued

research and surveillance efforts.

Species distribution models (SDMs) are widely used to assess VBD risks by understand-

ing and predicting mosquito distributions (Fuller et al., 2012; Khatchikian et al., 2011; Wint

et al., 2022). These models have evolved from theoretical tools to practical instruments influ-

encing public health strategies and vector control policies (Fouet and Kamdem, 2019; Guisan

and Thuiller, 2005; Guisan and Zimmermann, 2000). For instance, SDMs have been used to

evaluate Rift Valley Fever introduction risk in the UK and Europe (Schaffner et al., 2013a;

Simons et al., 2019; Wint et al., 2020), and the European Centre for Disease Prevention and

Control has issued technical guidance on vector modelling to enhance surveillance efforts

(ECDC, 2021). However, current studies mainly focus on modelling individual species, often

neglecting interactions between mosquito species despite criticism that single-species models

lack the power to account for biotic interactions (Ovaskainen et al., 2017b; Wilkinson et al.,

2021; Zurell et al., 2018, 2020).

Neglecting species interactions can lead to incomplete or inaccurate representations of

community assembly processes and species coexistence mechanisms, potentially affecting

the accuracy of disease risk assessments and ability to target control measures. For example,

McDonough and Holloway (2020) showed for the Ixodes ricinus tick in Great Britain and

Ireland that models built with only abiotic variables had reduced accuracy and biological

realism compared to those that also incorporated host variables. Joint species distribution

models (JSDMs) have been developed to address this gap (Golding and Harris, 2015; Pichler

and Hartig, 2021; Tikhonov et al., 2022; Wilkinson et al., 2019), and despite challenges in
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accurately capturing the biotic component (Blanchet et al., 2020; König et al., 2021; Zurell

et al., 2018), these models can improve understanding of community assembly processes and

underlying drivers (Pollock et al., 2014). The importance of biotic interactions in shaping

mosquito distributions has been recognized in local community studies, with Golding et al.

(2015) demonstrating significant predator-prey influences on mosquito abundance at the

landscape level in the UK (Ferraguti et al., 2016; Golding et al., 2015; Smith et al., 2024).

However, the role of these interactions in driving continental-scale distributions remains

less explored. Understanding the interplay of species interactions, interspecific trait variation,

and differential environmental responses in shaping mosquito distributions and vector-borne

disease dynamics could yield numerous benefits if incorporated into models accounting for

these impacts on distribution (Cator et al., 2020; Lefevre et al., 2018; Mordecai et al., 2019).

This knowledge may enhance our ability to predict invasive mosquito species spread (Pog-

giato et al., 2021), identify predator species with regulatory effects on mosquito populations

(Golding et al., 2015; Smith et al., 2004), and forecast shifts in community composition

under environmental disturbances (Ferraguti et al., 2016; Townroe and Callaghan, 2014).

The sparse distributional data for native and invasive mosquitoes at large geographic

scales presents significant challenges for applying community modelling methods, limiting

most studies to smaller, local scales (Braks et al., 2004; Ferraguti et al., 2016). The paucity

of comprehensive, large-scale mosquito community data has historically constrained the

application of community modelling techniques in vector ecology at macro-scales. Recent

efforts to centralize, standardize and coordinate sampling data across continents, such as the

ECDC VectorNet consortium project (Braks et al., 2022; Wint et al., 2023), have created

new opportunities to examine how sparse mosquito data might be leveraged in community

modelling contexts at continental scales. The scale dependence of species responses to

environmental and biotic factors is a critical consideration in ecological studies, particularly
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for vector groups and insect taxa. Research has demonstrated that the relative importance of

different drivers can shift significantly across spatial scales.

For tick-borne pathogens, Wimberly et al. (2008) showed that climate variables were

more influential at broader scales, while land cover factors became increasingly important at

finer resolutions. Similarly, de Knegt et al. (2010) found that the strength and even direction

of species-environment relationships in butterflies varied with spatial grain and extent. In

mosquito ecology, climatic factors often dominate at continental or regional scales (Bhatt

et al., 2013), while microhabitat availability, land use, and biotic interactions may play

more pronounced roles at local scales (Rochlin et al., 2016). Despite these insights from

other taxa, comprehensive multi-scale analyses of mosquito responses to environmental and

biotic factors remain limited. To fill these gaps in mosquito community ecology and risk

assessment, our study applies joint species distribution modelling and to VectorNet mosquito

community data across Europe to address three key questions:

1. How can we effectively leverage sparse, heterogeneous sampling data to construct

robust continental-scale vector community models?

2. How do Joint Species Distribution Models (JSDMs), which account for biotic interac-

tions, compare to Multi Species Distribution Models (MSDMs) in terms of ecological

insights for mosquito communities?

3. How does the relative importance of biotic interactions, environmental factors, and

spatial components in shaping mosquito distributions vary across different spatial

scales and species, and what are the implications for vector surveillance and control?
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3.3 Methods

3.3.1 Mosquito Data

While single-species SDMs use presence points for individual species, joint species dis-

tribution models (JSDMs) require data on occurrence of communities of several species

(in a site by species matrix), which are lacking for mosquitoes at broad scales. To enable

JSDM application, we generated community data from presence points at 1, 2, 5, and 10

km resolutions across Europe. Resolutions above 10 km were excluded as recent reviews

suggest most mosquito flight ranges are below 2-4 km (Verdonschot and Besse-Lototskaya,

2014) and models may have limited ability to capture species-environment responses and

reduced utility for management at broader scales (Purse and Golding, 2015).

We used mosquito sampling data from the VectorNet consortium, a network of vector

ecologists that collated 38,450 records of mosquito occurrence and abundance for 90 species

from 403 studies (Braks et al., 2022). The VectorNet database as accessed in January 2022

covers an area between 23.79º and 66.45º latitude and -17.86º and 56.67º longitude across the

palearctic region, spanning Europe (Figure 3.1). As several European mosquito species are

morphologically similar and difficult to distinguish to the species level unless genetic methods

are used (Chan et al., 2014), these phylogenetically distinct but morphologically similar

sets of species were combined into four groups, each modelled together as a single group

distribution (Table B.1). The coordinates of all 38,236 records, consisting of 75 individual

species and the four species groups from 402 studies, were converted to the EPSG:3035

equal area format. These records were inspected in QGIS and using the CoordinateCleaner

R package to identify and remove any duplicate or erroneous records from the dataset (QGIS

Development Team, 2009; Zizka et al., 2019).

The sampling data were cleaned, duplicates removed and overlaid onto equal-area grids

at 1 km, 2 km, 5 km, and 10 km resolutions across the study region. To mitigate potential
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Fig. 3.1 Geographic distribution of mosquito sampling sites included in the study, based on
data from the ECDC VectorNet database accessed in January 2022. Each grey dot indicates
an individual sampling site where mosquitoes were recorded, visualized in the equal-area
EPSG:3035 projection for accurate spatial representation.

biases arising from different sampling methods, we only retained grid cells containing data

from both adult and larval sampling methods. Cells with data exclusively from either adult

or larval sampling were excluded from the analysis. This selection process resulted in the

retention of 402 studies across 7,544 distinct locations, distributed as follows: 4,183 cells

at 1 km resolution, 4,148 cells at 2 km resolution, 3,478 cells at 5 km resolution, and 2,759

cells at 10 km resolution. Within each retained grid cell, a species was considered present

if it had ≥1 occurrence record; otherwise, it was scored as absent. This process generated

site-by-species community matrices for each spatial grain. To enhance numerical stability,

species occurring in <1% of cells across each resolution’s community matrix were removed,

leaving 26 species in our dataset (Ovaskainen and Abrego, 2020).
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3.3.2 Environmental Predictor Preparation

We adopted a resource-based approach for variable selection, including variables that are

known a priori to correspond with resource needs for mosquito life stages (Hartemink et al.,

2015), or to affect their demographic rates (Barker et al., 2014). We used measures of climate

(precipitation and temperature), topography, biting host availability (defined as the travel

time to the nearest population centre with at least 50,000 inhabitants), and land use as our

environmental predictors (see Table 3.1 for the predictors considered and biological rationale).

These predictors were summarised at 1km, 2km, 5km, and 10km grid square resolutions

to investigate the scale dependence of species’ responses to different environmental factors

(Václavík and Meentemeyer, 2012).

We anticipate that climatic effects on mosquito demography may be particularly evident at

broader scales (Asigau et al., 2017; Bhatt et al., 2013; Chase and Knight, 2003; Mulatti et al.,

2014), while land use, habitat, and host effects may be easier to detect at finer spatial scales

(Parham et al., 2015). To address collinearity and singularity, variables with a Pearson’s

correlation coefficient above 0.7 or exhibiting near-zero variance were candidates for removal.

Near-zero variance predictors were identified using the caret package in R, with criteria of

a frequency ratio exceeding 19 and less than 10% unique values (Kuhn, 2008). Snow and

wetland land cover variables met these criteria and were removed, whilst all other variables

were retained for analysis.
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Table 3.1 Environmental predictors used in the species distribution models, their descriptions,
units, and biological rationale for inclusion. The predictors were selected using a resource-
based approach, focusing on factors that correlate with resource needs for mosquito life
stages. †See Additional File A for the sources and processing methods of these environmental
predictors for each spatial resolution.

Predictor Category Predictor Name Description / Units Biological Rationale

Climate Precipitation of
Warmest Quarter

Total precipitation of warmest
quarter (mm)

Influences breeding sites and larval
development; higher precipitation
increases mosquito populations
(Brugueras et al., 2020; Ruiz et al.,
2010).

Climate Annual Precipitation Total precipitation (mm) Affects moisture availability for
breeding; wetter conditions support
larger populations (Deichmeister
and Telang, 2011; Roiz et al., 2014).

Climate Mean Temperature of
Coldest Quarter

Mean temperature of coldest
quarter (°C)

Cold temperatures limit mosquito
survival and restrict geographical
distribution (Ciota et al., 2014).

Climate Annual Mean
Temperature

Mean temperature (°C) Influences development rates,
survival, and behaviour; warmer
temperatures favour populations
(Mordecai et al., 2019).

Climate Growing Degree Days Cumulative number of days
above 10°C

Represents accumulated heat
required for mosquito development;
higher values indicate faster
development and more generations
(Mulatti et al., 2014).

Climate Enhanced Vegetation
Index (EVI)

Measure of vegetation
greenness and productivity
(unitless)

Indicates mosquito habitats such as
moist areas with shade and resting
sites (Brown et al., 2008).

Climate EVI Homogeneity Measure of EVI value change
across a year (unitless)

Seasonal consistency of vegetation
greenness; heterogeneous
landscapes provide various
microhabitats for different species.

Topography Elevation Elevation above sea level (m) Limits distribution due to changes
in temperature, humidity, and
vegetation; specific ranges for some
species (Asigau et al., 2017).

Topography Accessibility Distance to nearest
population centre of 50,000
inhabitants (km)

Influences ease of mosquito
sampling and species introduction
through human activity (Egizi et al.,
2016).

Biting Host Availability Mammalian and Avian
Livestock Densities

Log number of livestock per
km2

Livestock provide blood meals for
mosquitoes; higher densities may
support larger populations.

Biting Host Availability Human Population
Density

Number of people per km2 Provides blood meals and alters
landscapes through urbanisation
and land-use changes (Townroe and
Callaghan, 2014).

Land Use Land Cover (Wetland,
Urban, Tree, Shrub,
Agricultural)

Categorical land cover types
(%)

Different land cover types offer
various habitats; wetlands for
breeding, urban areas, trees, shrubs,
and agriculture for resting and
feeding (Fuller et al., 2012).
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3.4 Fitting Joint and Multi-Species Distribution Models at

Multiple Spatial Scales

3.4.1 Analysis Pipeline

The full analysis pipeline was implemented separately at four focal spatial resolutions (grain

sizes): 1 km, 2 km, 5 km, and 10 km, allowing examination of how the determinants of

species distributions and communities vary across spatial scales. The 1 km scale matches the

most commonly used SDM resolution, while coarser grids allow us to examine how species

responses and model accuracy vary across scales. The analysis pipeline applied to each focal

resolution is illustrated in a detailed process diagram (Figure 3.2).

3.4.2 Accounting for Spatial Autocorrelation

Spatial predictors based on distance-based Moran’s eigenvector maps (dbMEM) were incor-

porated to account for unmeasured spatially structured environmental factors and to mitigate

spatial autocorrelation in model residuals (Dray et al., 2012; Viana et al., 2022). For each

study grain (grid cell size), a dbMEM was derived using the centroid coordinates of the

community grid cells. The first 10 significant components of the dbMEM were retained

and used to generate a spatial matrix to serve as a spatial random effect, controlling for

autocorrelation in model fitting. These first 10 eigenvectors were inspected using correlo-

grams and captured spatial autocorrelation peaks between 1 and 60 km across all resolutions.

Subsequent eigenvectors represented lower levels of autocorrelation (Moran’s I value <

0.3), indicating that the retained components adequately captured the spatial structure in the

community data.
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3.4.3 Hyperparameter Selection

An elastic net regularized regression approach was employed to tune the hyperparameters,

alpha (α , mixing parameter) and lambda (λ , regularization strength), which control the influ-

ence of environmental, spatial, and biotic (species-to-species associations) model components

(Friedman et al., 2010; Zou and Hastie, 2005). Two hundred randomized combinations of

alpha and lambda values were selected and applied to 5-fold cross-validation subsets of the

data, partitioned into environmental, spatial, and biotic components (see Additional File A for

the distribution used for sampling random hyperparameters). This tuning process identified

optimal hyperparameter settings that minimized cross-validation negative log-likelihood for

each data component. The negative log-likelihood was used as the loss metric, as it provides

a measure of model fit, with lower values indicating better fit.

3.4.4 JSDM and MSDM Fitting

Using the optimal hyperparameters, two types of models were fitted:

1. Joint Species Distribution Models (JSDMs) incorporating environmental, spatial,

and biotic components. JSDMs model multiple species simultaneously, allowing

for residual correlations between species through a covariance matrix. This approach

captures species interactions and shared responses to unmeasured environmental factors

(Ovaskainen and Abrego, 2020).

2. Multi-species Distribution Models (MSDMs) use the same environmental, spatial,

and biotic predictors as JSDMs but treat each species independently. MSDMs do

not model residual correlations between species, meaning any associations are due

to similar responses to measured variables, rather than species interactions or shared

responses to unmeasured factors (Pichler and Hartig, 2021).
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Both models utilized a probit link function to relate predictors to species presences/absences,

enabling comparison of JSDM performance with independent species treatments in MSDMs.

3.4.5 MSDM and JSDM Performance

To evaluate model performance, a randomized hold-out method was used, with 20% of the

data randomly reserved for testing and the remaining 80% for training. This process was

repeated 10 times to mitigate the risk of excluding rare species from the test sets, which can

impact overall assessment of accuracy. The model’s ability to discriminate species presence

from absence was assessed using the area under the receiver operating characteristic curve

(AUC) and true skill statistic (TSS). These metrics were calculated independently for each

species.

Model outputs showing species suitability in grid cells were converted to binary predic-

tions using thresholds that minimized the difference between sensitivity and specificity. AUC

scores range from 0 to 1, where values ≥ 0.7 are considered good to excellent predictions

(Allouche et al., 2006; Araújo et al., 2005). TSS values over 0.4 are considered acceptable,

and values ≥ 0.6 are considered useful (Allouche et al., 2006; Elith and Leathwick, 2017;

Elith et al., 2008). Models with AUC ≥ 0.7 or TSS ≥ 0.4 were considered accurate for

predicting species distributions, and species not meeting these thresholds were discarded

from further analysis, using thresholds that minimized the difference between sensitivity and

specificity (Lobo et al., 2008).

3.4.6 Factors Influencing Model Performance

To further investigate factors influencing model performance, we implemented three Bayesian

models using the brms R package (Bürkner et al., 2022).
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1. Species-level regression models examined the influence of spatial resolution, model

type, and species prevalence on AUC and TSS. A beta distribution was used for AUC,

and a Student’s t-distribution for TSS.

2. A logistic regression model with a Bernoulli distribution examined how spatial reso-

lution and species prevalence influenced significant associations between mosquito

species and environmental parameters.

3. A Gaussian model explored scale-dependent changes in residual species correlation

strengths, with spatial resolution as a fixed effect and unique species interaction pairs

as random effects.

3.4.7 Variance Partitioning

To quantify the relative importance of environmental, spatial, and biotic factors underlying

community structure, we employed variance partitioning of the fitted JSDMs and MSDMs

following Leibold et al. (2022). A series of Bayesian regression models was used to inves-

tigate the effects of spatial resolution, model type, and species prevalence on responses to

risk factors. Fixed effects for spatial resolution and model type, along with a second-order

polynomial for prevalence, were incorporated. Random intercepts accounted for variation

among species and within-species differences between model types.

3.4.8 Predicting Species and Community Distributions

The JSDM was used to generate predictions of species responses to environmental predictors

and residual species correlations, following Pichler and Hartig (2021). Environmental

data for mainland Europe and Great Britain were employed to produce continental-scale

species occurrence predictions. Habitat suitability predictions were generated for all well-

predicted species (based on AUC and TSS values). To estimate model uncertainty, a bootstrap
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resampling technique with 100 samples was used to retrain the model, calculating 95%

confidence intervals for predictions.

3.5 Results

3.5.1 Derived Mosquito Community Patterns

The most prevalent species across all spatial grains included important disease vectors,

namely Culex pipiens, Aedes albopictus, Aedes japonicus, and Anopheles maculipennis.

Culex pipiens was particularly ubiquitous, occurring in 36.79% of cells at 1 km resolution

and increasing to 39.84% at 10 km resolution (Table 3.2). In contrast, Anopheles atroparvus,

Aedes sticticus, Aedes annulipennis, and Anopheles sacharovi were consistently the least

prevalent across scales. Anopheles atroparvus, for instance, was found in only 1.03% of cells

at 1 km resolution, increasing slightly to 1.37% at 10 km resolution.

Several moderately prevalent species were found across 25-73% of the cells at each

spatial grain. These included Culex theileri, present in 6.48% of cells at 1 km and 8.64% at

10 km, Aedes caspius (7.84% at 1 km to 7.73% at 10 km), and Culiseta annulata (10.61%

at 1 km to 10.19% at 10 km). Other species, such as Aedes annulipes/cantans, Culex

perexiguus/univittatus, and Culex territans, were found in less than 20% of cells across all

spatial grains, with Aedes annulipes/cantans showing the lowest prevalence among these

(1.22% at 1 km to 1.37% at 10 km). Average species richness of the mosquito community

increased as the spatial grain became coarser. At the finest resolution of 1 km, we observed

a mean of 1.81 ± 1.55 sampled species per cell, which gradually increased to 2.11 ± 1.84

species per cell at the coarsest 10 km resolution. This trend was accompanied by a decrease

in the number of cells containing communities from, 4,518 at 1 km resolution to 2,759 at 10

km resolution. Despite these changes, the maximum species richness remained relatively

stable across resolutions, ranging from 16 species at 1 km to 18 species at coarser scales.
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Fig. 3.2 Analytical process diagram for generating Joint/Multi Species Distribution Model
outputs. *Undersampled cells contain only juvenile or adult mosquito sample data. **Hy-
perparameter distributions are provided in Figure B.1. †Cross-validation metrics during
hyperparameter tuning assesses model accuracy across all species predictions collectively
rather than individually.



70 Chapter 3

Table 3.2 Variation in mosquito community characteristics and species prevalence across
different spatial grains created from the VectorNet dataset using grid-based aggregation.

Species 1 km 2 km 5 km 10 km

Aedes albopictus 940 (22.47%) 785 (21.63%) 599 (21.77%) 387 (22.15%)
Aedes annulipes/cantans 51 (1.22%) 48 (1.32%) 38 (1.38%) 24 (1.37%)
Aedes caspius 328 (7.84%) 291 (8.02%) 225 (8.18%) 135 (7.73%)
Aedes cinereus/geminus 123 (2.94%) 113 (3.11%) 103 (3.74%) 83 (4.75%)
Aedes detritus/coluzzi 214 (5.12%) 187 (5.15%) 132 (4.80%) 67 (3.84%)
Aedes geniculatus 127 (3.04%) 115 (3.17%) 96 (3.49%) 77 (4.41%)
Aedes japonicus 679 (16.23%) 617 (17.00%) 506 (18.39%) 336 (19.23%)
Aedes sticticus 48 (1.15%) 41 (1.13%) 35 (1.27%) 26 (1.49%)
Aedes vexans 299 (7.15%) 276 (7.60%) 235 (8.54%) 157 (8.99%)
Anopheles atroparvus 43 (1.03%) 40 (1.10%) 31 (1.13%) 24 (1.37%)
Anopheles claviger 373 (8.92%) 342 (9.42%) 281 (10.21%) 194 (11.10%)
Anopheles labranchiae 204 (4.88%) 191 (5.26%) 157 (5.70%) 120 (6.87%)
Anopheles maculipennis 587 (14.03%) 532 (14.66%) 415 (15.08%) 291 (16.66%)
Anopheles messeae 63 (1.51%) 59 (1.63%) 54 (1.96%) 38 (2.18%)
Anopheles plumbeus 197 (4.71%) 180 (4.96%) 150 (5.45%) 113 (6.47%)
Anopheles sacharovi 45 (1.08%) 45 (1.24%) 37 (1.34%) 27 (1.55%)
Coquillettidia richiardii 190 (4.54%) 161 (4.44%) 123 (4.47%) 70 (4.01%)
Culex hortensis hortensis 193 (4.61%) 174 (4.79%) 154 (5.60%) 129 (7.38%)
Culex modestus 104 (2.49%) 96 (2.64%) 82 (2.98%) 60 (3.43%)
Culex perexiguus/univittatus 75 (1.79%) 71 (1.96%) 63 (2.29%) 47 (2.69%)
Culex pipiens 1539 (36.79%) 1358 (37.41%) 1078 (39.17%) 696 (39.84%)
Culex territans 71 (1.70%) 65 (1.79%) 61 (2.22%) 51 (2.92%)
Culex theileri 271 (6.48%) 243 (6.69%) 201 (7.30%) 151 (8.64%)
Culex torrentium 190 (4.54%) 178 (4.90%) 154 (5.60%) 115 (6.58%)
Culiseta annulata 444 (10.61%) 389 (10.72%) 285 (10.36%) 178 (10.19%)
Culiseta longiareolata 193 (4.61%) 172 (4.74%) 146 (5.31%) 105 (6.01%)
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3.5.2 Model Performance

Predictive performance was not significantly different between JSDMs and MSDMs (Ta-

ble 3.3, Figure 3.3), with twelve of the 27 modelled mosquito species classified as "well

predicted" by our criteria by either method. The mean AUC values were 0.69 ± 0.11, and the

mean TSS values were 0.34 ± 0.2 across all species and methods (Figure 3.3). The JSDM

was most accurate at predicting distribution for Anopheles labranchiae (AUC 0.95 ± 0.02,

TSS 0.86 ± 0.06), followed by Culex perexiguus/univittatus (AUC 0.90 ± 0.03, TSS 0.72

± 0.12) and Culex torrentium (AUC 0.80 ± 0.05, TSS 0.48 ± 0.09). In contrast, the JSDM

performed poorly at predicting Culex pipiens and Aedes vexans distributions, with mean

AUC values of 0.56 ± 0.03 and 0.58 ± 0.05, respectively, and correspondingly low mean TSS

values (0.11 ± 0.04, 0.16 ± 0.07). Several species, such as Culex theileri (AUC 0.79 ± 0.05)

and Aedes japonicus (AUC 0.77 ± 0.05), with mean AUC values above 0.70, were predicted

adequately by both JSDM and MSDM models (Figure 3.3).

Across all species, neither model type nor grid cell resolution had a meaningful impact on

AUC values of distribution models (Table 3.3). Unlike previous studies for other taxa, AUC

was also not associated with species prevalence (posterior median = -1.29, 95% CI [-5.52,

2.82]). The significance of the species level random effect suggests that unmeasured species

level factors explained a significant amount of variability in model AUC. The significant

random effect interaction between species and model type indicates that whether JSDMs or

MSDMs are more accurate depends on the species in question, though this effect is small

(Table 3.3). For TSS, model type (posterior median = -0.01, 95% CI [-0.03, 0.00]), spatial

resolution (posterior median = 0.00, 95% CI [0.00, 0.00]), and species prevalence (posterior

median = -0.61, 95% CI [-1.68, 0.45]) similarly showed minimal impacts on distribution

model accuracy (Table 3.3). Again, the species-level random effect (posterior median = 0.18,

95% CI [0.14, 0.25]) and the interaction between species and model type (0.02, 95% CI

[0.01, 0.04]) had significant, but small impacts on TSS.



72 Chapter 3

Fig. 3.3 Model performance metrics distribution and mean values of two performance metrics,
AUC (Area Under the Curve) and TSS (True Skill Statistic), for different models (JSDM
and MSDM) across all resolutions. Boxplots represent the interquartile range and median of
the values for each metric. Colours represent different models (JSDM: red, MSDM: blue)
and horizontal lines represent thresholds for well-predicted species (AUC ≥ 0.7, TSS ≥
0.4). Full details on AUC and TSS values for each species can be found in Table B.3 and
Table B.4.



3.5 Results 73

Table 3.3 Results of Bayesian regression models predicting Area Under the Curve (AUC)
and True Skill Statistic (TSS) for species distribution. The AUC model employed a beta
regression, while the TSS model utilised a Student’s t-family regression. The table presents
parameter estimates along with their 95% credible intervals.

Parameter Type Model Term AUC TSS

Fixed Intercept 0.91 [0.67, 1.14] 0.34 [0.26, 0.41]
Fixed Model type (MSDM) 0.01 [-0.04, 0.06] -0.01 [-0.03, 0.00]
Fixed Resolution 0.00 [-0.01, 0.00] 0.00 [0.00, 0.00]
Fixed Species prevalence -1.29 [-5.52, 2.82] -0.61 [-1.68, 0.45]
Dispersion phi (φ ) 35.66 [33.49, 37.94] -
Variance sigma (σ ) - 0.08 [0.07, 0.08]
Random Species 0.56 [0.43, 0.77] 0.18 [0.14, 0.25]
Random Species:Model 0.07 [0.03, 0.11] 0.02 [0.01, 0.04]

3.5.3 Variance Decomposition in JSDMs and MSDMs: Environmental,

Spatial, and Biotic Components

Across all spatial resolutions, the median total variance explained was marginally higher

in the JSDM (65%, 95% CI [64%, 65%]) compared to the MSDM (64%, 95% CI [64%,

65%]), though this difference was not statistically significant (Figure 4). The median variance

explained by the environmental component was identical for both methods (JSDM: 45%, 95%

CI [43%, 46%]; MSDM: 45%, 95% CI [44%, 46%]) across well-modelled species (Figure

2, Table 3.4). The MSDM attributed 7.2% more variance to the spatial component than the

JSDM, with median values of 18% (95% CI [16%, 19%]) and 11% (95% CI [9%, 12%])

across well-modelled species, respectively. Conversely, the JSDM attributed a substantially

larger proportion of variance to the biotic component (10%, 95% CI [9%, 11%]) compared

to the MSDM (1%, 95% CI [0%, 2%]) (Figure 2, Table 3.4). Species prevalence had no

effect on the amount of variance attributed to different variance components (Table 3.4).

Spatial scale (resolution) had no significant impact on the variance attributed to the biotic

component (-1.1%, 95% CI [-4.4%, 2.2%]). The percentage of variance explained by the

environmental component significantly decreased across spatial scales from 1 km to 10 km
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grid cells (-2.9%, 95% CI [-4.6%, -1.1%]), while the percentage of variance explained by the

spatial component significantly increased (4.5%, 95% CI [1.6%, 7.2%]). The total variance

explained showed a slight but significant decrease with increasing spatial scale (-0.56%, 95%

CI [-0.88%, -0.21%]).

Table 3.4 Parameter estimates, and variance explained from Bayesian hierarchical beta
regression models predicting total variance and variance components

Parameter Type Model Term Biotic Environmental Spatial Total

Fixed Intercept -2.40 [-3.10, -1.80] -0.06 [-0.67, 0.47] -2.50 [-3.20, -1.80] 0.63 [0.33, 0.89]
Fixed Resolution -0.01 [-0.04, 0.02] -0.03 [-0.05, -0.01] 0.05 [0.02, 0.07] -0.01 [-0.01, -0.00]
Fixed Model Type (MSDM) -1.64 [-2.31, -0.99] -0.01 [-0.35, 0.30] 0.57 [0.06, 1.08] -0.02 [-0.05, 0.01]
Fixed Prevalence -2.30 [-31.70, 28.10] -5.60 [-30.90, 26.50] -5.20 [-41.40, 28.80] 2.80 [-7.10, 11.20]
Fixed Phi (φ ) 59.00 [40.00, 81.00] 53.00 [37.00, 73.00] 36.00 [25.00, 50.00] 1945.00 [1346.00, 2736.00]
Random Species 0.44 [0.02, 1.12] 0.72 [0.37, 1.34] 0.80 [0.29, 1.48] 0.43 [0.24, 0.77]
Random Species:Model 0.71 [0.41, 1.12] 0.34 [0.19, 0.64] 0.51 [0.29, 0.94] 0.03 [0.00, 0.05]

3.5.4 Species-Specific Patterns in Explained Variance Across Model

Types and Components

The MSDMs and JSDMs explained the highest proportion of total variance in species

distribution for Anopheles sacharovi, with both model types showing similar performance

across all resolutions (72% of variance explained, 95% CI [71.4%, 73.3%], Figure 3.4).

The models also performed well for the Culex perexiguus/univittatus group and Anopheles

messeae, explaining over 71% of the total variance for each across all resolutions (95% CI

[70.4%, 72.4%], Figure 3.4). In contrast, the models explained considerably less variance

for invasive species across all resolutions. For Aedes albopictus, the MSDM and JSDM

explained only 43% (95% CI [41.9%, 44.0%]) and 44% (95% CI [43.5%, 45.6%]) of the

total variance, respectively across all resolutions. Aedes japonicus showed slightly better

model performance, with 56% of variance explained by the MSDM (95% CI [55.2%, 57.2%])

and 57% by the JSDM (95% CI [55.9%, 57.9%]). Anopheles labranchiae had the highest

variance explained by the environmental component of around 62.5% (95% CI [56.1, 68.9])

for both the MSDM and JSDM, followed by the Culex perexiguus/univittatus group. Culex
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torrentium and Culiseta annulata had the lowest variance explained by the environmental

component, at 12.6% (95% CI [8.82, 17.0]) and 17.4% (95% CI [12.9, 22.5]). Notably, in

addition to having a low total variance explained, the invasive species Aedes albopictus had a

low variance explained by environmental components, with 19.2% (95% CI [14.4, 24.5]) for

the MSDM and 26.6% (95% CI [21.0, 32.5]) for the JSDM (Figure 3.4).

Spatial factors significantly influenced the distributions of several mosquito species, with

notable variations across genera (Figure 3.4). The Culiseta genus demonstrated the strongest

spatial dependencies, with spatial components accounting for up to 44.4% (SD = 11.6%)

of the variance in MSDMs for Culiseta longiareolata. Other species like Aedes albopictus

and Anopheles sacharovi also showed substantial spatial components, ranging from 8.9%

to 23.9% across model types. In contrast, species such as Culex torrentium and Anopheles

labranchiae exhibited relatively low spatial components (less than 3% in both JSDMs and

MSDMs).

Within JSDMs, Culiseta annulata had the highest proportion of variance explained by

biotic interactions (26.8%; 95% CI [21.0, 32.5]), followed by Anopheles messeae (14.2%;

95% CI [10.1, 18.8]), Anopheles sacharovi (13.6%; 95% CI [9.5, 18.1]), Culex perex-

iguus/univittatus (12.9%; 95% CI [8.9, 17.3]), and Culex territans (11.2%; 95% CI [7.5,

15.3]). Aedes japonicus and Anopheles labranchiae had the lowest proportion of variance

explained by biotic interactions, with median values of 4.3% (95% CI [2.3, 6.8]) and 4.5%

(95% CI [2.5, 7.2]), respectively, followed by Aedes cinereus/geminus (4.8%; 95% CI [2.7,

7.4]) and Aedes albopictus (9.0%; 95% CI [5.9, 12.8]) (Figure 3.4).

3.5.5 Species-species residual associations

The analysis revealed both positive and negative correlations between species across different

spatial scales, after filtering out very weak correlations (|r| ≤ 0.01). Positive correlations

predominated across all scales examined. At the 1 km scale, 322 correlations were observed
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Fig. 3.4 Total variance explained across all resolutions for a set of well-modelled species
using Multi-Species (MSDM) and Joint (JSDM) SDM approaches. Variance is decomposed
into constituent components: Environmental [A], Biotic [B], and Spatial [S].

Fig. 3.5 Marginal effects of resolution on median variance explained across all well-predicted
species for each variance component and for total variance, also showing the interaction
between model type and resolution. For all panels lines and shaded areas indicate median
estimates and 95% confidence intervals, respectively.
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(77.0% positive), while the 2 km scale showed 280 correlations (80.0% positive). The 5

km scale exhibited 276 correlations (77.9% positive), and the 10 km scale demonstrated the

highest number at 326 correlations (84.0% positive). The invasive species Ae. albopictus and

Ae. japonicus displayed divergent residual correlation patterns compared to native mosquito

species, exhibiting negative correlations with all other species across all spatial scales. These

negative correlations were strongest at 1 km and 10 km scales, and weakest at 2 and 5 km

scales (Figure 3.6).

3.5.6 Environmental drivers of mosquito distribution

Environmental drivers of mosquito distribution exhibited scale-dependent effects, with the

likelihood of detecting significant environmental predictors decreasing as model resolution

increased from 1 km to 10 km (-0.09, 95% CI [-0.15, -0.04], see Figure B.2). For well-

modelled species, those with higher prevalence were more likely to show significant effects

of environmental variables (median posterior estimate for species prevalence of 16.79, 95%

CI [12.22, 22.08]). Notably, the direction of environmental effects remained consistent across

spatial scales, though effect magnitudes often increased at coarser resolutions (Figure 3.7).

Among the well-modelled species, climatic factors emerged as significant predictors for

11 out of 12 species, yielding 29 significant species-predictor relationships. Temperature-

related variables, particularly mean annual temperature and minimum winter temperature,

were the most influential climatic predictors across species. Host availability was a significant

predictor for eight out of 12 species, with human population density being the primary host-

related factor, followed by mammalian and avian livestock densities. Topographic variables,

specifically elevation and accessibility (measured as distance to the nearest population

centre of 50,000 or more inhabitants), were significant for seven out of 12 species. Elevation

showed particularly widespread significance across scales. While precipitation and vegetation

metrics also demonstrated significant associations, these were less frequent. Land use factors
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Fig. 3.6 Species residual correlation networks for the Joint Species Distribution Model
(JSDM) at 1, 2, 5, and 10 km resolutions. Nodes represent individual species, and edges
indicate undirected correlations between species. The width and transparency of each edge
are proportional to the squared absolute value of the correlation coefficient, highlighting the
strongest correlations.
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had the least influence on distribution, affecting only five species. Invasive mosquitoes

(Ae. albopictus and Ae. japonicus) and two prevalent native species (Cs. annulata and

An. labranchiae) showed responsiveness to the widest range of environmental predictors.

However, it’s worth noting that these Aedes species had low overall variance explained by

the models and a high proportion of variance attributed to spatial predictors. In contrast,

the least prevalent species were significantly influenced by only one predictor each: Cx.

perexiguus/univittatus showed a positive association with mean annual temperature, while

Cx. territans was positively associated with population density.

Among the well-modelled species, climatic factors emerged as significant predictors for

11 out of 12 species, yielding 29 significant species-predictor relationships. Temperature-

related variables, particularly mean annual temperature and minimum winter temperature,

were the most influential climatic predictors across species. Host availability was a significant

predictor for eight out of 12 species, with human population density being the primary host-

related factor, followed by mammalian and avian livestock densities. Topographic variables,

specifically elevation and accessibility (measured as distance to the nearest population centre

of 50,000 or more inhabitants), were significant for seven out of 12 species. Elevation showed

particularly widespread significance across scales. While precipitation and vegetation metrics

also demonstrated significant associations, these were less frequent. Land use factors had the

least influence on distribution, affecting only five species.

Invasive mosquitoes (Ae. albopictus and Ae. japonicus) and two prevalent native species

(Cs. annulata and An. labranchiae) showed responsiveness to the widest range of envi-

ronmental predictors. In contrast, the least prevalent species (Cx. perexiguus/univittatus

and Cx. territans) exhibited more limited predictor associations. Specifically, Cx. perex-

iguus/univittatus showed a positive association only with mean annual temperature, while

Cx. territans was solely positively associated with population density. These less prevalent
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species demonstrated markedly fewer significant predictors compared to the more widespread

mosquito species, suggesting potential limitations in their ecological adaptability or detection.

3.5.7 Community predictions at a continental scale

Modelled habitat suitability maps for four mosquito species across Europe, in general, align

well with previously observed ranges. Culex torrentium appears to favour more northern

latitudes, while Culex theileri is concentrated in southern regions. Among the invasive

species, Aedes japonicus shows a broad suitability range spanning central to northern Europe,

whereas Aedes albopictus remains largely confined to its typical southern distribution, aside

from a small, potentially anomalous, suitable area along Norway’s northern coast. Full

predictions for all mosquito species can be found in Appendix B.

3.6 Discussion

This study represents the first application of JSDMs to predict mosquito communities at a

continental scale, assessing the scale-dependent impacts of environmental, biotic, and spatial

factors, as well as species prevalence on mosquito distributions. Our results demonstrate that

JSDMs can predict distributions with good accuracy for nearly half of the analysed species,

despite the relatively low average richness of mosquito communities. This highlights the

potential of JSDMs in vector ecology, although the inability to model over 50% of species

underscores the need for more comprehensive sampling. Our analysis revealed comparable

accuracy across both prevalence-sensitive AUC and prevalence-insensitive TSS metrics, with

no significant impact of spatial scale or mosquito species prevalence on model performance

for either JSDMs or MSDMs. This finding contrasts with previous studies on other taxa,

where species prevalence often influences model accuracy (Santika, 2011; Wisz et al., 2013).

Notably, we achieved good models for approximately half of the species studied, suggesting
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Fig. 3.7 Influence of environmental predictors on the distribution of 12 mosquito species
across multiple spatial scales. Standardised coefficients are shown for climatic factors
(temperature, precipitation, vegetation), host availability (human, livestock), land use, and
topography (elevation, accessibility). The heat-map illustrates the strength and direction
(positive or negative) of associations, with colour intensity reflecting the magnitude of the
effect. Coefficients were calculated across increasing spatial scales (1-10 Km), revealing
variations in species responses to environmental drivers.
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Fig. 3.8 Predicted habitat suitability for four mosquito species in Europe and Upper/Lower
Confidence Intervals [CI], generated using our Joint Species Distribution Model (JSDM) at a
10km resolution.
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that dense communities are not necessary for effective modelling of mosquito distributions

at continental scales. However, this also highlights an important operational implication:

less than 50% of species could be modelled successfully at these broad scales, indicating

potential limitations in applying these methods to all mosquito species. While traditional

SDMs often use balanced pseudo-absence ratios to address prevalence effects and achieve

higher accuracy predictions (Barbet-Massin et al., 2012), the community-based nature of

JSDM data makes this approach impractical. Nonetheless, our results suggest this limitation

may be less critical for mosquito distribution modelling at continental scales.

The prevalence-independence observed was consistent across AUC and TSS metrics and

spatial scales. This may indicate that factors not explicitly modelled, such as accounting

for dispersal ability or micro-scale habitat data, may be more influential than prevalence

in generating highly accurate occurrence predictions. Our results align with recent JSDM

studies that found sample size had minor influence on model predictability and species with

medium prevalence levels (30-50%) had consistently lower AUC values than rare or common

species (Zhang et al., 2018). These findings have intriguing implications for modelling

rare species, which are under-represented in current sampling data as they aren’t currently

associated with MBD risk. However, as demonstrated by the spread of Zika in the Americas,

where native vectors are thought to be potential disease spreaders if introduced (Evans et al.,

2017), the ability to model rare species effectively could be crucial for anticipating future

disease risks.

Ecological theory typically assumes that species interactions are more influential at

local scales (Soberón, 2007), with biotic interactions expected to have stronger explanatory

power at finer spatial scales (Araújo and Rozenfeld, 2014; Thuiller et al., 2015; Wisz et al.,

2013). In insect communities, predator-prey interactions and competition for oviposition

sites are thought to have stronger effects at smaller spatial extents (Juliano, 2009; Vonesh and
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Blaustein, 2010), with mosquito competition often occurring at the larval stage in localized

breeding sites (Costanzo et al., 2011; Reiskind and Lounibos, 2009).

Our analysis using JSDMs challenges these established notions. We found no significant

decrease in the biotic contribution to total variance explained at coarser resolutions, aligning

with recent studies on woodland bird communities that show improved JSDM performance

at coarser resolutions (König et al., 2021). The persistence of biotic effects at broader scales

in our mosquito models may reflect the high mobility of adult mosquitoes and potential

indirect interactions through shared resources or predators. However, caution is warranted

in interpreting these associations as direct biotic interactions; positive correlations between

species associations and functional similarity may instead represent shared responses to

unobserved environmental predictors (Poggiato et al., 2021; Zurell et al., 2018).

Simulation studies have shown that as spatial scale increases, JSDMs may misinterpret

shared environmental responses as positive species associations, even when no true inter-

actions exist (Vallé et al., 2024; Zurell et al., 2018). Notably, our findings suggest that the

relationship between invasive and native mosquito species remains consistent across spatial

scales, contrasting with trends observed in other taxa where associations were more positive

at larger spatial scales (König et al., 2021; Zurell et al., 2020). The consistent negative

association of invasive species with natives suggests factors beyond shared environmental

responses could be influencing these relationships, potentially reflecting genuine competitive

interactions or niche differentiation. Despite potential artifacts in JSDM interpretations,

leveraging this information could improve predictions of invasive mosquito species spread in

the future (Poggiato et al., 2021).

Environmental factors, particularly temperature, emerged as crucial predictors of mosquito

distributions across scales. The significance of fine-scale (1 km) temperature data highlights

the importance of capturing thermal conditions critical for mosquito development (Mordecai

et al., 2019). Species-specific responses to environmental variables allowed us to infer
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ecological requirements without directly incorporating life history traits (Lippi et al., 2023a).

For example, Aedes albopictus and Aedes japonicus showed strong associations with urban

environments, reflecting their preference for artificial container habitats, while Aedes japoni-

cus was uniquely associated with tree cover, aligning with its tree-hole breeding behaviour.

However, many species exhibited limited relationships with broad land cover factors, suggest-

ing our models may not fully capture the diverse microhabitats mosquitoes utilize (Rochlin

et al., 2016; Sallam et al., 2017). This variability in model performance, especially for

invasive and generalist species, indicates the need for more refined environmental variables

and consideration of species-specific dispersal mechanisms and non-equilibrium dynamics in

future modelling efforts.

The mixed response to land-use drivers across mosquito species underscores the impor-

tance of incorporating species-specific life history traits when selecting predictor variables

(Lippi et al., 2023a). For example, Aedes albopictus and Aedes japonicus showed strong asso-

ciations with urban environments, reflecting their preference for artificial container habitats,

while Aedes japonicus was uniquely associated with tree cover, aligning with its tree-hole

breeding behaviour (Medlock et al., 2012; Mogi et al., 2020). Other species exhibited few

significant relationships with broad land cover factors, suggesting these categories may not

account for the small, varied, and often ephemeral microclimates that mosquitoes exploit

(Rochlin et al., 2016; Sallam et al., 2017; Townroe and Callaghan, 2014). Incorporating

host factors yielded mixed but significant results, with population density confirming the

affinity of Aedes species for human-associated habitats (Benelli et al., 2020; Mogi et al.,

2020; Severini et al., 2008). Notably, Aedes albopictus showed a negative relationship with

farmland but a positive one with livestock density, demonstrating the model’s ability to

differentiate between habitat and host-based metrics. This nuanced approach offers insights

beyond simple environmental proxies, providing a more comprehensive understanding of

distributional drivers (Cardador et al., 2014; Hartemink et al., 2015).
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Our findings show the utility of host density predictors in modelling mosquito distribu-

tions, particularly in the context of vector-borne diseases like West Nile virus, where pathogen

transmission often depends on specific mosquito-host assemblages (Kilpatrick et al., 2007;

Osório et al., 2012; Savage et al., 2007). However, the generalist feeding behaviour of many

mosquito species, which adapt their feeding patterns based on host availability, complicates

this relationship (Thiemann et al., 2011). A significant limitation of our study was the

exclusion of wild avian and mammalian population data, which are important blood meal

sources for various mosquito species and serve as primary reservoirs of mosquito-borne

diseases in Europe (Osório et al., 2012; Puente et al., 2012; Tuten et al., 2012). Expanding

these models to incorporate a wider array of host data could improve predictions, identify

high-risk areas, and inform targeted surveillance efforts. However, empirical validation is

necessary to confirm the utility of these models in enhancing disease risk assessments.

Additionally, investigating species interactions at finer spatial resolutions, particularly

below 1 km, could yield better insights into mosquito co-occurrence, as interactions among

mosquito species likely occur at breeding sites (Bevins, 2008; Braks et al., 2004; Ezeakacha

and Yee, 2019). Furthermore, exploring whether the drivers identified in JSDMs influence

both juvenile and adult stages of the mosquito life cycle could reveal variations in these

relationships across life stages. Addressing these factors may significantly improve the

prediction of invasive species distributions by effectively utilizing existing data, particularly

in identifying potential areas for invasive species that have not yet reached equilibrium, which

are challenging to predict using traditional SDM methods (Poggiato et al., 2021).

Furthermore, leveraging JSDM frameworks that incorporate traits and phylogenetic

variables may help refine the interpretation of residual species correlations, offering a way to

partially compensate for this uncertainty (Ovaskainen et al., 2016a, 2017b; Tikhonov et al.,

2017; Wong et al., 2019). However, trait data for mosquitoes is often scarce and can be

significantly influenced by environmental variables due to their developmental stages, which
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heavily impact phenology (Cator et al., 2020; Chandrasegaran et al., 2020; Mordecai et al.,

2019). As a result, species average traits tend to be broad and variable. Traits driven by

life history, such as breeding sites and feeding preferences, have demonstrated considerable

plasticity, reflecting mosquitoes’ adaptability to resource availability and environmental

pressures (Chaves et al., 2010; Kilpatrick et al., 2006). This plasticity further complicates the

accurate integration of trait data into JSDMs, yet it underscores the importance of considering

these factors as additional predictors of transmission and distribution, as in other vector

species (Yang and Han, 2018). The species-specific responses to environment seen here,

which seem to align with mosquito life history, breeding habits, and traits, strengthen the

argument for expanding these models to incorporate trait data.

Ensuring that community data accurately reflects the scale at which a species interacts

with others and responds to environmental drivers is challenging but crucial for JSDMs

(Araújo and Rozenfeld, 2014; Dormann et al., 2018). This challenge is exacerbated in

mosquito surveillance, where limited resources often lead to concentrated sampling efforts

along invasion fronts or targeted known vector species. Such biases restrict the range of

species captured, which further affects the accuracy of community data and, consequently,

the interpretation of JSDMs. Although next-generation sampling and identification methods

for arthropods hold promise for addressing some of these issues by generating denser and

more representative community data, these methods are not yet sufficiently robust and may

only complement existing data (Krol et al., 2019; Schneider et al., 2016).

Moreover, the computational demands of JSDM methods are significant, and incorpo-

rating spatial methods at continental scales necessitates innovative use of computational

resources and novel hardware solutions (Pichler and Hartig, 2021; Tikhonov et al., 2020a).

As such, incorporating additional trait and phylogeny data will likely require compromises

in model complexity (Vallé et al., 2024). While JSDMs have limitations in definitively

separating true species interactions from shared environmental responses, JSDMs extend
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our analysis beyond purely spatial and environmental dimensions, providing a foundation to

explore potential biotic interactions or unaccounted-for environmental predictors. Despite

some trade-offs in individual species accuracy, our study demonstrates that JSDMs can

uncover broader community patterns that are otherwise difficult to detect. We have shown

that climatic, topographic, and host factors play a crucial role in influencing mosquito distri-

butions, while also emphasizing the importance of considering scale-dependent relationships.

The consistently strong biotic influence observed across our models underscores the need to

better integrate species interactions and missing environmental variables into our understand-

ing of mosquito distributions. These insights, coupled with continued refinement of JSDM

approaches, hold promising potential for enhancing vector surveillance and predicting future

disease risks within the context of community ecology.



Chapter 4

Integrating Traits and Community Data

in Joint Species Distribution Models:

Insights into Mosquito Ecology

4.1 Abstract

Mosquito-borne diseases increasingly threaten public health in Europe, yet our understanding

of the ecological drivers shaping vector distributions and community dynamics remains

limited. This study presents a novel approach to modelling mosquito communities across

Europe by integrating species traits, phylogeny, and environmental data within a joint species

distribution modelling (JSDM) framework. Using data from the VectorNet consortium,

comprising 4,157 records of 26 mosquito species, we investigated how traits and community

interactions influence species distributions across 1 km communities in Europe.

Our model incorporated 16 ecological and behavioural traits, environmental predictors,

and phylogenetic information. Results demonstrated that incorporating basic mosquito traits

significantly improves model fit and enables a more mechanistic understanding of species-

environment interactions. Traits explained 42% of overall variation in species occurrence,
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with stronger associations for climate and topographic factors compared to land use metrics.

Examination of trait relationships to unknown environmental drivers revealed potential

candidates for important unmeasured factors, such as hydrological regimes and habitat

fragmentation. Conditional predictions leveraging community information enhanced model

accuracy by 10% on average and revealed potential negative impacts on native mosquito

species occurrence in communities with invasive species.

This study highlights the value of trait-based approaches in mosquito ecology and the

importance of considering community composition in vector surveillance. We emphasize

the need for more comprehensive trait databases and investigation of scale-dependent trait

relationships to environmental drivers. These insights can improve our understanding of

mosquito community interactions and help assess how environmental changes may reshape

mosquito communities and associated disease risks in Europe.

4.2 Introduction

In recent years, Europe has witnessed a significant increase in the spread of invasive mosquito

species such as Aedes albopictus and Aedes japonicus, largely driven by the combined forces

of climate change and globalization (Gallien and Carboni, 2017; Medlock et al., 2012).

These invasive species have attracted substantial attention due to their well-documented

role in transmitting a range of arboviruses, including dengue, chikungunya, and Zika (Bhatt

et al., 2013; Schaffner and Mathis, 2014; Vorou, 2016). However, the impact of native

mosquito species in maintaining and amplifying vector-borne disease cycles remains just as

important, especially when native mosquito species may play equally critical roles in disease

transmission and viral persistence (Buckley et al., 2003; Kilpatrick et al., 2007; M’ghirbi

et al., 2023).

Understandably, surveillance programmes in Europe have focused heavily on monitoring

invasive mosquitoes (Schaffner et al., 2013a; Vaux and Medlock, 2015). While this focus has
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been essential for the early detection and control of invasive species (Cevidanes et al., 2023;

Severini et al., 2008), it is important to recognize that the overall impact is determined by

native and invasive competent vectors, whose distributions can be shaped by their interactions

with other mosquito species and wider biodiversity (Bevins, 2008; Golding et al., 2015;

Smith et al., 2024) It is equally important to consider the overall mosquito community

composition when investigating the transmission dynamics of both endemic and exotic

pathogens, especially considering the broad overlap of many species’ ability to vector

diseases like West Nile Virus (Osório et al., 2012).

Native mosquito species play significant roles in maintaining and amplifying disease

cycles through overwintering and residual circulation of flaviviruses (Folly et al., 2022;

M’ghirbi et al., 2023; Sauer et al., 2023). Differences in habitat preferences, feeding prefer-

ences and vector competence mean that some species may function as maintenance vectors,

facilitating pathogen circulation among reservoir hosts with reduced chance of spillover

events, while others serve as bridge vectors, enabling virus transmission from highly compe-

tent, infected hosts to susceptible populations (Muñoz et al., 2012; Rizzoli et al., 2015). This

means that even at low densities, these species could potentially sustain viral persistence in

isolated interactions between mosquito species and reservoir hosts, contributing to broader

disease outbreaks if conditions become favourable for more competent disease vectors (Fer-

raguti et al., 2021). Understanding the biology of native mosquito species, particularly their

feeding behaviours, habitat preferences, and vector competence, is crucial for predicting their

role in disease transmission. This knowledge may also help forecast the potential impacts

of environmental and biotic drivers on their distribution and interactions with other species,

as suggested by recent ecological studies (Golding et al., 2015; McDonough and Holloway,

2020; Vallé et al., 2024).

These relationships can often be complex and difficult to disentangle. For example, in

Europe, Culex pipiens s.l. and Culex torrentium are competent vectors in the transmission of
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flaviviruses like WNV, Sindbis, and Usutu (Bakonyi and Haussig, 2020; Suvanto et al., 2022).

The molestus form of Culex pipiens, thought to be highly anthrophilic, is a significant bridge

vector, feeding on both humans and birds. In contrast, reports indicate that Cx. pipiens s.s.

tends to prefer feeding primarily on birds, which lowers the risk of spillover to humans but

contributes to the persistence of flaviviruses in wild bird populations (Bødker et al., 2014;

Golding et al., 2012). Furthermore, well adapted species may exhibit life history traits that

allow them to overwinter in sheltered environments such as basements and underground

systems, entering diapause to survive colder months (Folly et al., 2022; Sauer et al., 2023).

Such differences in behaviour between species enables arboviruses to persist through the

winter and resume transmission in the spring, potentially triggering early outbreaks when

more competent vectors emerge. Invasive species compound this complexity further; the

introduced Aedes albopictus has been shown to be competitively superior to native species

in their invaded regions in both Europe and the Americas (Aliabadi and Juliano, 2002;

Carrieri et al., 2003). Importantly, not only do these invaders then change the composition of

mosquito populations and communities through the invasive process and therefore potential

disease pressure, but competition itself can change the larval characteristics of mosquitoes

which then propagate through to changes in adult abundance and life history traits, ultimately

leading to changes in vectorial competence of mosquito species in a community (Bara et al.,

2015; Bevins, 2008).

For example, competition between native and invasive mosquito species plays a critical

role in shaping vector communities and influencing disease transmission dynamics. For

instance, invasive species like Aedes albopictus have been shown to outcompete native Culex

pipiens for breeding sites in urban areas due to their aggressive colonization strategies and

higher reproductive rates, potentially altering the local transmission of arboviruses such

as West Nile virus (Juliano and Lounibos, 2005; Smith et al., 2004). Similarly, Aedes

japonicus competes with native mosquitoes in more natural habitats, leveraging its ability to
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thrive in cooler temperatures and temporary water sources (Alto, 2011). These competitive

interactions, both between native and invasive mosquitoes and among native species, are vital

for understanding shifts in vectorial capacity and the broader implications for vector-borne

disease transmission (Bara et al., 2015; Bursali et al., 2024).

Consequently, it is likely that the mosquito species composition directly influences disease

risk, as the mosquito community shapes both virus prevalence in reservoir hosts and the

potential for spillover events to humans. Changes to this mosquito community composition

either through climate change or in response to invasive species presence is likely to change

potential disease dynamics and pressure, but we know comparatively little about the impacts

that changes in mosquito community composition have on disease prevalence or indeed how

community composition itself related to disease pressure and prevalence (Giunti et al., 2023).

Understanding Mosquito Drivers Through Traits

If mosquito community composition is important for disease risk, it is likely that the specific

traits of these mosquitoes explain much of the variance in disease potential. By understanding

which species traits are common among mosquito communities, we can gain a more nuanced

understanding of native mosquito species’ roles in vector-borne disease transmission. This

can be achieved by incorporating species-specific trait data into ecological models of both

distribution and transmission, leading to more biologically accurate predictions (Cator et al.,

2020; Chandrasegaran et al., 2020).

Trait-based approaches, which have been successfully applied to other taxa such as birds,

plants, and arthropods, leverage biological and ecological characteristics to predict species

distributions and interactions (Vesk et al., 2021; Wong et al., 2019; Zakharova et al., 2019).

Traits like habitat preferences, thermal tolerance, and feeding behaviour characteristics are

likely to play a significant role in shaping the capacity of mosquito species to transmit

pathogens (Cator et al., 2020; Mordecai et al., 2019; Oyewole et al., 2009; Schneider
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et al., 2011), but these relationships are yet to be quantified across mosquito species and

geographical contexts (Chandrasegaran et al., 2020).

Currently, data on the ecological and biological traits of mosquito species, particularly in

Europe, remain limited, despite their known importance in determining vector competence.

Part of this gap arises from the remarkable plasticity of mosquitoes to their environment.

Climate-induced effects on larval mosquitoes can influence adult traits such as body size,

wing size, and overall longevity. Furthermore, life history traits can vary within populations

due to environmental conditions. For instance, species that can tolerate colder temperatures or

exhibit strong overwintering capacity may sustain populations of infected mosquitoes across

seasons, in regions where climatic conditions limit the activity of more temperature-sensitive

species (Folly et al., 2022; Kreß et al., 2017). In regions with harsh winter climates, some

species may enter diapause as larvae or eggs, while in warmer areas, diapause may be delayed

or avoided altogether. Additionally, mosquito species that can reproduce without consuming

a blood meal could be important in the vertical transmission of arboviruses, a life history

characteristic that is restricted to some species of Culex (Becker et al., 2010; Lequime et al.,

2016).

This variability complicates efforts to integrate detailed trait data into modelling frame-

works, as generalizable functional traits are often lacking and increasing evidence points

towards trait variability being key in driving both community interactions and vector com-

petence (Cator et al., 2020). However, incorporating aspects of these traits is crucial, as it

could significantly enhance our understanding about the underlying processes in generating

mosquito communities that are more likely to spread disease. These nuances in mosquito

biology are comparatively understudied and hold potential for uncovering more nuanced

interactions between mosquito species and disease pressure. Given the hypothesized im-

portance of these traits in shaping vector competence and arbovirus transmission cycles,

addressing these data gaps is essential (Giraldo-Calderón et al., 2015).
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Phylogenetic relationships among mosquito species also play a crucial role in understand-

ing trait distributions and their ecological implications (Bova et al., 2019; Soghigian et al.,

2017, 2023). Closely related species often share similar traits due to their common evolution-

ary history, a phenomenon that can be detected as phylogenetic signal (Münkemüller et al.,

2012; Revell et al., 2008). Incorporating phylogenetic information into trait-based models

can help account for this non-independence of species traits, potentially improving model

accuracy and interpretability (Ovaskainen et al., 2017b). Moreover, phylogenetic data can

provide insights into the evolution of key traits related to habitat preferences, allowing us to

predict how these traits might change in response to environmental pressures or how they

might manifest in newly invasive species (Renault et al., 2024). By combining trait data

with phylogenetic information, we can develop a more comprehensive understanding of the

ecological and evolutionary processes shaping mosquito communities.

The Challenges of Predicting Mosquito Distributions

The complexity of mosquito community composition and the importance of species-specific

traits highlight the challenges in predicting mosquito distributions and their potential contri-

butions to disease transmission. Species distribution models (SDMs) have become a valuable

tool for inferring statistical correlations between species presences and environmental drivers

such as climate, topography, and land use characteristics (Barker and MacIsaac, 2022;

Lippi et al., 2023a). However, SDMs were not designed to capture the full complexity of

species interactions and the diverse data that community ecologists can gather on mosquitoes

(Ovaskainen et al., 2017b).

This is particularly pertinent in cases where species occur infrequently or are harder to

detect. Native mosquitoes that are not seen as competent vectors and those that occupy niche

habitats in hard to access or under-sampled areas can lead to poor predictions of distribution

and, consequently, uncertain estimates of their contribution to disease spread (Santika, 2011).
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Meanwhile, invasive species like Aedes albopictus and Aedes japonicus tend to violate

some of the assumptions necessary for traditional SDMs, as their rapid range expansion and

ecological plasticity make their distributions difficult to predict (Barbet-Massin et al., 2018).

However, the distributions of native species, despite being undersampled, could potentially

inform predictions about the occurrence of more medically relevant or invasive mosquito

species, and shared information on trait based responses to environmental drivers could

enhance our inference of these relationships further.

Joint Species Distribution Models (JSDMs) as a Tool for Mosquito Ecology

Joint Species Distribution Models (JSDMs) offer an advanced approach to addressing the

limitations of traditional SDMs by incorporating not only environmental variables but also

data on species co-occurrences, phylogeny, and ecological traits (Golding and Harris, 2015;

Pichler and Hartig, 2021; Tikhonov et al., 2022). While JSDMs may not always provide

better predictive performance compared to SDMs, they allow for the sharing of statistical

strength across species, potential improving our understanding of drivers for species that are

undersampled or sparsely observed (Vallé et al., 2024). Moreover, JSDMs can go beyond

traditional SDMs by leveraging information about the presence or absence of one species to

make conditional predictions about others, thus providing a more comprehensive picture of

mosquito assemblages and potential disease hotspots.

Although JSDMs do not explicitly model species interactions, they offer a way to gain

more inferential power about the processes shaping mosquito communities. For example,

JSDMs can be used to predict the occurrence of native mosquitoes in areas where invasive

species are known to thrive, using shared environmental preferences or co-occurrence patterns.

By integrating trait information, such as temperature tolerance, feeding preferences, or habitat

specificity into JSDMs, we may gain a deeper understanding of how different mosquito
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species interact with their environment and with each other (Golding et al., 2015; Smith et al.,

2024).

Objectives of the Study

In this study, we leverage continental scale data on mosquito communities, broad species

level traits of mosquitoes, and JSDM modelling approaches, to evaluate the role of traits,

phylogeny, environmental factors and biotic interactions with other mosquitoes in driving

mosquito communities across Europe. Specifically, we are answering the following scientific

questions:

1. To what extent do mosquito species’ phylogeny, traits, and community interactions

contribute to explaining mosquito distributions?

2. Are these integrative models sufficiently accurate for robust predictions of species

distributions and vector assemblages for key pathogens affecting Europe?

3. Do statistically significant trait-environment relationships, if any, align with our current

understanding of mosquito ecology?

4. Can we leverage additional information on community composition, through con-

ditional predictions from a JSDM model, to improve our predictions of native and

invasive mosquito species distributions?

4.3 Methods

We utilized the assembled mosquito community data from Chapter 3, which represents 26

different mosquito species across 1 km communities. This data was derived from mosquito

sampling data provided by the VectorNet consortium, comprising 4,157 records of 26 species

from 402 studies (see Chapter 3, Braks et al. (2022)).
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4.3.1 Mosquito Traits

Mosquito traits were assembled to capture key aspects of species ecology and behaviour that

we deemed to be relatively stable across environmental gradients and considered a priori

to potentially affect species responses to biotic and abiotic factors. Given the ecological

plasticity of mosquitoes, we focused on traits that are less likely to be influenced by environ-

mental factors and those that represent broad scale differences in resource use and specialism

between species (Hartemink et al., 2015).

These traits encompass various aspects of mosquito life history, including broad habitat

preferences for larval and adult mosquitoes, feeding preferences, and breeding and ovipo-

sition characteristics. By selecting these relatively stable traits, we aimed to capture the

fundamental niche of each species while acknowledging their potential for ecological adap-

tation (Kellermann and van Heerwaarden, 2019; Wong et al., 2019). The chosen traits are

expected to correlate with various environmental drivers and habitat characteristics, such as

seasonal temperature patterns, host availability, urbanization, and water body distribution.

Table 4.1 provides a detailed overview of these trait groups and their anticipated associa-

tions with specific habitats or environmental factors. Trait information was compiled from

literature sources, primarily Becker et al. (2010) and Hawkes et al. (2020), supplemented

with data from the Walter Reed Biosystematics Unit (https://wrbu.si.edu/). The specific trait

values used in this study are provided in the supplementary information (Table C.1) and

Table 4.3.

4.3.2 Phylogenetic Information

We incorporated a phylogenetic component into our model to account for evolutionary rela-

tionships among mosquito species. Initially, we attempted to construct a phylogenetic tree

using COI and ITS2 sequences but found that species-level genetic data were insufficient for

17 out of the 26 species in our dataset. As an alternative, we generated a taxonomic-level
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Table 4.1 Overview of mosquito traits and their a priori expected environmental associations.

Trait
Group

Binary Values Description Expected Associations

OverwinteringAdults, Larvae,
Eggs

The life stage in which
the species survives
unfavourable winter
conditions

Associated with seasonal
temperature patterns and
habitat stability (Crans, 2004;
Diniz et al., 2017)

Feeding
Preferences

Anthropophilic,
Mam-
malophilic,
Ornithophilic

Preferred blood meal
sources for adult female
mosquitoes

Related to host availability,
human population density,
and landscape characteristics
(Chaves et al., 2010)

Activity
Patterns

Day,
Crepuscular,
Night

Primary periods of
adult mosquito flight
and host-seeking
behaviour

Linked to temperature
fluctuations, predation
pressure, and host activity
patterns (Montarsi et al.,
2015)

Breeding
Site
Preferences

Artificial
Container,
Temporary
Water,
Permanent
Water

Types of water bodies
where females lay eggs
and larvae develop

Associated with precipitation
patterns, urbanization, and
landscape features (Hawkes
et al., 2020)

Salinity
Tolerance

Salinity
tolerant,
Salinity
intolerant

Ability of larvae to
develop in water with
elevated salt
concentrations

Related to proximity to
coastal areas, salt marshes, or
inland saline water bodies
(Ramasamy et al., 2014)

Habitat
Preference

Rural, Urban General landscape type
where the species is
most commonly found

Linked to land use patterns,
human population density,
and availability of specific
breeding sites (Sauer et al.,
2021)

Life Cycle Univoltine,
Multivoltine

Capacity to produce
multiple generations per
year under favourable
environmental
conditions

Associated with length of
favourable season,
temperature, and resource
availability (Becker et al.,
2010; Hawkes et al., 2020)

phylogenetic tree using the R packages taxize to resolve species names to taxonomic

databases (Chamberlain et al., 2024) and ape to assemble this information (Paradis and

Schliep, 2019). The resulting tree (Figure C.1) was incorporated into our joint species distri-
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bution model as the phylogenetic component, enabling us to account for phylogenetic non-

independence in species’ responses to environmental predictors and in their co-occurrence

patterns (Ovaskainen et al., 2017b).

Table 4.2 Summary statistics of environmental predictors across all sampling sites used in
the study. The table presents the description, model covariate name, unit of measurement,
ecological relevance, mean, and standard deviation for each predictor. Predictors include
climate variables, land cover types, topography, human population density, vegetation indices,
and livestock density, all of which are potentially important for mosquito ecology and
distribution.

Description Model Covariate Unit Ecological Relevance Mean Std. Dev

Accessibility to cities (>50,000 population) acc_50k Travel time (minutes) Human-mosquito interaction potential 3.62 1.17

Agricultural land cover agriculture Percentage (%) Potential larval habitats 50.26 27.84

Annual mean temperature BIO_01 Degrees Celsius (°C) Mosquito development and survival 11.42 3.33

Precipitation of warmest quarter BIO_18 Millimetres (mm) Breeding site availability 217.69 139.6

Elevation above sea level elevation Meters (m) Species distribution and abundance 316.36 364.8

Enhanced Vegetation Index spatial homogeneity EVI_Hom Index value (unitless) Habitat consistency 4891.39 1194.82

Enhanced Vegetation Index EVI Index value (unitless) Vegetation density and resting sites 2528.49 809.49

Growing Degree Days over 10 °C GDD Degree days Mosquito development rate 10.39 13.42

Avian livestock density lstock_ave Log Livestock units per km² Host availability (ornithophilic species) 8.79 2.3

Mammalian livestock density lstock_mam Log Livestock units per km² Host availability (mammalophilic species) 8.03 1.32

Human population density pop_den Log People per km² Human host availability 4.91 1.63

Shrubland cover shrubs Percentage (%) Potential resting sites 3.41 9.47

Tree cover trees Percentage (%) Microclimate and resting sites 19.61 24.38

Urban/built-up area urban Percentage (%) Artificial breeding sites 10.9 19.31

Wetland cover wetland Percentage (%) Natural breeding sites 0.15 1.09

4.3.3 Environmental Data

Environmental predictors were selected based on their known relevance to mosquito ecology

and distribution, following a similar resource-based approach established in Chapter 3. This

approach incorporated variables corresponding to mosquito life stage requirements and

factors affecting their demographic rates, such as climatic factors and land use characteristics,

as well as variables related to anthropogenic pressure and host availability. To address

multicollinearity, we removed one of each pair of variables for which Pearson correlation

values exceeded 0.7, retaining the variable that we expected a priori to have a stronger

biological relationship to mosquito occurrence.
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In practice, this led to the dropping of mean temperature of the coldest quarter (BIO11)

in favour of annual mean temperature (BIO1). We made this choice because we hypothesized

that the inclusion of growing degree days above 10 °C could effectively represent the lower

thermal limits for mosquito species, capturing the essential information about cold tolerance

without the need for BIO11. Additionally, we selected precipitation of the warmest quarter

(BIO18) over mean total annual precipitation (BIO12), as it better represents water availability

during peak mosquito activity periods and captures the rainfall patterns most relevant to

species reliant on temporal or ephemeral floodwaters for breeding. Variables with near-zero

variance, such as snow and wetland land cover, were also excluded from the analysis to

prevent model instability.

Table 4.3 Trait occurrence across mosquito species in Europe. The table presents binary
(0/1) data for 16 ecological and behavioural traits across 26 mosquito species from gen-
era Aedes, Anopheles, Coquillettidia, Culex, and Culiseta. Traits are categorized into
Overwintering Strategies (Adult, Egg, Larvae), Host Preferences (Anthropophilic, Mam-
malophilic, Ornithophilic), Biting Behaviours (Day, Crepuscular, Night), Oviposition Pref-
erences (Container-breeding, Temporary, Permanent, Salinity), Habitat Preferences (Rural,
Urban), and Voltinism (0 = univoltine, 1 = multivoltine). The bottom row shows the preva-
lence (%) of study species with each trait. Traits were derived from literature, with substantial
information from Becker et al. (2020), the Walter Reed Biosystematics Unit Mosquito Cata-
logue, and Hawkes et al. (2021). Literature used to infer broad trait variables is available in
the supplementary information (Table C.1).

Species Overwintering Strategy Host Preference Biting Behaviour Oviposition Preferences Habitat Voltinism

Adult Egg Larvae Anthro. Mammal. Ornith. Day Crep. Night Cont. Temp. Perm. Salinity Rural Urban

Aedes albopictus 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1
Aedes annulipes/cantans 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0
Aedes caspius 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0
Aedes cinereus/geminus 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0
Aedes detritus/coluzzi 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1
Aedes geniculatus 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1
Aedes japonicus 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1
Aedes sticticus 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 1
Aedes vexans 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1
Anopheles atroparvus 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1
Anopheles claviger 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
Anopheles labranchiae 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1
Anopheles maculipennis 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1
Anopheles messeae 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1
Anopheles plumbeus 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1
Anopheles sacharovi 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1
Coquillettidia richiardii 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0
Culex hortensis 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1
Culex modestus 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1
Culex perexiguus/univitattus 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1
Culex pipiens 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1
Culex territans 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1
Culex torrentium 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1
Culiseta annulata 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1
Culiseta longiareolata 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1

Trait Prevalence (%) 42 35 15 58 88 46 54 81 54 62 42 73 46 96 38 85
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4.3.4 Statistical Methods

To fit our models we used an implementation of the Hierarchical Modelling of Species

Communities (HMSC) framework based on TensorFlow to improve computational efficiency

(Rahman et al., 2024). This HMSC approach allows for the incorporation of species traits

and biotic relationships in the modelling process, accounting for residual co-occurrences

between species after considering shared responses to environmental drivers. In particular,

the HMSC method uses a latent variable approach to account for unmeasured biotic and

environmental drivers of species distributions (Ovaskainen et al., 2016a).

All analyses were conducted using the R package HMSC-HPC (Tikhonov et al., 2022). We

used a probit regression with default priors for all of our HMSC models. All environmental

predictors were included in the model as linear fixed effects, and we also included community

sample (representing the grid square of our community) as an unstructured random spatial

effect. We fitted our HMSC models with three Markov Chain Monte Carlo (MCMC) chains,

each consisting of 1,100,000 iterations, with the first 100,000 iterations discarded as burn-in.

The posterior estimates of parameter distributions were obtained from 1500 samples thinned

from the 1,000,000 iterations. MCMC chain convergence was assessed using the potential

scale reduction factors of model parameters and determinants of effective sample size for

each parameter from the posterior distribution (Gelman and Rubin, 1992).

To systematically evaluate how incorporating phylogenetic information, species traits,

and community associations drives mosquito community composition and distribution, we

employed a multi-stage approach.

Model Comparison

First, we generated models to evaluate the importance of three key components in driving

mosquito species community distributions: community co-occurrence (MCommunity), phy-

logeny (MPhylo), and traits (MTrait). For each of these models, we generated a null model
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counterpart where the component in question for each model was randomised to statistically

infer the impact of the model component in our JSDM (Table 4.4). For the null counterparts

of the community and trait components, we implemented a ‘fastball’ version of the curveball

algorithm, which preserves species site prevalence and frequencies while generating a new

randomly sampled distribution (Godard and Neal, 2022; Harvey et al., 1983). To create the

null version of the phylogenetic component, we randomized the species tips of the phylo-

genetic tree, maintaining tree length and the associated matrix structure while randomizing

inter-species relationships (Pigot and Etienne, 2015).

In the case of MTrait and MPhylo, we fitted these models with the observed matrix of

species site co-occurrences to isolate the impact of trait and phylogenetic components on

model inference. To evaluate the importance of each component, we compared in-sample

model performance metrics (Tjur’s R²) for each nested model component using paired t-tests.

Additionally, to account for the complexity of community structures, we compared the

residual co-occurrence patterns generated from our model fitting process with their null

counterparts using a Mantel test, quantifying the degree to which our models captured non-

random co-occurrence patterns beyond what would be expected by chance (Legendre and

Legendre, 2012). This approach enabled us to systematically assess the relative contributions

of community structure, phylogenetic relationships, and species traits to mosquito distribution

patterns, while controlling for potential confounding factors through the use of null models

following best practice (Scherrer et al., 2020).

Full Model and Model Comparison

We fitted a ‘full’ model (MFull) incorporating community, trait, and phylogenetic data to assess

the improvement in model inference compared to the individual component models and assess

overall relationships between traits, environmental and biotic drivers for mosquito species.

Paired t-tests with Tjur’s R² were used to evaluate relative performance, as improvements in
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Table 4.4 Comparison of ecological models incorporating various combinations of commu-
nity (C), trait (T), and phylogenetic (P) data. Models assess the relative contributions of these
components to explaining the European distributions of mosquito species and communities.
Null models use randomised versions of matrices, maintaining species richness and occur-
rence frequencies while disrupting specific patterns using a modified curveball algorithm.
For phylogenetic randomisation, phylogenetic distances between species are kept constant
while randomising species placement on the tree.

Model Name Components Description Purpose

Community C
Community data with environmental
covariates and random effects.

Assess effect of community data
alone on response variable.

Phylo C, P
Community data and phylogenetic
information.

Evaluate impact of phylogenetic
information on community-response
relationship.

Trait C, T Community data and trait data.
Assess impact of trait data on
community-response relationship.

NullCommunity
C (ran-
domised)

Randomised occurrence data, other
components as in Community model.

Baseline comparison with
randomised occurrence data.

NullTraits
C, T (ran-
domised)

Randomised occurrence and trait data.
Compare influence of randomised
trait data on community data.

NullPhylo
C, P (ran-
domised)

Randomised occurrence data and
phylogenetic tree.

Compare influence of randomised
phylogenetic data on community
data.

Full C, T, P
Comprehensive view with all data
types.

Explore combined effects of
community, trait, and phylogenetic
data.
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accuracy (e.g., RMSE, AUC) are only expected when utilising additional information for

conditional predictions (Poggiato et al., 2021). We also computed the attributed variance for

each environmental component and the variance explicable by traits, following Ovaskainen

et al. (2017b). Additionally, we measured the correlation between the full model (MFull)

and model without any trait or phylogenetic information (MCommunity). We plotted the

species-environment and trait-environment associations that met our threshold of statistical

significance (90% Credible Interval). These associations were then evaluated and compared to

biological expectations to assess their alignment with known mosquito life history strategies.

To further elucidate the trait-environment relationships present in our full model, we

computed factor loadings of traits across the latent variables of the JSDM for each site by

comparing average trait values of present species with environmental variation across the

latent variable space. This approach, analogous to a Redundancy Analysis (RDA) of the

unexplained variation in our HMSC model (defined by latent variable parameters, Eta),

provides insights into the complex relationships between mosquito traits and any unmeasured

environmental components addressed by the latent variable space. It achieved this by mapping

trait factor loadings onto the JSDM latent variables, which may uncover subtle ecological

patterns not apparent from direct correlations with measured environmental variables.

Improving Predictive Accuracy and Estimations of Community Composition with

Conditional Predictions

Lastly, we assessed how we can leverage the relationships uncovered by our JSDM through

comprehensive community information by generating conditional predictions from our full

model (MFull) and simulating the impact of invasive species’ presences on other mosquito

species’ predicted occurrence probabilities. These conditional species predictions estimate

the probability of occurrence for a target species based on the presence or absence of other

species in the community, effectively leveraging the residual species correlation matrix to
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generate predictions based on these correlations between species, which are determined by

shared environmental, trait, and phylogenetic relationships (Poggiato et al., 2021; Wilkinson

et al., 2021).

To determine the baseline out-of-sample prediction accuracy of our full model, we

computed the Area Under the Receiver Operating Characteristic curve (AUC) through 4-

fold cross-validation for both unconditional and conditional predictions from our dataset to

illustrate how community information can enhance species prediction accuracy if the state of

a community is known. We then utilised these conditional predictions from our full model

to simulate hypothetical species distributions of communities in which the invasive species

Aedes albopictus and Aedes japonicus were absent.

We accomplished this by setting Ae. albopictus and Ae. japonicus as absent across their

known occurrence sites and using this known state of occurence to predict other species

presence probabilities and how they differ from our normal non-conditional predictions. To

determine statistical significance we compared the native community composition for our

standard non-conditional predictions to the conditionally predicted communities’ occurrence

probabilities using a Distance-based Multivariate Analysis of Variance (DMANOVA) with the

dmanova function from the GUniFrac R package (Chen and Zhang, 2021). The DMANOVA

was performed using the scenario as the predictor variable, allowing us to test for significant

differences in native community composition and quantify the proportion of variation in

native species composition explained by the presence of the invasive species.

4.4 Results

4.4.1 Model Convergence and Diagnostics

The models demonstrated good convergence and overall fit and model runtime was on average

7.4 hours using the tensorflow implementation of HMSC, and measures of effective sample
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size (ESS) and potential scale reduction factor (PSRF) indicated adequate model convergence.

For fixed effects (Beta), the ESS ranged from 399.80 to 2057.66 (M = 1430.19, SD= 243.27),

with no parameters having ESS < 100, and a mean PSRF of 1.02 (SD = 0.0749). For species

traits (Gamma), the ESS ranged from 1311.01 to 1601.74 (M = 1465.23, SD = 87.62), with

no parameters below ESS < 100, and a mean PSRF of 1.01 (SD = 0.0072). Random effects

(Omega 1) had an ESS range of 404.27 to 2581.57 (M = 1098.13, SD = 402.45), with a

PSRF range from 0.99 to 2.76 (M = 1.083, SD = 0.3187), indicating stable convergence.

4.4.2 Model Comparison and Null Model Validation

The residual species correlations of the community model (MCommunity) showed a significant

positive correlation with its null counterpart with 52% of the residual correlations being

similar (r = 0.522, p = 0.014, Figure 4.1). In contrast, the phylogenetic model (MPhylo)

showed a high correlation with its null model (r = 0.9918, p = 0.001), indicating that

phylogenetic information contributed minimally to explaining species residual correlations

(Figure 4.1). Similarly, the trait-based model (MTrait) was highly correlated with its null

counterpart (r = 0.9828, p = 0.001), suggesting limited additional explanatory power from

traits when considering species residual correlations (Figure 4.1).

Independent t-tests revealed that the Full model (MFull) significantly outperformed both

the community (t(25) = 4.14, p = 0.001, 95% CI [0.0249, 0.0740]) and phylogenetic models

(t(25) = 4.18, p = 0.001, 95% CI [0.0282, 0.0830]) in terms of Tjur R2. However, there

was no significant difference between the Full and Trait models (t(25) = 1.28, p = 0.214,

95% CI [-0.0109, 0.0462]), indicating that the addition of traits did not significantly enhance

model performance when compared to the Full model (Figure 4.3).

The comparative Mantel tests indicated that residual correlations between species are

indeed influenced by community composition, evidenced by significant differences between

the community model (MCommunity) and its null counterpart. However, high correlations
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between MCommunity and MNullCommunity models may indicate incomplete capture of these as-

sociations. Phylogenetic (M Phylo) and trait-based (MTrait) models showed minimal additional

explanatory power, suggesting either insufficient phylogenetic resolution or limited relevance

to mosquito community dynamics in our dataset. While trait-based changes in correlation

structure were significant, their magnitude was minor (Figure 4.1). Nevertheless, t-tests

confirm that the Full (MFull) and Trait (MTrait) models significantly outperform community

(MCommunity) or phylogeny (MPhylo) models alone.

4.4.3 Trait-based Model Diagnostics

Parameter estimates from the MFull model residual species correlation matrix revealed

strong positive co-occurrence among native species, particularly within Culex, Culiseta, and

Aedes groups (Figure 4.2). Most residual species associations were strongly positive across

clades, with exceptions like Aedes detritus/coluzzi and A. geniculatus showing fewer strong

associations with culicine species. Invasive species exhibited strong negative associations

with most others, barring the Anopheles labranchiae-Aedes japonicus association. Notably,

Aedes species showed the weakest correlations with other groups, potentially indicating

negative interactions or differing ecological drivers, consistent with their distinct reproductive

strategies and life histories.

The full model revealed varying levels of model fit among the studied mosquito species

(Figure 4.4A). Aedes japonicus (R2 = 0.701), Aedes albopictus (R2 = 0.657), and Anopheles

labranchiae (R2 = 0.605) showed high levels of explained variance, suggesting our environ-

mental drivers reflect the distribution of these species well. Moderate variance was explained

for Aedes sticticus (R2 = 0.497), Anopheles maculipennis (R2 = 0.486), and Aedes detri-

tus/coluzzi (R2 = 0.370), suggesting the importance of additional factors. In contrast, Aedes

geniculatus (R2 = 0.0758), Culex territans (R2 = 0.152), and Anopheles cinereus/geminus
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Fig. 4.1 Heatmaps depicting species residual correlation structures derived from six Hierarchi-
cal Modelling of Species Communities (HMSC) models. These models contrast the impact
of community composition, phylogenetic relationships, and species traits on residual correla-
tion structure parameters (Omega). Each panel represents a different model configuration
with its null counterpart: Top) Community model (MCommunity) vs. Null Community model
(MNullCommunity); Middle) Phylogeny model (MPhylo) vs. Null Phylogeny model (MNullPhylo);
Bottom) Trait model (MTrait) vs. Null Trait model (MNullTrait). Warm colours (red) indicate
positive correlations, while cool colours (blue) represent negative correlations. The intensity
of the colour corresponds to the strength of the correlation. Diagonal elements represent
self-correlations and are set to 1. Model components and their descriptions can be found in
Table 4.4. Plot titles indicate the specific components included in each model (C: Community,
P: Phylogeny, T: Traits).
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Fig. 4.2 Comparison of Omega residual correlation structures between the MFull (including
traits and phylogeny) and the community-only model (MCommunity). The heatmap is divided
into upper and lower triangles. The upper triangle represents the Omega (residual correlation)
parameters for the full model, where red indicates positive correlation values between species
and blue indicates negative correlation values. The lower triangle represents the absolute
difference in correlation values between the full model and the community-only model,
with blue indicating correlations that are weaker after adding traits and phylogeny, and red
indicating increased strength. In both triangles, colour intensity corresponds to the strength
of the correlation or magnitude of the difference.
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Fig. 4.3 Statistical comparisons of model fit using in-sample Tjur’s R2. (A) Differences
between Tjur’s R2 for each species in the model and their null counterparts, with associated
statistical tests. (B) Differences in Tjur’s R2 between the non-null community models,
including the full model MFull and subsequent component models. Significance levels for
paired t-tests are indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p <
0.0001; ns indicates non-significance. These comparisons illustrate the relative performance
of different model configurations and the impact of including various ecological factors on
model fit.

(R2 = 0.152) exhibited low variance explained, implying that unmeasured factors likely play

a significant role in their distributions.

Variance partitioning analysis (Figure 4.4B) revealed that the Random Site effect, captur-

ing site-specific factors and unmeasured spatial heterogeneity, accounted for the largest pro-

portion of species response variation (Mean = 45.2%, SD = 19.1%). Topographic Variables

(Mean = 21.0%, SD = 15.3%) and Land Use and Vegetation (Mean = 15.1%, SD = 11.7%)

played moderate roles in shaping species distributions, reflecting the importance of physi-

cal landscape features and habitat characteristics. Anthropogenic Pressure which included

human population density and accessibility predictors (Mean = 11.7%, SD = 9.22%) had a

lesser influence, indicating that human activities may impact species distributions, though not

as strongly as topography or vegetation. Climate (Mean = 7.02%, SD = 8.71%) contributed

the least to the observed variation, suggesting a minor role in structuring species assemblages

within the study area.
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Overall, we found that traits explained 42% of the overall variation in species’ occurrence

across all sites, a relatively large amount. Variance partitioning also assessed the influence of

species’ traits on mosquito responses to environmental drivers, quantifying how much traits

explained species’ responses to different environmental variables (Figure 4.4C). We found

that traits explained more variation in species’ responses to climate and topographic factors

than to land use and habitat metrics, suggesting stronger trait-environment associations for

climate and topography. Traits explained considerable variation in species’ responses to

agricultural habitats, suggesting our trait selection aligns well with agricultural microhabitats

suited for specific mosquito species, such as those inhabiting semi-permanent water bodies

in agricultural landscapes.

K-fold (K = 4) cross-validation of our full HMSC model yielded an average Area Under

the Curve (AUC) for all species of M = 0.76 (SD = 0.10), indicating good overall predictive

accuracy scores for the majority of mosquito species. The species with the highest prediction

accuracy were Anopheles labranchiae (AUC = 0.95) and Culex perexiguus/univittatus (AUC

= 0.92), while only five of our 26 mosquito species failed to meet an acceptable AUC

threshold of 0.70 (Figure 4.4D).

4.4.4 Trait and Environmental Drivers of Mosquito Distribution

Parameter estimates from the full model reveal significant associations between environmen-

tal factors and species distributions, with broad-scale climate variables emerging as strong pre-

dictors for most species and habitat use eliciting species-dependent responses (Figure 4.5A).

The model detects several species-environment relationships that are consistent with our

biological expectations. For example, woodland species like Aedes geniculatus, A. japonicus,

and A. cinereus show positive associations with warm-quarter precipitation and forested

areas, reflecting their tree-hole breeding habits. Conversely, Culex pipiens/torrentium, Aedes
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Fig. 4.4 Model fit analysis and environmental factor influence on mosquito species distri-
bution. (A) Total variance explained (Tjur’s R2) by the full model for different mosquito
species, with the red dashed line indicating the mean variance explained across species.
(B) Variance partitioning analysis showing the relative contribution of different factors to
species response variation. Factors include Random Site effect (M = 45.2%, SD = 19.1%),
Topographic Variables (M = 21.0%, SD = 15.3%), Land Use and Vegetation (M = 15.1%, SD
= 11.7%), Anthropogenic Pressure (M = 11.7%, SD = 9.22%), and Climate (M = 7.02%, SD
= 8.71%). (C) Explanatory power of species traits for responses to different environmental
variables, highlighting stronger trait-environment associations for climate and topographic
factors compared to land use and habitat metrics. The red dashed line indicates the average
explanatory power of species traits of 0.28. (D) Predictive accuracy of the full HMSC
model based on 4-fold cross-validation, showing Area Under the Curve (AUC) values for
each species. The average AUC across all species was 0.76 (SD = 0.10), with Anopheles
labranchiae (AUC = 0.95) and Culex perexiguus/univittatus (AUC = 0.92) showing the
highest prediction accuracy. Only five out of 26 species had AUC values below the 0.70
threshold (indicated in red).
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japonicus/albopictus, and Anopheles labranchiae/plumbeus associate positively with urban

habitats, consistent with adaptation to man-made environments.

Agricultural land use emerged as a prominent positive driver for species presence, partic-

ularly for anopheline and Aedes species, while culicine species showed muted associations.

Anopheles labranchiae demonstrated strong associations with agricultural water sources,

consistent with its anthropophilic tendencies. Unexpectedly, Anopheles species showed

associations with avian livestock densities. Interestingly, through interpretation of the trait-

environment relationships we found that artificial container breeders are associated with

areas of high vegetation homogeneity (Figure 4.5B). Similarly, we find that both rural and

urban-adapted species are positively correlated with higher precipitation in the summer

months.

Analysis of the average trait correlations across model predictions of community compo-

sition with the latent variables revealed two primary axes of variation in mosquito ecological

strategies (Figure 4.6). To further explore environmental patterns across the latent variable

space of our model, we applied k-means clustering to the environmental parameters at each

site. The optimal number of clusters was determined using the gap statistic method (Tib-

shirani et al., 2001), which suggested two clusters as optimal (gap statistic = 1.78, standard

error = 0.01). The clustering algorithm revealed a relatively homogeneous distribution of

environmental conditions across the latent space, with no distinct areas of environmental

similarity, suggesting that the JSDM model effectively accounts for the unknown variation

in our environmental drivers. The lack of clear clustering indicates that the model has suc-

cessfully captured the complex interplay of environmental factors, resulting in a well-mixed

representation of ecological conditions in the latent space.

The first latent variable represents a gradient from species adapted to ephemeral, poten-

tially more natural, habitats to those suited for permanent, stable water sources (Figure 4.6).

This axis is strongly characterized by overwintering strategies, with egg overwintering nega-
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tively correlated (r =−0.53) and adult overwintering positively correlated (r = 0.42). It also

reflects a shift from day-active species to those with nocturnal or crepuscular habits (r = 0.50

and 0.42, respectively). The second latent variable axis is associated with a transition from

ornithophillic to more generalist feeding behaviours on mammals and humans (Figure 4.6).

We see unclear variation in the direction of traits that distinguishes between species adapted

to anthropogenic versus natural habitats. This is evidenced by a strong negative correlation

with artificial container breeding (r =−0.66) and a positive association with anthropophilic

behaviour, two traits we would expect to be aligned (r = 0.55). Interestingly, both rural and

urban traits show negative correlations with this axis (r =−0.35 and −0.26, respectively),

suggesting a complex relationship with human-modified landscapes.

4.4.5 Impacts of Invasive Species on Native Mosquito Communities

from Conditional Predictions

Using our full model, we generated community predictions based on the known occurrence

of other species present at the sites to validate the accuracy of conditional predictions on

community composition. Predictive improvement was consistently large, with conditional

predictions showing, on average, 0.1 higher AUC values (Mean = 0.86, SD = 0.06) compared

to non-conditional predictions. This difference was statistically significant (paired t-test:

t = 5.84, df = 25, p < 0.001). ROC curves for four representative species (Figure 4.7)

further illustrate the improvement in model performance with conditional predictions, while

highlighting the variability of this improvement across species.

Our analysis comparing species distribution predictions under scenarios with and without

conditional species interactions revealed significant variability in the effects of invasive

species on native mosquito distributions. While some species showed consistent increases

in predicted occurrence, others exhibited considerable variability across different sites,

indicating highly site-specific interactions (Figure 4.8).
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Fig. 4.5 Species-environment (Beta) associations and trait-environment relationships
(Gamma). (A) Heatmap showing significant parameter values for species-environment
associations from our full model. Only parameters within the 90% credible interval are
shown. Sidebars display summed totals of significant responses for both species and environ-
mental drivers. The phylogenetic tree represents the phylogenetic information encoded in the
full model. (B) Heatmap illustrating significant trait-environment relationships for gamma
parameters of our full model. Significance threshold was relaxed to 85% credible interval to
reveal more associations for interpretation. Values marked with an asterisk (*) are above the
90% credible interval.
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Fig. 4.6 Scatter plot of the first two latent variable parameters (Eta) from our full model,
with each point representing a single site in our dataset. Points are clustered into two
environmental groupings based on k-means clustering of environmental parameters at each
site. Factor loadings or correlations of average trait values at each site are mapped onto
the latent variable space, denoted by their trait name. The size and direction of the arrows
indicate the correlation values with the latent variables across two dimensions.
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Fig. 4.7 ROC curves comparing conditional (blue) and non-conditional (red) predictions
for four mosquito species: Aedes albopictus, Aedes annulipes, Aedes vexans, and Culex
pipiens. AUC values are shown for each prediction type. Conditional predictions consistently
outperform non-conditional predictions across all species, demonstrating improved model
performance when accounting for species interactions.
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The most substantial median difference was observed for Culex pipiens (median = 0.147,

SD = 0.210), suggesting that invasive species have a significant and highly variable impact

on this species’ distribution across locations. Anopheles maculipennis also demonstrated

a notable median increase (median = 0.0433, SD = 0.125), with considerable variability,

highlighting site-dependent responses to invasive species presence. Aedes vexans exhib-

ited a moderate increase (median = 0.0227, SD = 0.0563), further supporting the role of

local factors in influencing distribution shifts. Other species, such as Anopheles claviger

(median = 0.0173, SD = 0.0552) and Culiseta annulata (median = 0.0173, SD = 0.0527),

showed moderate increases; however, they too displayed notable variability across sites.

Conversely, species like Anopheles atroparvus (median = 0.000667, SD = 0.0148) and Culex

perexiguus/univittatus (median = 0, SD = 0.0216) showed minimal changes in predicted

occurrence, suggesting that invasive species presence had little to no meaningful effect on

their distributions.

The DMANOVA confirmed these differences in native community composition between

community predictions scenarios with and without invasive species as statistically significant

(F = 499.02, df = 1, 8312, p < 0.001). The model explained approximately 5.66% of the

total variation in native community composition (R² = 0.056). Despite the high statistical

significance, the relatively low R² value suggests that while the presence of invasive species

does influence native community structure, it accounts for a modest proportion of the overall

variation in native community composition. These results provide strong statistical evidence

for the indirect impact of invasive species on native community composition.

4.5 Discussion

This study offers a novel and comprehensive approach to understanding mosquito com-

munities by integrating species traits, phylogeny, and environmental data within a JSDM

framework. Our findings underscore the value of incorporating mosquito traits into ecological
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Fig. 4.8 Differences in predicted probability of occurrence for native mosquito species under
scenarios with and without invasive species presence across all sites that invasive mosquitoes
were originally predicted. The plot shows the distribution of differences across sampling
sites for each species. Positive values indicate higher probability of occurrence when invasive
species are absent, while negative values indicate higher probability when invasive species
are present. Boxplots represent the median (vertical line), interquartile range (box), and 1.5
times the interquartile range (whiskers). Individual points represent outliers. Species are
ordered by median difference. The red dashed line at zero represents no change in probability.
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models, which allows for a more mechanistic understanding of how mosquito species interact

with their environment enabling better understanding of environmental drivers of mosquito

species competition (Cator et al., 2020; Chandrasegaran et al., 2020). Furthermore, we

demonstrate how leveraging community data enhances the accuracy of distribution models

and enables the examination of changing pressures on native mosquito species in the face of

ongoing invasive species spread.

4.5.1 The importance of traits in driving species-environment relation-

ships

Our model that fully incorporated traits resolved known trait-environment relationships seen

in wild mosquito populations. We found that the traits included in our model were much

more likely to explain variation in climate effects than those driven by land use. Broad-scale

species traits such as thermal tolerances, overwintering strategies, and voltinism are directly

influenced by changes in temperature, humidity, and precipitation - key components of

climate variability (Diniz et al., 2017; Kreß et al., 2017; Mordecai et al., 2019). These

traits govern fundamental aspects of mosquito fitness, including larval development rate,

adult breeding frequency, and overall longevity (Oyewole et al., 2009; Schneider et al.,

2011). Overwintering ability allows certain species to survive through colder seasons,

while voltinism, highly dependent on temperature, can determine population growth rates

(Crans, 2004; Diniz et al., 2017). Oviposition-related behaviours, such as preferences for

specific water sources, are closely tied to precipitation patterns and habitat moisture. Host

selection may also be influenced by climate-driven changes in the availability or distribution

of preferred hosts (Thiemann et al., 2011).

The physiological limitations in mosquitoes’ ability to adapt to water body salinity

is well understood, applying direct pressure on species fitness based on their tolerance

(Ramasamy et al., 2014). We found that salinity tolerance itself was negatively associated with
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precipitation. Salinity has been shown to drive changes in mosquito community composition

both directly as a result of this tolerance, and more broadly in the sense that salinity also

correlates with other water body characteristics relevant for mosquito fitness (Emidi et al.,

2017; Ramasamy et al., 2014). For instance, freshwater habitats might support a different

set of predators or vegetation that is less favourable to salinity-tolerant mosquitoes, further

contributing to changes in community composition.

In contrast to climate and vegetation variables, we found that traits associated with broad

habitat classifications, such as the gradient between urban and rural environments, may

be less directly influenced by physiological factors. Mosquito species exhibit significant

behavioural plasticity in habitat use and selection, allowing them to adapt to a wide range of

habitat types (Meyer Steiger et al., 2016; Townroe and Callaghan, 2014). Consequently, the

lower variance explained in mosquito species responses to these land use types in our model

mean that the traits included in our study might not best reflect the drivers of this adaptability

to different land use. Considering this, land-use driven variation in mosquito populations

may be more gradual or context-specific, whereas climate-driven effects are better captured

by these broad-scale traits due to their impact on basic mosquito physiological processes

(Diniz et al., 2017; Mordecai et al., 2019). This distinction suggests that while physiological

traits can effectively predict responses to climatic factors, behavioural traits related to habitat

selection may require more nuanced characterisation to fully capture mosquito responses to

land-use changes.

However, we did find that other measures of human-mediated pressure on land use

interact in known ways with mosquito ecology. Human population density was significantly

associated with artificial container breeding mosquitoes. Such mosquitoes utilise ephemeral

water and containers to develop rapidly in an urban environment, often in pots, water butts,

and gutters (Townroe and Callaghan, 2014). Use of such water types is highly advantageous

for these mosquitoes, evading predation in the larval stage by other insects such as dragonflies
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and damselflies, whose long life spans can’t be supported in urban temporary environments

(Collins et al., 2019).

The fact that we find human population density is significantly associated with this type

of breeding habitat and not urban habitat further suggests that the relative cover classifications

used here might not be the most useful in terms of determining mosquito abundance and

occurrence. One would expect urban areas to correlate heavily with population density, and

thus we would expect a positive association between both. We should consider alternatives

to these classifications in the future as they might not capture the fine-scale variation in

microhabitats and microclimates available for mosquito exploitation that shape communities

(Rochlin et al., 2016; Meyer Steiger et al., 2016).

Agricultural land use appeared to drive predominantly Aedes and Anopheles species

positively, compared to other mosquito genera. The relationships in agricultural environments

are complex; the use of artificial ditches often present in agricultural settings typically favours

species able to rapidly colonise areas, sometimes within days (Imbahale et al., 2011; Medlock

and Vaux, 2015b). This colonisation ability may be related to drought resistance, a trait in

which Aedes and Anopheles species are known to be significantly more proficient than other

genera, a characteristic also observed in similar ephemeral wetland environments (Hawkes

et al., 2020; Medlock and Vaux, 2015b). This suggests that traits related to drought tolerance,

such as oocyte thickness or other direct measures of desiccation resistance, could significantly

influence mosquito community composition in agricultural areas.

Additionally, land use types such as agriculture are often fragmented and highly disturbed.

Several studies have shown that both abundance and occurrence of mosquito communities

are higher in transitional areas, which agriculture often creates while also providing ample

breeding habitat for mosquitoes (Meyer Steiger et al., 2016; Rochlin et al., 2016). Incorpo-

rating these trait-environment relationships into mosquito distributional ecology is crucial
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for understanding the underlying ecological drivers that determine species distributions and,

consequently, population dynamics in the face of ongoing global change.

4.5.2 Uncovering hidden mosquito-environment relationships through

traits

Hierarchical Modelling of Species Communities (HMSC) leverages latent variables to

account for unknown correlations between parameters. In our analysis, we found that these

parameters, when mapped onto the trait space, offered different interpretations of unmeasured

environmental variables. These latent variables provide insight into the multidimensional

nature of mosquito ecological niches and which traits may be associated with similar variation

in mosquito occurrence.

We observed diverging patterns between mosquitoes that are predominantly temporary

water users (overwintering as eggs) and those that use permanent water bodies (overwintering

as adults or larvae) across the latent variable space of the JSDM. This distinct axis of variation

in trait use across the latent variables suggests that drivers of mosquito water usage and

capitalization may be key in explaining unknown variation. Incorporating environmental

drivers that represent the unique nature of mosquito capitalization of water sources may be

worthwhile. For instance, measures of soil type and water availability at finer scales have

shown to be significant in driving differences in mosquito community composition (Beketov

et al., 2010), while other physical characteristics of the water body itself can influence the

utility of that water body for different mosquito genera (Becker et al., 2010; Norris, 2004;

Smith et al., 2024).

The relative closeness of our traits describing overall mosquito habitat preferences in

terms of urban and rural preference in the latent variable space suggest that these broad traits

don’t represent that much difference in unexplained environmental variables. This is in line

with our other results, which showed how little the traits explained variation in all land use
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strategies apart from agriculture. The adaptability of mosquitoes across urban to peri-urban

and rural habitats may not be accurately represented by such broad traits, and improving upon

this likely requires a greater understanding of how microclimates and the traits associated

with these different microclimate specializations varies across genera of mosquitoes. For

instance, urban areas can support many types of mosquito communities, often those that are

used to temporary water sources, but Culex modestus is known to be prevalent in underground

subways and tunnels in cities (Soto and Delang, 2023), while other species such as Aedes

albopictus can adapt to relatively hostile urban microclimates (Townroe and Callaghan,

2014). Other species are known to differentially use indoor and outdoor space in order to

regulate physiological processes, which can dramatically alter community composition if

said microhabitats are available (Benelli et al., 2020). Understanding the distinct tolerances

of mosquito species to microclimate needs (thermal limits, humidity needs, etc.) may give us

a better understanding of how traits help differentiate between land use types at finer scales.

Interestingly, we found diverging patterns in biting activity across the latent space, with

night and day biting activity patterns positioned in opposition to each other. While our

current results don’t clearly delineate how these traits reflect different associations between

environmental drivers of mosquito distribution, we can draw some inferences based on

existing knowledge. Mosquito activity patterns are known to shift to target specific host

species and vary seasonally (Thiemann et al., 2011). The association between wetland land

use types and night biters may reflect the roosting patterns of avian hosts that heavily utilize

these areas, with some evidence suggesting avian hosts are bitten more frequently at night

(Griffing et al., 2007; Janousek et al., 2014).

However, these traits may be quite plastic, potentially changing in response to fluctua-

tions in resource availability and predation pressure, which mosquitoes modulate through

behavioural responses (Collins et al., 2019). As such, traits like biting activity or biting

rate might not serve as stable indicators of how mosquito distributions are influenced by
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long-term environmental drivers, even if they are implicated in influencing overall vectorial

potential of mosquitoes (Kilpatrick et al., 2006). Such biotic factors, including the presence

and activity patterns of predators and prey, may be important drivers of mosquito behaviour

and distribution that were not fully captured by our included variables (Golding et al., 2015;

Russell et al., 2022). These behavioural traits, while variable, may still indirectly reflect

important environmental and ecological factors shaping mosquito communities (Balenghien

et al., 2006).

Additionally, the scale relationships between environment and traits may not be fully

captured in our current analysis. Mosquitoes interact with their environment at multiple

spatial and temporal scales, from microhabitat selection for oviposition to broader landscape-

level movements (Reiskind et al., 2017). Differences in spatial resolution can reveal changes

in traits that are evident at different spatial scales; for example, in butterflies, morphological

trait variation can be seen at finer spatial scales but becomes less evident at broader resolutions

(Kaiser et al., 2016; Laughlin and Messier, 2015; Violle et al., 2012). Our model, while

incorporating various environmental variables and traits, may not adequately represent these

cross-scale interactions, and variability in these scales can affect phenotypic expression.

For instance, the traits we measured might respond differently to environmental factors at

local versus regional scales, or there may be emergent properties at larger scales that are

not evident when examining individual traits (Suárez-Castro et al., 2018). Furthermore, the

resolution of our environmental data may not match the scale at which mosquitoes perceive

and respond to their environment (Kitron, 1998). A better understanding of the scales at

which traits interact with their environmental drivers would go some way to explaining the

complex relationships observed in our study.
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4.5.3 Leveraging community information for better mosquito predic-

tions

Incorporating traits, species co-occurrence, and phylogenetic relationships enabled us to

produce conditional predictions that significantly improved model accuracy. These predic-

tions offer a way to simulate mosquito community processes under different scenarios, such

as the introduction or removal of invasive species (Poggiato et al., 2021; Wilkinson et al.,

2021). This feature is particularly important for understanding how invasive mosquitoes,

such as Aedes albopictus and Aedes japonicus, can reshape native mosquito communities

through competitive exclusion and other mechanisms which are currently less understood

(Aliabadi and Juliano, 2002; Bevins, 2008; Juliano and Lounibos, 2005). By predicting

communities with and without invasive species, we demonstrated that invasive mosquitoes

can alter predicted community compositions at scale, potentially showcasing the mechanism

through which overall community composition could be influenced by the invasion process,

and ultimately may influence the likelihood of disease outbreaks due to changes in vector

prevalence in these areas (Giunti et al., 2023; Petruff et al., 2020).

In scenarios where invasive mosquitoes were simulated as absent, our predictions based

on this community state suggest that native species such as Culex pipiens, Anopheles mac-

ulipennis, Aedes vexans, and Culiseta annulata would be more prevalent than in cases where

the invasive species were present. Such changes in the overall composition of mosquito

communities might suggest a reduction in potential vectors of endemic European arboviruses

such as West Nile virus and Usutu virus, while an increase in exotic diseases such as Zika

or Chikungunya may become more prevalent (Lühken et al., 2023; Medlock and Leach,

2015; Semenza and Suk, 2018). Competitive interactions between these species are well

documented, particularly between Aedes albopictus and Culex pipiens. In many cases, Ae.

albopictus has been shown to be the superior competitor, especially in constrained container-

like habitats, due to its ability to convert food to body mass more efficiently, potentially
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reducing the abundance of Cx. pipiens by up to 70% in some cases (Carrieri et al., 2003;

Costanzo et al., 2005; Marini et al., 2017). Less is known about the competitive interactions

between Ae. albopictus and the other species mentioned here, but it is likely that these char-

acteristics also lend themselves to high competitive proficiency, particularly against species

that occupy very similar larval container habitats, such as Ae. vexans and Cs. annulata. How-

ever, the ability to propagate community interactions or residual correlations from JSDMs

to regional scales is an exciting use case for understanding shifts in mosquito community

composition, especially in the case of community change through invasive species and range

shifts of mosquitoes (Carlson et al., 2023; Medley, 2010).

Our analysis has emphasised the underutilisation of mosquito community data from

existing sampling efforts, which typically focus on medically relevant species such as Aedes

albopictus or Culex pipiens, often neglecting the broader mosquito community (ECDC,

2021; Medlock et al., 2018; Schaffner et al., 2013a). As we demonstrate, data on native or

non-target species is valuable for understanding community dynamics and improving models

of mosquito distributions at large scales, either through leveraging conditional predictions

or gaining better inference. Including non-medically relevant species in sampling efforts

requires more effort but could provide substantial benefits for understanding wider community

dynamics of mosquito communities.

A more inclusive approach to mosquito surveillance could significantly enhance our

ability to predict changes in mosquito populations in response to environmental changes

such as climate change, land use modifications, or the spread of invasive species (Barker

and MacIsaac, 2022; Lippi et al., 2023a). Routine inclusion or, at minimum, recording of

co-occurrence of non-target species in sampling programmes, which are usually noted as

by-catch and in some cases never reported, could also improve our understanding of how

mosquito community composition might affect overall disease pressure and disease risk

based on the relative composition of potential vectors within these communities. This would



4.5 Discussion 129

allow for more accurate predictions of where and when outbreaks might occur (Santika,

2011). This has clear implications for public health, as understanding mosquito community

dynamics at scale can inform more targeted vector control strategies and improve surveillance

efforts to mitigate the risks of emerging vector-borne diseases (Ovaskainen et al., 2017a).

4.5.4 Conclusion

This study underscores the significance of integrating trait-environment relationships into

mosquito distributional ecology and demonstrates the potential of Hierarchical Modelling of

Species Communities (HMSC) to uncover hidden mosquito-environment interactions. By

incorporating traits and community information into mosquito distributional models, we not

only enhance predictive accuracy but also enable the simulation of community processes

under various scenarios.

Our findings also advocate for a more comprehensive understanding and compilation of

mosquito traits, including species that may not be the primary focus of sampling programmes.

We highlight the current lack of detailed trait databases for mosquitoes, in contrast to other

arthropod groups (Homburg et al., 2014; Parr et al., 2017; Shirey et al., 2022), and this gap

significantly hinders the further development of trait-based methods in mosquito ecology,

though efforts to address this are underway (Lippi et al., 2023b).

This trait-based approach offers a mechanistic understanding of mosquito responses to

environmental drivers, potentially bridging the gap between local and laboratory-scale studies

and the complex interactions at macro scales. Ultimately, these insights will deepen our

understanding of how mosquito populations respond to environmental changes, improving

our ability to predict and manage vector populations in the face of ongoing global change.
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Discussion and Synthesis

Community ecology has a long history in ecological research, yet its application to vector-

borne disease systems remains limited. Whilst community ecology and distribution modelling

are well-developed for many taxa of conservation interest, they are less established for vectors

of disease, where public and animal health research typically emphasizes identifying one or

two key vector species and understanding their distributions, largely in relation to abiotic

environmental drivers. Mosquitoes, despite being one of the deadliest and most medically

important taxa in the world, are not currently at the forefront of community-level ecological

research. In this thesis, I focus research efforts on taking a broader, more holistic view of

mosquito communities, the interactions within these communities, and the environmental

drivers that shape them.

By combining joint species distribution modelling and mosquito occurrence data arising

from both local-scale stratified ecological study and continental-scale vector surveillance, I

show how abiotic and biotic environmental factors can shape overall community composition

and distributions at different scales, identifying interactions of relevance to disease transmis-

sion and public health. By focusing on communities of mosquitoes, rather than individual

species, this work highlights the need to look beyond correlative abiotic drivers of mosquito

distributions. The research expands our understanding of how biotic interactions, traits, and
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phylogeny collectively influence mosquito community structure, offering new perspectives

on the ecological dynamics underlying vector-borne disease systems.

5.1 Thesis Overview

In this thesis, I present novel approaches to understanding the impacts of both biotic and

abiotic factors on mosquito communities through the use of state-of-the-art Hierarchical

Modelling of Species Communities (HMSC) and other Hierarchical Generalized Mixed

Bayesian Joint Species Distribution Modelling (JSDM) frameworks. In doing so, I demon-

strate the complex interplay between scale, biotic influences, environmental drivers, and

traits in shaping communities of mosquitoes. These integrative approaches provide a more

nuanced understanding of how mosquito communities are shaped by these different com-

ponents, impacting overall community composition, which has interesting implications for

understanding changes in, and drivers of, mosquito-borne disease risk.

This work represents an important first step towards addressing the challenges of defining

communities from sparse datasets, particularly at large spatial scales. By attempting to use

these data for inference of biotic interactions, I highlight both the potential and the limitations

of employing community data at scale. The methods developed here grapple with the sparsity

of data and the spatial and habitat biases inherent in vector surveillance, offering insights into

the advantages and challenges of applying community-level analyses to mosquito ecology.

Moreover, this research showcases the substantial computational requirements and novel

methodological approaches necessary to handle and analyse such data at these scales. This

approach not only enhances our understanding of mosquito communities but also contributes

to a wider discussion on the applicability and constraints of community data in ecological

research.

Ultimately, this work contributes to a more comprehensive view of mosquito ecology,

and I hope that some of my findings can be used in the future to investigate the potential of
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understanding community-level drivers of mosquitoes for public health. The methodologies

developed in this thesis offer a framework that could be adapted to explore community

dynamics in other vector systems, potentially informing more holistic approaches to vector

management and disease control strategies.

5.1.1 Chapter 2: Wetland Management and Mosquito Community

Composition

In Chapter 2, I began by exploring how aspects of mosquito community structure can change

in response to management and conservation decisions, which might create unintended

consequences for overall community composition. My aim was to understand how land and

biodiversity management decisions, typically made by policymakers to benefit one species

group (in this case, bird taxa), can have ripple effects on other organisms through indirect

drivers such as changes in habitat structure and complexity. Importantly, I demonstrated that

wetland management changes, combined with interacting biotic factors of predation pressure,

are likely crucial in determining local mosquito population structure. Wetland management

strategies altered abiotic environmental factors, in this case vegetation composition and

structural characteristics of wetland environments, increasing suitable habitat for some

mosquito species but leading to reduce habitat suitability for others. These vegetation

changes, coupled with inferred biotic interactions between predator species and mosquitoes,

ultimately shapes overall community composition through multiple mechanisms.
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5.1.2 Chapter 3: Environmental and Biotic Drivers of Mosquito Com-

munities Across Europe: A Multi-Scale Joint Species Distribution

Modelling Approach

Chapter 3 addressed this challenge by leveraging novel computational methods and tools to

conduct joint distribution modelling across multiple scales (1 km-10 km), quantifying the

impact of mosquito species interactions on mosquito communities, alongside environmental

factors (hosts, climate, land use, human populations) and space. I found consistent impacts of

biotic interactions between mosquito species across these scales, contrasting with ecological

theory that these impacts should be strongest and most detectable at finer scales. Importantly,

our models revealed that a substantial portion of the variation in species distributions, which

in traditional single-species models is typically attributed to spatial and environmental factors,

was instead explained by the biotic component in our joint species distribution models. This

suggests that species interactions may play a more significant role in shaping mosquito

communities at broader scales than previously recognized, and that conventional approaches

might be misattributing biotic effects to abiotic factors.

5.1.3 Chapter 4: Leveraging Trait Data and Community Composition

for Enhanced Predictions

In Chapter 4, I leveraged the full potential of JSDMs, by including biological traits, phy-

logenetic relatedness and potential drivers of mosquito species interactions with their en-

vironments. JSDMs were used to examine how trait variation between mosquito species

influenced responses to environmental drivers and predicted overall distribution. My results

demonstrated that trait values related to breeding behaviour, habitat selection, and preference

explained several species relationships with environmental drivers that were largely consis-

tent with our current understanding of mosquito ecology. Traits accounted for a substantial
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portion of the variation in mosquito species’ responses to climatic factors but less variation

in responses to land use and habitat classification drivers. This was a surprising result, as

I had anticipated that the broad resource use traits included in the analysis would correlate

more strongly with species responses to land use, habitat, hosts and topography rather than

with species’ climate responses.

Importantly, using information about how species influence each other through these

potential biotic factors can lead to improved predictions of individual species distributions. I

discussed how this approach could potentially be used to estimate changes in community

composition resulting from the introduction of new species for example, and consequently,

how these changes might alter the structure of a mosquito community and competent vector

assemblages for different pathogens. Inferring potential species interactions from JSDMs

is complementary to mechanistic and empirical approaches for understanding outcomes of

interactions between mosquito species, which require intensive data collection (e.g. across

Aedes invaded ranges).

5.2 Main Findings

5.2.1 Wetland Management and Mosquito Ecology

Habitat structure, modified by wetland management, was found to be a key driver of mosquito

community composition at local scales, whilst at continental scales, habitat use traits such as

breeding site preferences explained significant variation in mosquito species occurrence. This

supports our current understanding about how habitat structure in wetlands can significantly

influence mosquito community compositions, with differential impacts on species according

to their resource use preferences (Hartemink et al., 2015). It also mirrors findings from

other habitat types such as the interface between urban, grassland, and woodland habitats,
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where in my case aquatic and riparian vegetation can drive changes in overall community

compositions (Claflin and Webb, 2017b; Ferraguti et al., 2022, 2021).

Additionally, several potential predator species were implicated in influencing mosquito

distributions, highlighting the importance of collecting co-located predator and mosquito

data for fully understanding how wetland management and habitat structure may mediate

key biotic interactions that constrain mosquito distributions. Such understanding may ad-

vance potential for natural vector control options through habitat management that increases

predator populations (Beketov and Liess, 2007), as seen in other contexts (Saha et al., 2009).

This extends hypotheses of how habitat structure drives composition to a broader context,

revealing how multiple species, which we suspect interact with mosquitoes in complex ways,

shape these dynamics (Golding et al., 2015).

At local scales, my work untangling the effect of habitat structure effectively advances our

understanding of how changes to mosquito communities, especially deliberate management

decisions, can impact multiple drivers of mosquito species. By influencing habitat structure

and abiotic factors, we also influence the distribution of species that biotically interact

with mosquitoes, meaning that these effects can also shape overall community structure

(Fouet and Kamdem, 2019; Martinou et al., 2020; Rey et al., 2012). Importantly, I found

that indirect changes made to promote broader biodiversity gains and protect key species

could inadvertently alter the composition of potential vectors. This serves as a pertinent

reminder that while, in this case, mosquito abundance was relatively low and far from heavily

populated areas, such changes may have minimal immediate impact. Yet, work in other

regions with different wetland compositions (particularly those closer to urban areas through

urban greening and wetland expansion plans) has shown that habitat alterations can drive

changes in mosquito species composition (Hanford et al., 2020; Roiz et al., 2015).

Therefore, when developing management plans for wetlands, it is crucial to balance

the needs of conservation, biodiversity, and ecosystem services with the potential risks of
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mosquito-borne diseases (MBDs) (Acreman et al., 2011; Martinou et al., 2020). This balance

will inevitably vary spatially, depending on local climate and ecosystem conditions and linked

ecological community dynamics underpinning hazard, human factors that underpin risks of

MBD introduction and exposure, and local MBD risk context. In areas with active MBD

outbreaks or higher risk of establishment, management strategies may need to prioritize

vector control, while in lower-risk areas, conservation goals might take precedence. However,

even in marginal areas for transmission, the potential for future changes in disease dynamics

must be considered, particularly in light of climate change or the shifting ranges of host

reservoir species (Medlock and Leach, 2015; Medlock and Vaux, 2015b).

As wetland regeneration continues in the study area, or in areas with relatively low MBD

risk, it’s important not to overlook these risks. We must consider how future climate change,

the shifting ranges of host reservoir species, and the presence of invasive species could

affect these ecosystems. The disease burden caused by mosquitoes is expected to increase

across much of Europe, including the study site, due to various factors (Medlock and Leach,

2015; Medlock and Vaux, 2015b). The United Kingdom, for example, has faced multiple

challenges from invasive mosquito species. The invasive Aedes albopictus has been detected

on at least six occasions, with its establishment thus far prevented through routine control

efforts (Vaux et al., 2019). Additionally, other potentially problematic species have emerged,

such as the recently detected presence of Culex modestus, a competent vector for various

pathogens (Golding et al., 2012).

Community-level approaches, particularly through JSDMs, could significantly enhance

risk management planning for wetlands by providing more comprehensive predictions of

how mosquito assemblages might shift in response to changes in managed habitats. This

improved understanding could enable authorities to anticipate potential increases in vector

populations or changes in species composition that affect disease transmission risk, allowing

for more proactive and targeted interventions (Rey et al., 2012; Willott, 2004). Ultimately,
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this approach could inform wetland management strategies that minimize the enhancement

of mosquito populations or communities of vectors while still achieving other conservation

goals.

This work serves as a reminder that while the burden of mosquitoes may currently be

low in many areas, the potential for future increases driven by habitat change should not

be ignored. Adaptive management approaches that can respond to shifts in climate, vector

populations, and disease prevalence will be essential for maintaining this delicate balance

between ecosystem services and public health concerns (Fouet and Kamdem, 2019; Martinou

et al., 2020). The findings here underline the need for a One Health approach to habitat

management, conservation, and public health.

5.2.2 The importance of traits and biotic interactions shaping mosquito

communities

Incorporating trait and phylogenetic data into JSDMs offers a promising avenue for improving

predictions, particularly in the context of mosquito distributions and their responses to

environmental changes. Traits such as salinity tolerance, thermal limits, and breeding habitat

preferences were important in explaining species variation in response to environmental

drivers like climate, topography, and vegetation (Carver et al., 2009; Mordecai et al., 2019).

The detected relationships were in line with biological expectations: species’ relationships

with salinity depended on their different levels of salinity tolerance, whilst artificial container

breeders were positively associated with human population density (Ramasamy et al., 2014;

Rochlin et al., 2016). Container-breeding mosquitoes trade off the risk of temporary water

drying up with the benefits of reduced predation pressure, as many insect larvae that prey on

mosquitoes cannot reproduce in these artificial containers (Carlson et al., 2004).

The predictive power of traits in JSDMs may depend on the specific trait group or

mosquito type being studied. For instance, traits related to breeding habitat preferences,
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such as the utilization of artificial containers, were found to be strongly associated with the

distribution of invasive Aedes species like Ae. albopictus and Ae. japonicus. In contrast, traits

such as salinity tolerance might be more relevant for predicting the distribution of mosquito

species that inhabit coastal or brackish water environments. Furthermore, the predictive

power of traits may vary depending on the ecological characteristics of the mosquito species

in question. Generalist species with a wide range of habitat preferences and adaptability may

be less strongly influenced by specific traits compared to specialist species with narrower

ecological niches (Juliano, 2009; Medlock et al., 2012). This could explain why the JSDMs

had lower predictive power for some invasive species like Ae. albopictus, and the ubiquitous

Culex pipiens, which are known for their adaptability and wide range of breeding habitats

(Medley et al., 2019; Medlock et al., 2012).

Surprisingly, I found that the biotic components of these models consistently detected

significant species interactions, even at larger spatial scales. This is particularly interesting

because ecological theory suggests that species interactions should weaken as spatial scale

increases, with environmental factors like climate becoming more dominant at these scales

(Krasnov et al., 2011; Soghigian et al., 2023). While it is possible that the scale at which

mosquitoes interact might be larger than expected, a more likely explanation is that missing

environmental drivers account for the biotic variation detected by the models (Zurell et al.,

2018).

JSDMs allow unmeasured variables to be absorbed into the biotic component, and it

is probable that certain key environmental drivers, which were not included in the models,

contributed to the observed biotic variation. This hypothesis is supported by several factors

in mosquito ecology: the complexity of mosquito habitats (Becker et al., 2010; Wilkerson

et al., 2021), which are influenced by numerous, often subtle, environmental variables; rapid

temporal dynamics in response to short-term environmental changes; significant human

influence through land use changes and control efforts (Gottdenker et al., 2014; Hunt et al.,
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2017; Meyer Steiger et al., 2016); the role of host availability; and the presence of cryptic

species complexes and genetic variation (Cator et al., 2020; Chandrasegaran et al., 2020;

Messier et al., 2010; Suárez-Castro et al., 2018). Mosquito ecology can also be driven

by fine-scale environmental conditions and resource availability, rather than large-scale

species interactions. Thus, the observed biotic variation in the JSDMs is more likely due

to unmeasured environmental factors that were absorbed into the biotic component of the

model.

However, these findings do not rule out the potential significance of biotic interactions at

larger scales. Detecting such interactions, even if partially driven by missing environmental

variables, provides valuable insights into how species respond differently to similar envi-

ronmental drivers. For instance, the negative associations found between invasive Aedes

species (Ae. albopictus and Ae. japonicus) and nearly all other mosquito species may not

indicate direct competition but rather reflect how these species are driven by unmeasured

environmental factors, such as the spread of invasive species through trade (Medlock and

Leach, 2015).

5.3 Optimizing JSDMs for Vector-Borne Disease Research

To address the challenges associated with Joint Species Distribution Models (JSDMs), vector-

borne disease (VBD) researchers must carefully navigate several trade-offs, which largely

depend on the quality, quantity, and type of community data available. The first key decision

is defining what constitutes a “community” from often sparse vector data, as this underpins

all subsequent stages of analysis. Aggregating such data requires careful consideration,

particularly regarding the scale of aggregation, as demonstrated in this thesis. For example,

in this work, mosquito data had to be aggregated across both temporal and spatial scales due

to limited data availability. Invasive species, highly prevalent species, and rare species each

pose unique challenges, and the way these are managed within a dataset can introduce biases.
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Researchers must make trade-offs to account for these complexities, balancing precision with

feasibility in data collection and analysis.

5.3.1 Understanding the Limitations of Community Data

Traditional SDMs provide various tools for handling imbalances in presence-absence datasets,

tools that JSDMs cannot easily utilize without affecting the prevalence and other factors of

species in the community dataset. For example, in traditional SDMs, pseudo-absences are

commonly used to balance data and improve model performance (Barbet-Massin et al., 2012;

Chapman et al., 2019; Phillips et al., 2009). However, in JSDMs, adjusting presence-absence

data for one species by selecting pseudo-absences (either randomly or in a stratified manner)

can distort the overall community structure and complicate accurate analysis of species

interactions. In contrast, JSDMs excel at trying to capture interspecific interactions, such as

competition, predation, and facilitation, which are overlooked by SDMs focused on single

species (Wilkinson et al., 2019). Therefore, researchers should carefully consider their

primary objectives before deciding on the use of modelling methods, especially given the

contrasting research showing how Stacked-SDMs can perform across similar data types with

the same performance (Zurell et al., 2020).

5.3.2 A Priori Assumptions on Abiotic Effects and Scale

In mosquito vector ecology, a priori assumptions about abiotic drivers like temperature,

precipitation, and habitat characteristics are crucial, especially when considering their scale-

dependent effects. Abiotic factors often determine key aspects of vector ecology, but their

influence can vary dramatically across spatial scales (Lord et al., 2014). For example,

temperature may be a strong predictor at regional scales, while localized factors like water

quality or microhabitat structure become more important at smaller scales (Flores Ruiz et al.,

2022b; Kraemer et al., 2019a; Murdock et al., 2017a).
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Matching abiotic drivers to appropriate scales is essential for accurately modelling

mosquito populations and their vectorial capacity. In this thesis, temperature and precipitation

were identified a priori as critical abiotic factors influencing mosquito resource use, such as

breeding habitats and developmental limits using a resource-based framework and utilizing

the recent deluge of reviews that cover the various trends in mosquito SDM modelling and

drivers therein (Barker and MacIsaac, 2022; Hartemink et al., 2015; Lippi et al., 2023a).

However, the strength and consistency of these relationships varied across scales, with broader

patterns emerging at regional levels, and more context-specific drivers, like urbanization or

water availability, dominating at finer scales which is consistent with other studies (Claflin

and Webb, 2017a; Murdock et al., 2017b).

Careful consideration of the scale at which abiotic and biotic drivers operate is required

for JSDMs to capture the full complexity of both biotic and abiotic drivers of mosquito

communities. Misalignment between the scale of drivers and the ecological processes that

influence community composition could lead to inaccurate predictions, particularly when

assessing mosquito-borne disease risks (König et al., 2021; Suárez-Castro et al., 2018).

5.3.3 Computational Complexity and Scaling Issues

Another major consideration when using JSDMs is computational complexity, which in-

creases non-linearly as the number of community sites, species, and spatial effects in the

model grows (Tikhonov et al., 2020a). Novel approaches are needed to handle large-scale

analyses, but even at smaller scales, incorporating additional complexity—such as using abun-

dance data instead of species occurrence—can dramatically increase model run times, making

analysis computationally infeasible. For instance, without access to high-performance com-

puting resources, such as graphics processing units (GPUs) needed for machine learning

frameworks, the analyses in this thesis would not have been possible (Rahman et al., 2024).
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This presents two key challenges for VBD researchers. First, they must prioritize

components or drivers based on the ecological question at hand. For example, at larger

scales, researchers may want to focus on how species’ occurrence probabilities shift within

a community to understand how archetypes of mosquito assemblages relate to disease

occurrence. At smaller scales, however, understanding how species’ abundances change due

to co-occurrence effects may be more meaningful, particularly when considering the impact

of species interactions on potential disease vectors (Bara et al., 2015). This distinction is

important for assessing VBD risk at different scales (Lord et al., 2014). As demonstrated

in this thesis, using abundance data for over 400 community sites was computationally

infeasible at smaller scales, even though this could have provided valuable insights into how

mosquito communities change. However, at larger scales, occurrence data may be more

useful for assessing how assemblages of invasive species interact, as discussed in Chapters 3

and 4 (Araújo and Rozenfeld, 2014).

5.3.4 Choosing the Right JSDM Framework

The second challenge is that not all JSDM frameworks are equal. Once researchers define

the scale of their ecological question, they must choose tools that best address their research

goals. Different frameworks offer different capabilities and trade-offs, which are not always

immediately apparent to traditional SDM users. For instance, the sjSDM framework, used

in Chapter 3 of this thesis to assess biotic interactions at varying scales, is particularly

well-suited for incorporating large spatial effects into modelling. However, it lacks the ability

to integrate traits or phylogenetic relationships, making it less flexible for studies that require

these factors. In contrast, the HMSC framework, used in Chapter 2 to assess the local-scale

impact of habitat, is highly capable of incorporating multiple levels of mixed effects into the

analysis. While this framework was later used to explore trait variation across a continental

scale in Chapter 4, its full potential has only recently been realized due to advancements in
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Markov Chain Monte Carlo (MCMC) sampling algorithms, yet even these advancements

couldn’t fully account for scale in this instance.

Therefore, researchers must acknowledge that conducting JSDM analyses often involves

compromises, and a perfect solution that is free from assumptions about scale may not

be feasible without significant investments in novel sampling methods or computational

resources (Ovaskainen and Abrego, 2020; Wilkinson et al., 2021).

5.3.5 Accessibility and Technical Challenges

Another notable challenge is the accessibility of JSDMs for ecologists. Implementing these

frameworks has required significant time, effort, and resources, even for an ecologist with

experience in computational methods. The complexity of handling large datasets frequently

necessitates understanding both ecological and computational limitations, which creates

a barrier for many researchers. This contrasts with the more user-friendly frameworks

popularized in the 2010s, which required much less computational power and setup (Thuiller

et al., 2009). However, the trade-off for simultaneously modelling species interactions is the

increased complexity inherent in JSDMs.

Recent software developments have made it easier to implement large-scale JSDMs

(Golding, 2019; Pichler and Hartig, 2021; Rahman et al., 2024; Tikhonov et al., 2020a),

and this trend is likely to continue as computational power increases and novel approaches,

whether through hardware improvements or algorithmic innovations, make analyses more

efficient. For example, many MCMC sampling methods, a common backbone of many JSDM

statistical frameworks (e.g., brms, HMSC, sjSDM, greta), could be accelerated with minimal

user input in the future, thanks to updates that handle conversions to hardware-accelerated

methods that utilize high-performance probabilistic programming languages, such as pyMC3,

JAX, and TensorFlow (Bradbury et al., 2018; Martín Abadi et al., 2015; Salvatier et al., 2016).

As these methods become more widespread, implementing and running JSDMs will become
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increasingly accessible. Nonetheless, researchers must remain mindful of the trade-offs and

technical considerations involved before embarking on their use.

5.4 Future Research Areas

While this thesis has made strides in addressing how factors beyond abiotic drivers can shape

the distribution of mosquitoes, it has also opened up more questions than it has answered.

The integration of biotic interactions into predictive models of mosquito communities has

revealed promising insights, yet many challenges remain in fully leveraging this informa-

tion. Understanding how these biotic factors, such as species interactions, evolutionary

relationships, and trait dynamics, intersect with environmental variables is needed to improve

predictions of mosquito communities and the estimation of MBD pressure. Future research

must work towards a deeper understanding of these complex ecological relationships to refine

our approaches.

5.4.1 Understanding Abundance and Temporal Variation

In this thesis, I focused primarily on occurrence data, largely due to limitations in data quality

and quantity (Rund et al., 2019), as well as challenges in model convergence and flexibility

when working with more complex statistical distributions for abundance data (Ovaskainen and

Abrego, 2020). Abundance is likely a key driver in how mosquito communities interact and

shape one another. Interactions between mosquito species are density dependent, and rarely

lead to the complete exclusion of a species; instead, they often result in reduced abundance

and differential niche partitioning (Amarasekare, 2003). These abundance dynamics are

also critical for understanding vectorial capacity in a broader context, as density-dependent

interactions between hosts, vectors, and humans typically determine the likelihood and extent

of mosquito-borne disease (MBD) spillover (Dobson, 2004; Smith et al., 2007). Failing to
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account for these interactions limits our ability to fully comprehend the dynamics of disease

transmission.

Additionally, we should not neglect the importance of the temporal component on

mosquito occurrence or abundance probabilities for similar reasons. Although mosquito

species are generally active during similar periods of the year, especially in terms of peak

abundance, subtle variations in these patterns exist both across seasons and within daily

activity patterns (Hawkes et al., 2020; Rund et al., 2016). These shifts in activity at all

scales, likely influence how communities of mosquitoes may interact and affect one another,

reducing overall competitive interactions through niche partitioning and variable resource

use (Laporta and Sallum, 2014). For example, Culex pipiens larvae have been shown to be

more resistant to encroachment and co-colonization of breeding habitats by Aedes albopictus

in cooler temperatures early in the year, but are soon outcompeted as conditions warm later

in the season (Carrieri et al., 2003).

Neglecting these factors may have significant implications for assessing the usefulness of

JSDMs in broader disease ecology and warrants further investigation (Box 1). The abundance

and seasonality of competent vectors have far-reaching consequences for overall disease

risk and the likelihood of spillover events, which should not be overlooked (William et al.,

2018). However, gathering such data requires intensive, routine sampling, meaning that

the development of dynamic JSDMs that account for abundance and temporal variation in

mosquito populations may only be feasible at small, local scales where consistent monitoring

for public health or invasive species control is already in place (Badger et al., 2023; Thorson

et al., 2016).
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Box 1: The role of abundance and temporal scale

1. Incorporating species abundance: How does incorporating species abundance,
rather than simple occurrence, into JSDMs of mosquito communities enhance the
detection of biotic interactions? Additionally, does accounting for this complexity
improve our understanding of community-shaping mechanisms, or is its impact
negligible?

2. Role of seasonality: What is the role of seasonality in shaping mosquito species’
interactions with their ecological niches, and how do seasonal shifts in temperature,
rainfall, and habitat availability affect niche partitioning, species interactions, and
shape mosquito communities over time?

5.4.2 Moving Towards a Better Understanding of Traits

Research on other arthropod groups has highlighted the importance of scale in trait-environment

interactions (Messier et al., 2010; Suárez-Castro et al., 2018). For example, thermal tolerance

traits tend to be more predictive at broader, regional, or global scales, where temperature

gradients are more pronounced (Flores Ruiz et al., 2022a; Gleiser and Zalazar, 2010; Kaiser

et al., 2016). In contrast, traits associated with predator avoidance may be more relevant at

finer, habitat-specific scales (Russell et al., 2022; Vonesh and Blaustein, 2010). In mosquitoes,

traits related to host-seeking behaviour and larval development are likely to be more de-

tectable at smaller spatial scales, where resource availability becomes a key limiting factor for

populations. At larger scales, however, broader phylogenetic patterns may emerge, reflecting

evolutionary constraints on species’ distributions (Krasnov et al., 2011).

In addition to spatial scale, traits such as body size and feeding behaviour can vary

significantly within a single mosquito species depending on local environmental conditions

(Ciota et al., 2014; Lahondère and Bonizzoni, 2022; Vinauger and Chandrasegaran, 2024).

Understanding this intraspecific variation is critical for capturing the adaptability of mosquito

populations and for determining their role in the transmission of mosquito-borne diseases

(MBD) (Brass et al., 2024; Cator et al., 2020; Chandrasegaran et al., 2020). Quantifying

this variability through metrics such as standard deviations can provide deeper insights into
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how mosquitoes adapt to different environments, which in turn influences their distribution

patterns and vector competence (Brass et al., 2024).

To implement a trait-based approach in mosquito ecology, addressing the scarcity of

relevant trait data is essential. This is a crucial step toward developing methods that offer

ecologically meaningful explanations of how mosquito species respond to environmental

drivers (Lippi et al., 2023b; Wong et al., 2019). Furthermore, testing how traits vary geo-

graphically and seasonally, both within and between species, can significantly enhance our

understanding of mosquito ecology and improve species distribution models. Aligning trait

data with appropriate ecological scales is critical to developing biologically relevant models

(Suárez-Castro et al., 2018).

Traits also play a pivotal role in determining mosquito species’ invasive potential. Species

with broader host ranges are more likely to establish themselves in diverse habitats (Paupy

et al., 2009). Phenotypic plasticity, or the ability to rapidly adapt to environmental changes,

can enable mosquitoes to expand into areas where they were previously not expected to

survive (Sherpa et al., 2019). Comparing the traits of mosquitoes with different vector

and invasive statuses can reveal which combinations of traits are most influential in these

processes. To effectively capture this variation, trait data should be collected across various

spatial scales and populations. Streamlining this process may involve linking traits to genetic

markers across species (Beerntsen et al., 2000; Civelek and Lusis, 2014; Mackay et al., 2009)

or focusing on species with high genetic variability, which could drive rapid adaptation to

new habitats (Brown et al., 2011). However, the high cost of genetic sequencing limits the

feasibility of such studies, making them practical only for the most important vector species

(Dritsou et al., 2015).

Traits that influence vector competence often overlap with those that promote invasive-

ness. Mosquitoes with broad host ranges are not only more adaptable but also serve as

efficient bridge vectors for zoonotic diseases (Kilpatrick et al., 2006; Takken and Verhulst,
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2013). Traits like overwintering and diapause can greatly increase the potential for virus

transmission across seasons and facilitate mosquito dispersal through trade routes (Folly et al.,

2022). Mosquito species that exhibit both invasive potential and predisposition to transmit

arboviruses pose a significant threat to public health, particularly in naïve populations, where

these traits converge to create highly efficient vectors of disease (Medlock and Leach, 2015;

Schaffner et al., 2013c).

In summary, while incorporating traits into mosquito ecological research holds great

promise for understanding disease risk, several key challenges remain (Box 2). These include

selecting biologically relevant traits, capturing trait variation across scales and within species,

and integrating insights from other taxa where trait-based approaches are more established.

By addressing these considerations and streamlining trait data collection, researchers can

develop a more comprehensive understanding of mosquito ecology and improve our ability

to predict and mitigate disease risk in a changing world. Drawing on the experiences and

methodologies used in other taxonomic groups can provide valuable guidance for refining

trait-based approaches in mosquito ecology.

Box 2: Key gaps in understanding the role of traits

• Scale-dependent trait interactions: How do key mosquito traits (e.g., thermal
tolerance, host-seeking behaviour, larval development characteristics) interact
with environmental drivers across different spatial scales to influence mosquito
distribution and community composition?

• Improving trait data availability: What strategies and sources of information
can be employed to improve the estimation of mosquito trait values at sufficient
scale and throughput, addressing the current scarcity of trait data?

• Intraspecific trait variation: How does accounting for intraspecific variation
in traits such as body size and feeding behaviour improve our understanding of
mosquito species’ ecological flexibility, distribution patterns, and potential as
disease vectors?
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5.4.3 Application of Community Models to Mosquito Surveillance and

Disease Risk

Despite the trade-offs in overall accuracy and complexity inherent to Joint Species Distribu-

tion Models (JSDMs), my research demonstrated that leveraging fully realized conditional

predictions within this framework could achieve significant improvements in model accuracy.

This approach is particularly promising for mosquito surveillance, as routine sampling prac-

tices already provide comprehensive data on community composition in many areas (ECDC,

2014; Schaffner et al., 2013b).

The power of conditional predictions lies in their ability to estimate the probability of

occurrence for species not directly observed at a given site. For instance, in a network of es-

tablished monitoring locations, JSDMs can generate predictions for potential invasive species

based on the presence of known native species and environmental factors. If surveillance at

Site A consistently detects native species X, Y, and Z, the model can estimate the likelihood

of an invasive species I occurring there, even if it hasn’t been directly observed.

This method offers several advantages for vector management:

1. Identification of potential invasion hotspots without additional sampling efforts

2. Prioritization of sites for enhanced monitoring or preemptive control measures

3. Cost-efficient direction of limited resources towards high-risk areas

4. Creation of a dynamic tool for adaptive management through continual model updates

For example, if the model predicts a high probability of an invasive species across

multiple sites in a region, despite its absence in current samples, that area could be flagged for

increased surveillance or expanded sampling protocols. This approach not only maximizes

the utility of existing data but also provides a framework for proactive vector management.
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While the potential of this method is significant, it’s important to note that detailed

research in this area is currently limited beyond the results presented in Chapter 4 (Poggiato

et al., 2021). However, given the established infrastructure for routine mosquito surveil-

lance, particularly for medically significant and invasive species, mosquitoes present ideal

candidates for further exploration and refinement of these techniques.

JSDMs offer valuable insights into community-level dynamics and species interactions,

particularly at finer spatial resolutions. However, they face limitations when applied to

broader scales, where traditional SDMs often excel in capturing larger environmental and

climatic drivers efficiently. Considering both the limitations and benefits of JSDMs, I believe

there is a place for multiscale approaches to distribution modelling that could combine

both traditional SDM methods and JSDM approaches. For instance, JSDMs could be

applied at finer spatial resolutions to explore species interactions, while predictions from

traditional SDMs could be used at broader scales to capture larger environmental and climatic

drivers when investigating distributions of important assemblages (Jones et al., 2010). This

hybrid approach could offer a more comprehensive understanding of species distributions by

leveraging the strengths of both SDMs and JSDMs in tandem.

Another intriguing research direction is to investigate whether certain mosquito commu-

nity archetypes are more prone to amplifying disease potential. Given that vector species like

Aedes albopictus and Culex pipiens are ubiquitous across Europe, yet disease spillover events

are geographically concentrated, it would be valuable to explore whether specific community

compositions correlate with higher mosquito-borne disease risk (Ferraguti, 2024; Ferraguti

et al., 2021). Characterizing community structures in areas where diseases like West Nile

Virus or dengue are more likely to emerge could reveal how the interactions between species

influence vector competence. Such studies would enhance our current understanding of the

relationship between mosquito presence and disease risk, and may also help explain why

certain regions experience more frequent outbreaks (Lippi et al., 2023a).
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Archetypal categorization of communities and habitat types are frequently used in conser-

vation to attribute resources most effectively, and there is no reason such methods couldn’t

be explored for mosquito-borne diseases (Moilanen, 2007). In fact, this approach is already

being implemented in recent studies of potential Rift Valley fever introduction, where stacked

SDMs have been employed to identify potential incursion hotspots (Wint et al., 2020). By

applying similar community-based approaches to mosquito populations, we could potentially

identify high-risk assemblages that are more likely to facilitate disease transmission. This

could lead to more targeted surveillance and control efforts, focusing resources on areas

where specific community compositions indicate a higher likelihood of disease emergence or

persistence. Moreover, understanding these community archetypes could provide valuable

insights into the ecological factors that contribute to disease risk, potentially informing

broader strategies for mosquito-borne disease management and prevention across diverse

landscapes.

Understanding how community composition across larger spatial scales influences MBD

transmission potential offers valuable insights for vector-borne disease forecasting. JSDMs,

when combined with other modelling techniques, present an opportunity to maximize their

strengths at local scales where intervention and management can take palce (ECDC, 2021;

Schaffner et al., 2013a). By integrating JSDMs with routinely sampled data from well-

monitored areas, researchers can capitalize on the practical application of these techniques.

Such techniques have been used in mapping the distribution of invasive plant species, which

showed that combinations of fine-scale models and larger models could overcome some

of the inherent challenges of non-equilibrium assumptions for invasive species modelling

(Jones et al., 2010). Access to biotic interactions to aid these approaches would prove to be

a novel step towards understanding the true usefulness in vector ecology (Poggiato et al.,

2021). Establishing a robust research program focused on utilizing JSDMs for these purposes
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is crucial for ensuring their effective and practical implementation. Such a program could

start by addressing several key research questions (Box 3).

Box 3: Applying JSDMs to surveillance and risk mapping

• Combining JSDM and SDM strengths: What are the advantages and limita-
tions of integrating JSDMs into multiscale modelling frameworks, and can they
provide ecological insights that enhance the broad-scale accuracy of SDMs when
combined?

• Disease and communities: How does mosquito community composition correlate
with the likelihood of mosquito-borne disease outbreaks, and can specific assem-
blages of mosquito species be used as indicators of increased disease transmission
risk?

• Conditional predictions: How can routine sampling and monitoring improve
predictions of mosquito invasion risk in vulnerable areas by leveraging species
relationships in conditional predictions, and what role can long-term sampling data
play in enhancing early detection and risk assessments for future invasions?

5.5 Conclusion

Community-based approaches offer a more holistic understanding of mosquito ecology,

taking into account how species interact within their environments and with each other.

These approaches can provide a more accurate representation of mosquito populations

and their potential to transmit diseases, as they incorporate both biotic interactions and

environmental drivers. By moving beyond single-species models, community-level studies

can identify ecological interactions that may either facilitate or suppress vector populations,

providing valuable insights for vector control strategies.

The long-term potential of integrating community-level approaches into mosquito re-

search lies in the ability to enhance disease management. By improving our understanding

of how mosquito species interact within ecosystems, we may develop more targeted inter-

ventions to reduce the risk of transmission. These models will be essential for predicting

how shifts in mosquito populations in response to climate change and habitat modifica-
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tion ultimately contribute to changes in overall community composition, giving us a better

understanding of the many driving factors behind the diseases spread by mosquitoes.
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Appendix: Chapter 2

A.1 Background to the ESA

1. The ESA extends over 29,260 hectares of the central Somerset lowlands, bounded by

the Mendips to the north, low limestone escarpments to the east, the Blackdown Hills

to the south and the Quantock Hills to the west. The moors comprise an extensive area

of very low-lying basin peat, with a few remnants of raised bog, surrounded by alluvial

clay and silt. The peat is overlain by riverine clay. Westwards from the moors lies

an extensive area of slightly higher estuarine alluvium known as the Levels, most of

which is excluded from the ESA. Grassland predominates and, traditionally, has been

used for summer cattle grazing and hay cutting.

2. The whole area forms the largest remaining lowland wet grassland system in Britain

and is consequently of outstanding environmental interest. The ecological interest is

associated with the wet, often species-rich pastures and meadows and the surrounding

network of ditches with their aquatic flora and invertebrate interest. This wet grassland

area supports overwintering wildfowl and breeding waders for which part of the area

is designated as a Ramsar/SPA site. The landscape value lies in the rectilinear pattern
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of traditionally managed fields and drainage channels within a low-lying wet and

expansive grassland area. In addition, there is a wealth of archaeological interest,

ranging from prehistoric wooden trackways to more recent buildings and structures.

3. In the 1970s and early 1980s the drainage of large areas of the Moors was improved.

This, along with the increased use of chemicals and fertilisers resulted in the grassland

being improved or converted to arable. This threat has been countered by the designa-

tion of 13 moors as Sites of Special Scientific Interest (SSSIs) and the establishment of

the area as an ESA.

4. This is a ’part-farm’ scheme which started in 1987. In 1992 it was extended by 530 ha

and by a further 1,580 ha when the revised scheme was introduced in 1997. Overall

uptake at the end of 1998 was c. 16,748 hectares.

5. A priority objective is to sensitively manage the grassland and water levels in the

surrounding ditches (most tiers). Tier 1a helps to achieve enhancement by protecting

the semi-improved, improved and unimproved species rich grassland through reduced

inputs. To help achieve enhancement a new tier (Tier 1A) has been introduced to

protect the semi-improved and unimproved species-rich grassland, through reduced

inputs. The management requirements are similar to Tier 2, but without the water level

restrictions. A water level supplement is also available on a site-specific basis, and is

designed to benefit birds or rare plant species. These tiers and supplements are the

main mechanism for achieving the Biodiversity Action Plan (BAP) targets in the area.

6. A further objective is to maintain the traditional landscape character, including the field

boundary and historic features, by encouraging appropriate grassland management (all

tiers). Enhancement of features such as ditches, pollarded willows, gates/wing fences

and historic artefacts is encouraged through the Conservation Plans.
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7. A new all-year penning supplement (for Tiers 1, 1A & 2) has been introduced to

maintain summer penning levels throughout the winter to protect the peat resource and

its associated archaeological remains.

8. A new buffer strip supplement has been introduced for arable land to create fertiliser-

free grass buffer strips adjacent to water courses. These are designed to reduce the

run-off of agricultural inputs into the ditches, thus protecting the diverse, aquatic plant

and insect communities.

A.1.1 Tier 1 Permanent grassland

Scheme Prescriptions

1. Maintain grassland, do not plough, level or reseed land. You may use a chain harrow

or roller but no other form of cultivation is allowed.

2. Graze with cattle or sheep but avoid poaching, under-grazing or over-grazing.

3. If you cut the grass for hay or silage, graze the aftermath.

4. Do not exceed your existing level of inorganic fertiliser and in any case do not exceed

75kg of nitrogen, 37.5kg of phosphate and 37.5kg of potash per hectare (60 units of

nitrogen, 30 units of phosphate and 30 units of potash per acre). Do not exceed your

existing level of home produced organic fertiliser and do not apply any other organic

fertiliser.

5. Do not use fungicides or insecticides.

6. Do not apply herbicides except to control creeping buttercup, soft rush, nettles, spear

thistle, creeping or field thistle, curled dock, broad-leaved dock or ragwort. Apply

herbicides by weed wiper or spot treatment
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7. Do not apply lime, slag or any other acidity reducing substance.

8. Do not install under-drainage, do not mole drain, and do not subsoil or tunnel plough.

Do not substantially modify your existing drainage system.

9. Maintain existing field gutters, surface piping, rig and furrow, ditches or rhynes by

mechanical means, not sprays. Do not install additional surface piping.

10. Do not spray irrigate your land.

11. Maintain hedges, trees and pollarded willows in accordance with local custom.

12. Do not plant any additional trees or allow natural establishment of additional trees/

bush without prior agreement.

13. Do not damage or destroy any features of historic interest.

14. Obtain written advice on siting and materials before constructing buildings, roads or

any other engineering operations which do not require planning permission or prior

notification determination by the Local Planning Authority.

15. Maintain existing gates with wing fencing but do not erect any additional permanent

fencing without prior consent.

16. Water levels in ditches and rhynes must either be:

• From 1 April to 31 October maintained at or above the penning level, provided

since 1987, by the relevant Internal Drainage Board (IDB) or the Environment

agency (EA) (as appropriate) and from 1 November to 31 March maintained

at or above the winter level provided since 1987 by relevant IDB or the EA

(as appropriate) with at least 15 cm 15 cm (6") of water in the bottom of the

ditches/rhynes at all times.
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Or, to obtain a supplementary payment:

• From 1 May to 30 November water levels in ditches and rhynes must be main-

tained at not more than 30 cm (12") below mean field level and from 1 December

to 30 April maintained at not less than mean field levels so as to cause conditions

of surface splashing.

17. Agreement holders must not pump below these levels which will be fixed for reference

to gauge boards set to Ordnance Datum Newlyn.

18. You must abide by the Codes of Good Agricultural Practice (Annex IVII) for the

Protection of Water, Soil and Air, published by the Ministry (references PB 0587, PB

0617 and PB 0618) as amended from time to time.

Agronomic Impact

1. No significant consequences for Income Forgone.

2. No significant consequences for Income Forgone.

3. No significant consequences for Income Forgone.

4. As a consequence of not being able to reseed and a required reduction in fertiliser

application from the pre-ESA rate of (200 kg N, 40 kg P2O5, 30 kg K2O)/ha to (75

kg N, 37½ kg P2O5, 37½ kg K2O)/ha, the stocking rate will be reduced from 1.65

GLU/ha to 1.2 GLU/ha. This results in a decrease in livestock gross margin. Costs

will be saved from reduced forage inputs, labour and interest on working capital.

5. No significant consequences for Income Forgone.

6. Typically this will involve a switch from using cheaper hormone based herbicides on

an overall basis to spot treatment or wick application of more expensive chemicals.
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Both spot and wick application methods are more labour intensive techniques. Topping

is also used to control weeds in both the non-ESA and ESA situation.

7. No significant consequences for Income Forgone.

8. No significant consequences for Income Forgone.

9. ESA agreement holders will have to clean out their ditches and rhynes at a greater

frequency than non-agreement holders.

10. No significant consequences for Income Forgone.

11. Extra costs of hedge management involving hedge laying on a 15 year cycle and

regular hedge trimming traditional to the area. Additional costs will be incurred

for maintenance of pollarded willows in accordance with the local custom. Little

pollarding is undertaken by non-ESA farmers.

12. No significant consequences for Income Forgone.

13. No significant consequences for Income Forgone.

14. No significant consequences for Income Forgone.

15. Extra costs associated with the maintenance of wooden gates and winged fencing

compared to replacement steel gates.

16. No significant consequences for Income Forgone.

17. No significant consequences for Income Forgone.

18. No significant consequences for Income Forgone
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A.1.2 Tier 1A - Extensive permanent grassland

Scheme Prescriptions

Observe prescriptions 1-18 plus additional prescriptions set out below:

19. Do not use a chain harrow or roller between 31 March and 1 July.

20. Do not exceed your existing level of inorganic fertiliser and in any case do not exceed

25kg of nitrogen, 12.5kg of phosphate and 12.5kg of potash per hectare (20 units of

nitrogen, 10 units of phosphate and 10 units of potash per acre) each year.

21. Unless traditionally the land has been used for grazing each year mow at least one

third (or one year in three) of the land but not before 1 July and do not graze the land

prior to laying it up.

22. Do not cut or top the grass after 31 August.

23. Do not graze with sheep from 1 September to 1 March.

24. Do not use herbicides to control creeping buttercup.

25. Water levels in ditches and rhynes must be:

• From 1 April to 31 October at or above the penning level, provided since 1987,

by the relevant IDB or the EA (as appropriate) and from 1 November to 31 March

maintained at or above the winter level provided since 1987 by relevant IDB or

the EA (as appropriate) with at least 15 cm (6") of water in the bottom of the

ditches/rhynes at all times.

26. Agreement holders must not pump below these levels which will be fixed by reference

to gauge boards set to Ordnance Datum Newlyn.
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Agronomic Impact

19-20. A small amount of sward deterioration will result in a slight reduction in stocking

rate. This coupled with a reduction in the quantity of fertiliser applied from (200

kg N: 40 kg P2O5 :30 K2O )/ha to (25 kg N: 12 ½ kg P2O5 , 12 ½ kg K2O)/ha

will decrease the stock carrying capacity. This in conjunction with the maintenance

of higher water levels will reduce stocking rate from 1.65 GLU/ha to 1.0 GLU/ha.

Reduced forage inputs, requirement for labour and interest on working capital will

produce cost savings.

19. As for prescription 19.

20. This will result in potential loss of land for silage production. The hay produced will be

of lower energy value than silage and therefore extra concentrate feed will be required.

21. No significant consequences for Income Forgone.

22. This will result in loss of winter grazing for sheep and therefore incur extra costs

associated with winter keep.

23. No significant consequences for Income Forgone.

24. No significant consequences for Income Forgone.

25. No significant consequences for Income Forgone

A.1.3 Tier 2 - Wet permanent grassland

Scheme Prescriptions

Observe prescriptions 1-18 plus additional prescriptions set out below:

27. Do not use a chain harrow or roller between 31 March and 1 July.
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28. Do not exceed your existing level of inorganic fertiliser and in any case do not exceed

25kg of nitrogen, 12.5kg of phosphate and 12.5kg of potash per hectare (20 units of

nitrogen, 10 units of phosphate and 10 units of potash per acre) each year.

29. Unless traditionally the land has been used just for grazing each year mow at least one

third (or one year in three) of the land but not before 1 July and do not graze the land

prior to laying it up.

30. Do not cut or top the grass after 31 August.

31. Do not graze with sheep from 1 September to 1 March.

32. Do not use herbicides to control creeping buttercup.

33. Water levels in ditches and rhynes must be either:

• From 1 April to 31 October maintained at or above the penning level, provided

since 1987 by the relevant IDB or the EA (as appropriate) and in any case not

more than 45 cm (18") below mean field level and from 1 November to 31 March,

maintained at or above the winter level provided since 1987 by the relevant IDB

or the EA (as appropriate) with at least 30 cm (12") of water in the bottom of the

ditches/rhynes at all times.

Or, to obtain a supplementary payment:

• From 1 May to 30 November water levels in ditches and rhynes must be main-

tained at not more than 30 cm (12") below mean field level and from 1 December

to 30 April, maintained at not less than mean field level so as to cause conditions

of surface splashing.

34. Agreement holders must not pump below these levels which will be fixed by reference

to gauge boards set to Ordnance Datum Newlyn.
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Agronomic Impact

27. A small amount of sward deterioration will result in a slight reduction in stocking

rate. This coupled with a reduction in the quantity of fertiliser applied from (200 kg

N :40 kg P2O5 :30 K2O)/ha to (25 kg N: 12 ½ kg P2O5 , 12 ½ kg K2O)/ha will

decrease the stock carrying capacity from 1.65 GLU/ha to 0.9 GLU/ha and therefore

produce a substantial decrease in the livestock gross margin. Reduced forage inputs,

the requirement for labour and interest on working capital will produce cost savings.

28. As for prescription 27.

29. Mow one third of land each year. This will result in potential loss of land for silage

production. The hay produced will be of lower energy value than silage and therefore

extra concentrate feed will be required.

30. No significant consequences for Income Forgone.

31. Do not graze with sheep from 1 September to 1 March. This will result in loss of

winter grazing for sheep and therefore incur extra costs associated with winter keep.

32. No significant consequences for Income Forgone.

33. No significant consequences for Income Forgone.

34. No significant consequences for Income Forgone

A.1.4 Tier 3 - Permanent grassland raised water level areas

Scheme Prescriptions

Observe prescriptions 1-18 plus additional prescriptions set out below:

35. Do not carry out mechanical operations between 31 March and 1 July.
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36. Apply no inorganic fertiliser and do not exceed your existing level of organic manure

provided it is only home produced cattle farmyard manure and does not exceed 25

tonnes per hectare (10 tones per acre) per annum. No slurry should be applied.

37. Graze only with cattle but do not graze before 20 May in any year.

38. Do not exceed a grazing density of one animal per 0.75 hectare (one animal per 1.8

acres) from 20 May to 8 July. Do not cause poaching, over-grazing or under-grazing.

39. Do not make silage. Unless traditionally the land has been used just for grazing each

year mow at least one third of the land (or mow one year in three) but not before 8 July.

Do not graze the land prior to laying it up.

40. Do not cut or top grass after 31 August.

41. Do not use herbicides to control creeping buttercup.

42. Water levels in ditches and rhynes must:

• From 1 May to 30 November be maintained at not more than 30 cm (12") below

mean field level and from 1 December to 30 April, maintained at not less than

mean field level so as to cause conditions of surface splashing.

43. To further the objective of conserving, enhancing or protecting landscape, wildlife and

historical features the Minister may specify different water level requirements.

44. Agreement holders must not pump below these levels which will be fixed by reference

to gauge boards set to Ordnance Datum Newlyn.

Agronomic Impact

35. A small amount of sward deterioration will result in a slight reduction in stocking

rate and the prohibition of inorganic and organic fertiliser will only permit a very low



202 Appendix: Chapter 2

stocking rate of 0.25 GLU/ha. This will result in an 80% reduction of livestock gross

margin. Reduced forage inputs, labour and interest on working capital will produce

cost savings.

36. As for prescription 35.

37. No significant consequences for Income Forgone.

38. No significant consequences for Income Forgone.

39. Hay can only be made after 8 July. This will result in a reduction in forage digestibility.

As a result extra feed will have to be purchased as feed barley.

40. No significant consequences for Income Forgone.

41. No significant consequences for Income Forgone.

42. Surface splash conditions have to be maintained between 1 December to 30 April. This

will result in a loss of winter grazing, and therefore incur extra costs associated with

winter keep. Even after drainage surface conditions remain too wet to permit grazing

before 20 May. In some years grazing cannot be carried out until early June. This

will result in the loss of early spring grazing and restrict the growing season. This

prescription will result in the replacement of agricultural grasses with less productive

native species.

43. No significant consequences for Income Forgone.

44. No significant consequences for Income Forgone
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Table A.1 Combined Results of Bayesian Hierarchical Models for Environmental Variables
in ESA Tiers 1 and 3. Models were fitted using the brms package in R with default weakly
informative priors. Gaussian models were used for Dissolved Oxygen, pH, Vertical Vegeta-
tion, Salinity, Water Temperature, Ditch Width, Emergent Vegetation Height, and Turbidity.
Beta models were used for Floating Cover and Shaded Area. All models included random
effects for site, year, and year:season interaction. Fixed effects show the contrast between
Tier 1 (reference level) and Tier 3. Estimates are presented with standard errors and 95%
credible intervals. SD parameters represent the standard deviation of random effects and
residuals. Phi, ZOI (Zero One Inflated), COI (Continuous One Inflated), and HU (Hurdle)
parameters are specific to beta and hurdle models.

Variable Parameter Estimate Std.

Error

Conf.

Low

Conf.

High

Dissolved

Oxygen

Intercept 145.66 12.10 121.66 170.00

Tier T3 -6.56 5.52 -

17.32

4.49

SD Site 10.49 2.34 6.96 15.97

SD Year 12.44 12.00 0.32 43.23

SD Year:Season 23.16 8.55 12.11 45.15

SD Residual 12.47 0.88 10.82 14.23

pH Intercept 6.37 1.24 3.99 8.94

Tier T3 -0.30 0.17 -0.63 0.04

SD Site 0.29 0.08 0.17 0.49

SD Year 2.30 1.28 0.71 5.55

SD Year:Season 0.41 0.41 0.07 1.59

SD Residual 0.60 0.05 0.50 0.69

Floating

Cover

Intercept -0.02 0.80 -1.62 1.66

Continued on next page
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Variable Parameter Estimate Std.

Error

Conf.

Low

Conf.

High

Phi Intercept 0.68 0.16 0.37 1.00

ZOI Intercept 0.19 0.17 -0.14 0.52

COI Intercept -2.73 0.47 -3.73 -1.89

Tier T3 -0.97 0.33 -1.67 -0.35

Phi Tier T3 0.85 0.22 0.42 1.28

ZOI Tier T3 -0.19 0.23 -0.64 0.25

COI Tier T3 -0.58 0.75 -2.08 0.86

SD Site 0.49 0.19 0.15 0.91

SD Year 1.04 0.89 0.05 3.43

SD Year:Season 0.69 0.53 0.07 2.09

Vertical

Vegetation

Intercept 4.44 0.44 3.58 5.29

HU Intercept -0.58 0.17 -0.92 -0.25

Tier T3 0.03 0.09 -0.15 0.20

HU Tier T3 -1.10 0.27 -1.64 -0.57

SD Site 0.14 0.04 0.07 0.24

SD Year 0.53 0.60 0.03 2.15

SD Year:Season 0.20 0.15 0.05 0.61

SD Residual 0.34 0.02 0.31 0.38

Salinity Intercept 0.44 0.11 0.25 0.66

Tier T3 -0.01 0.07 -0.15 0.12

SD Site 0.13 0.03 0.09 0.20

SD Year 0.11 0.19 0.00 0.61

Continued on next page
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Variable Parameter Estimate Std.

Error

Conf.

Low

Conf.

High

SD Year:Season 0.02 0.02 0.00 0.06

SD Residual 0.08 0.01 0.07 0.09

Water

Temperature

Intercept 16.66 1.56 13.45 19.70

Tier T3 0.86 0.72 -0.61 2.24

SD Site 1.38 0.31 0.91 2.09

SD Year 1.61 1.59 0.05 5.67

SD Year:Season 2.90 1.06 1.54 5.62

SD Residual 1.56 0.11 1.34 1.78

Shaded Area Intercept -0.36 0.59 -1.44 0.79

Phi Intercept 0.85 0.11 0.63 1.05

ZOI Intercept -2.63 0.33 -3.34 -2.03

COI Intercept 0.14 0.66 -1.17 1.45

Tier T3 -0.30 0.35 -0.98 0.39

Phi Tier T3 0.47 0.16 0.16 0.77

ZOI Tier T3 1.04 0.38 0.31 1.83

COI Tier T3 -3.53 1.23 -6.26 -1.38

SD Site 0.63 0.15 0.41 0.98

SD Year 0.62 0.72 0.03 2.59

SD Year:Season 0.24 0.21 0.01 0.76

Ditch Width Intercept 43.22 7.89 27.36 58.69

Tier T3 8.42 7.62 -6.85 23.49

SD Site 14.64 3.28 9.62 22.44

Continued on next page
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Variable Parameter Estimate Std.

Error

Conf.

Low

Conf.

High

SD Year 7.85 8.17 0.29 29.52

SD Year:Season 3.39 3.09 0.12 11.30

SD Residual 20.58 1.21 18.19 22.96

Emergent

Vegetation

Height

Intercept 3.37 0.63 1.75 4.19

HU Intercept 0.96 0.18 0.61 1.33

Tier T3 -0.28 0.13 -0.56 -0.02

HU Tier T3 -1.22 0.24 -1.70 -0.75

SD Site 0.18 0.08 0.03 0.36

SD Year 0.49 0.74 0.01 2.61

SD Year:Season 0.37 0.23 0.14 0.98

SD Residual 0.43 0.03 0.37 0.49

Turbidity Intercept 0.57 0.16 0.28 0.86

Tier T3 -0.02 0.08 -0.19 0.15

SD Site 0.16 0.04 0.11 0.25

SD Year 0.16 0.26 0.01 0.88

SD Year:Season 0.02 0.02 0.00 0.07

SD Residual 0.10 0.01 0.08 0.11
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Table A.2 Detailed Variance Partitioning results for taxa across different environmental
components, including Chemical, Vegetation, Structural, and Random Effects (spatial, season,
year). Values represent the proportion of variance explained by each component for the
respective taxa.

Taxa Chemical Vegetation Structural Random: plot_id Random: season Random: year

An. maculipennis 0.59 0.26 0.09 0.02 0.02 0.02

An. claviger 0.49 0.06 0.25 0.17 0.01 0.02

Cx. pipiens 0.11 0.05 0.02 0.80 0.01 0.00

Cs. annulata 0.09 0.03 0.01 0.85 0.01 0.01

Corixidae 0.18 0.11 0.03 0.12 0.05 0.51

Coleoptera larvae 0.17 0.28 0.06 0.28 0.03 0.18

Coleoptera 0.15 0.14 0.06 0.30 0.11 0.24

Zygoptera larvae 0.18 0.12 0.11 0.31 0.09 0.19

Anisoptera larvae 0.36 0.25 0.19 0.10 0.04 0.05

Ilyocoris 0.39 0.27 0.20 0.06 0.04 0.04

Nepa cinerea 0.41 0.31 0.16 0.04 0.04 0.05

Gammaridae 0.32 0.26 0.22 0.13 0.05 0.03
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Fig. A.1 Fitted model convergence metrics for the Beta, Omega and Gamma parameters of
the HMSC model. Effective Sample Size (ESS) over 1000 indicate good fit, while Potential
Scale Reduction Factors (PSRF) values of under 1.1 (though ideally 1.01) are considered
converged for MCMC sampling.
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Table B.1 Species that were grouped together to form morphologically similar distributions
or species groups.

Species New Group

Aedes annulipes Aedes annulipes/cantans
Aedes cantans Aedes annulipes/cantans
Aedes cinerus Aedes cinerus/geminus
Aedes geminus Aedes cinerus/geminus
Aedes detritus Aedes detritus/coluzzi
Aedes coluzzi Aedes detritus/coluzzi
Culex perexiguuus Culex perexiguss/univittatus
Culex univittatus Culex perexiguss/univittatus
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Table B.2 This table provides a comprehensive overview of the predictor variables employed in the joint species distribution models
(JSDMs) and multi-species distribution models (MSDMs) for European mosquito species. It includes climatic, topographic, land
cover, and anthropogenic variables, detailing their descriptions, data sources, original temporal and spatial resolutions, and the
transformations applied to standardize the data for analysis. All variables were resampled to match the study’s focal resolutions (1
km, 2 km, 5 km, and 10 km) using the EPSG:3035 coordinate reference system, which is optimised for spatial accuracy in Europe.
The diverse set of predictors was selected to capture the range of environmental and human-influenced factors that potentially impact
mosquito habitat suitability and distribution across the continent.

Predictor Variable Description Source Original
Temporal
Resolution

Original Spatial
Resolution

Transformation

Mean
Temperature

Annual mean temperature
(BIO_01)

CHELSA
Climate Data [1]

1979-2013 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Coldest Quarter
Temperature

Mean temperature of coldest
quarter (BIO_11)

CHELSA
Climate Data [1]

1979-2013 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Annual
Precipitation

Annual precipitation sum
(BIO_12)

CHELSA
Climate Data [1]

1979-2013 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Precipitation
Warmest Quarter

Precipitation of warmest
quarter (BIO_18)

CHELSA
Climate Data [1]

1979-2013 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Growing Degree
Days 10 °C

Growing degree days above
10°C (GDD10)

CHELSA
Climate Data [1]

1979-2013
climatology

30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Evergreen or
Deciduous Trees

Percent cover of evergreen
and deciduous trees
(CLASS_1)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035
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Predictor Variable Description Source Original

Temporal
Resolution

Original Spatial
Resolution

Transformation

Evergreen Trees Percent cover of evergreen
trees (CLASS_2)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Deciduous Trees Percent cover of deciduous
trees (CLASS_3)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Mixed Trees Percent cover of mixed trees
(CLASS_4)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Shrubs Percent cover of shrubs
(CLASS_5)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Agriculture Percent cover of agriculture
(CLASS_7)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Wetlands Percent cover of wetlands
(CLASS_8)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Urban Percent cover of urban areas
(CLASS_9)

EarthEnv Land
Cover [2]

2001-2005 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Elevation Elevation above sea level EarthEnv
Topography [3]

Static 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035
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Predictor Variable Description Source Original
Temporal
Resolution

Original Spatial
Resolution

Transformation

Habitat
Heterogeneity
(Homogeneity)

Measure of habitat
heterogeneity

EarthEnv Habitat
Heterogeneity [4]

Static 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Habitat
Heterogeneity
(Mean)

Mean habitat heterogeneity EarthEnv Habitat
Heterogeneity [4]

Static 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035

Livestock Density Density of livestock,
aggregated from mammalian
species (cattle, pigs, sheep,
goats)

Global Livestock
Data [5]

2010 3 arc-minutes
(∼5 km at
equator)

Bilinear
interpolation to
EPSG:3035

Population
Density

Human population density Gridded
Population of the
World v4 [6]

2010 30 arc-seconds
(∼1 km at
equator)

Bilinear
interpolation to
EPSG:3035
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Data Sources:

1. Karger, D.N., et al. (2017). Climatologies at high resolution for the earth’s land surface

areas. Scientific Data, 4, 170122.

2. Tuanmu, M.N. & Jetz, W. (2014). A global 1-km consensus land-cover product for

biodiversity and ecosystem modelling. Global Ecology and Biogeography, 23(9),

1031-1045.

3. Amatulli, G., et al. (2018). A suite of global, cross-scale topographic variables for

environmental and biodiversity modeling. Scientific Data, 5, 180040.

4. Tuanmu, M.N. & Jetz, W. (2015). A global, remote sensing-based characterization

of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global

Ecology and Biogeography, 24(11), 1329-1339.

5. Gilbert, M., et al. (2018). Global distribution data for cattle, buffaloes, horses, sheep,

goats, pigs, chickens and ducks in 2010. Scientific Data, 5, 180227.

6. Center for International Earth Science Information Network - CIESIN - Columbia

University. (2018). Gridded Population of the World, Version 4 (GPWv4): Population

Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications

Center (SEDAC).
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(a) Lambda Distribution (b) Alpha Distribution

Fig. B.1 Distributions that hyperparameters were randomly drawn from for Lambda and
Alpha hyperparameters during elastic net regularisation
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Table B.3 AUC (Area Under the Curve) values for different mosquito species across various
spatial resolutions. AUC measures the overall predictive accuracy of the JSDM and MSDM
models, with higher values indicating better performance.

JSDM MSDM

Species 1 Km 2 Km 5 Km 10 Km 1 Km 2 Km 5 Km 10 Km

Aedes albopictus 0.71 0.72 0.72 0.69 0.73 0.71 0.73 0.70
Aedes annulipes/cantans 0.70 0.75 0.81 0.68 0.75 0.65 0.66 0.75
Aedes caspius 0.59 0.65 0.63 0.61 0.68 0.64 0.63 0.65
Aedes cinereus/geminus 0.72 0.78 0.82 0.68 0.67 0.61 0.77 0.70
Aedes detritus/coluzzi 0.64 0.65 0.64 0.70 0.62 0.63 0.65 0.64
Aedes geniculatus 0.62 0.58 0.62 0.62 0.60 0.59 0.64 0.60
Aedes japonicus 0.75 0.80 0.76 0.77 0.73 0.77 0.76 0.76
Aedes sticticus 0.67 0.69 0.65 0.60 0.66 0.61 0.71 0.76
Aedes vexans 0.61 0.59 0.54 0.61 0.60 0.55 0.57 0.60
Anopheles atroparvus 0.65 0.79 0.71 0.63 0.66 0.73 0.77 0.64
Anopheles claviger 0.68 0.71 0.70 0.65 0.70 0.74 0.67 0.65
Anopheles labranchiae 0.96 0.96 0.96 0.92 0.95 0.96 0.96 0.90
Anopheles maculipennis 0.59 0.63 0.57 0.63 0.61 0.63 0.62 0.64
Anopheles messeae 0.70 0.75 0.67 0.62 0.75 0.75 0.66 0.81
Anopheles plumbeus 0.60 0.58 0.61 0.64 0.57 0.62 0.59 0.67
Anopheles sacharovi 0.65 0.75 0.85 0.75 0.70 0.67 0.72 0.74
Coquillettidia richiardii 0.63 0.59 0.66 0.69 0.70 0.68 0.66 0.78
Culex hortensis hortensis 0.70 0.65 0.68 0.68 0.67 0.62 0.71 0.62
Culex modestus 0.60 0.63 0.62 0.65 0.63 0.60 0.62 0.62
Culex perexiguus/univittatus 0.89 0.90 0.91 0.89 0.92 0.89 0.91 0.86
Culex pipiens 0.53 0.57 0.55 0.58 0.54 0.56 0.54 0.56
Culex territans 0.65 0.68 0.78 0.77 0.75 0.67 0.85 0.72
Culex theileri 0.78 0.89 0.75 0.77 0.83 0.81 0.79 0.79
Culex torrentium 0.75 0.75 0.77 0.80 0.78 0.80 0.78 0.82
Culiseta annulata 0.67 0.70 0.77 0.68 0.68 0.69 0.73 0.62
Culiseta longiareolata 0.70 0.76 0.63 0.68 0.75 0.69 0.75 0.66
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Table B.4 TSS (True Skill Statistic) values for different mosquito species across various
spatial resolutions. TSS evaluates model performance based on sensitivity and specificity,
with higher values indicating better predictive power.

JSDM MSDM

Species 1 Km 2 Km 5 Km 10 Km 1 Km 2 Km 5 Km 10 Km

Aedes albopictus 0.35 0.37 0.39 0.36 0.39 0.35 0.40 0.35
Aedes annulipes/cantans 0.30 0.49 0.49 0.29 0.37 0.24 0.26 0.16
Aedes caspius 0.21 0.26 0.25 0.25 0.29 0.25 0.26 0.30
Aedes cinereus/geminus 0.37 0.49 0.60 0.39 0.32 0.29 0.45 0.38
Aedes detritus/coluzzi 0.25 0.29 0.26 0.36 0.25 0.25 0.29 0.18
Aedes geniculatus 0.28 0.16 0.27 0.27 0.19 0.20 0.26 0.26
Aedes japonicus 0.45 0.50 0.47 0.49 0.38 0.47 0.45 0.47
Aedes sticticus 0.21 0.32 0.29 0.15 0.21 0.17 0.37 0.49
Aedes vexans 0.21 0.17 0.14 0.28 0.20 0.13 0.16 0.24
Anopheles atroparvus 0.29 0.41 0.38 0.18 0.23 0.45 0.44 0.10
Anopheles claviger 0.36 0.40 0.38 0.32 0.36 0.43 0.35 0.29
Anopheles labranchiae 0.89 0.87 0.88 0.84 0.87 0.88 0.88 0.77
Anopheles maculipennis 0.17 0.23 0.18 0.26 0.22 0.25 0.24 0.30
Anopheles messeae 0.34 0.38 0.37 0.31 0.51 0.44 0.33 0.54
Anopheles plumbeus 0.25 0.18 0.21 0.36 0.16 0.21 0.22 0.36
Anopheles sacharovi 0.25 0.41 0.67 0.45 0.39 0.36 0.38 0.35
Coquillettidia richiardii 0.24 0.23 0.31 0.34 0.37 0.31 0.33 0.61
Culex hortensis hortensis 0.33 0.25 0.33 0.36 0.30 0.26 0.42 0.25
Culex modestus 0.19 0.30 0.25 0.28 0.27 0.25 0.26 0.20
Culex perexiguus/univittatus 0.73 0.74 0.76 0.70 0.72 0.68 0.73 0.76
Culex pipiens 0.09 0.13 0.12 0.20 0.10 0.13 0.09 0.15
Culex territans 0.27 0.27 0.57 0.58 0.58 0.35 0.65 0.44
Culex theileri 0.57 0.73 0.52 0.54 0.65 0.59 0.61 0.56
Culex torrentium 0.41 0.45 0.43 0.52 0.48 0.50 0.49 0.55
Culiseta annulata 0.36 0.38 0.53 0.35 0.36 0.36 0.46 0.26
Culiseta longiareolata 0.37 0.47 0.27 0.38 0.49 0.33 0.47 0.32
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Table B.5 This table presents a detailed breakdown of variance explained for each mosquito
species across different model types (Joint Species Distribution Models [JSDMs] and Multi-
Species Distribution Models [MSDMs]) and spatial resolutions (1 km, 2 km, 5 km, and 10
km). The variance is decomposed into three primary components: environmental, spatial,
and biotic. For each species, the table reports the total variance explained and the proportion
attributed to each component. Species are listed alphabetically, and values are presented as
percentages with associated variance in estimate.

Environmental Biotic Spatial

Species JSDM MSDM JSDM MSDM JSDM MSDM
Aedes albopictus 0.273 (±0.041) 0.182 (±0.043) 0.088 (±0.022) 0.017 (±0.009) 0.089 (±0.042) 0.225 (±0.046)

Aedes annulipes/cantans 0.302 (±0.078) 0.593 (±0.071) 0.182 (±0.066) 0.015 (±0.012) 0.231 (±0.027) 0.111 (±0.062)
Aedes caspius 0.081 (±0.076) 0.193 (±0.009) 0.287 (±0.053) 0.012 (±0.008) 0.253 (±0.095) 0.400 (±0.009)

Aedes cinereus/geminus 0.439 (±0.03) 0.501 (±0.109) 0.048 (±0.034) 0.019 (±0.006) 0.19 (±0.031) 0.159 (±0.094)
Aedes detritus/coluzzi 0.53 (±0.025) 0.482 (±0.04) 0.1 (±0.036) 0.004 (±0.007) 0.043 (±0.04) 0.183 (±0.03)

Aedes geniculatus 0.268 (±0.125) 0.457 (±0.057) 0.132 (±0.074) 0.038 (±0.024) 0.264 (±0.064) 0.171 (±0.071)
Aedes japonicus 0.495 (±0.032) 0.484 (±0.04) 0.037 (±0.018) 0.001 (±0.001) 0.038 (±0.017) 0.075 (±0.03)

Aedes sticticus 0.099 (±0.068) 0.058 (±0.035) 0.128 (±0.038) 0.029 (±0.01) 0.491 (±0.074) 0.631 (±0.041)
Aedes vexans 0.116 (±0.058) 0.170 (±0.025) 0.260 (±0.077) 0.009 (±0.005) 0.217 (±0.086) 0.400 (±0.009)

Anopheles atroparvus 0.369 (±0.091) 0.536 (±0.042) 0.273 (±0.075) 0.017 (±0.012) 0.079 (±0.049) 0.172 (±0.044)
Anopheles claviger 0.114 (±0.062) 0.193 (±0.009) 0.334 (±0.025) 0.006 (±0.004) 0.141 (±0.066) 0.362 (±0.022)

Anopheles labranchiae 0.628 (±0.038) 0.632 (±0.043) 0.039 (±0.013) 0.005 (±0.003) 0.032 (±0.028) 0.067 (±0.043)
Anopheles maculipennis 0.07 (±0.023) 0.202 (±0.013) 0.259 (±0.038) 0.004 (±0.003) 0.187 (±0.048) 0.279 (±0.023)

Anopheles messeae 0.496 (±0.024) 0.581 (±0.017) 0.145 (±0.02) 0.006 (±0.005) 0.070 (±0.036) 0.127 (±0.013)
Anopheles plumbeus 0.127 (±0.092) 0.161 (±0.045) 0.275 (±0.021) 0.016 (±0.006) 0.239 (±0.075) 0.454 (±0.057)
Anopheles sacharovi 0.449 (±0.065) 0.476 (±0.055) 0.143 (±0.054) 0.012 (±0.005) 0.129 (±0.043) 0.239 (±0.057)

Coquillettidia richiardii 0.133 (±0.105) 0.162 (±0.068) 0.297 (±0.017) 0.014 (±0.016) 0.24 (±0.112) 0.484 (±0.07)
Culex hortensis hortensis 0.465 (±0.053) 0.425 (±0.142) 0.085 (±0.076) 0.005 (±0.004) 0.095 (±0.043) 0.211 (±0.125)

Culex modestus 0.284 (±0.016) 0.489 (±0.138) 0.138 (±0.037) 0.012 (±0.008) 0.266 (±0.027) 0.19 (±0.129)
Culex perexiguus/univittatus 0.51 (±0.095) 0.642 (±0.044) 0.129 (±0.032) 0.036 (±0.039) 0.075 (±0.076) 0.038 (±0.017)

Culex pipiens 0.014 (±0.003) 0.065 (±0.004) 0.172 (±0.015) 0.002 (±0.002) 0.021 (±0.013) 0.039 (±0.009)
Culex territans 0.396 (±0.096) 0.577 (±0.077) 0.128 (±0.07) 0.015 (±0.008) 0.176 (±0.134) 0.11 (±0.067)

Culex theileri 0.504 (±0.071) 0.496 (±0.08) 0.016 (±0.014) 0.011 (±0.006) 0.129 (±0.055) 0.141 (±0.065)
Culex torrentium 0.628 (±0.022) 0.626 (±0.015) 0.015 (±0.019) 0.008 (±0.002) 0.017 (±0.009) 0.027 (±0.011)

Culiseta annulata 0.223 (±0.051) 0.11 (±0.04) 0.276 (±0.015) 0.016 (±0.011) 0.093 (±0.055) 0.44 (±0.03)
Culiseta longiareolata 0.299 (±0.074) 0.184 (±0.135) 0.137 (±0.091) 0.025 (±0.015) 0.222 (±0.073) 0.444 (±0.116)
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Fig. B.2 Predicted probability of significant predictors for mosquito species distribution as a
function of species prevalence. Median predictions (lines) and 95% credible intervals (shaded
regions) illustrate how environmental variable significance varies across species prevalence
and different ecological resolutions.
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Fig. B.3 Predictions for Aedes albopictus distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.4 Predictions for Aedes annulipes/cantans distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.5 Predictions for Aedes caspius distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.6 Predictions for Aedes cinereus/geminus distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.7 Predictions for Aedes detritus/coluzzi distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.8 Predictions for Aedes geniculatus distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.9 Predictions for Aedes japonicus distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.10 Predictions for Aedes sticticus distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.11 Predictions for Aedes vexans distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.12 Predictions for Anopheles atroparvus distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.13 Predictions for Anopheles claviger distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.14 Predictions for Anopheles labranchiae distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.15 Predictions for Anopheles maculipennis distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.16 Predictions for Anopheles messeae distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.17 Predictions for Anopheles plumbeus distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.18 Predictions for Anopheles sacharovi distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.19 Predictions for Coquillettidia richiardii distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.20 Predictions for Culex hortensis hortensis distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Fig. B.21 Predictions for Culex modestus distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.22 Predictions for Culex perexiguus/univittatus distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.



239

Fig. B.23 Predictions for Culex pipiens distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.24 Predictions for Culex territans distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.25 Predictions for Culex theileri distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.



242 Appendix: Chapter 3

Fig. B.26 Predictions for Culex torrentium distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.27 Predictions for Culiseta annulata distribution across the European region. These
maps show 5km resolution predictions from the Joint Species Distribution Model (JSDM),
including uncertainty estimates generated from bootstrap predictions.
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Fig. B.28 Predictions for Culiseta longiareolata distribution across the European region.
These maps show 5km resolution predictions from the Joint Species Distribution Model
(JSDM), including uncertainty estimates generated from bootstrap predictions.
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Table C.1 Summary of mosquito species traits used for binary trait inference. The table
includes various traits such as habitat, water source, feeding preferences, and behaviour,
which were inferred from published data sources. The references are listed at the bottom of
the table, corresponding to the numerical reference identifiers in the last column.

Species Trait Value(s) Reference

Aedes albopictus Water Source Artifical, Natural 1
Aedes albopictus Water Permanence Temporary 1
Aedes albopictus Water Type Freshwater 1
Aedes albopictus Habitat Forest 1
Aedes albopictus Vegetation Density High 1
Aedes albopictus Main Overwintering

Stage
Larvae, Eggs 1

Aedes albopictus Primarily Anthrophillic Yes 2
Aedes albopictus Primarily

Mammalophillic
Yes 1

Aedes albopictus Primarily
Ornithophillic

Yes 1

Aedes albopictus Day Yes 1
Aedes albopictus Crepuscular No 1
Aedes albopictus Night No 1
Aedes albopictus Voltinism Multivoltine 1

Aedes albopictus Vector Yes 1
Aedes
annulipes/cantans

Water Source Natural 1
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Species Trait Value(s) Reference

Aedes
annulipes/cantans

Water Permanence Semi-permanent 1

Aedes
annulipes/cantans

Water Type Freshwater 1

Aedes
annulipes/cantans

Habitat Forest, Rural 1

Aedes
annulipes/cantans

Vegetation Density High 1

Aedes
annulipes/cantans

Main Overwintering
Stage

Eggs 1

Aedes
annulipes/cantans

Primarily Anthrophillic Yes 3

Aedes
annulipes/cantans

Primarily
Mammalophillic

Yes 4

Aedes
annulipes/cantans

Primarily
Ornithophillic

Yes 4

Aedes
annulipes/cantans

Day Yes 1

Aedes
annulipes/cantans

Crepuscular Yes 3

Aedes
annulipes/cantans

Night No 1

Aedes
annulipes/cantans

Voltinism Univoltine 1

Aedes
annulipes/cantans

Vector No 4

Aedes caspius Water Source Natural 1
Aedes caspius Water Permanence Temporary,

Permanent
1

Aedes caspius Water Type Freshwater,
Brackish, Saline

1

Aedes caspius Habitat Coastal, Rural 1
Aedes caspius Vegetation Density Medium 3
Aedes caspius Main Overwintering

Stage
Eggs 1

Aedes caspius Primarily Anthrophillic Yes 1
Aedes caspius Primarily

Mammalophillic
Yes 1

Aedes caspius Primarily
Ornithophillic

No 5

Aedes caspius Day Yes 6
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Species Trait Value(s) Reference

Aedes caspius Crepuscular Yes 6
Aedes caspius Night Yes 6
Aedes caspius Voltinism Univoltine 1
Aedes caspius Vector Yes 1

Aedes cinereus/geminus Water Source Natural 1
Aedes cinereus/geminus Water Permanence Semi-permanent 1
Aedes cinereus/geminus Water Type Freshwater 1
Aedes cinereus/geminus Habitat Forest,

Floodplains,
Sedge marshes,
Sphagnum bogs

1

Aedes cinereus/geminus Vegetation Density High 1
Aedes cinereus/geminus Main Overwintering

Stage
Eggs 1

Aedes cinereus/geminus Primarily Anthrophillic Yes 1
Aedes cinereus/geminus Primarily

Mammalophillic
Yes 1

Aedes cinereus/geminus Primarily
Ornithophillic

Yes 7

Aedes cinereus/geminus Day No 1
Aedes cinereus/geminus Crepuscular Yes 1
Aedes cinereus/geminus Night Yes 3
Aedes cinereus/geminus Voltinism Bivoltine (at least

two generations
per year)

1

Aedes cinereus/geminus Vector Yes 1

Aedes detritus/coluzzi Water Source Natural 1
Aedes detritus/coluzzi Water Permanence Semi-permanent 1
Aedes detritus/coluzzi Water Type Brackish, Saline 1
Aedes detritus/coluzzi Habitat Coastal 1

Aedes detritus/coluzzi Vegetation Density Low 1
Aedes detritus/coluzzi Main Overwintering

Stage
Eggs, Larvae 1

Aedes detritus/coluzzi Primarily Anthrophillic Yes 1
Aedes detritus/coluzzi Primarily

Mammalophillic
Yes 3

Aedes detritus/coluzzi Primarily
Ornithophillic

Yes 3

Aedes detritus/coluzzi Day No 3
Aedes detritus/coluzzi Crepuscular Yes 1
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Species Trait Value(s) Reference

Aedes detritus/coluzzi Night No 3
Aedes detritus/coluzzi Voltinism Multivoltine 1
Aedes detritus/coluzzi Vector Yes 3

Aedes geniculatus Water Source Natural 1
Aedes geniculatus Water Permanence Temporary 1
Aedes geniculatus Water Type Freshwater 1
Aedes geniculatus Habitat Forest 1
Aedes geniculatus Vegetation Density High 1

Aedes geniculatus Main Overwintering
Stage

Eggs, Larvae 1

Aedes geniculatus Primarily Anthrophillic Yes 1
Aedes geniculatus Primarily

Mammalophillic
Yes 3

Aedes geniculatus Primarily
Ornithophillic

No 3

Aedes geniculatus Day Yes 1
Aedes geniculatus Crepuscular Yes 1
Aedes geniculatus Night No 1
Aedes geniculatus Voltinism Multivoltine 3
Aedes geniculatus Vector No 8

Aedes japonicus Water Source Natural, Artificial 1
Aedes japonicus Water Permanence Temporary 1
Aedes japonicus Water Type Freshwater 1
Aedes japonicus Habitat Forest, Urban 1
Aedes japonicus Vegetation Density High 1
Aedes japonicus Main Overwintering

Stage
Eggs, Larvae 1

Aedes japonicus Primarily Anthrophillic No 1
Aedes japonicus Primarily

Mammalophillic
Yes 1

Aedes japonicus Primarily
Ornithophillic

Yes 1

Aedes japonicus Day Yes 1
Aedes japonicus Crepuscular Yes 1
Aedes japonicus Night No 1
Aedes japonicus Voltinism Multivoltine 1
Aedes japonicus Vector Yes 1

Aedes sticticus Water Source Natural 1
Aedes sticticus Water Permanence Temporary 1
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Species Trait Value(s) Reference

Aedes sticticus Water Type Freshwater 1
Aedes sticticus Habitat Forest, Rural 1
Aedes sticticus Vegetation Density High 1
Aedes sticticus Main Overwintering

Stage
Eggs 1

Aedes sticticus Primarily Anthrophillic Yes 1
Aedes sticticus Primarily

Mammalophillic
Yes 9

Aedes sticticus Primarily
Ornithophillic

No 9

Aedes sticticus Day Yes 1
Aedes sticticus Crepuscular Yes 1
Aedes sticticus Night No 1
Aedes sticticus Voltinism Multivoltine 10
Aedes sticticus Vector Yes 11

Aedes vexans Water Source Natural 12
Aedes vexans Water Permanence Temporary 12
Aedes vexans Water Type Freshwater 12
Aedes vexans Habitat Rural 12
Aedes vexans Vegetation Density High 12
Aedes vexans Main Overwintering

Stage
Eggs 12

Aedes vexans Primarily Anthrophillic Yes 12
Aedes vexans Primarily

Mammalophillic
Yes 12

Aedes vexans Primarily
Ornithophillic

No 12

Aedes vexans Day No 13
Aedes vexans Crepuscular No 13
Aedes vexans Night Yes 13
Aedes vexans Voltinism Multivoltine 12
Aedes vexans Vector Yes 12

Anopheles atroparvus Water Source Natural, Artificial 12
Anopheles atroparvus Water Permanence Semi-permanent,

Permanent
12

Anopheles atroparvus Water Type Freshwater,
Brackish

12

Anopheles atroparvus Habitat Coastal, Rural 12
Anopheles atroparvus Vegetation Density High 12
Anopheles atroparvus Main Overwintering

Stage
Adults 12
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Species Trait Value(s) Reference

Anopheles atroparvus Primarily Anthrophillic No 12
Anopheles atroparvus Primarily

Mammalophillic
Yes 12

Anopheles atroparvus Primarily
Ornithophillic

No 12

Anopheles atroparvus Day No 12
Anopheles atroparvus Crepuscular Yes 12
Anopheles atroparvus Night Yes 12
Anopheles atroparvus Voltinism Multivoltine 3
Anopheles atroparvus Vector Yes 12

Anopheles claviger Water Source Natural, Artificial 12
Anopheles claviger Water Permanence Permanent,

Semi-permanent
12

Anopheles claviger Water Type Freshwater 12
Anopheles claviger Habitat Forest, Rural 12
Anopheles claviger Vegetation Density High 12
Anopheles claviger Main Overwintering

Stage
Larvae 3

Anopheles claviger Primarily Anthrophillic No 12
Anopheles claviger Primarily

Mammalophillic
Yes 14

Anopheles claviger Primarily
Ornithophillic

No 12

Anopheles claviger Day Yes 3
Anopheles claviger Crepuscular No 3
Anopheles claviger Night No 3
Anopheles claviger Voltinism Multivoltine 12
Anopheles claviger Vector Yes 12

Anopheles labranchiae Water Source Natural, Artificial 12
Anopheles labranchiae Water Permanence Permanent,

Semi-permanent
12

Anopheles labranchiae Water Type Freshwater,
Brackish

12

Anopheles labranchiae Habitat Coastal, Rural 12
Anopheles labranchiae Vegetation Density High 12
Anopheles labranchiae Main Overwintering

Stage
Adults 12

Anopheles labranchiae Primarily Anthrophillic Yes 12
Anopheles labranchiae Primarily

Mammalophillic
Yes 12
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Species Trait Value(s) Reference

Anopheles labranchiae Primarily
Ornithophillic

No 12

Anopheles labranchiae Day No 12
Anopheles labranchiae Crepuscular Yes 8
Anopheles labranchiae Night Yes 12
Anopheles labranchiae Voltinism Multivoltine 8
Anopheles labranchiae Vector Yes 12

Anopheles
maculipennis

Water Source Natural, Artificial 12

Anopheles
maculipennis

Water Permanence Permanent,
Semi-permanent

12

Anopheles
maculipennis

Water Type Freshwater 15

Anopheles
maculipennis

Habitat Rural, Mountain 15

Anopheles
maculipennis

Vegetation Density Variable 15

Anopheles
maculipennis

Main Overwintering
Stage

Adults 3

Anopheles
maculipennis

Primarily Anthrophillic No 15

Anopheles
maculipennis

Primarily
Mammalophillic

Yes 15

Anopheles
maculipennis

Primarily
Ornithophillic

No 15

Anopheles
maculipennis

Day No 14

Anopheles
maculipennis

Crepuscular Yes 14

Anopheles
maculipennis

Night Yes 14

Anopheles
maculipennis

Voltinism Multivoltine 3

Anopheles
maculipennis

Vector Yes 15

Anopheles messeae Water Source Natural 15
Anopheles messeae Water Permanence Permanent,

Semi-permanent
15

Anopheles messeae Water Type Freshwater 15
Anopheles messeae Habitat Rural 15
Anopheles messeae Vegetation Density High 15
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Species Trait Value(s) Reference

Anopheles messeae Main Overwintering
Stage

Adults 15

Anopheles messeae Primarily Anthrophillic No 15
Anopheles messeae Primarily

Mammalophillic
Yes 15

Anopheles messeae Primarily
Ornithophillic

No 15

Anopheles messeae Day Yes 3
Anopheles messeae Crepuscular No 3
Anopheles messeae Night No 3
Anopheles messeae Voltinism Multivoltine 3
Anopheles messeae Vector Yes 15

Anopheles plumbeus Water Source Natural, Artificial 15
Anopheles plumbeus Water Permanence Temporary 15
Anopheles plumbeus Water Type Freshwater 15
Anopheles plumbeus Habitat Forest, Rural,

Urban
15

Anopheles plumbeus Vegetation Density High 15
Anopheles plumbeus Main Overwintering

Stage
Eggs, Larvae 15

Anopheles plumbeus Primarily Anthrophillic Yes 12
Anopheles plumbeus Primarily

Mammalophillic
Yes 3

Anopheles plumbeus Primarily
Ornithophillic

No 12

Anopheles plumbeus Day Yes 15
Anopheles plumbeus Crepuscular Yes 15
Anopheles plumbeus Night Yes 8
Anopheles plumbeus Voltinism Multivoltine 3
Anopheles plumbeus Vector Yes 15

Anopheles sacharovi Water Source Natural, Artificial 15
Anopheles sacharovi Water Permanence Permanent,

Semi-permanent
15

Anopheles sacharovi Water Type Freshwater,
Brackish

15

Anopheles sacharovi Habitat Coastal, Rural 15
Anopheles sacharovi Vegetation Density High 15
Anopheles sacharovi Main Overwintering

Stage
Adults 15

Anopheles sacharovi Primarily Anthrophillic Yes 15
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Species Trait Value(s) Reference

Anopheles sacharovi Primarily
Mammalophillic

Yes 15

Anopheles sacharovi Primarily
Ornithophillic

No 15

Anopheles sacharovi Day Yes 15
Anopheles sacharovi Crepuscular Yes 8
Anopheles sacharovi Night Yes 15
Anopheles sacharovi Voltinism Multivoltine 15
Anopheles sacharovi Vector Yes 15

Coquillettidia richiardii Water Source Natural 15
Coquillettidia richiardii Water Permanence Permanent 15
Coquillettidia richiardii Water Type Freshwater,

Brackish
15

Coquillettidia richiardii Habitat Rural 15
Coquillettidia richiardii Vegetation Density High 15
Coquillettidia richiardii Main Overwintering

Stage
Larvae 3

Coquillettidia richiardii Primarily Anthrophillic Yes 3
Coquillettidia richiardii Primarily

Mammalophillic
Yes 3

Coquillettidia richiardii Primarily
Ornithophillic

No 14

Coquillettidia richiardii Day No 3
Coquillettidia richiardii Crepuscular Yes 3
Coquillettidia richiardii Night No 3
Coquillettidia richiardii Voltinism Univoltine 3
Coquillettidia richiardii Vector Yes 15

Culex hortensis
hortensis

Water Source Natural, Artificial 15

Culex hortensis
hortensis

Water Permanence Permanent,
Temporary

15

Culex hortensis
hortensis

Water Type Freshwater 15

Culex hortensis
hortensis

Habitat Rural, Urban 15

Culex hortensis
hortensis

Vegetation Density Variable 15

Culex hortensis
hortensis

Main Overwintering
Stage

Adults 15

Culex hortensis
hortensis

Primarily Anthrophillic No 15
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Species Trait Value(s) Reference

Culex hortensis
hortensis

Primarily
Mammalophillic

Yes 14

Culex hortensis
hortensis

Primarily
Ornithophillic

Yes 14

Culex hortensis
hortensis

Day No 15

Culex hortensis
hortensis

Crepuscular Yes 8

Culex hortensis
hortensis

Night No 8

Culex hortensis
hortensis

Voltinism Adult 8

Culex hortensis
hortensis

Vector No 8

Culex modestus Water Source Natural, Artificial 15
Culex modestus Water Permanence Permanent,

Semi-permanent
15

Culex modestus Water Type Freshwater,
Brackish

12

Culex modestus Habitat Rural 15
Culex modestus Vegetation Density High 3
Culex modestus Main Overwintering

Stage
Adult 3

Culex modestus Primarily Anthrophillic Yes 15
Culex modestus Primarily

Mammalophillic
Yes 15

Culex modestus Primarily
Ornithophillic

Yes 15

Culex modestus Day Yes 16
Culex modestus Crepuscular Yes 3
Culex modestus Night No 15
Culex modestus Voltinism Multivoltine 15
Culex modestus Vector Yes 15

Culex
perexiguus/univittatus

Water Source Natural, Artificial 15

Culex
perexiguus/univittatus

Water Permanence Permanent,
Semi-permanent

15

Culex
perexiguus/univittatus

Water Type Freshwater,
Brackish

15

Culex
perexiguus/univittatus

Habitat Rural, Urban 15
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Species Trait Value(s) Reference

Culex
perexiguus/univittatus

Vegetation Density Medium 15

Culex
perexiguus/univittatus

Main Overwintering
Stage

Adult 8

Culex
perexiguus/univittatus

Primarily Anthrophillic No 15

Culex
perexiguus/univittatus

Primarily
Mammalophillic

Yes 15

Culex
perexiguus/univittatus

Primarily
Ornithophillic

Yes 15

Culex
perexiguus/univittatus

Day No 17

Culex
perexiguus/univittatus

Crepuscular Yes 17

Culex
perexiguus/univittatus

Night Yes 12

Culex
perexiguus/univittatus

Voltinism Multivoltine 8

Culex
perexiguus/univittatus

Vector Yes 15

Culex pipiens Water Source Natural, Artificial 15
Culex pipiens Water Permanence Permanent,

Semi-permanent,
Temporary

15

Culex pipiens Water Type Freshwater,
Brackish

15

Culex pipiens Habitat Rural, Urban 15
Culex pipiens Vegetation Density Variable 15
Culex pipiens Main Overwintering

Stage
Adults 3

Culex pipiens Primarily Anthrophillic No 3
Culex pipiens Primarily

Mammalophillic
Yes 3

Culex pipiens Primarily
Ornithophillic

Yes 14

Culex pipiens Day No 15
Culex pipiens Crepuscular Yes 14
Culex pipiens Night Yes 14
Culex pipiens Voltinism Multivoltine 3
Culex pipiens Vector Yes 15

Culex territans Water Source Natural, Artificial 15
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Species Trait Value(s) Reference

Culex territans Water Permanence Permanent,
Semi-permanent

15

Culex territans Water Type Freshwater 15
Culex territans Habitat Rural 15
Culex territans Vegetation Density High 15
Culex territans Main Overwintering

Stage
Adults 15

Culex territans Primarily Anthrophillic No 15
Culex territans Primarily

Mammalophillic
No 15

Culex territans Primarily
Ornithophillic

Yes 15

Culex territans Day Yes 8
Culex territans Crepuscular Yes 8
Culex territans Night No 8
Culex territans Voltinism Univoltine,

Multivoltine
15

Culex territans Vector No 18

Culex theileri Water Source Natural, Artificial 15
Culex theileri Water Permanence Permanent,

Semi-permanent,
Temporary

15

Culex theileri Water Type Freshwater,
Brackish

15

Culex theileri Habitat Rural, Urban 15
Culex theileri Vegetation Density Variable 15
Culex theileri Main Overwintering

Stage
Adults 19

Culex theileri Primarily Anthrophillic Yes 20
Culex theileri Primarily

Mammalophillic
Yes 20

Culex theileri Primarily
Ornithophillic

No 20

Culex theileri Day No 21
Culex theileri Crepuscular Yes 21
Culex theileri Night Yes 21
Culex theileri Voltinism Multivoltine 15
Culex theileri Vector Yes 15

Culex torrentium Water Source Natural, Artificial 15
Culex torrentium Water Permanence Permanent,

Semi-permanent
15
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Species Trait Value(s) Reference

Culex torrentium Water Type Freshwater 15
Culex torrentium Habitat Rural, Urban 15
Culex torrentium Vegetation Density Variable 15
Culex torrentium Main Overwintering

Stage
Adults 3

Culex torrentium Primarily Anthrophillic No 3
Culex torrentium Primarily

Mammalophillic
No 3

Culex torrentium Primarily
Ornithophillic

Yes 3

Culex torrentium Day No 15
Culex torrentium Crepuscular No 15
Culex torrentium Night Yes 15
Culex torrentium Voltinism Multivoltine 3
Culex torrentium Vector Yes 15

Culiseta annulata Water Source Natural, Artificial 15
Culiseta annulata Water Permanence Permanent,

Semi-permanent
15

Culiseta annulata Water Type Freshwater,
Brackish

15

Culiseta annulata Habitat Rural, Urban 15
Culiseta annulata Vegetation Density Variable 15
Culiseta annulata Main Overwintering

Stage
Adults 3

Culiseta annulata Primarily Anthrophillic Yes 3
Culiseta annulata Primarily

Mammalophillic
Yes 3

Culiseta annulata Primarily
Ornithophillic

No 3

Culiseta annulata Day Yes 14
Culiseta annulata Crepuscular Yes 14
Culiseta annulata Night Yes 14
Culiseta annulata Voltinism Multivoltine 3
Culiseta annulata Vector Yes 15

Culiseta longiareolata Water Source Natural, Artificial 15
Culiseta longiareolata Water Permanence Permanent,

Temporary
15

Culiseta longiareolata Water Type Freshwater,
Brackish

15

Culiseta longiareolata Habitat Rural, Urban 15
Culiseta longiareolata Vegetation Density Low 15
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Species Trait Value(s) Reference

Culiseta longiareolata Main Overwintering
Stage

Larvae 15

Culiseta longiareolata Primarily Anthrophillic No 22
Culiseta longiareolata Primarily

Mammalophillic
No 22

Culiseta longiareolata Primarily
Ornithophillic

Yes 15

Culiseta longiareolata Day Yes 8
Culiseta longiareolata Crepuscular Yes 8
Culiseta longiareolata Night Yes 8
Culiseta longiareolata Voltinism Multivoltine 15
Culiseta longiareolata Vector Yes 15
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Fig. C.1 Phylogenetic tree of mosquito species used in this study, constructed based on
taxonomic relationships. The tree was generated using the taxize and ape R packages.



260 Appendix: Chapter 4

7 Brugman, V. (2016). Host Selection and Feeding Preferences of Farm-Associated

Mosquitoes (Diptera: Culicidae) in the United Kingdom. Doctoral dissertation, London

School of Hygiene & Tropical Medicine.

8 Assumed.

9 Schafer, M.L., and Lundstrom, J.O. (2009). "The present distribution and predicted

geographic expansion of the floodwater mosquito Aedes sticticus in Sweden," Journal

of Vector Ecology, 34(1), pp. 141–147.

10 Lundstrom, J.O., Schafer, M.L., and Kittayapong, P. (2021). "Ecology, behaviour and

area-wide control of the floodwater mosquito Aedes sticticus, with potential of future

integration of the sterile insect technique," in Area-Wide Integrated Pest Management,

CRC Press, pp. 433–459.

11 Kampen, H., and Walther, D. (2018). "Vector potential of mosquito species (Diptera:

Culicidae) occurring in Central Europe," in G. Benelli and H. Mehlhorn (eds.),

Mosquito-borne Diseases, Springer International Publishing, pp. 41–68.

12 Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M. B., Dahl, C., and Kaiser, A.

Mosquitoes: Identification, Ecology and Control. Springer Nature, 2020.

13 Paramasivan, R., Philip, S.P., and Selvaraj, P.R. (2015). "Biting rhythm of vector

mosquitoes in a rural ecosystem of South India," Int J Mosq Res, 2(3), pp. 106–113.

14 Schonenberger, A.C. et al. (2016). "Host preferences in host-seeking and blood-fed

mosquitoes in Switzerland," Medical and Veterinary Entomology, 30(1), pp. 39–52.

15 Becker, N., and Hoffmann, D. (2011). "First record of Culiseta longiareolata (Mac-

quart) for Germany," Eur Mosq Bull, 29, pp. 143–150.



261

16 Wang, Z.-M. et al. (2012). "Biting activity and host attractancy of mosquitoes (Diptera:

Culicidae) in Manzhouli, China," Journal of Medical Entomology, 49(6), pp. 1283–

1288.

17 Aslamkhan, M., and Salman (1969). "The bionomics of the mosquitoes of Changa

Manga National Forest, West Pakistan," Pakistan Journal of Zoology, 1, pp. 183–205.

18 Assumed - Primarily Amphibian/Reptile Feeder.

19 Cimsek, F. (2004). "Seasonal larval and adult population dynamics and breeding

habitat diversity of Culex theileri Theobald, 1903 (Diptera: Culicidae) in the Golbasi

District, Ankara, Turkey," Turkish Journal of Zoology, 28(4), pp. 337–344.

20 Osorio, H.C., Ze-Ze, L., and Alves, M.J. (2012). "Host-feeding patterns of Culex

pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile Virus

(Flaviviridae) collected in Portugal," Journal of Medical Entomology, 49(3), pp. 717–

721.

21 Gunduz, Y.K., Aldemir, A., and Alten, B. (2009). "Seasonal dynamics and nocturnal

activities of mosquitoes (Diptera: Culicidae) in the Aras Valley, Turkey," Turkish

Journal of Zoology.




	Table of contents
	List of figures
	List of tables
	1 Chapter 1
	1.1 Background and Context
	1.1.1 The Burden of Mosquitoes
	1.1.2 A European Perspective
	1.1.3 Modelling Mosquito Distributions
	1.1.4 Challenges in Capturing the Complexity in Mosquito Distribution Models
	1.1.5 Applying Advances in Community Modelling to Mosquitoes
	1.1.6 Current Limitations of Applying Community Methods to Mosquito Distribution Modelling

	1.2 Overview of the Thesis

	2 Chapter 2
	2.1 Abstract
	2.2 Background
	2.3 Methods
	2.3.1 Study site
	2.3.2 Ecological Survey
	2.3.3 Statistical Analysis

	2.4 Results
	2.4.1 Differences in environmental conditions between management tiers
	2.4.2 Abundance and prevalence of sample mosquito and predator taxa
	2.4.3 Overall accuracy of community models and partitioning of variance between key sets of drivers
	2.4.4 Larval mosquito responses to environmental drivers
	2.4.5 Residual association between species

	2.5 Discussion
	2.5.1 Vegetation structure as a key driver of mosquito communities, including potential vectors.
	2.5.2 Biotic drivers of larval mosquitoes

	2.6 Conclusion

	3 Chapter 3
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Mosquito Data
	3.3.2 Environmental Predictor Preparation

	3.4 Model Fitting
	3.4.1 Analysis Pipeline
	3.4.2 Accounting for Spatial Autocorrelation
	3.4.3 Hyperparameter Selection
	3.4.4 JSDM and MSDM Fitting
	3.4.5 MSDM and JSDM Performance
	3.4.6 Factors Influencing Model Performance
	3.4.7 Variance Partitioning
	3.4.8 Predicting Species and Community Distributions

	3.5 Results
	3.5.1 Derived Mosquito Community Patterns
	3.5.2 Model Performance
	3.5.3 Variance Decomposition in JSDMs and MSDMs: Environmental, Spatial, and Biotic Components
	3.5.4 Species-Specific Patterns in Explained Variance Across Model Types and Components
	3.5.5 Species-species residual associations
	3.5.6 Environmental drivers of mosquito distribution
	3.5.7 Community predictions at a continental scale

	3.6 Discussion

	4 Chapter 4
	4.1 Abstract
	4.2 Introduction
	4.3 Methods
	4.3.1 Mosquito Traits
	4.3.2 Phylogenetic Information
	4.3.3 Environmental Data
	4.3.4 Statistical Methods

	4.4 Results
	4.4.1 Model Convergence and Diagnostics
	4.4.2 Model Comparison and Null Model Validation
	4.4.3 Trait-based Model Diagnostics
	4.4.4 Trait and Environmental Drivers of Mosquito Distribution
	4.4.5 Impacts of Invasive Species on Native Mosquito Communities from Conditional Predictions

	4.5 Discussion
	4.5.1 The importance of traits in driving species-environment relationships
	4.5.2 Uncovering hidden mosquito-environment relationships through traits
	4.5.3 Leveraging community information for better mosquito predictions
	4.5.4 Conclusion


	5 Chapter 5
	5.1 Thesis Overview
	5.1.1 Chapter 2: Wetland Management and Mosquito Community Composition
	5.1.2 Chapter 3: Environmental and Biotic Drivers of Mosquito Communities Across Europe: A Multi-Scale Joint Species Distribution Modelling Approach
	5.1.3 Chapter 4: Leveraging Trait Data and Community Composition for Enhanced Predictions

	5.2 Main Findings
	5.2.1 Wetland Management and Mosquito Ecology
	5.2.2 The importance of traits and biotic interactions shaping mosquito communities

	5.3 Optimizing JSDMs for Vector-Borne Disease Research
	5.3.1 Understanding the Limitations of Community Data
	5.3.2 A Priori Assumptions on Abiotic Effects and Scale
	5.3.3 Computational Complexity and Scaling Issues
	5.3.4 Choosing the Right JSDM Framework
	5.3.5 Accessibility and Technical Challenges

	5.4 Future Research Areas
	5.4.1 Understanding Abundance and Temporal Variation
	5.4.2 Moving Towards a Better Understanding of Traits
	5.4.3 Application of Community Models to Mosquito Surveillance and Disease Risk

	5.5 Conclusion

	References
	Appendix A Appendix: Chapter 2
	A.1 Background to the ESA
	A.1.1 Tier 1 Permanent grassland
	A.1.2 Tier 1A - Extensive permanent grassland
	A.1.3 Tier 2 - Wet permanent grassland
	A.1.4 Tier 3 - Permanent grassland raised water level areas


	Appendix B Appendix: Chapter 3
	Appendix C Appendix: Chapter 4

