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Abstract. A key challenge in developing flagship climate
model configurations is the process of setting uncertain input
parameters at values that lead to credible climate simulations.
Setting these parameters traditionally relies heavily on in-
sights from those involved in parameterisation of the under-
lying climate processes. Given the many degrees of freedom
and computational expense involved in evaluating such a se-
lection, this can be imperfect leaving open questions about
whether any subsequent simulated biases result from mis-set
parameters or wider structural model errors (such as miss-
ing or partially parameterised processes). Here, we present
a complementary approach to identifying plausible climate
model parameters, with a method of bias correcting subcom-
ponents of a climate model using a Gaussian process emula-
tor that allows credible values of model input parameters to
be found even in the presence of a significant model bias.

A previous study (McNeall et al., 2016) found that a cli-
mate model had to be run using land surface input parameter
values from very different, almost non-overlapping, parts of
parameter space to satisfactorily simulate the Amazon and
other forests respectively. As the forest fraction of modelled
non-Amazon forests was broadly correct at the default pa-
rameter settings and the Amazon too low, that study sug-
gested that the problem most likely lay in the model’s treat-
ment of non-plant processes in the Amazon region. This
might be due to modelling errors such as missing deep root-
ing in the Amazon in the land surface component of the cli-
mate model, to a warm—dry bias in the Amazon climate of
the model or a combination of both.

In this study, we bias correct the climate of the Amazon in
the climate model from McNeall et al. (2016) using an “aug-
mented” Gaussian process emulator, where temperature and

precipitation, variables usually regarded as model outputs,
are treated as model inputs alongside land surface input pa-
rameters. A sensitivity analysis finds that the forest fraction
is nearly as sensitive to climate variables as it is to changes
in its land surface parameter values. Bias correcting the cli-
mate in the Amazon region using the emulator corrects the
forest fraction to tolerable levels in the Amazon at many can-
didates for land surface input parameter values, including the
default ones, and increases the valid input space shared with
the other forests. We need not invoke a structural model error
in the land surface model, beyond having too dry and hot a
climate in the Amazon region.

The augmented emulator allows bias correction of an en-
semble of climate model runs and reduces the risk of choos-
ing poor parameter values because of an error in a subcompo-
nent of the model. We discuss the potential of the augmented
emulator to act as a translational layer between model sub-
components, simplifying the process of model tuning when
there are compensating errors and helping model developers
discover and prioritise model errors to target.
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1 Introduction

1.1 Choosing good input parameter settings in the
presence of model errors

Choosing values of uncertain input parameters that lead to
credible climate simulations is an important and challenging
part of developing a new climate model configuration. Cli-
mate models contain simplifications of processes too com-
plex to represent explicitly in the model, termed parameter-
isations. Associated with these parameterisations are coeffi-
cients called input parameters, the values of which are un-
certain and can be set by the model developer. We wish to
choose input parameters where the output of the model repro-
duces observations of the climate, in order to have confidence
that the model represents important physical processes suffi-
ciently well to trust projections of the future. This is difficult
because (1) there is uncertainty in the observations; (2) we
cannot run the model at every desired input parameter config-
uration, and there is uncertainty about model output at those
parameter sets not run; and (3) the model does not repro-
duce the dynamics of the climate system perfectly. The latter
is termed model discrepancy, and distinguishing between it
and a poorly chosen input parameter configuration is a major
challenge in model development.

Input parameters have a material effect on the way the pa-
rameterisations operate and therefore induce an uncertainty
in the output of the model and corresponding uncertainty in
projections of future climate states but often to an extent that
is unknown until the model is run. Modern climate simula-
tions are computationally expensive to run, and there may
only be a handful of simulations on which to make a judge-
ment about the validity of a simulation at a particular set of
parameters. Further, appropriate values for input parameters
may be difficult or even impossible to observe, with some
having no direct analogue in the real system.

Setting input parameters traditionally relies heavily on in-
sights from those involved in parameterisation of the under-
lying climate processes. Given the many degrees of free-
dom and computational expense involved in evaluating such
a selection, this can be an imperfect process, leaving open
questions about whether any subsequent simulated biases re-
sult from mis-set parameters or wider structural model errors
(such as missing or partially parameterised processes). The
process of setting the values of the input parameters so that
the simulator output best matches the real system is called
tuning, and where a probability distribution is assigned for
the input parameters, it is termed calibration. This process
is often viewed as setting constraints on the plausible range
of the input parameters, where the climate model sufficiently
represents the real system.

In summarising current practice in the somewhat sparsely
studied field of climate model tuning, Hourdin et al. (2017)
point out that it remains an art as well as a science. While
there appear no universally accepted procedures, individual
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modelling centres have begun to document their tuning prac-
tices (Schmidt et al., 2017; Zhao et al., 2018; Walters et al.,
2019).

Improving a coupled climate model can require an in-
volved and lengthy process of development, and parameter
tuning occurs at different stages in that process. It might start
with a single column version of the model developed in iso-
lation as stand-alone code. It can be relatively easy to find a
good subset of input parameters given a small set of inputs
and outputs and a well-behaved relationship between the two
as for a subcomponent of a climate model, particularly where
there are good observations of the system being studied. The
climate model components to be coupled might then be tuned
with standard boundary conditions — for example, tuning a
land—atmosphere component with fixed or historically ob-
served sea surface temperatures. Finally, a system-wide tun-
ing might be used to check that there are minimal problems
once everything has been coupled together. There is some-
times tension, however, between choosing input parameters
that elicit the best performance for the subcomponent (e.g.
for a single-grid-box model) and choosing ones that make
the subcomponent behave well in the context of the coupled
model. Upon integration, some components of the model
may therefore be tuned to compensate for errors in others or
there may be unknown errors in the model or observations.
Golaz et al. (2013) show the potential impact of compensat-
ing errors in tuning. They find that two different but plausible
parameter configurations of the cloud formations of the cou-
pled climate model Geophysical Fluid Dynamics Laboratory
Coupled Model version 3 (GFDL-CM3) can result in similar
present-day radiation balance. The configurations did not dif-
fer in their present-day climate but showed significantly dif-
ferent responses to historical forcing and therefore historical
climate trajectories. More complex models are computation-
ally expensive and so are infeasible to run in enough config-
urations to be able to identify these kinds of errors. No single
expert, or even a small team of experts, may have the cross-
domain knowledge required to identify and fix problems that
occur as multiple subsystems interact with each other. Output
from a climate model run at a particular set of inputs must be
evaluated against observational targets of the real system. In-
dividual observations are subject to uncertainties, sometimes
large, and there are often multiple observations of the same
property, each with its own strengths and weaknesses.

Without information about known errors (for example,
knowledge of an instrument bias or a known deficiency of a
model), it can be difficult to attribute a difference between
simulator output and the real system to underlying model
errors, to an incorrect set of input parameters or to inaccu-
racies in the observations. This means that good candidates
for input parameters might be found in a large volume of in-
put space, but projections of the model made with candidates
from across that space might diverge to display a very wide
range of outcomes. This problem is sometimes referred to as
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“identifiability” but otherwise known as “equifinality”, or the
“degeneracy” of model error and parameter uncertainty.
Although climate model tuning is overall a subjective pro-
cess, individual parts of the process are amenable to more
algorithmic approaches. Statistical and machine learning ap-
proaches to choosing parameters to minimise modelling er-
ror or to calculate probability distributions for parameters
and model output are known as uncertainty quantification
(UQ). The field of UQ has seen a rapid development of meth-
ods to quantify uncertainties when using complex computer
models to simulate real, physical systems. The problem of
accounting for model discrepancy when using data to learn
about input parameters is becoming more widely recognised
in UQ. It was formalised in a Bayesian setting by Kennedy
and O’Hagan (2001). The authors suggested simultaneously
estimating a model discrepancy — there called model inade-
quacy — as a function of the inputs, using a Gaussian process
prior. Brynjarsdéttir and O’Hagan (2014) argued that only
by accounting for model discrepancy does even a very sim-
ple simulator have a chance of making accurate predictions.
Further, they found that only where there is strong prior ev-
idence about the nature of that model discrepancy is it pos-
sible to solve the inverse problem and recover the correct in-
puts. Without this strong prior evidence, the estimate of the
correct parameters is likely to be overconfident, and wrong,
leading to overconfident and wrong predictions of out-of-
sample data. Arendt et al. (2012a) offer a number of exam-
ples of identifiability problems, ranging from solvable using
mild assumptions through to virtually impossible. In a com-
panion paper (Arendt et al., 2012b), they outline a way of
improving identifiability using multiple model responses.

1.2 History matching

Some of the dangers of overconfident and wrong estimates of
input parameters and model discrepancy can be reduced us-
ing a technique called history matching (Craig et al., 1996),
sometimes called pre-calibration or iterated refocusing. The
aim of history matching is not to find the most likely inputs
but to reject those unlikely to produce simulations statisti-
cally close to observations of the real system.

A statistical model called an emulator, trained on an en-
semble of runs of the climate model, predicts the output at
input configurations not yet run. An implausibility measure
(1) is calculated at any input configuration, taking into ac-
count the distance between the simulator output and the ob-
servation but formally allowing for uncertainty in the obser-
vations, the simulator output and the simulator discrepancy.
Those inputs that produce a large implausibility score are
ruled out from consideration as candidate points. New sim-
ulator runs in the remaining input space increase our under-
standing of the model behaviour and allow more input space
to be ruled out in an iterated fashion. An excellent intro-
duction and case studies can be found in Andrianakis et al.
(2015) or in Vernon et al. (2010). History matching is perhaps
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less ambitious but correspondingly more robust than calibra-
tion methods, and a full calibration can be carried out once
the history matching procedure has been completed.

History matching can be effective in reducing the vol-
ume of parameter space that is considered plausible to pro-
duce model runs that match the real system. For example,
Williamson et al. (2015) report very large reductions (around
99 %) in the volume of space considered plausible. History
matching does still depend, however, on a robust estimate of
model discrepancy and associated uncertainty, in order not
to produce unjustifiably small regions of not-ruled-out input
parameter space. For example, McNeall et al. (2013) studied
an ensemble of an ice sheet model and found that using a
single type of observation for ruling out input space was not
very powerful — particularly if there was not a very strong re-
lationship between an input parameter and the simulator out-
put. The effectiveness of history matching for ruling out input
space can be enhanced by using multiple data sets. However,
Johnson et al. (2018), using history matching to constrain
the forcing of a coupled climate and atmospheric chemistry
model, found that even with multiple observational targets, a
typical example of aerosol effective radiative forcing is only
constrained by about 30 %.

McNeall et al. (2016) argued that the larger the number
of model-data comparisons, the larger the probability that an
unidentified model discrepancy rules out a perfectly good in-
put parameter candidate point. Several empirical rules have
been used in the literature — for example, using the maxi-
mum implausibility of a multiple comparison, a candidate
input point may be ruled out by a single observation. A more
conservative approach is to use the second or third implau-
sibility scores or to use a multivariate implausibility score,
both introduced in Vernon et al. (2010). The aim of these
scores is to ensure that an unidentified model discrepancy or
a poorly specified statistical model of the relationships be-
tween model inputs and outputs does not result in ruling out
candidate points that are in fact perfectly good.

While history matching has often been used to explore
and reduce the input parameter space of expensive simula-
tors, its use as a tool to find discrepancies, bias and inad-
equacies in simulators is less developed. Williamson et al.
(2015) argue that what was assumed a structural bias in the
ocean component of the Hadley Centre Coupled Model ver-
sion 3 (HadCM3) could be corrected by choosing different
parameters. In a different system, McNeall et al. (2016) argue
that a standard set of parameters for the land surface compo-
nent of the Fast Met Office UK Universities Simulator (FA-
MOUS) climate model should be retained, and that a bias
seen in the simulation of the Amazon rainforest is a simula-
tor discrepancy, not a poor parameter choice. When cast as
a choice between adding a model discrepancy and keeping
the default parameters or rejecting them and accepting the
new region of parameter space, they argued that the former
was more likely to produce a good model for a number of
reasons, whereas there were a number of reasons one might
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reject the proposed parameter space. First, scientific judge-
ment, expertise and experience with previous versions of this
and other models will have informed the original choice of
parameters. The model simulated other forests at the stan-
dard set of parameters well, and only a tiny volume of pa-
rameter space could be found that (barely) adequately simu-
lated all the forests. The region of parameter space that ap-
parently simulated all forests well was at the edge of the en-
semble, where uncertainty in the emulator is often large and
might dominate the history matching calculation rather than
the parameter choices being particularly good. In that case,
running more ensemble members in the part of parameter
space in question might help rule it out. Three of the forests
were well simulated at the default parameters and a highly
overlapping region of parameter space, and only the Ama-
zon was poorly simulated at the default parameter setting.
Finally, in the region where all forests were adequately sim-
ulated, the Amazon forest was underestimated, and the other
forests overestimated, suggesting that choosing that region of
parameter space would inevitably force a compromise.

1.3 Aims of the paper

This paper revisits and extends the analysis of McNeall et al.
(2016) (hereafter M16) to attempt to identify the source of
model discrepancy in the simulation of the Amazon in FA-
MOUS. We aim to (1) identify the causes of a low bias in
the forest fraction in the Amazon region in an ensemble of
the climate model FAMOUS and (2) develop a method that
allows us to choose plausible values for input parameters for
one component of a coupled model, even when there is a
model discrepancy or bias in another subcomponent of the
coupled model.

A well-simulated and vigorous Amazon forest at the end
of the spinup phase of a simulation experiment is a prereq-
uisite for using a model to make robust projections of future
changes in the forest. The analysis of M 16 identified that the
land surface input spaces where the FAMOUS forest frac-
tion was consistent with observations were very different in
the Amazon than they were for other forests. The area of
overlap of these spaces — one that would normally be cho-
sen in a history matching exercise — did not simulate any of
the forests well and did not contain the default parameters.
M16 suggested that assuming an error in the simulation of
the Amazon forest would be a parsimonious choice. Two ob-
vious candidates for the source of this error in the Amazon
region were identified: (1) a lack of deep rooting in the Ama-
zon forest, meaning that trees could not access water at depth
as in the real forest, and (2) a bias in the climate of the model,
affecting the vigour of the trees.

We simultaneously (1) assess the impact of a bias-
corrected climate on the Amazon forest and (2) identify re-
gions of input parameter space that should be classified as
plausible, given a corrected Amazon climate. To bias correct
the climate, we develop a new method to augment a Gaus-
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sian process emulator, with simulator outputs acting as inputs
to the emulator alongside the standard input parameters. We
use simulated output of forests at different geographical lo-
cations to train the emulator, describing a single relationship
between the climate of the simulator, the land surface inputs
and the forest fraction. In doing so, we develop a technique
that might be used to bias correct subcomponents of coupled
models, allowing a more computationally efficient method
for final system tuning of those models.

In Sect. 2, we review the literature on the possible causes
of the low Amazon forest fraction in FAMOUS. In Sect. 3.1,
we describe how we use the temperature and precipitation to
augment the Gaussian process emulator. In Sect. 4.2, we use
the augmented emulator to bias correct the climates of the
forest and examine the effect of that bias correction on the
input space that is deemed statistically acceptable in a his-
tory matching exercise. In Sect. 4.5, we search for regions
of parameter space where the bias-corrected simulator might
perform better than at the default parameters. In Sect. 4.4,
we use the augmented emulator to estimate the sensitivity of
forest fraction to changes in land surface and climate param-
eters. In Sect. 4.6, we look at regions of climate space where
the default parameters would produce statistically acceptable
forests. Finally, we offer some discussion of our results in
Sect. 5 and conclusions in Sect. 6.

2 Climate and forest fraction

Previous studies have concluded that the climate state has an
influence on the Amazon rainforest. Much of that work has
been motivated by the apparent risk of dieback of the Ama-
zon forest posed by a changing climate (e.g. Malhi et al.,
2008; Cox et al., 2004). We assume that factors that might
affect a future simulated Amazon rainforest might also affect
the simulated steady-state pre-industrial forest in FAMOUS.
Parameter perturbations and CO; concentrations have been
shown to influence the simulation of tropical forests in cli-
mate models (Boulton et al., 2017; Huntingford et al., 2008),
with increases in CO, fertilisation and associated increased
water use efficiency through stomatal closure offsetting the
negative impacts of purely climatic changes (Betts et al.,
2007; Good et al., 2011). A metric linked to rainforest sus-
tainability by Malhi et al. (2009) is maximum cumulative
water deficit, which describes the most negative value of cli-
matological water deficit measured over a year. In a simi-
lar vein, Good et al. (2011, 2013) find that in Hadley Centre
models, sustainable forest is linked to dry-season length, a
metric which encompasses both precipitation and tempera-
ture, along with sensitivity to increasing CO; levels. No for-
est is found in regions that are too warm or too dry, and there
is a fairly distinct boundary between a sustainable and non-
sustainable forest. Galbraith et al. (2010) found that temper-
ature, precipitation and humidity had greatly varying influ-
ence, and by different mechanisms on changes in vegetation
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carbon in the Amazon across a number of models, but that
rising CO; mitigated losses in biomass. Poulter et al. (2010)
found that the response of the Amazon forest to climate
change in the Lund-Potsdam—Jena managed Land (LPJmL)
land surface model was sensitive to perturbations in param-
eters affecting ecosystem processes, the carbon cycle and
vegetation dynamics, but that the dynamics of a dieback in
the rainforest were robust across those perturbations. In that
case, the main source of uncertainty of dieback was uncer-
tainty in climate scenario. Boulton et al. (2017) found that
temperature threshold and leaf area index parameters both
have an impact on the forest sustainability under projections
of climate change in the Earth system version of HadCM3.

2.1 Biases in FAMOUS

M16 speculated that both local climate biases and missing
or incorrect processes in the land surface model — such as
missing deep rooting in the Amazon — might be the cause
of the simulated low forest fraction in the Amazon region
at the end of the pre-industrial period in an ensemble of the
climate model FAMOUS. In this study, we use the ensem-
ble of FAMOUS previously used in M16, to attempt to find
and correct the cause of persistent low forest fraction in the
Amazon, identified in that paper.

FAMOUS (Jones et al., 2005; Smith et al., 2008) is a
reduced-resolution climate simulator based on the HadCM3
climate model (Gordon et al., 2000; Pope et al., 2000). The
model has many features of modern climate simulators but is
of sufficiently low resolution to provide fast and simple data
sets with which to develop UQ methods. Full details of the
ensemble can be found in M16 and Williams et al. (2013).

The ensemble of 100 members perturbed seven land sur-
face and vegetation inputs (see Table S1 in the Supplement),
along with a further parameter denoted “beta” (8). Each of
the 10 values of beta provides an index to 1 of 10 of the best-
performing atmospheric and oceanic parameter sets used in
a previous ensemble with the same model Gregoire et al.
(2010), with the lowest values of beta corresponding to the
very best performing variants. The beta parameter therefore
summarised perturbations in 10 atmospheric and oceanic pa-
rameters that impacted the climate of the model randomly
varied with land surface input parameters and potentially
led to different climatologies in a model variant with the
same land surface parameters but different values of beta.
Variations in the beta parameter, however, did not correlate
strongly to variations with any of the oceanic, atmospheric
or land surface parameters in the ensemble, and so the pa-
rameter was excluded from the analysis in M16. In this anal-
ysis, we recognise that the different model climates caused
by variations in the atmospheric and oceanic parameters will
have an impact on the forest fraction, and so we summarise
those variations directly using local temperature and precipi-
tation.
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Variation in the parameters across the ensemble had a
strong impact on vegetation cover at the end of a spinup
period, with atmospheric CO» at pre-industrial conditions.
The broadleaf forest fraction in individual ensemble mem-
bers varies from almost non-existent to vigorous (Fig. 1). The
strong relationships between the global mean forest fraction
and the mean forest fraction in each region imply that per-
turbations in input parameters exert a larger control over all
forests simultaneously and individual forests to a smaller ex-
tent.

MI16 aggregated the regional mean forest fraction for
the Amazon, southeast Asian, North American and central
African forests, along with the global mean. They were only
able to find very few land surface parameter settings which
the history matching process suggested should lead to an ade-
quate simulations of the Amazon forests and the other forests
together. These parameter sets were at the edges of sampled
parameter space, where larger uncertainty in the emulator
may have been driving the acceptance of the parameter sets.

In this study, we use the same ensemble of forest frac-
tion data used in M16. However, we add temperature and
precipitation data, present in the original ensemble but not
used to build an emulator in the M16 study, to further our
understanding of the causes of the low forest fraction in the
Amazon region. The temperature and precipitation data sum-
marise the effects of atmospheric parameters on the atmo-
spheric component of the model, in a way that is directly
seen by the land surface component of the model. We con-
sider only regions dominated by tropical broadleaf forest, so
as not to confound analysis by including other forests which
may have a different set of responses to perturbations in pa-
rameters, rainfall and temperature.

For temperature observations, we use the Climate Re-
search Unit (CRU) global monthly surface temperature cli-
matology (Jones et al., 1999), covering the years 1960-1990.
For precipitation, we use the average monthly rate of precipi-
tation, covering the years from 1979 to 2001 from the Global
Precipitation Climatology Project (GPCP) version 2.2, pro-
vided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA, from their website at https://www.esrl.noaa.gov/psd/
(last access: 22 October 2014) (Adler et al., 2003). Vegeta-
tion fraction observations are adapted from Loveland et al.
(2000) and are shown in Fig. 2. Although the observations
all cover slightly different time periods, we expect the dif-
ferences caused by harmonising the time periods to be very
small compared to other uncertainties in our analysis and to
be well covered by our uncertainty estimates.

A plot of regional mean temperature and precipitation in
the tropical forest regions in the FAMOUS ensemble (Fig. 3)
indicates the form of the impact that the regional climate has
on forest fraction in the climate model. Central African and
southeast Asian climates in the model simulations run in a
sweep across the middle of the plot, from dry and cool to wet
and warm.

Geosci. Model Dev., 13, 2487-2509, 2020
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Figure 1. Broadleaf forest fraction in the FAMOUS ensemble, ranked from the smallest to largest global mean value.

It appears that a wetter climate — which would be expected
to stabilise forests — broadly compensates for the forest re-
ductions induced by a warmer climate. Within the ensem-
ble of central African forests, for example, forest fraction
increases towards the “cooler, wetter” (top left) part of the
climate phase space. Beyond a certain value, however, there
are no simulated climates or forests in this climatic region.
It is clear from the plot that while central African and south-
east Asian forests are simulated in the large part consider-
ably warmer than recent observations, they are also simu-
lated considerably wetter, which might be expected to com-
pensate forest stability. In contrast, while simulated consid-
erably warmer, the Amazon is also slightly drier than recent
observations, which might further reduce forest stability.

We are assuming here that tropical forests can be repre-
sented by a single set of forest function parameters. While
such an assumption risks missing important differences
across heterogenous tropical forests, modelling the system
with the smallest set of common parameters avoids overfit-
ting to present-day data. Avoiding overfitting is important if
we are to use these models to project forest functioning in fu-
ture climates outside observed conditions. One of the ques-
tions that the analysis presented in this paper addresses is

Geosci. Model Dev., 13, 2487-2509, 2020

whether current forest biases in the simulations reflect lim-
itations of this single tropical forest assumption or whether
biases in the simulations of the wider climate variables play
a more important role.

3 Methods

The climate model FAMOUS is computationally expensive
enough that we cannot run it for a large enough number of
input parameter combinations to adequately explore param-
eter space and find model biases. To increase computational
efficiency, we build a Gaussian process emulator: a statisti-
cal function that predicts the output of the model at any in-
put, with a corresponding estimate of uncertainty (see, e.g.
Sacks et al., 1989; Kennedy and O’Hagan, 2001). The em-
ulator models climate model output y as a function g() of
inputs x so that y = g(x). It is trained on the ensemble of
model runs described in Sect. 2.1. The set of land surface in-
put parameters is called the design matrix, denoted X, and
the corresponding sample of model output forest fraction is
denoted y. The configuration of the design matrix is a Latin
hypercube (McKay et al., 1979), as used in, e.g. Gregoire

https://doi.org/10.5194/gmd-13-2487-2020
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Figure 2. Observations of broadleaf forest fraction on their native
grid (a) and regridded to the FAMOUS grid (b).

et al. (2010); Williams et al. (2013), with sample input points
chosen to fill input parameter space efficiently and therefore
sample relationships between input parameters effectively.

3.1 An augmented emulator

Our strategy is to augment the design matrix of input param-
eters X with corresponding atmospheric climate model out-
put that might have an impact on the modelled land surface,
building an emulator that models the effects of both input pa-
rameters and climate on forest fraction. We then use the aug-
mented emulator to bias correct each forest in turn. We use
the emulator to describe the relationship between land sur-
face parameters, atmospheric variables that summarise the
action of hidden atmospheric parameters and the broadleaf
forest fraction. The relationships between these variables are
summarised in Fig. 4.

We have a number of forests for each ensemble member,
differing in driving influence by a different local climate. Re-
gional extent of each of the broadleaf forests can be found
in the Supplement. We use regional mean temperature (7')
and precipitation (P) for each of the forests: the Amazon,
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Figure 3. Regional temperature, precipitation and broadleaf for-
est fraction in the ensemble of FAMOUS compared with observa-
tions. Smaller symbols represent broadleaf forest fraction in the FA-
MOUS ensemble against regional mean temperature and precipita-
tion. Ensemble member forest fraction in the Amazon is represented
by the colour of the circles, central Africa by triangles and SE Asia
by squares. Larger symbols represent observed climate and forest
fraction.
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Figure 4. A graph showing the assumed relationship between input
parameters, climate variables and forest fraction. An arrow indicates
influence in the direction of the arrow. Processes that are directly
emulated are shown with a solid arrow, while the processes shown
by a dotted arrow are not directly emulated.

central Africa and southeast Asia as additional inputs to aug-
ment our original design matrix of land surface parameters,
X. These new inputs are outputs of the model when run at
the original inputs X and are influenced by the 10 atmo-
spheric and oceanic parameters perturbed in a previous en-
semble in a configuration unavailable to us in this experi-
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Figure 5. In a standard emulator setup (left), training data consist of
an input matrix X and corresponding simulator output y. A new em-
ulator g1(), ..., g3() is trained for each output y, ..., y3 of interest.
In the augmented emulator, output from the simulator Cy, ..., C3
augments the design matrix, with the initial inputs X repeated.

ment. Performance of the model under those perturbations is
summarised in the beta parameter, which has smaller values
for the better-performing models. The performance metrics
included temperature and precipitation, along with a number
of other measures, so the beta parameter therefore contains
information about temperature and precipitation across the
ensemble, without being a perfect representation of its be-
haviour. We cannot control the atmospheric and oceanic pa-
rameters directly and thus ensure that they lie in a Latin hy-
percube configuration, although the ensemble is ordered in a
Latin hypercube configuration according to the performance
of the model at each parameter set.

With n = 100 ensemble members, we form each n x 1 vec-
tor of temperature and precipitation and form an n x 2 ma-
trix of climate variables for the Amazon Caz = [T oz P az],
central Africa Cap = [T Ap P ar] and southeast Asia Cpas =
[T as P as]. We use these to augment the original n x p input
matrix X, creating a unique input location for each forest. We
then stack these augmented input matrices together to form a
single input matrix X'.

X Caz
X' =|X Car (1)
X Cas

From an initial ensemble design matrix with n = 100
members and p =7 inputs, we now have a design with
n =300 members and p =9 inputs. Each member with
a replicated set of initial input parameters (e.g. members
[1,101,201]), differs only in the T and P values. Figure 5
shows a diagram of the augmented emulator along with the
composition of the resulting input matrix and output vector.

Where in M16, the authors built an independent emula-
tor for each output (i.e. regional forest fraction), we now
build a single emulator for all forest fractions simultaneously

Geosci. Model Dev., 13, 2487-2509, 2020
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Figure 6. Leave-one-out cross-validation plot, with the true value
of the simulator output on the x axis and predicted output on the
y axis. Vertical lines indicate £2 standard deviations.

given input parameters, temperature and precipitation. The
output vector for the tropical forests has gone from being
three sets of 100 values y57z, ¥ar, Yas. tO a single vector
Y =1[¥az, Yap> Yasl of length 300. We model forest fraction
y’ as a function of X’ using the Gaussian process emulator of
the DiceKriging package (Roustant et al., 2012) in the R sta-
tistical language and environment for statistical computing.
Details of the emulator can be found in the Supplement.

We note that the augmented emulator depends on the as-
sumption that modelled broadleaf forests in each location re-
spond similarly to perturbations in climate and input param-
eters. This assumption may not hold for the behaviour of the
forests in the model or indeed the real world. For example,
particularly deep rooting of forests in the Amazon would re-
spond differently to rainfall reductions but these processes
are not represented in the underlying climate model. Simi-
larly, differing local topology that is captured in the climate
model may influence the forests in a way not captured by our
emulator. In both cases, the emulator would show systematic
errors of prediction.

3.2 Verifying the augmented emulator

To verify that the augmented emulator adequately reproduces
the simulator behaviour, we use a leave-one-out metric. For
this metric, we sequentially remove one simulator run from
the ensemble, train the emulator on the remaining ensem-
ble members and predict the held-out run. We present the
predicted members and the calculated uncertainty plotted
against the actual ensemble values in Fig. 6.
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Table 1. Mean absolute error (MAE) rounded to the first signifi-
cant figure for the regular emulator, using just the seven land sur-
face inputs, and the augmented emulator, including temperature and
precipitation.

Regular Augmented
Forest emulator MAE  emulator MAE
Amazon 0.05 0.03
Southeast Asia 0.06 0.03
Central Africa 0.06 0.03
All 0.06 0.03

It is important to check that the augmented emulator per-
forms well in prediction, in order to have confidence that us-
ing emulated runs in our later analyses is a valid strategy.
We see no reason to doubt that the augmented emulator pro-
vides a good prediction and accurate uncertainty estimates
for prediction at inputs points not yet run. We use the mean
of the absolute value of the difference between the emula-
tor prediction and corresponding held-out value to calculate
the mean absolute error (MAE) of cross-validation predic-
tion. Prediction error and uncertainty estimates remain ap-
proximately stationary across all tropical forests and values
of forest fraction. The mean absolute error of prediction us-
ing this emulator is a little under 0.03 or around 6 % of the
mean value of the ensemble.

When compared against the regular emulator using just the
land surface inputs, the augmented emulator performs well.
The regular emulator built individually for each of the forests
(as per M16) has a mean absolute error value of 0.058 —
nearly double that of the augmented emulator. This indicates
that adding temperature and precipitation to the input matrix
adds useful information to a predictive statistical model. A
breakdown of the mean absolute error of the emulator on a
per-forest basis can be seen in Table 1.

There is some concern that the emulator might not perform
well close to the observed values of temperature and precip-
itation, particularly for the Amazon and central African re-
gions. For this reason, we carry out an enhanced verification
of the emulator, holding out more ensemble members and
demanding further extrapolation (see Sect. S2 in the Supple-
ment). We find no reason to doubt that the augmented emu-
lator performs well.

Do the error estimates of the augmented emulator match
the true error distributions when tested in leave-one-out pre-
dictions? We test the reliability of uncertainty estimates of
the emulator by checking that the estimated probability dis-
tributions for held-out ensemble members match the true er-
ror distributions in the leave-one-out exercise. We create a
rank histogram (see, e.g. Hamill, 2001) for predictions, sam-
pling 1000 times from each Gaussian prediction distribu-
tion and plotting the rank of the actual prediction in that
distribution. The distribution of these ranks overall predic-
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Figure 7. Rank histogram of leave-one-out predictions. For each
prediction of a held-out ensemble member, we sample 1000 points
from the Gaussian prediction distribution and then record where the
true held-out ensemble member ranks in that distribution. We plot
a histogram of the ranks for all 300 ensemble members. A uniform
distribution of ranks indicates that uncertainty estimates of the em-
ulator are well calibrated.

tions should be uniform if the uncertainty estimates are re-
liable. Consistent overestimation of uncertainty will produce
a peaked histogram, while systematic underestimation of un-
certainty will produce a U-shaped histogram. The rank his-
togram produced by this set of predictions (Fig. 7) is close to
a uniform distribution, indicating reliable predictions.

3.3 History matching

History matching is the process of finding and ruling out re-
gions of parameter space where the model is unlikely to pro-
duce output that matches observations well. It measures the
statistical distance between an observation of a real-world
process and the emulated output of the climate model at any
input setting. An input where the output is deemed too far
from the observation is ruled “implausible” and removed
from consideration. Remaining inputs are conditionally ac-
cepted as “not ruled out yet” (NROY), recognising that fur-
ther information about the model or observations might yet
rule them as implausible.

Observations of the system are denoted z, and we assume
that they are made with uncorrelated and independent errors
€ such that

Z:y+6, (2)

Assuming a “best” set of inputs x*, where the model dis-
crepancy § or difference between climate model output y and
z is minimised, we relate observations to inputs with

z=g(x")+8+e. 3)

We calculate measure of implausibility / and reject any
input as implausible where / > 3 after Pukelsheim’s 3¢ rule;
that is, for any unimodal distribution, 95 % of the probability
mass will be contained within 3 standard deviations of the

Geosci. Model Dev., 13, 2487-2509, 2020
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values observed in the real world.

mean (Pukelsheim, 1994). We calculate
1% = |z — E[g(x)]|*/Var[g(x)] + Var[8] + Var{e], )

which recognises that the distance between the best estimate
of the emulator and the observations must be normalised by
uncertainty in the emulator g(x) in the observational error €
and in the estimate of model discrepancy §.

4 Analyses

4.1 The joint impacts of temperature and precipitation
on forest fraction

What impact do temperature and precipitation have on for-
est fraction together? We use the emulator from Sect. 3.1
and predict the simulator output across the entire range of
simulated temperature and precipitation, while holding the
other inputs at their default values. The marginal impacts of
temperature and precipitation on forest fraction are clear in
Fig. 8. Ensemble member temperature, precipitation and for-
est fraction, taken from Fig. 3, are overplotted for compari-
son. Temperature and precipitation values are normalised to
the range of the ensemble in this plot.

With other inputs held constant, cooler, wetter climates
are predicted to increase forest fraction and drier, warmer
climates reduce forest fraction. In general, southeast Asian
and central African forests are simulated as warmer and wet-
ter than their true-life counterparts. Moving the temperature
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and precipitation values of a typical ensemble member from
near the centre of these forest sub-ensembles to their ob-
served real-world values would shift them primarily in the
same direction as the contours of forest fraction value. This
would mean that bias correcting the climate variables would
not have a large impact on forest fraction values in southeast
Asian and central African forests, and that they are therefore
simulated with a roughly accurate forest fraction. In con-
trast, the Amazon is simulated slightly drier and consider-
ably warmer than the observed Amazon and many ensemble
members consequently have a lower forest fraction than ob-
served. Shifting the temperature and precipitation of a typical
ensemble member for the Amazon to its real-world observed
values would cross a number of contours of forest fraction.
This figure provides strong evidence that a significant frac-
tion of the bias in Amazon forest fraction is caused by a bias
in simulated climate.

4.2 A climate bias correction approach

With an emulator that models the relationship between input
parameters, local climate and the forest fraction, we can pre-
dict what would happen to forest fraction in any model simu-
lation if the local climate was correct. In Fig. 9, we compare
the value of forest fraction predicted at the default set of land
surface parameters using the standard emulator, with that
predicted using the local temperature and precipitation cor-
rected to the observed values using the augmented emulator.
This means that central Africa becomes significantly drier
and a little cooler than the centroid of the ensemble. South-
east Asia becomes a little cooler and a little drier. The Ama-
zon forest becomes a little wetter and significantly cooler.
The ensemble has a much larger spread of climates in cen-
tral Africa than southeast Asia or the Amazon. We note that
we do not have an ensemble member run at the default land
surface parameters, so we compare two predictions using the
emulator.

The bias correction reduces the difference between the
prediction for the modelled and observed Amazon forest
fraction markedly, from —0.28 using the standard emulator
to —0.08 using the augmented emulator. It makes the pre-
dicted modelled forest in central Africa worse (—0.11 from
—0.03) and slightly improves the SE Asian forest fraction
(0.07 from 0.1). Overall, bias correcting the climate takes the
mean absolute error at the default parameters from 0.14 to
0.09 for the three forests. It is possible that the predicted for-
est fraction for central Africa is slightly worse because the
observed climate is towards the edge of the parameter space
of temperature and precipitation, and there are no runs near.

4.3 History matching to learn about model discrepancy
In this section, we use history matching (see Sect. 3.3) to

learn about parts of input parameter space that are consistent
with observations and to find the causes of discrepancy in the
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Table 2. Mean absolute error of the simulated forest fraction and implausibility of the default set of land surface parameters when not bias
corrected and bias corrected to temperature and precipitation observations.

Error Implausibility

Forest Error Implausibility  (bias corrected)  (bias corrected)

Amazon 0.316 —0.079 1.31

Southeast Asia  —0.096 0.072 1.76

Central Africa —0.04 0.768 —0.11 1.5
Intersection Union

Observed
SE Asia Default parameters
Bias corrected
(a) Before bias correction (b) After bias correction
Amazon Initial Initial
X Amazon
Africa |
Imersecnonl I
i
: Intersection
I
1
L Africa Africa
Amazon —A—
- Figure 10. A cartoon depicting the input space that is NROY when

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Forest fraction

Figure 9. Observed and emulated forest fraction in each tropical
forest. For the emulated forest fraction at default and bias-corrected
parameters, emulator uncertainty of +2 SD is represented by hori-
zontal bars.

model. We study the region of input space that is NROY by
comparison of the model output to the observations of forest
fraction. In the previous section, we see that the overall dif-
ference between the simulated and observed forest fraction
is reduced if the output is bias corrected. In this section, we
study how that bias correction affects the NROY space.

In M 16, the default input parameters were ruled out as im-
plausible for the Amazon region forest fraction. For the sake
of illustration, we assume very low uncertainties: zero ob-
servational uncertainty and a model discrepancy term with a
zero mean and an uncertainty (&1 SD) of just 0.01. We note
that under these conditions the default parameters would be
ruled out in the standard emulator. However, if we bias cor-
rect the model output using the observed temperature and
precipitation, we find that the implausibility measure I for
the forest fraction in the Amazon at the standard input pa-
rameters reduces from nearly 7 to 1.3 — comfortably un-
der the often-used threshold of 3 for rejection of an input.

https://doi.org/10.5194/gmd-13-2487-2020

the climate simulator output is compared to observations of the for-
est fraction in the Amazon, Africa and southeast Asia before (a) and
after (b) bias correction. We measure the “shared” space (the inter-
section of NROY spaces for each forest) as a fraction of the union
(the total space covered by all three forests) of the NROY spaces.
The “initial” space represents the total parameter space covered by
the ensemble.

The implausibility of the SE Asian and central African for-
est fraction at the default parameter settings rises with bias
correction (see Table 2), but neither comparison comes close
to ruling out the default parameters. This rise in implausibil-
ity is caused by a smaller uncertainty estimate (in the case of
SE Asia) and a larger emulation error (in the case of central
Africa). However, we can confidently say that bias correc-
tion using the emulator means that observations no longer
rule out the default parameters, even with the assumption of
a very small model discrepancy.

Another result of bias correction is that it increases the
“harmonisation” of the input spaces — that is, the volume of
the input space that is “shared” or NROY by any of the com-
parisons of the simulated forest fractions with data. In M16,
we argued that the regions of input parameter space where
the model output best matched the observations had a large
shared volume for the central African, southeast Asian and
North American forests. In contrast, the “best” input param-
eters for the Amazon showed very little overlap with these
other forests. This pointed to a systematic difference between

Geosci. Model Dev., 13, 2487-2509, 2020
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Figure 11. NROY land surface input space shared by all three forests before bias correction. Blue shading denotes the density of NROY
input candidates, projected into the two-dimensional space indicated by the labels. The default parameter settings are marked as red points.

the Amazon and the other forests that might be a climate bias
or a fundamental discrepancy in the land surface component
of the model. Here, we show that the climate-bias-corrected
forest in the Amazon would share a much larger proportion
of its NROY space with the other forests. Indeed, the default
parameters are now part of this “shared” space, and there is
formally no need to invoke an unexplained model discrep-
ancy in order to accept them for all the tropical forests. We
show a cartoon of the situation in Fig. 10.

We find that when we bias correct all the spaces, the pro-
portion of “shared” NROY input space relative to the union
of NROY spaces for all forests increases from 2.6 % to 31 %
— an order of magnitude increase (see Table 3). This is driven
chiefly by the harmonisation of the NROY space of the Ama-
zon to the other two forests. We see that before bias correc-
tion, the southeast Asian and African forests share nearly
three quarters (74 %) of their combined NROY space. This
drops to 33 % when bias corrected, but with the advantage
that the Amazon and central Africa now share over 90 %
(91.5 %) of their combined NROY space (Table 4).

Geosci. Model Dev., 13, 2487-2509, 2020

When compared to the initial input parameter space cov-
ered by the ensemble, the shared NROY space of the non-
bias-corrected forests represents 1.9 %, rising to 28 % on bias
correction.

We visualise two-dimensional projections of the NROY
input parameter space shared by all three forests before bias
correction in Fig. 11 and after bias correction in Fig. 12.
The two-dimensional projections of high-density regions
of NROY points are dramatically shifted and expanded in
the bias-corrected input space, and the default parameters
now lie in a high-density region. For example, a high-
density region of NROY points is apparent in the bias-
corrected input parameter space (Fig. 12), in the projection
of V_CRIT_ALPHA and NLO. It is clear from sensitivity
analyses (Sect. 4.4) that, all other things remaining the same,
increasing the value of NLO strongly raises forest fraction,
while increasing V_CRIT_ALPHA strongly reduces forest
fraction. We would expect there to be a region, indeed a
plane through parameter space where these two strong ef-
fects counteract each other, resulting in a forest fraction close
to observations. This feature does not appear in the history

https://doi.org/10.5194/gmd-13-2487-2020
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Table 3. Measures of the NROY input space shared by all three forests. The intersection is NROY for all three forests, the union is NROY
for at least one forest. The initial space is that defined by the parameter limits of the initial experiment design.

Intersection / union (%)

Intersection / initial (%)

Not bias corrected
Bias corrected

2.6
31
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Figure 12. NROY land surface input space shared by all three forests when bias corrected using the augmented emulator. Blue shading
denotes the density of NROY input candidates, projected into the two-dimensional space indicated by the labels. The default parameter

settings are marked as red points.

matching before bias correcting (Fig. 11). The low value of
the simulated Amazon forest fraction before bias correction
of the climate inputs rules out much of the input parameter
space later found to be NROY after the bias-corrected history
matching exercise (Fig. 12).

It is possible that the estimate of shared NROY input space
is larger than it could be, due to the lack of ensemble runs in
the “cool, wet” part of parameter space, where there are no
tropical forests. Inputs sampled from this part of parameter
space may not be ruled out, as the uncertainty on the emulator
may be large. This is history matching working as it should,
as we have not included evidence about what the climate
model would do if run in this region. Further work could ex-
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plore the merits of including information from other sources
(for example, from our knowledge that tropical forests do not
exist in a cool, wet climate) into the history matching pro-
cess.

4.4 Sensitivity analysis

The augmented emulator allows us to measure the sensitiv-
ity of forest fraction to the land surface input parameters si-
multaneously with climate variables temperature and precip-
itation. A quantitative measure of sensitivity of the model
output to parameters that does take into account interactions
with other parameters is found using the FAST99 algorithm

Geosci. Model Dev., 13, 2487-2509, 2020
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Table 4. Proportion of shared NROY input space for each forest pair compared to the total NROY space covered by the same forest pair. Not

bias corrected (top) and bias corrected (bottom).

Not bias corrected Amazon  Southeast Asia  Central Africa
Amazon 1
Southeast Asia 0.034 1
Central Africa 0.075 0.741 1
Bias corrected
Amazon 1
Southeast Asia 0.329 1
Central Africa 0.915 0.337 1
O Main effect 1 This is to avoid potentially overestimating the sensitivity of
030 7 @ Interactions forest fraction to (for example) temperature and precipita-
ET 0.25 1 tion by including results from regions of parameter space far
é 0.20 from existing ensemble members and in very different cli-
2 015 mate regimes from existing broadleaf tropical forests.
§ 0.10 i Parameters NLO and V_CRIT_ALPHA and climate vari-
0.05 ables temperature and precipitation exert strong influence of
0.00 E = = E — ] similar magnitudes on forest fraction. Shaded regions rep-
g z 3 3 % g % % s resent the. uncertainty of the sens%tivity to each paramete'r,
3' ?n‘l F T 5 2 due to estimated emulator uncertainty of 42 standard devi-
&« g g 8' ations. This sensitivity measure does not include the extra
o = uncertainty due to the fact that the relationships will change

Figure 13. Sensitivity of forest fraction to model parameters and
climate parameters, found using the FAST99 algorithm of Saltelli
et al. (1999).

of Saltelli et al. (1999), summarised in Fig. 13. Precipita-
tion and temperature are the second and third most impor-
tant parameters, more important than NLO, and only slightly
less important than V_CRIT_ALPHA. Interaction terms con-
tribute a small but non-negligible part to the sensitivity. This
form of quantitative sensitivity analysis is useful to under-
stand initial model behaviour but could be vulnerable to er-
ror, as it is assumed that all parts of the input space are valid.
Our experiment design does not control temperature and pre-
cipitation directly, and the “cool, wet” part of this parameter
space does not contain tropical broadleaf forest. It is possi-
ble therefore that a sensitivity analysis that relies on input
samples from this region might mis-specify sensitivity in-
dices. Below, we outline two methods that tackle this prob-
lem: one-at-a-time sensitivity analysis with history matching
and Monte Carlo filtering.

We measure the one-at-a-time sensitivity to parameters
and climate variables, using the augmented emulator to pre-
dict changes in forest fraction as each input is changed from
the lowest to highest setting in turn, with all other inputs at
the default settings or observed values. We present the results
in Fig. 14. In this diagram, we exclude emulated forests that
are deemed implausible according to the criteria in Sect. 3.3.

Geosci. Model Dev., 13, 2487-2509, 2020

depending on the position of the other parameters. We do,
however, see a measure of how temperature and precipita-
tion affect the marginal response of the other parameters, as
the observed climates of each forest are different. For exam-
ple, we clearly see that the response of the forest fraction to,
e.g. NLO, depends on climate — the forest fraction response
is a noticeably different shape when varied under the mean
climate of the southeast Asian region.

A technique called Monte Carlo filtering (MCF), or re-
gional sensitivity analysis, is useful in situations where in-
put parameter distributions are non-uniform or correlated, or
not all parts of parameter space are valid. The basic idea of
MCF is to split samples from the input space into those where
the corresponding model output meets (or not) some criteria
of behaviour. Examining the differences between the cumu-
lative distributions of those inputs where the outputs do or
do not meet the criteria provides a measure of sensitivity of
the output to that input. For example, we might split model
behaviour into those outputs above or below a threshold. A
recent description of MCF and references can be found in
Sect. 3.4 of Pianosi et al. (2016).

We integrate the MCF sensitivity analysis into the his-
tory matching framework. We examine the differences in
the univariate cumulative distributions of each parameter,
in those samples where the output is ruled out by history
matching, against those that are NROY. To measure the dif-
ferences between the distributions, we perform a two-sided
Kolmogorov—Smirnov (KS) test and use the KS statistic as
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Figure 14. One-at-a-time sensitivity of forest fraction variation of each parameter and climate variable in turn across the NROY parameter
range. All other parameters or variables are held at their default values while each parameter is varied, and values of model broadleaf forest
fraction which are statistically far from observations are excluded. Solid lines represent the emulator mean and shaded areas represent 42

standard deviations of emulator uncertainty.

in indicator that the output is sensitive to that input. A larger
KS statistic indicates that the cumulative distribution func-
tions of the respective inputs are further apart, that input is
more important for determining if the output falls within the
NROY part of parameter space, and therefore the output is
more sensitive to that input in a critical region. We note that
MCEF is useful for ranking parameters but not for screening,
as inputs that are important only in interactions might have
the same NROY and ruled out marginal distributions. In this
case, they would have a sensitivity index of zero.

We apply MCF using the emulator. This allows us to
examine the difference between model output distributions
given a much larger sample from the input space than when
using only the ensemble. This comes at the cost of using an
imperfect emulator, which may give different results than if
we were using a large ensemble of runs. To avoid the prob-
lem of sampling precipitation and temperature from regions
where there are no ensemble members, we sample uniformly
from across input space for all other parameters and then ap-
pend a random temperature/precipitation location from the
ensemble. We calculate a sampling uncertainty by calculat-
ing the MCF sensitivity metrics 1000 times, each time using
a sample size of 5000 emulated ensemble members. In this
way, we estimate both the mean and the uncertainty (standard
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deviation) of the MCF sensitivity measures. We note that the
sensitivity indices are calculated higher when a small num-
ber of ensemble members are used, as well as with a higher
uncertainty. The change in both the estimated statistic and its
uncertainty have begun to become small by the time 3000 en-
semble members are used, suggesting that we should use at
least this many emulated ensemble members to obtain an un-
biased sensitivity analysis (see the Supplement). We compare
the KS statistics and their associated uncertainty for each in-
put in Fig. 15.

We can check the strength of the relationship between the
MCEF sensitivity measures and the FAST99 sensitivity mea-
sures by plotting them together. We examine this relationship
in the Supplement (Fig. S7).

4.5 Doing better than the default parameters

We can use the emulator to find locations in parameter space
where there is a potential that the difference between the
modelled and observed forest fractions could be smaller than
at the default parameters. Figure 16 shows the density of pa-
rameter settings in each two-dimensional projection of the in-
put space, where the emulator estimates the model performs
better than at the default parameters, once bias correction has
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been applied. That is, the absolute difference between each
estimated forest fraction and the observed values is smaller
than the absolute difference of the mean estimate at the de-
fault parameters. Out of 100000 samples from the uniform
hypercube defined by the range of the experiment design,
only 2451, or around 2.5 %, match this criterion and are plot-
ted. This diagram might help guide further runs in the en-
semble, choosing high-density regions to run new ensemble
members. The convergence of NLO and V_CRIT_ALPHA
seems particularly focused and suggests that a lower value
of V_CRIT_ALPHA might be a way to reduce error in the
forest fraction. There is another, although less densely popu-
lated, region of high NLO and V_CRIT_ALPHA that might
fulfil the criteria of lower estimates of error for each forest.
These regions would be good targets for supplementary runs
of the climate model and for particularly careful emulator
checking. A poorly performing emulator could guide a model
developer into wasting model runs at locations which, in re-
ality, did not produce forest fractions close to the observed
values.

4.6 Allowable climate at default parameters

We use history matching to find the set of regional mean
climates that are most consistent with the observations for
each tropical forest. To illustrate the best-case scenario, we
set model discrepancy, its associated uncertainty and obser-
vational uncertainty artificially low (0, 0.01 and 0, respec-
tively), so that implausibility is almost exclusively a product
of the emulator uncertainty. We find the set of NROY tem-
perature and precipitation values when the remaining input
parameters are held at their default values. Figure 17 shows
the density of NROY points in the climate space for each of
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the observed forest fractions. We see that the Amazon and
central African forests might be well simulated in the model
in a very wide range of cooler and wetter climates, with only
the “hot, dry” corner showing zero density of potential in-
puts that produce similar forest fraction to observations. The
southeast Asian forest fraction is matched by a swathe of in-
puts running diagonally through the centre of input space.
Neither the hot, dry or cool, wet corners of input space pro-
duce forests that match the observations, though the warm,
wet and cool, dry corners do.

5 Discussion
5.1 Simulating the Amazon

We have shown that the simulation of the broadleaf tropi-
cal forest in FAMOUS is almost as sensitive to temperature
and precipitation as to any land surface parameter perturba-
tion in the ensemble. However, the calculated sensitivities are
dependent on the chosen limits of the parameter perturba-
tions themselves. The precise order and size of sensitivities
might change given updated parameter ranges, but there is lit-
tle doubt that the climate variables are a strong influence on
broadleaf forest fraction. This version of FAMOUS when run
with the default land surface input parameter settings would
successfully simulate the Amazon rainforest to within toler-
able limits if regional climate biases were substantially re-
duced. As such, there is no need to invoke a missing pro-
cess in the land surface in order to explain the forest fraction
discrepancy in the Amazon. We have strengthened the case
made by M16 that the low Amazon forest fraction is not a
result of poorly chosen parameters. There is a broad region
of climate space where the effects of temperature and pre-
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are shown as a red point.

cipitation on forest fraction compensate for each other. This
gives room for a number of possible sources of model dis-
crepancy and by extension makes it unlikely that the default
input parameters are optimal. There are indications from the
emulator that a small region of parameter space exists where
there is even smaller overall error in the simulation, offering
a target for exploration using further runs of the model.

There is a feedback from the land surface to the atmo-
sphere implicitly included in the emulated relationship. We
cannot control this feedback directly with the emulator and
thus work out the impact of this feedback on the forest frac-
tion as it is present in the training data. This feedback would
have to be taken into account if we were to simulate the cor-
rect climate independently of the land surface.

It is possible that were we to include a process seen to be
missing from the Amazon (such as deeper rooting of trees
allowing them to thrive in drier climates), our map of NROY
input space would alter again. Given that there is a measure
of uncertainty in observations and the emulator, as well as
the possibility of further compensating errors, we cannot rule
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out a model discrepancy such as a deep rooting process. The
fact that the other forests do slightly less well when their cli-
mates are bias-corrected points to a potential missing process
in the model, compensated for by parameter perturbations.
However, the impact of this missing process is likely much
smaller than we might have estimated had we not taken the
bias correction of the forest into account.

5.2 Uses for an augmented emulator

By building an emulator that includes temperature and pre-
cipitation — traditionally used as climate model outputs — we
are able to separate the tuning of one component of the model
(here the atmosphere) from another (the land surface). Per-
turbations to the atmospheric parameters, tested in a previous
ensemble but not available to us except through an indicator
parameter, are summarised as inputs through the climate of
the model.

We have used the augmented emulator as a translational
layer between components of the model. The augmented em-
ulator allows us to ask what it would it mean for our choice

Geosci. Model Dev., 13, 2487-2509, 2020
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Figure 17. Density of NROY emulated temperature and precipitation pairs for each observed tropical forest fraction, when input parameters
are held at their default values. Observed climates for each forest are marked in red.

of input parameters if the mean climate of the model in the
Amazon region was correct. This means that we will have
less chance of ruling out parts of parameter space that would
lead to good simulations or keeping those parts that lead to
implausible simulations. An augmented emulator as a trans-
lational layer might be built as part of a model develop-
ment process, making it computationally cheaper and faster.
Traditionally, the components of computationally expensive
flagship climate models are built and tuned in isolation be-
fore being coupled together. The act of coupling model com-
ponents can reveal model discrepancies or inadequacies. A
model discrepancy in one model component can mean that
a connected subcomponent requires retuning from its inde-
pendently tuned state. There is a danger that this retuning
leads to a model that reproduces historical data fairly well,
but that makes errors in fundamental processes and therefore
is less able to predict or extrapolate — for example, a climate
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model when projecting future changes under unprecedented
greenhouse gas concentrations. Given the time and resources
needed to run such complex models, these errors might per-
sist much longer than necessary and have profound conse-
quences for climate policy.

A translational layer would allow parameter choices to be
made for a model when run in coupled mode, even when
there was a significant bias in one of the components that
would affect the other components. The translational layer
would bias correct the output of a component of the model,
allowing an exploration of the effects of input parameter
changes on the subcomponent of the model, in the absence of
significant errors. Using the augmented emulator could elim-
inate some of the steps in the tuning process, help the model
developer identify potential sources of bias and quickly and
cheaply calculate the impacts of fixing them. In doing so, it
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would aid model developers in identifying priorities for and
allocating effort in future model development.

Our work here shows this process as an example. We have
identified the importance of precipitation and temperature to
the correct simulation of the Amazon forest and flag their
accurate simulation in that region as a priority for the de-
velopment of any climate model that hopes to simulate the
forest well. We have identified regions of the space of these
climate variables where the Amazon forest might thrive and
related that back to regions of land surface parameter space
that might be targeted in future runs of the model. We have
achieved this in a previously run ensemble of the model, al-
lowing computational resources to be directed towards new
climate model runs that will provide more and better infor-
mation about the model.

There are also potential computational efficiencies in our
approach of decoupling the tuning of two components (here
the atmosphere and the land surface) in the model. A good
rule of thumb is that a design matrix for building an emu-
lator should have O (10 x p) training points, where p is the
number of input parameters, in order to adequately sample
parameter space to the extent it is possible to build a good
emulator. With approximately 10 atmospheric and 7 land sur-
face parameters, we would need O (170) runs. Here, we have
summarised those 10 parameters as two outputs that have a
material impact on the aspect of the land surface that we are
interested in. Adding these two to the seven inputs, we need
O (10 x (247) =90) runs, well covered by our available en-
semble of 100 runs.

We acknowledge, however, that in order to trace back in-
formation about the performance of the model in forest frac-
tion to the original 10 oceanic and atmospheric parameters,
we would need access to the original ensemble. We have used
temperature and precipitation to reduce the dimension of the
parameter space, but there is no guarantee that the relation-
ship between the original parameters and the local climate is
unique. There may be multiple combinations of the 10 pa-
rameters that lead to the temperature and precipitation values
seen, which would mean that we would require a large en-
semble to estimate the relationships well. Alternatively, there
may be an even more efficient dimension reduction for forest
fraction, meaning we would need even fewer model runs to
summarise the relationship.

5.3 Limitations

In theory, the augmented emulator could be used to bias cor-
rect differently sized regions, down to the size of an indi-
vidual grid box for a particular variable. This might be use-
ful for correcting, for example, known biases in elevation or
seasonal climate. The principle of repeating the common pa-
rameter settings in the design matrix, and including model
outputs as inputs, would work in exactly the same way but
with a larger number of repeated rows. In the case of using
an augmented emulator on a per-grid-box basis, we might ex-
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pect the relationship between inputs that we are bias correct-
ing (e.g. temperature, precipitation) and the output of interest
(e.g. forest fraction) to be less clear, as at small scales there
are potentially many other inputs that might influence the
output. An emulator for an individual grid box might there-
fore be less accurate. However, with enough data points, or
examples (and there would be many), we might expect to be
able to recover any important relationships.

The computational resources needed to fit a Gaussian pro-
cess emulator when the number of outputs estimated simulta-
neously becomes even moderately large limits the use of our
technique. The design input parameter matrix used for train-
ing the emulator grows to n x d rows, where n is the number
of ensemble members in the original training set, and d is
the number of separate output instances to be considered. In
our example, d is 3, and so we only have 100 x 3 =300 in
the new training set. Given an initial ensemble of a few hun-
dred, this could easily result in a training set with hundreds of
thousands or even millions of rows. Gaussian process emula-
tors are currently limited to using training data with perhaps
a few hundred rows as current software packages must invert
an n X n matrix, a potentially very computationally expensive
process (Hensman et al., 2013, see, e.g.). At the time of writ-
ing, this limitation would preclude using our specific tech-
nique for correcting biases on a per-grid-box basis. To make
use of the translational layer for large data sets, we would
need new Gaussian process technology or specific strategies
to deal with large data sets. These strategies might involve
kernel-based methods, keeping the scope of training data lo-
cal to limit the size of any inverted matrices. Alternatively,
they might involve building emulators using only a strategi-
cally sampled selection of the outputs. Recent advances in
using Gaussian processes for larger data sets can be found in
Hensman et al. (2013, 2015); Wilson et al. (2015); Wilson
and Nickisch (2015). Our current strategy is to reduce the
dimension of the output of the climate model by taking the
regional mean of the output of the climate model (tempera-
ture and precipitation). More advanced dimension reduction
techniques might offer great potential.

Given that we overcome such technical barriers, we see
no reason that such a layer not be built that is used to (for
example) correct the climate seen by individual land surface
grid boxes rather than (as here) individual aggregated forests.
The process of rejecting poor parameter sets might be aided
by having a comparison against each grid box in an entire
global observed surface, rather than aggregated forests. Al-
ternatively, we might allow parameters to vary on a grid-
box-by-grid-box basis, effectively forming a map of NROY
parameters.

If trained on an ensemble of model runs which included
all major uncertainties important for future forests, an aug-
mented emulator could be used directly to estimate the im-
pacts and related uncertainty of climate change on forest
fraction in the model, even in the presence of a significant
bias in a model subcomponent. After estimating the rela-
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tionship between the uncertain parameters, climate and the
forest fraction, we could calculate the forest fraction at any
climate, including those that might be found in the future.
This ensemble of climate model runs would project the fu-
ture forests under a number of atmospheric CO, concentra-
tions and parameter combinations. It would be necessary that
the training data included any climates that might be seen un-
der the climate change scenario to be studied, as the emulator
has much larger uncertainties if asked to extrapolate beyond
the limits of the training data. The trajectory of vegetation
states through time would also be an important element of
the ensemble, as the vegetation state is path dependent. How-
ever, there would be great potential to save a large number of
runs, as not every parameter perturbation would have to be
run with every projection scenario. Such a set of runs would
serve as a framework upon which a great many post hoc anal-
yses could be done with the emulator. Once the set of runs
was complete, they would effectively serve as the definitive
version of the model — any new information that needed to
be extracted from the model could in theory be found using
the emulator. Not only might we be able to identify and cor-
rect important climate biases and their impact on the forest
but also to update our estimates of forest change as we learn
more about the uncertainty ranges of the uncertain parame-
ters and forcing trajectory.

6 Conclusions

A previous study (McNeall et al., 2016) concluded that it was
difficult to simulate the Amazon rainforest and other tropical
rainforests at a set of input parameters in the climate model
FAMOUS, pointing to a climate bias or model discrepancy as
a source of error. Here, we demonstrate that we can correct
the simulation of the Amazon rainforest in the climate model
FAMOUS by correcting the regional bias in the climate of the
model with a Gaussian process emulator. We therefore find
it unnecessary to invoke a model discrepancy or inadequacy,
such as a lack of deep rooting in the Amazon in the model, to
explain the anomalously low forest fraction in an ensemble
of forests simulations.

We present a method of augmenting a Gaussian process
emulator by using climate model outputs as inputs to the em-
ulator. We use average regional temperature and precipitation
as inputs, alongside a number of land surface parameters, to
predict average forest fraction in the tropical forests of the
Amazon, southeast Asia and central Africa. We assume that
the differences in these parameters account for the regional
differences between the forests and use data from all three
tropical forest regions to build a single emulator. We find
that the augmented emulator improves accuracy in a leave-
one-out test of prediction, reducing the mean absolute error
of prediction by almost half, from nearly 6 % of forest frac-
tion to just under 3 %. This allays any fears that the emula-
tor is inadequate to perform a useful analysis or produces a
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measurable bias in predictions, once augmented with temper-
ature and precipitation as inputs. In two types of sensitivity
analyses, temperature and precipitation are important inputs,
ranking 2 and 3 after V_CRIT_ALPHA (rank 1) and ahead
of NLO (rank 4).

We use the augmented emulator to bias correct the cli-
mate of the climate model to modern observations. Once
bias corrected, the simulated forest fraction in the Amazon
is much closer to the observed value in the real world. The
other forests also change slightly, with central Africa mov-
ing further from the observations and southeast Asia moving
slightly closer. We find that the differences in the accuracy
of simulation of the Amazon forest fraction and the other
forests can be explained by the error in climate in the Ama-
zon. There is no requirement to invoke a land surface model
discrepancy in order to explain the difference between the
Amazon and the other forests. After bias correction, the de-
fault parameters are classified as NROY in a history match-
ing exercise, that is they are conditionally accepted as being
able to produce simulations of all three forests that are sta-
tistically sufficiently close to the values observed in the real
world. Bias correction “harmonises” the proportion of joint
NROY space that is shared by the three forests. This propor-
tion rises from 2.6 % to 31 % on bias correction. Taken to-
gether, these findings strengthen the conclusion of McNeall
et al. (2016) that the default parameters should not be ruled
out as implausible by the failure of FAMOUS to simulate the
Amazon. We find a small proportion (around 2.5 %) of input
parameter space where we estimate that the climate model
might simulate the forests better than at the default parame-
ters. This space would be a good target for further runs of the
simulator.

We offer a technique of using an emulator augmented with
input variables that are traditionally used as outputs, to aid
the tuning of a coupled model perturbed parameter ensemble
by separating the tuning of the individual components. This
has the potential to (1) reduce the computational expense by
reducing the number of model runs needed during the model
tuning and development process and (2) help model devel-
opers prioritise areas of the model that would most benefit
from development. The technique could also be applied to
efficiently estimate the impacts of climate change on the land
surface, even where there are substantial biases in the current
climate of the model.

Code and data availability. Code and data to reproduce the analy-
sis and plots in this paper (McNeall, 2020) are archived on Zen-
odo https://doi.org/10.5281/zenodo.3755497 v2.1, created and run
on 17 April 2020.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-2487-2020-supplement.
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