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Tracking control of air flow based 
on a fractional-order model of the 
lung impedance
Hadamez Kuzminskas1, Marcelo Carvalho Minhoto Teixeira1,  
Roberto Kawakami Harrop Galvão2, Edvaldo Assunção1 & Sillas Hadjiloucas3

A fractional order output feedback controller for a lung ventilator is designed. This is based on a 
state-of-the-art electrical analogue model of the human respiratory system in the form of a network 
of resistors and fractional capacitors. The electrical input impedance of the adopted analogue can be 
suitably tuned to fit experimental ventilation impedance data. Furthermore, it can explicitly account 
for the different physiological fractal type characteristics associated with lung formation such as 
branching morphogenesis associated to the treelike tubular network and alveolar differentiation 
associated with the generation of specialized epithelial cells for gas exchange. A description of this 
electrical analogue in pseudo-state space is then proposed. The aim is to finally provide a control 
methodology within the scope of output feedback control, when the measured output which is the 
airflow through the trachea is directed to follow a specified reference. The control provides adequate 
air pressure input to generate this nominal airflow. The proposed control design includes a pseudo-
state observer and a double leaky integrator. The gains involved are designed using constraints 
imposed through linear matrix inequalities (LMIs), which enforce a regional allocation of eigenvalues. 
The robustness of the control loop is analysed through an uncertainty matrix analysis linked directly 
to the model. It is observed that the proposed design can tolerate a relatively wide variation in 
physiological parameters (±15%). The proposed formulation advances current control design 
approaches for mechanical ventilators and provides a generic methodology for the control of complex 
system with emergent responses as encountered in bioengineering.

Over the years, there have been several types of ventilators developed for short term intervention such as 
during anaesthesia in patients having normally functioning lungs. Typically, controllers were based on mean 
expired CO21, end-tidal CO22, arterial CO23 or pH4. It is usually the case that inspiratory pressure, tidal volume 
or mechanical rate or both are the control variables. However, it has been argued5 that end-tidal controllers 
do not take into account physiological deadspace ventilation as associated with patients with lung emboli. 
Furthermore, there are cases where hypoxemia may be observed during one-lung ventilation (OLV) as perfusion 
of the nonventilated lung affects oxygenation because air trapping in the ventilated lung may generate auto-
positive end-expiratory pressure (PEEP)6. In OLV, air trapping in the nonventilated lung may delay the onset of 
desaturation. Currently there are two strategies to decrease the likelihood of hypoxemia, and possibly atelectasis 
during OLV, either using a high tidal volume (10–12 ml/kg) without PEEP7 or a moderate tidal volume (6–8 ml/
kg) with PEEP8. In all the above cases, if a transient hypoperfusion of the lung is adopted, this would result in a 
decrease in end-tidal CO2 which is undesirable. Such aspects complicate controller design.

Focusing on recent advances in pressure support ventilation9, these have led to controller designs that use 
respiratory rate10, tidal volume11 or cycling pressure12 as control variables. Such controllers have a broader range 
of applications as they can be adapted to cater for totally paralyzed patients and spontaneous breathing subjects 
as well as support mixed modes of breathing. Although such strategies have their own merits, simple pressure 
support ventilation has been particularly promising for the provision of patient care in under-resourced regions 
or during pandemics such as COVID-19 with simple low-cost designs already under development or at the 
evaluation stage13. Furthermore, such solutions may be also used in proportional modes of ventilation14, where 
the aim is to amplify the effort of the patient’s respiratory muscle activity, providing the necessary support to 
improve the imbalance between capacity and demand and to reach the patient’s ventilation goal at the same time, 
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as part of non-invasive ventilatory support, to control high-flow nasal oxygen as first-line treatment of acute 
hypoxemic respiratory failure and acute respiratory distress syndrome (ARDS)15.

An important issue in the design of controllers for ventilation systems is the development of accurate 
dynamic models for the lung mechanics. As discussed by Morton et al.16, there are two main types of lung 
models: complex descriptions based on finite element analysis and simpler lumped-parameter representations 
in the form of ordinary differential equations. Some models include aspects of lung morphology, surfactant 
properties, embedding of the alveoli in the lung tissue and mechanical characteristics of the chest wall17. Recently, 
an alternative approach based on the use of fractional-order models has emerged. Indeed, as highlighted by 
Magin18, there are several emerging areas (e.g., in studies of structure and function associated with neural 
anatomy, electrochemical biomolecular responses to excitatory signals, as well as in cell and tissue engineering 
studies of form and function) in which fractional-order models more accurately describe the dynamic response 
of living organisms to electrical, mechanical and chemical stimuli. Along this line, arguments regarding form 
and function have been considered based on the anatomy of the lung.

Historically, Weibel19 first used fractal geometry for the characterization of lung morphology, in order to 
study the aerodynamics of the organ. This and other past studies on lung geometry and morphology are currently 
being further validated using 3D computed tomography20,21. The healthy human respiratory system can be 
approximated by a quasi-symmetric structure, with 24 dichotomously bifurcated levels, in which the airflow is 
considered equally divided at each bifurcation. For each airway segment, an equivalent electrical impedance can 
be considered, in which the air flow and pressure are analogous to an electrical current and voltage, respectively. 
Impedance, which appears in analogy with electrical circuits, is capable of reproducing equivalent biomechanical 
responses22–25. Thus, a linear hydrodynamic model that describes variations in respiratory pressure and flow 
may be considered on the basis of an electrical transmission line analogue, whose electrical parameters of 
resistance, inertance and compliance can be obtained22. Such parameters may be further adjusted to account for 
variability for the individual branches of the tree22. Furthermore, it should be possible to account for different 
physiological characteristics associated with lung formation such as branching morphogenesis associated to the 
treelike tubular network as well as alveolar differentiation associated with the generation of specialized epithelial 
cells for gas exchange.

In this same line of research, subsequent work demonstrated the link between the recurrence of the respiratory 
tree and the appearance of fractional order: these were further evidenced by the appearance of a constant phase 
response in the total respiratory impedance as a consequence of the intrinsic fractal geometry of the lungs23. 
Furthermore, a previous study concluded that the fractional-order model outperforms the integer-order one in 
terms of characterizing the dependence of the input impedance of the human respiratory model on frequency26. 
Its main advantages over integer-order models are the smaller number of parameters and its inherent ability to 
characterize the viscoelastic properties and recurrent structures of biological materials27,28. A fractional-order 
model can be implemented with integer-order approximations over a specified frequency range, but this results 
in higher-order transfer functions29. The subject has been in a constant state of evolution with the introduction 
of the modelling of viscous losses in the representation of the electrical equivalent, which become relevant with 
the pathological increase of the heterogeneity of the pulmonary parenchyma24. It is worth mentioning that such 
approaches comprised only elastic components and were not able to capture changes in respiratory impedance 
with the occurrence of diseases.

The basis for the present work is the approach of Ionescu et al.25, in which the fractional order is modelled 
directly in a ladder network representation of the respiratory tree through the use of a Constant Phase Element 
(CPE). This element, also known as fractional order capacitor, has impedance ZCP E = 1/(sαC), where C is 
the pseudo-capacitance30 and α > 0 is the fractional order. Such a modelling approach has physiological origin 
and is verifiable experimentally using a forced oscillation technique. At this point, it is worth mentioning that 
it is also possible to assume a lumped model that is capable of producing the same tissue impedance but over 
a more restricted frequency domain. Such model, however, is likely to have much more limited applications 
in healthcare31. Indeed, in the study conducted by Ionescu et al.25 with data from seven subjects, the ladder-
type models provided a better fit compared to the use of lumped models. It is also worth noting that recursive 
network models can allow significant variations of model parameters in relation to frequency, and thus can be 
more useful in emulating the impedance over a wide range of frequencies32.

Contribution: The development of control laws for mechanical ventilators has been an active research area. 
For example, D’Orsi et al.33 employed a predictive control strategy to manipulate the applied pressure in order to 
maximize arterial oxygen saturation while avoiding barotrauma. Almeida et al.34 developed a strategy based on 
Active Disturbance Compensation Control with volume and pressure control modes. The proposed technique 
incorporated robust state observers to handle external disturbances and parametric uncertainties. Violini et 
al.35 employed a gain-scheduling scheme with pressure and flow compensation to achieve a desired PEEP level 
in the expiration phase. Reinders et al.36 proposed the use of a repetitive control technique employing a Lur’e-
type model to take into account the nonlinear resistance of the ventilation hose. In this context, the novelty of 
the present work consists in designing an output feedback controller based on a fractional-order model of the 
lung impedance25. The design method proposed herein is aimed at flow control37, p. 18, which can be used in 
an inner loop to achieve accurate control of volume and pressure38. The control design includes a pseudo-state 
observer and a double leaky integrator39. The gains involved are designed through conditions in linear matrix 
inequality (LMI) form for the regional allocation of eigenvalues. The robustness of the control loop is analysed 
through uncertain matrices attached directly to the model, which account for variations in parameters within 
percentage ranges.

Text organization: Section “Fractional-order model of the lung impedance” presents the electrical analogue 
model for the human respiratory system and derives an alternative mathematical representation in pseudo-state 
space. Section “D-stability condition for fractional order systems” proposes LMI conditions for the regional 
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allocation of eigenvalues in a specified region. Section “Output feedback control employing a pseudo-state 
observer” proposes an output control method that uses a pseudo-state observer and a double leaky integrator, 
with gains obtained from the regional allocation of eigenvalues. Section “Results” presents the results of the 
proposed control methodology applied to the electrical analogue of the model for the human respiratory system. 
Section “Conclusions” presents the concluding remarks. Mathematical notations: |z| is the absolute value of a 
real number z; arg(z) is the argument of the complex number z; MT  is the transpose of M; Mn×n is the matrix 
M of dimension n × n; In×n is the identity matrix of dimension n × n; 0n×n is the zero matrix of dimension 
n × n; M  is the complex conjugate of M; A ≻ B if and only if A − B is a positive-definite matrix; A ≺ B if and 
only if A − B is a negative-definite matrix; λ(M) is the set of eigenvalues of the matrix M; F, S denote regions 
of interest in the complex plane.

Fractional-order model of the lung impedance
Figure 1 presents the ladder network, corresponding to the electrical analogue of the human respiratory system, 
employed by Ionescu et al.25, which has N = 24 stages. The capacitor symbols indicates a constant phase element 
(CPE)30 with impedance Zm(s) = 1/(Cmsα), m = 1, 2, . . . , N .

By using the pseudo-state variables indicated in Fig. 1, a pseudo-state space model can be obtained on 
the basis of the following current-voltage relationships, where Dα denotes the fractional derivative of order 
α ∈ (0, 2):

	 Dαx1 = (i0 − i1)/C1, Dαx2 = (i1 − i2)/C2, · · · , DαxN−1 = (iN−2 − iN−1)/CN−1, DαxN = iN−1/CN , � (1)

	 i0 = (u − x1)/R1, i1 = (x1 − x2)/R2, · · · , iN−2 = (xN−2 − xN−1)/RN−1, iN−1 = (xN−1 − xN )/RN . � (2)

As in Ionescu et al.25, the resistance and capacitance values are given by Rm = R∗
m/2m−1, Cm = 2m−1C∗

m, 
m = 1, 2, . . . , 24, where R∗

m and C∗
m follow these recursive expressions, with RUA and CUA corresponding to 

the upper airways up to the trachea:

	

{
R∗

1 = RUA,
C∗

1 = CUA,

{
R∗

m+1 = 2.476R∗
m,

C∗
m+1 = 0.577C∗

m, m = 1, 2, . . . , 13,
{

R∗
m+1 = 2.334R∗

m,
C∗

m+1 = 0.613C∗
m, m = 14, 15, . . . , 23. � (3)

Herein, we shall employ the first set of RUA, CUA, and α values experimentally obtained by Ionescu et al.25, 
which were identified on the basis of forced oscillation data40 in the range from 0.9 to 6 Hz. The reported 
parameters were

	 RUA = 0.2834 [kPa s/l], CUA = 0.0950 [l sα−1/kPa], α = 1.55.� (4)

Relations (1) and (2) lead to
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1
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� (5)

The output equation for the measured variable is expressed as

	 y = i0 = (u − x1)/R1 = Cx + Du, C = [−1/R1 0 0 · · · 0 0] , D = [1/R1] .� (6)

Fig. 1.  Network model.
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Remark 1  The vector x(t) in (5) does not strictly represent the state vector, it is referred to in the literature as 
the pseudo-state vector. The true state vector has infinite dimension and its components are internal to the in-
tegrators41–43.

D-stability condition for fractional order systems
LMIs are widely used in system analysis and synthesis of efficient controllers. The convexity property is one of 
its advantages, which enables the use of well-established numerical optimization methods. Another advantage 
is the ability to simultaneously contemplate several constraints related, for example, to physical limits of the 
system, stability, performance and robustness44. One of the desirable restrictions to the closed-loop system is 
the D-stability, which consists in the allocation of eigenvalues in a specific region of the complex plane, in order 
to guarantee certain performance indices of the responses involved. Conditions in LMIs for D-stability go back 
to Chilali et al.45,46, whose fundamental ideas were later applied to fractional systems47,48. In addition to the 
mentioned results, there is a variety of works that provide conditions in LMIs in the general scope of stability 
and control of fractional systems49–52.

A fundamental result concerning the stability of fractional-order systems is stated in Theorem 1 below.

Theorem 1  49,50 Consider a linear fractional-order system of the form

	 D
αx(t) = Ax(t) , α ∈ (0, 2),� (7)

where α is the differentiation order, x(t) ∈ Rn is the pseudo-state vector and A ∈ Rn×n is a constant matrix. 
System (7)  is asymptotically stable if and only if all eigenvalues of A are located in the region F (α) defined as 
F (α) =

{
λ ∈ C : |arg(λ)| > απ

2

}
.

The stability region F (α) is depicted in Fig. 2a. In what follows, the concept of D-stability is exploited to 
characterize a convenient subset of this region in terms of LMI conditions.

Definition 1  45,46 A region D of the complex plane is called an LMI region if there exists a symmetric matrix 
L ∈ Rm×m and a matrix M ∈ Rm×m such that D = {z ∈ C : fD(z) ≺ 0}, where fD(z) = L + zM + z̄MT  
is called the characteristic function of D.

Definition 2  45,46 A matrix A ∈ Rn×n is said to be D-stable if all its eigenvalues are contained in D.

Herein, we shall be concerned with an LMI region defined as S (r, θ) = {z ∈ C : fr(z) ≺ 0, fθ(z) ≺ 0} with

	
fr(z) =

[−r 0
0 −r

]
+ z

[0 1
0 0

]
+ z̄

[0 1
0 0

]T

=
[−r z

z̄ −r

]
, � (8)

	
fθ(z) = z

[
sin(θ) cos(θ)

−cos(θ) sin(θ)
]

+ z̄
[

sin(θ) cos(θ)
−cos(θ) sin(θ)

]T

=
[ (z + z̄) sin(θ) (z − z̄) cos(θ)
− (z − z̄) cos(θ) (z + z̄) sin(θ)

]
� (9)

where r > 0 and 0 < θ ≤ π/2. The inequalities fr(z) ≺ 0, and fθ(z) ≺ 0 correspond to the disk centered at 
the origin with radius r and to the conical sector in the left half-plane with vertex at the origin and interior angle 
2θ, respectively  45,46, as shown in Fig. 2b.

Remark 2  If the eigenvalues of A lie in S(r, θ) and S(r, θ) ⊂ F (α), the fractional order system (7) will be as-
ymptotically stable. If α ∈ (0, 1], the condition S(r, θ) ⊂ F (α) will hold for any θ ∈ (0, π/2]. If α ∈ (1, 2), θ 
will have to be chosen in the range (0, π − απ/2].

Necessary and sufficient LMI conditions for the eigenvalues of A to lie in S(r, θ) are given in Lemma 1 below.

Fig. 2.  (a) Stability region F (α) and (b) region S (r, θ) for eigenvalue allocation.
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Lemma 1  The eigenvalues of a matrix A ∈ Rn×n will lie in S(r, θ) if and only if there is a positive-definite matrix 
X = XT ∈ Rn×n such that

	

[−rX AX
XAT −rX

]
≺ 0, � (10)

	

[ (
AX + XAT

)
sin(θ)

(
AX − XAT

)
cos(θ)(

−AX + XAT
)

cos(θ)
(
AX + XAT

)
sin(θ)

]
≺ 0. � (11)

Proof  Follows directly from the necessity and sufficiency of the LMIs numbered as (10) and (13) in the paper by 
Chilali and Gahinet45. □

Now, consider a linear fractional order system of the form (7) augmented with a control input u(t) ∈ Rp, i.e. 
Dαx(t) = Ax(t) + Bu(t), where B ∈ Rn×p. By using a feedback control law u(t) = −Kx(t) with K ∈ Rp×n, 
the closed-loop dynamics become

	 D
αx(t) = (A − BK) x(t).� (12)

As stated in Theorem 2 below, a gain matrix K that places the eigenvalues of (A − BK) in the region S(r, θ) can 
be obtained from the solution of an LMI feasibility problem.

Theorem 2  If there is a positive-definite matrix X = XT ∈ Rn×n and a matrix M ∈ Rp×n such that

	

[ −rX AX − BM
XAT − MT BT −rX

]
≺ 0, � (13)

	

[ (
AX + XAT − BM − MT BT

)
sin(θ)

(
AX − XAT − BM + MT BT

)
cos(θ)(

−AX + XAT + BM − MT BT
)

cos(θ)
(
AX + XAT − BM − MT BT

)
sin(θ)

]
≺ 0, � (14)

then the eigenvalues of (A − BK) with K = MX−1 will lie in S(r, θ) .

Proof  Assume that (13) and (14) hold. Replacing KX for M, it follows that

	

[
−rX (A − BK) X

X (A − BK)T −rX

]
≺ 0, � (15)

	

[
((A − BK) X + X (A − BK)T )sin(θ) ((A − BK) X − X (A − BK)T )cos(θ)

(− (A − BK) X + X (A − BK)T )cos(θ) ((A − BK) X + X (A − BK)T )sin(θ)

]
≺ 0, � (16)

which correspond to (10), (11) with (A − BK) in place of A. Therefore, it follows from Lemma 1 that the 
eigenvalues of (A − BK) will lie in S(r, θ). □

Remark 3  If the pair (A, B) is controllable53,54, there will always be a feasible solution X ≻ 0, M to the LMIs (13), 
(14). Indeed, under the controllability assumption, it is always possible to find a matrix K such that the eigenval-
ues of (A − BK) lie in S(r, θ). The feasibility property follows by replacing M with KX and noting that Lemma 
1, with (A − BK) in place of A, ensures the existence of X ≻ 0 such that (13), (14) hold.

Output feedback control employing a pseudo-state observer
The general approach adopted is based on further extension of formulations encountered in classical control 
theory55 to fractional order systems. In practical applications, the pseudo-states may not be fully accessible, 
only the inputs and outputs of the fractional plant being known. In this case, the estimation of the pseudo-
states and the control of the plant can be obtained through a pseudo-state observer. Several works based on the 
Luenberger-type fractional-order linear observer are reported in the literature, with different scopes such as 
robust stabilization, for example56–58. It is assumed that the system under consideration is described by a model 
of the form

	 D
αx(t) = Ax(t) + Bu(t), � (17)

	 y(t) = Cx(t) + Du(t), � (18)

where α ∈ (0, 2) is the differentiation order, x(t) ∈ Rn is the pseudo-state vector, u(t) ∈ Rp is the input, 
y(t) ∈ Rq  is the output vector and A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p are constant matrices. 
Moreover, it is assumed that the output y(t) is measured. An output feedback controller with double integral 
action is proposed below, in which the pseudo-state estimation is performed through the use of a Luenberger-
type fractional-order linear observer:

	 D
αx̂(t) = Ax̂(t) + Bu(t) + L(y(t) − ŷ(t)), � (19)
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	 ŷ(t) = Cx̂(t) + Du(t), � (20)

	 D
αw1(t) = (Iq×q + Kr)(v(t) − y(t)) − ε w1(t), � (21)

	 D
αw2(t) = w1(t) − ε w2(t), � (22)

	 u(t) = −Kxx̂(t) − Kw1 w1(t) − Kw2 w2(t), � (23)

where x̂(t) ∈ Rn is the observer pseudo-state vector, ŷ(t) ∈ Rq  is the observer output, w1(t), w2(t) ∈ Rq  
are the integrator outputs, v(t) ∈ Rq  is the reference signal to be tracked, ε is a small positive constant and 
Kr ∈ Rq×q, L ∈ Rn×q , Kx ∈ Rp×n, Kw1 ∈ Rp×q , Kw2 ∈ Rp×q  are gain matrices to be adjusted. Figure 3 
presents a block diagram of the main components of the control system, with a more detailed view depicted 
in Fig. 4. It is worth noting that the expiration phase is performed in a passive manner, i.e. the switch at the 
ventilator input is set to the ambient pressure during expiration. The only non-standard components in the 
proposed controller are the fractional-order integrators 

´ α in Fig. 4. However, these integrators can be easily 
realized by using analogue circuits59 or field-programmable gate arrays60.

Fig. 4.  Detailed description of the closed-loop system in block diagram form.

 

Fig. 3.  Main components of the proposed controller.
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Remark 4  If a constant input u is applied to the ladder model in Fig. 1, the output y = i0 will converge to a null 
steady-state value, which points to the presence of a zero at s = 0 in the network admittance. Therefore, double 
integral action is required to track a constant setpoint for the airflow without steady-state error53,54. However, 
if the control law employed pure integrators, a pole-zero cancelation would occur at s = 0 and the closed-loop 
system would be unstable, with an unbounded growth of the control signal when tracking the constant airflow 
setpoint. By using a small positive value for ε in (21), (22) to introduce leakage terms in the fractional-order 
integrators39, the instability issue is avoided at the cost of allowing for some steady-state error in the tracking 
task. The value of ε can be tuned to achieve a suitable trade-off between the magnitudes of the error and control 
signals. To this end, different scalars ε1 and ε2 could be employed in (21) and (22), respectively. Herein, we opted 
to use a single scalar ε to facilitate the tuning procedure.

Let the pseudo-state estimator be

	 x̃(t) = x(t) − x̂(t).� (24)

From (24) and (23), the control law can be expressed as

	 u(t) = −Kx(x(t) − x̃(t)) − Kw1 w1(t) − Kw2 w2(t).� (25)

After replacing (25) for u(t) in (17), one arrives at

	 D
αx(t) = (A − BKx)x(t) + BKxx̃(t) − BKw1 w1(t) − BKw2 w2(t).� (26)

Applying the Dα operator on (24), from (17), (18), (19) and (20), leads to

	 D
αx̃(t) = D

αx(t) − D
αx̂(t) = A(x(t) − x̂(t)) − LC(x(t) − x̂(t)) = (A − LC)x̃(t).� (27)

Substituting (18) and (25) into (21) results in

	

D
αw1(t) = (Iq×q + Kr)(v(t) − Cx(t)) + (Iq×q + Kr)DKx(x(t) − x̃(t))

+ (Iq×q + Kr)DKw1 w1(t) + (Iq×q + Kr)DKw2 w2(t) − εw1(t),
= (Iq×q + Kr)v(t) + (Iq×q + Kr)(DKx − C)x(t) − (Iq×q + Kr)DKxx̃(t)

+ ((Iq×q + Kr)DKw1 − εIq×q)w1(t) + (Iq×q + Kr)DKw2 w2(t).

� (28)

In light of (22), (26), (27) and (28), the closed-loop dynamics can be described by the following pseudo-state 
equation:

	




Dαx(t)
Dαw1(t)
Dαw2(t)
Dαx̃(t)


 =




(A − BKx) −BKw1 −BKw2 BKx

(Iq×q + Kr)(DKx − C) (Iq×q + Kr)DKw1 − εIq×q (Iq×q + Kr)DKw2 −(Iq×q + Kr)DKx

0q×n Iq×q −εIq×q 0q×n

0n×n 0n×q 0n×q (A − LC)







x(t)
w1(t)
w2(t)
x̃(t)




+




0n×q

Iq×q + Kr

0q×q

0n×q


 v(t).

� (29)

Moreover, from (18) and (25), the output equation can be written as

	 y(t) = Cx(t) − DKx(x(t) − x̃(t)) − DKw1 w1(t) − DKw2 w2(t) = (C − DKx)x(t) + DKxx̃(t) − DKw1 w1(t) − DKw2 w2(t).� (30)

In view of (29), the closed-loop eigenvalues comprise the eigenvalues of (A − LC) and (Axwr − Bxwr Kxw), 
where

	
Axwr =

[
A 0n×q 0n×q

−(Iq×q + Kr)C −εIq×q 0q×q

0q×n Iq×q −εIq×q

]
, Bxwr =

[
B

−(Iq×q + Kr)D
0q×p

]
, Kxw = [Kx Kw1 Kw2 ] .� (31)

Given a gain matrix Kr , a stable closed-loop system can be obtained by choosing Kxw  and L such that the 
eigenvalues of (Axwr − BxwrKxw) and (A − LC) are located in region F (α) of Theorem 1. To this end, 
Theorem 2 can be employed to perform a regional allocation of the eigenvalues.

Robustness analysis
The design procedure presented above does not provide formal guarantees of robust stability. The results could 
be extended to account for the use of uncertain design models, as described in Sections III-A and IV of the 
paper by Chilali and Gahinet45. However, in the present work, the robustness of the design will be evaluated by 
means of numerical simulations. Parametric changes are modelled using new matrices Ā, B̄, C̄  and D̄ having, 
respectively, the same dimensions of A, B, C and D:

	 D
αx(t) = Āx(t) + B̄u(t), � (32)

	 y(t) = C̄x(t) + D̄u(t). � (33)
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After replacing (25) for u(t) in (32), one arrives at

	 D
αx(t) = (Ā − B̄Kx)x(t) + B̄Kxx̃(t) − B̄Kw1 w1(t) − B̄Kw2 w2(t).� (34)

Moreover, after replacing (20) for ŷ(t) and (33) for y(t) in (19), one arrives at

	 D
αx̂(t) = Ax̂(t) + Bu(t) + L(C̄x(t) + D̄u(t) − Cx̂(t) − Du(t)) = (A − LC)x̂(t) + LC̄x(t) +

[
B + L(D̄ − D)

]
u(t).� (35)

Again, consider the pseudo-state estimation error given by

	 x̃(t) = x(t) − x̂(t).� (36)

Applying Dα in (36) and defining Γ = B + L(D̄ − D), from (32), (35), (36) and replacing (25) for u(t), one 
arrives at

	

D
αx̃(t) = D

αx(t) − D
αx̂(t) = Āx(t) + B̄u(t) − (A − LC)x̂(t) − LC̄x(t) − Γu(t),

= (Ā − LC̄)x(t) − (A − LC)x̂(t) + (B̄ − Γ)u(t) = (Ā − LC̄)x(t) − (A − LC)(x(t) − x̃(t)) + (B̄ − Γ)u(t),
=

[
(Ā − LC̄) − (A − LC)

]
x(t) + (A − LC)x̃(t) + (B̄ − Γ)u(t)

=
[
(Ā − LC̄) − (A − LC)

]
x(t) + (A − LC)x̃(t) + (B̄ − Γ)[−Kx(x(t) − x̃(t)) − Kw1 w1(t) − Kw2 w2(t)]

=
[
(Ā − LC̄) − (A − LC) − (B̄ − Γ)Kx

]
x(t) +

[
A − LC + (B̄ − Γ)Kx

]
x̃(t) − (B̄ − Γ)(Kw1 w1(t) + Kw2 w2(t)).

� (37)

Substituting (25) and (33) into (21), it follows that

	

D
αw1(t) = (Iq×q + Kr)(v(t) − C̄x(t) − D̄u(t)) − εw1(t)

= (Iq×q + Kr)v(t) − (Iq×q + Kr)C̄x(t) + (Iq×q + Kr)D̄Kx(x(t) − x̃(t)) + (Iq×q + Kr)D̄Kw1 w1(t)
+ (Iq×q + Kr)D̄Kw2 w2(t) − εw1(t)

= (Iq×q + Kr)v(t) + (Iq×q + Kr)(D̄Kx − C̄)x(t) − (Iq×q + Kr)D̄Kxx̃(t) + ((Iq×q + Kr)D̄Kw1 − εIq×q)w1(t)
+ (Iq×q + Kr)D̄Kw2 w2(t).

� (38)

In view of (22), (34), (38) and (39), the augmented pseudo-state equation becomes

	




Dαx(t)
Dαw1(t)
Dαw2(t)
Dαx̃(t)


 =




(Ā − B̄Kx) −B̄Kw1 −B̄Kw2 B̄Kx

(Iq×q + Kr)(D̄Kx − C̄) (Iq×q + Kr)D̄Kw1 − εIq×q (Iq×q + Kr)D̄Kw2 −(Iq×q + Kr)D̄Kx

0q×n Iq×q −εIq×q 0q×n

(Ā − LC̄) − (A − LC) − (B̄ − Γ)Kx −(B̄ − Γ)Kw1 −(B̄ − Γ)Kw2 p; A − LC + (B̄ − Γ)Kx







x(t)
w1(t)
w2(t)
x̃(t)




+




0n×q

Iq×q + Kr

0q×q

0n×q


 v(t).�

(39)

Finally, from (25) and (33), the output equation can be written as

	 y(t) = C̄x(t) − D̄Kx(x(t) − x̃(t)) − D̄Kw1 w1(t) − D̄Kw2 w2(t) = (C̄ − D̄Kx)x(t) + D̄Kxx̃(t) − D̄Kw1 w1(t) − D̄Kw2 w2(t).� (40)

In what follows, the synthesis of the controller gains Kxw  and L and the simulation of the closed-loop system 
under nominal conditions will be carried out by using the model (29), (30), whereas the simulations with 
parametric changes will be performed by using the model (40), (41).

Results
The fractional order system was simulated from null initial conditions by using the ‘fractional integrator’ block 
of the FOMCON61,62 computational package, in the Simulink® environment of the MATLAB® software. All LMIs 
were solved with the YALMIP toolbox63 and SeDuMi solver64. The reference signal v(t) was set to a constant 
value during the inspiration phase37, p. 19-20, with a frequency of 16 cycles per minute, inspiration : expiration 
ratio of 1 : 2 and a flow setpoint of 480 ml per second. These settings were chosen to obtain a tidal volume of 600 
ml and a minute volume of 9.6 litres per minute, which are adequate values for intermittent positive pressure 
ventilation65, p. 118. In the expiration phase, the input pressure was set to zero (i.e. ambient pressure), in order 
to obtain a passive outward flow.

We recall that the A, B, C, D matrices of the model (17), (18) are defined in (5), (6) with N = 24, resistances 
R1, R2, . . . R24 and capacitances C1, C2, . . . , C24 obtained as in (3), and experimental parameters RUA, CUA, 
α given in (4). Since α = 1.55, the angle θ of the eigenvalue allocation region in Fig. 2 must be chosen in the 
range (0, 0.225π ] radians, as discussed in Remark 2, which translates into a range of (0, 40.5 ] degrees.

The gains Kxw  and L in (Axwr − BxwrKxw) and (A − LC) were obtained by setting ε = 0.1 in the 
leaky integrators (21), (22) and using Theorem 2. To this end, the following values were tested for the design 
parameters: r ∈ {100, 150, 200}, θ ∈ {5, 10, 15} degrees, and Kr ∈ {100, 300, 500}, yielding a total of 27 
combinations. As a result, the settings that provided the smallest integral-time absolute error (ITAE)66 of the 
flow variable were r = 200, θ = 5◦, Kr = 500. Other values of ε in the interval [0.01, 1] were also tested, but 
the ITAE results were similar, indicating that the choice of ε was not critical for the design. The resulting gains 
Kxw  and L were
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Kxw = [−0.99901 −0.00031 −0.00012 −0.00004 0.00004 0.00011 0.00019 0.00027
0.00034 0.00040 0.00048 0.00060 0.00076 0.00099 0.00138 0.00192 0.00271

0.00380 0.00536 0.00779 0.01124 0.01621 0.02344 0.03094 −0.07292 −0.03209] ,

� (41)

	

L = [−22.0649 −7.3574 −5.1895 −3.8840 −3.0859 −2.5175 −2.0254 −1.7129
−1.4046 −1.0638 −0.7863 −0.5355 −0.2966 −0.1130 0.0018 0.0898 0.0625

−0.0085 −0.0781 −0.1399 −0.1727 −0.1766 −0.1854 −0.2080]T .

� (42)

As shown in Fig. 5, the passband of the resulting closed-loop system was approximately 6 Hz. Smaller ITAE 
values were obtained by reducing θ and/or increasing r, Kr , but these results were disregarded, as the resulting 
passband exceeded the range of frequencies in which the model was identified25.

As shown in Fig. 6a, the closed-loop eigenvalues were all placed inside the region D established in Theorem 
2. Figure 6b presents the simulation results. As can be seen, a satisfactory tracking of the reference v(t) for the 
air flow was obtained.

The robustness of the closed-loop system was evaluated by randomly varying the RUA and CUA values, 
using a uniform probability distribution, in order to emulate uncertainties in the identification procedure or 
changes in the actual physiological parameters. The controller gains Kxw  and L were kept the same, whereas 
the simulation model was altered as indicated in (39) and (40) to reflect the changes in the RUA and CUA 
parameters. The closed-loop eigenvalues obtained for 100 parametric variations of up to ±5% and up to ±15% 
are shown in Figs. 7a and 8a, respectively. It is worth noting that some eigenvalues left the D region, but all 
remained within the stability limits. The corresponding simulation results are presented in Figs. 7b and 8b, 
respectively. As can be seen, the parametric changes had some effect on the closed-loop response, but the rise 
time and overshoot did not deviate substantially from those obtained in the nominal case.

Conclusions
The new formulations discussed in this work provide a design methodology for a controller whose feedback 
loop is implicit in a pseudo-state model, incorporating a Luenberger-type fractional-order linear observer and a 
double leaky integrator. Given the block-diagonal structure of the closed-loop system matrix in (29), the design 
of the gain matrices for the controller and observer can be carried out separately, with suitable placement of the 
eigenvalues in the stability domain defined for fractional systems. The regional allocation of eigenvalues over a 
specified region makes it possible to insert specifications for the system responses through LMI conditions. The 
methodology was applied to a well-accepted state-of-the-art electrical current recursive network model analogue 
of the human respiratory system and provided a pressure input capable of generating a desired airflow profile. 
In addition, by including uncertainties in the simulation model, the controller was found to be robust over a 
considerable range (up to ±15%) in the variation of the physiological parameters. Future steps for validating 
the proposed design methodology could include the use of a physical lung simulator with viscoelastic features67. 
Indeed, viscoelastic effects are known to be better described by fractional-order models as compared to integer-
order representations68–70.

Although the current controller design does not explicitly take into account alveolar as well as alveolar dead 
space ventilation, the proposed fractional order model and the controller formulations may be augmented and 

Fig. 5.  Frequency response of the closed-loop system.
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appropriately adapted for such task. For example, such models could be used in conjunction with real-time 
advances in magnetic resonance imaging (MRI) using hyperpolarized Xenon (Xe)-129 or Helium-371,72, which 
can provide improved in situ real-time diagnosis of a variety of lung diseases such as emphysema and chronic 
obstructive pulmonary disease (COPD) thus providing new opportunities for dynamic ventilation.

A further possible merit of adopting a fractional order modelling and control methodology of the lung 
impedance is that it may also be used to assess levels of injury (barotrauma, volutrauma, atelectrauma, and 

Fig. 7.  (a) Closed-loop eigenvalues for the nominal system (blue × markers) and for 100 perturbed systems 
with variations of up to ±5% in the RUA and CUA parameters (red • markers). The boundary of the D region 
(green line) and the stability limits (black dash-dotted lines) are also shown. The inset shows an enlarged view 
of the region close to the origin. (b) Simulation results for the nominal (blue lines) and perturbed systems (red 
lines). The v(t) reference for the flow is depicted by an orange dash-dotted line. The insets present enlarged 
views of the dispersion around the nominal response.

 

Fig. 6.  (a) Closed-loop eigenvalues (blue × markers) and boundary of the region D region (green line). The 
boundaries associated to the θ and r parameters are indicated by the gray dashed lines and by the blue dotted 
circumference, respectively. The stability limits are indicated by black dash-dotted lines. The inset shows an 
enlarged view of the region close to the origin. (b) Simulation results. The v(t) reference for the flow is depicted 
by an orange dash-dotted line.

 

Scientific Reports |        (2025) 15:34832 10| https://doi.org/10.1038/s41598-024-77654-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


biotrauma) or assess the progression of regional lung strain associated with mechanical ventilation as opposed 
to spontaneous breathing73. This is particularly important to patients with acute respiratory distress syndrome 
(ARDS) where lung tissue undergoes additional regional stress and modification due to inflammation under 
prolonged mechanical ventilation. With minor modifications to the generic controller structure, the methodology 
developed can be augmented to account explicitly for additional input parameters such as CO2 partial pressure 
levels or partial oxygen saturation levels so that a larger application domain can be considered (e.g. application 
to extracorporeal membrane oxygenation (ECMO) machines accounting also for decarboxylation. In addition, 
oxygen release curves (partial pressure of oxygen as a function of saturation of haemoglobin) as affected by the 
Bohr effect, changed pH or diphosphoglycerate (DPG) levels when monitoring maternal and foetal gas exchange 
can be also considered in the model. The associated Hill plots accounting for cooperative oxygen binding to 
haemoglobin are well known for their fractional order characteristics and can be explicitly translated to 
controller parameter specifications. Finally, it is worth also noting that in order to address issues of progression 
of regional lung strain associated with mechanical ventilation, it should be possible to develop a more adaptive 
control strategy by assuming an internal model control loop with external adaptive control. Such schemes have 
already been extended to fractional order systems74, but have yet to be explored in the context of lung ventilation 
on the basis of the new formulations we have presented in this paper.

The proposed control methodology is generic and applicable to a wide range of biomedical control problems 
as well as for the control of complex physicochemical systems. Future work could investigate the use of the 
proposed methodology in applications such as the control of current flow across large-scale electrical networks75, 
the deformation of viscoelastic materials76, and the charging process of energy storage devices77.

Data availability
All data generated or analysed during this study are included in this published article.
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