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Abstract. Uncertainty in the simulation of the carbon cycle contributes significantly to uncertainty in the pro-
jections of future climate change. We use observations of forest fraction to constrain carbon cycle and land
surface input parameters of the global climate model FAMOUS, in the presence of an uncertain structural error.

Using an ensemble of climate model runs to build a computationally cheap statistical proxy (emulator) of the
climate model, we use history matching to rule out input parameter settings where the corresponding climate
model output is judged sufficiently different from observations, even allowing for uncertainty.

Regions of parameter space where FAMOUS best simulates the Amazon forest fraction are incompatible with
the regions where FAMOUS best simulates other forests, indicating a structural error in the model. We use
the emulator to simulate the forest fraction at the best set of parameters implied by matching the model to the
Amazon, Central African, South East Asian, and North American forests in turn. We can find parameters that
lead to a realistic forest fraction in the Amazon, but that using the Amazon alone to tune the simulator would
result in a significant overestimate of forest fraction in the other forests. Conversely, using the other forests to
tune the simulator leads to a larger underestimate of the Amazon forest fraction.

We use sensitivity analysis to find the parameters which have the most impact on simulator output and perform
a history-matching exercise using credible estimates for simulator discrepancy and observational uncertainty
terms. We are unable to constrain the parameters individually, but we rule out just under half of joint parameter
space as being incompatible with forest observations. We discuss the possible sources of the discrepancy in the
simulated Amazon, including missing processes in the land surface component and a bias in the climatology of

the Amazon.
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1 Introduction

Earth system processes that are too high resolution or com-
plex to model explicitly are often simplified or parame-
terised, with tuneable coefficients that quantitatively repre-
sent some aspect of the process. The coefficients may repre-
sent a measurable physical quantity, or they may be a more
abstract representation necessary due to the simplification of
the modelled process. Uncertainty about the best value of the
coefficients means it may not be desirable to choose a single
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value over all others. This uncertainty can be represented,
for example, by using a range of values for each of the coef-
ficients in an ensemble of simulator' runs.

Choosing parameterisation coefficients is a major research
effort encompassing domain specific, statistical and compu-
tational literature. Coefficients are tuneable by comparing the
simulator with observations of the system, by direct mea-
surement or from information from theory. There is a long
history of using observations to constrain parameterisation
coefficients within general circulation models (GCMs), par-
ticularly within atmospheric components. Where this is done
in a formal probabilistic setting it can provide probability dis-
tributions for the parameters of the simulator; this is known
as calibration. Choosing a single best parameter set is fun-
ing. History matching rules out parameter settings where
simulator output is statistically inconsistent with observa-
tions, given uncertainty in those observations, uncertainty in
knowledge of the simulator, and a given tolerance of error.
A well-calibrated simulator should match the underlying dy-
namics of a system better and should produce more accurate
and (appropriately) tightly constrained predictions.

1.1 Simulator discrepancy

Simulator discrepancy is the systematic difference between
a climate model, or simulator, and the system that is repre-
sented by that model. It is also known as model (or simu-
lator) bias, model error, or structural error. A “best input”
approach typically defines discrepancy as the difference be-
tween the modelled system and the simulator when run at
an input where output from the simulator conveys all it can
about the system (see, e.g., Goldstein and Rougier, 2009).
A practical definition from Williamson et al. (2014) is that
“a climate model bias [simulator discrepancy] represents a
structural error if that bias cannot be removed by changing
the parameters without introducing more serious biases to
the model”. One of the main aims of the model development
process is to efficiently identify important simulator discrep-
ancies and correct them, or allow them to be taken into ac-
count in analyses — for example, during prediction using the
simulator (e.g. Sexton et al., 2011).

Simulator discrepancy might be known ahead of time: per-
haps a parameterisation of a process occurring at too high
a resolution to simulate has a predictable effect on simula-
tor behaviour. Alternatively, the discrepancy might be due
to some missing and unknown process in the simulator, or
to unknown parameterisation values. This might appear as a
bias, only becoming apparent when output from the simula-
tor is compared with observations of the real system. In both
cases, the modeller must have a strategy for dealing with the

1Throughout the paper we often use simulator in place of
“model”, usually to distinguish an Earth system, climate, or other
process model from a statistical model.
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discrepancy when using the simulator to make judgements
about the system.

Simulator discrepancy is a major challenge during calibra-
tion. Kennedy and O’Hagan (2001) introduced a Bayesian
framework for the task of the calibration of computationally
expensive simulators. They urge the specification of a pri-
ori estimates of simulator discrepancy and offer methods to
learn about that discrepancy by comparison of the simula-
tor and observations. Failure to take simulator discrepancy
into account in calibration can lead to overconfident and in-
accurate estimates of the parameters and, consequently, the
predictions of the simulator (e.g. Higdon et al., 2008; Bryn-
jarsdéttir and O’Hagan, 2014). Often, there is an indeter-
minacy between parameter error and simulator discrepancy;
that is, should we choose a different set of parameters as rep-
resenting the “best” or should we add a simulator discrep-
ancy term? Brynjarsdéttir and O’Hagan (2014) point out that
strong prior information is required to distinguish between
parameter uncertainty and discrepancy, and that this informa-
tion is often lacking. Further, even inadequate (as opposed to
outright wrong) specification of a simulator discrepancy can
lead to overconfidence and bias in parameters and predic-
tions.

1.2 Calibration of land surface components

Parametric uncertainty in the land surface and carbon cycle
component of models is expected to represent a large fraction
of current uncertainty in future climate projections (Booth
et al., 2012, 2013; Huntingford et al., 2009). These com-
ponents have been introduced into climate simulators more
recently, and have not yet been subject to the depth of sys-
tematic evaluation as, for example, atmospheric components.
There is much focus, therefore, on identifying parameter sets
consistent with observed climate metrics and reducing future
land carbon cycle uncertainty by identifying parts of simula-
tor parameter space inconsistent with observed properties of
the real climate system.

Using statistical and data assimilation approaches to con-
strain land surface simulator process parameters extends
back at least to Sellers et al. (1996). Recent examples are
community efforts to develop a systematic set of observa-
tions to benchmark land surface processes against metrics
of real-world processes, for example the International Land
Model Benchmarking Project (Luo et al., 2012) and PALS
(Abramowitz, 2012). Such benchmarks use an extensive set
of metrics, covering a broad cross section of simulator pro-
cesses, enabling an assessment of overall skill and highlight-
ing areas where simulators fall short. They provide a frame-
work to assess improvements in skill arising from continual
simulator development as well as prioritising resources to-
wards processes that are less well simulated. Using many
observed metrics for diverse processes also discourages over-
tuning to a particular process, to the detriment of wider sim-
ulator performance. One limitation of the benchmarking ap-

www.earth-syst-dynam.net/7/917/2016/
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proach is that there is limited understanding of what infor-
mation a given observed metric implies about the simulator
formulation or parameters, or what this might imply about
future projected changes.

1.3 Paper aims and outline

We aim to identify parameter sets of the land surface module
of the climate simulator FAMOUS where simulator output
and observations of forest fraction are consistent to an ac-
ceptable degree. An initial attempt using history matching
suggests that FAMOUS is unable to simulate the Amazon
forest and other forests simultaneously at any set of parame-
ters within the experiment design. We argue that this is due to
a fundamental simulator discrepancy, which has implications
for constraining the input parameters of FAMOUS. We use
a number of techniques to characterise and find the drivers
of this structural error, before performing a second history
match with an appropriate discrepancy function.

In Sect. 2 we describe the ensemble of a climate simulator,
with the emulator and history-matching techniques used to
explore simulator discrepancy described in Sects. 2.5 and 2.6
respectively. We perform an initial history-matching exercise
in Sect. 3.1. We use the emulator to quantify relationships
between the simulated forest fraction and a set of simulator
input parameters in a sensitivity analysis in Sect. 3.2. Next,
we measure the performance of the ensemble in simulating
forest fraction in Sect. 3.3. We see how much input space
would be ruled out as implausible in various scenarios of data
combination and uncertainty budget in Sect. 3.4 and we learn
what each individual observation tells us about input space in
Sect. 3.5. In Sect. 3.6, we use the emulator and an implausi-
bility measure to find the nominal “best” set of parameters
for each forest and then project the consequences of using
those parameters on the other forests. Finally, we perform a
history-matching exercise with a credible discrepancy func-
tion to constrain input parameters in Sect. 3.7. In Sect. 4, we
discuss the consequences of our findings for simulators of the
Amazon rainforest before offering conclusions in Sect. 5.

2 Data and methods

2.1 The FAMOUS climate simulator

We use a pre-existing ensemble of the climate simulator
FAMOUS throughout this study. The Fast Met Office UK
Universities Simulator, FAMOUS (Jones et al., 2005; Smith
et al., 2008), is a reduced-resolution climate simulator, based
on, and tuned to replicate, the climate model HadCM3 (Gor-
don et al., 2000; Pope et al., 2000). Computational efficiency
is gained primarily through reduced resolution. Atmospheric
grid boxes are 4 times the size of HadCM3, and ocean grid
boxes are also larger. There are fewer levels in the atmo-
sphere (11 compared to 19), and the ocean time step is 12h
compared to 1 h for HadCM3. In the atmosphere, the time
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step is 1 h, doubled from HadCM3. The dynamic vegetation
component is called TRIFFID and is described in detail in
Cox (2001). FAMOUS runs approximately 10 times faster
than HadCM3, making it ideal for running large ensembles,
or long integrations, with modest supercomputing facilities.

Smith (2012) describes improvements to FAMOUS in sea
ice, ozone, hydrological cycle conservation, and upper tro-
pospheric dynamics. Williams et al. (2013) describe the in-
clusion of the carbon cycle in the simulator via perturbed
physics ensembles of terrestrial and ocean parameters, of
which the terrestrial ensemble is studied in this paper. Most
recently, Williams et al. (2014) give details of inclusion of a
scheme to simulate the cycling of oxygen in the ocean and
its coupling with the carbon cycle.

The inclusion of vegetation in FAMOUS is documented in
Williams et al. (2013), which introduces surface tiling in the
newer MOSES?2 scheme. Five different vegetation types are
simulated: broadleaf and needleleaf trees, C3 and C4 grasses,
and shrubs, each with a fractional coverage in a grid box.
Several surface types represent the absence of vegetation:
bare soil, land ice, urbanised land use, and inland water.
Williams et al. (2013) describe the optimisation of carbon cy-
cle parameters in the terrestrial and ocean domains, validated
against observations and reanalysis products, and present cli-
matologies using both fixed and dynamic vegetation.

2.2 Known biases in the climate of FAMOUS

FAMOUS shows a Northern Hemisphere-winter surface air
temperature cold bias with respect to HadCM3 and also the
overestimation of the fractions of needleleaf trees in North
America and C3 grassland in the northern part of Eurasia.
The initial version of FAMOUS used the MOSES1 surface
exchange scheme and did not explicitly describe the inclu-
sion of any vegetation cover, instead using grid box aver-
ages of surface quantities such as root depth, surface albedo,
and roughness length to describe momentum and water ex-
change between the surface and the atmosphere. Biases were
already present in climate regimes (Gnanadesikan and Stouf-
fer, 2006) relevant for the Amazon rainforest. Smith et al.
(2008) noted that “the Amazon region is not wet enough for
a fully humid region to exist”.

2.3 The ensemble

We use an ensemble of 100 simulations of FAMOUS detailed
in Williams et al. (2013), and build upon the results of that
study. The ensemble was run in order to test the utility of in-
cluding the carbon cycle in enhancing the FAMOUS simula-
tor. The ensemble design perturbs seven vegetation and land
surface control parameters (see Table 1) in a Latin hypercube
configuration (McKay et al., 1979). This kind of design ef-
ficiently spans parameter space, and is commonly used for
constructing surface response type statistical models known
as emulators (see, e.g., Urban and Fricker, 2010).

Earth Syst. Dynam., 7, 917-935, 2016
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Table 1. Land surface input parameters for FAMOUS. PFT: plant functional type; LAIL: leaf area index.

Parameter Default  Units Description

FO 0.875 Ratio of CO; concentrations inside and outside leaves at zero humidity deficit.

LAI_MIN 3 PFT must achieve this value of LAI before starting to contend with other PFTs for growing area.
NLO 0.03 kgN/kgC  Top leaf nitrogen concentration. The amount of nitrogen per amount of carbon.

R_GROW 0.250 Growth respiration fraction.

TUPP 36 °C Control on variation of photosynthesis with temperature.

Q10 2 Control on soil respiration with temperature.

V_CRIT_ALPHA 0.5 Control of photosynthesis with soil moisture.

This design builds upon a previous ensemble run by Gre-
goire et al. (2010), and implicitly contains a further parame-
ter, B, that indexes into that other ensemble. The 8 parameter
indexes the top 10 performing simulations with regard to the
atmospheric climate. The § parameter is uncorrelated with
any land surface parameters and the simulator output, so we
exclude it from the ensemble design, essentially treating it as
a nuisance parameter.

Ranges for the land surface parameters follow those used
in the study by Booth et al. (2012) and, as that paper makes
clear, were chosen for a number of reasons, not necessarily
to represent plausible ranges of their uncertainty. However,
we are confident that the parameter ranges are wide enough
to span the space which might a priori be considered reason-
able.

The ensemble simulates the pre-industrial climate, with
ensemble members spun up over a 200-year period to en-
sure that the vegetation is in equilibrium with the climate at
290 ppm of CO,. The vegetation dynamics component of the
simulator, TRIFFID, is run in “fast spin-up” mode, for the
equivalent of 10000 years for each decade of climate simula-
tion, to allow for the long adjustment time of dynamic vege-
tation. The climatology is constructed using the final 30-year
period of the ensemble.

2.4 Simulator outputs and observations

We compare simulated forest fraction against observations
adapted from Loveland et al. (2000), consisting of regionally
aggregated versions of the data used in the previous study by
Williams et al. (2013). We use broadleaf only for the tropi-
cal forest, and a mixture of broadleaf and needleleaf for the
North American forest. A spatial summary of the ensemble
and observations can be found in Fig. 1. Figure 2 shows every
input and summary output, plotted against each other. This
shows the marginal relationships of the (1) inputs against
the inputs (which, as expected, show no obvious relation-
ship); (2) the strength of the marginal relationship between
the inputs and outputs; and (3) the outputs against the out-
puts, which highlights where outputs vary together. Parame-
ter ranges do not represent uncertainty, so the ensemble mean
and standard deviation are not a meaningful representation of
data uncertainty but provide a useful summary of the data. To
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summarise the forest fraction data, we find the mean forest
fraction in each of the Amazon, Central African, South East
Asian, North American, and global regions (see Fig. S1 in
the Supplement for region details).

South East Asian and Central African forests vary to-
gether very strongly across the ensemble, whereas the Cen-
tral African and North American forests show a weaker re-
lationship. The latter might be expected, given the different
structure of the North American forests, compared with the
tropical. The scatter plot also identifies NLO (leaf nitrogen)
and V_CRIT_ALPHA (soil moisture control on photosyn-
thesis) as being important controls on forest fraction, as the
output seems to vary most with these parameters.

2.5 Training an emulator

FAMOUS is not fast enough to run at every point within in-
put space required for our analyses. We therefore use a com-
putationally cheap statistical proxy to the simulator, called an
emulator. The emulator is a non-parametric regression model
conditioned on the ensemble, providing a prediction of sim-
ulator output and corresponding uncertainty orders of mag-
nitude faster than the original simulator. Once trained, any
analysis that might have been done with the simulator can
be done with the emulator, provided we include the extra un-
certainty term to account for the fact that the emulator is not
a perfect prediction of the simulator output. A useful intro-
duction to emulators and their uses can be found in O’Hagan
(2006), and recent developments in emulator use in climate
studies can be found, for example, in Tran et al. (2016) and
Bounceur et al. (2015).

We use a Gaussian process emulator that assumes zero
uncertainty at points where the simulator has already been
run, growing larger away from those points. We treat the out-
put g(x) of the simulator FAMOUS as a deterministic func-
tion of a vector of input parameters x. We train a number of
emulators of the ensemble, the details for each depending on
the application. Details of the emulator, training, and verifi-
cation can be found in the Supplement.

www.earth-syst-dynam.net/7/917/2016/



D. McNeall et al.: The impact of structural error on parameter constraint in a climate model 921

Forest
fraction
0

Observations 0.0

Forest

fraction
= 0.35

1 - L
" 0.25
.
o 0.15
i
i o

0.10

0.30

0.05

Ensemble standard deviation 0.00

Forest
fraction
1.0

0.8
'- 0.6
0.2

Ensemble mean 0.0

Figure 1. Observations of broadleaf forest fraction (top left panel). Mean (top right panel) and standard deviation (bottom left panel) of

broadleaf forest fraction across the 100-member ensemble of FAMOUS.

2.6 History matching

After Williamson et al. (2014), we use history matching to
find a region of parameter space consistent with observations
to within the level of observational and acceptable simulator
uncertainty. This requires finding a set of input parameters
where the output of the simulator is tolerably close to the ob-
servations, given uncertainty in the observations and known
deficiencies of the simulator. Constraining parameters in this
way helps identify the range of projected futures of the forest
consistent with the observations, rather than a single set of
“best” parameters.

What distinguishes history matching from simulator cal-
ibration, where a probability distribution over the parame-
ters is described, is that it rejects inputs inconsistent with
observations, or otherwise classifies them as “not ruled out
yet” (NROY). We regard NROY inputs as conditionally ac-
cepted, contingent on new observations or information. His-
tory matching was developed by Craig et al. (1997) and
has been used extensively in hydrocarbon extraction sciences
and astronomy (e.g. Vernon et al., 2010). Sometimes termed
precalibration, it has been used to confront climate simu-
lators with observations, for example by Lee et al. (2016),
Williamson et al. (2013) and Holden et al. (2009). McNeall
et al. (2013) investigated the potential of an observational
dataset to constrain input space using history matching.

Observations of the system are denoted z, and we assume
that they are made with uncorrelated and independent er-
rors € such that z =y + €, where y represents the true state of
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the climate being observed. Denoting the “best” set of input
parameters x*, and assuming the simulator contains a sys-
tematic structural error &, the observations are related to input
parameters

z=g(x*)+8+e. (1)

We could find the NROY region for x* by running a large
number of candidate points of the simulator in a Monte Carlo
fashion. FAMOUS is not fast enough for this, and it is also
our intention to develop methods that can be used on even
more computationally expensive simulators. We therefore
use the emulator as a proxy for the simulator output, replac-
ing g(x) with n(x) in Eq. (1), and including a term for emu-
lator uncertainty in the history-matching calculations.

Each candidate point is assigned an implausibility, 7, ac-
cording to the emulated forest fraction and uncertainty via
Eq. (2). Inputs that produce forest fraction further from the
observations are deemed more implausible. Those same in-
puts are less implausible if there is greater uncertainty about
the observation, the simulator discrepancy, or the emulated
output at that input:

I*(x) = |z — E[n(x)]11*/[Var(n(x)) + Var(8) + Var(e)].  (2)

A threshold above which a candidate input can be safely
ruled out as implausible is usually set to 3, roughly equiv-
alent to a 95 % credible interval of a posterior distribution, if
using a Bayesian analysis. This is due to Pukelsheim’s three-
sigma rule; that is, for any unimodal distribution, 95 % of the

Earth Syst. Dynam., 7, 917-935, 2016
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Figure 2. FAMOUS input parameters and forest fraction parameters, plotted against each other. Default inputs (not run) are marked in red.

probability mass will be contained within 3 standard devia-
tions of the mean (Pukelsheim, 1994). Input parameter sets
with an implausibility score below the threshold are desig-
nated NROY and retained for further analysis. This does not
necessarily mean the input settings are good, merely that evi-
dence from observations is not yet sufficient to rule them out
as implausible. Inputs may be ruled out as more observations
or simulator runs become available.

3 Analyses and results

3.1 Aninitial history match

In this section we find regions of land surface parameter
space in FAMOUS that remain NROY given some defen-
sible assumptions about observational uncertainty. Figure 3
shows how the regionally aggregated simulated forest frac-
tion varies across the ensemble, compared with the corre-

Earth Syst. Dynam., 7, 917-935, 2016

sponding observations. Although the simulator was not run
with the “standard” parameter settings in the ensemble, we
can use the emulator to estimate its output and uncertainty
(£1SD - standard deviation) at those settings; these are
shown on the plot, in black.

The simulator run at the standard inputs significantly un-
derestimates the forest fraction in the Amazon region, with a
best estimate of > 0.3. The other tropical forests are slightly
overestimated, North American forests are very slightly un-
derestimated. Global forest fraction is simulated close to the
observed fraction. Most ensemble members overestimate for-
est fraction in Central Africa, South East Asia, and North
America. Some ensemble members simulate an Amazon for-
est fraction around, and above, the observed fraction. This
gives us cause to hope that it is possible to find a set of pa-
rameters where the Amazon and other forests are simultane-
ously well simulated, without using a simulator discrepancy
function.

www.earth-syst-dynam.net/7/917/2016/
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Figure 3. Histograms representing the number of ensemble mem-
bers of a particular forest fraction in each region, as well as globally.
Points plotted below the histograms represent the observed forest
fraction (colours) and the forest fraction simulated at the “standard”
parameters =1 SD (black).

We aim to find regions of parameter space where simula-
tor error is removed, or minimised to a level consistent with
observational uncertainty. In practice, this requires finding a
region where the large negative bias in Amazon forest frac-
tion is minimised while keeping the other forests well repre-
sented.

On the advice of domain experts, we assume observational
uncertainty of 0.05 (1 SD) in the Amazon, Central African,
South East Asian, and North American forests as broadly
representative, or at least usefully illustrative. This corre-
sponds to an expectation that the true 95 % confidence in-
terval is contained within the interval of +0.15, following
Pukelsheim’s rule. This is nearly a third of the available range
of zero to one, and it would be hard to argue that this repre-
sents an over-constraint.

We sample uniformly across input parameter space and
run the emulator at these locations. We history-match the
samples using all four individual forest observations and vi-
sualise the space where max[/] < 3. Figure 4 shows a density
pairs plot of the approximately 12 % of the 10000 samples
from the emulator that are not ruled out yet by the history
match.

Does this region represent a viable set of inputs, perhaps
to replace the default set of parameters, or should we include
a non-zero discrepancy term (§ in Eq. 1)? Where it appears
that we may have found regions where both Amazon and

www.earth-syst-dynam.net/7/917/2016/

Table 2. Implausibility / of forest observations at default input pa-
rameter setting of FAMOUS.

Observation Implausibility 7
at default
parameters
Amazon 3.99
Central Africa 0.56
South East Asia 1.24
North America 0.27

other forests are plausible, we are suspicious of this region,
for three reasons. First, the default set of parameters is ruled
out, in this case by comparison of the simulator with observa-
tions of the Amazon (Table 2). Second, it appears that in the
active parameter space projections, these candidates are near
the edges and corners of the input space considered plausi-
ble. The failure to rule out these points could be due to a
relatively large emulator uncertainty, for example. Third, we
plot the histograms of the “best estimate” emulator output
at these NROY points (Fig. 5), and we see that they can be
seen as compromise candidates. In general, if the simulator
is run at points in this region, it will overestimate the Central
African, South East Asian, and, most likely, North Ameri-
can forest fraction while underestimating the Amazon forest
fraction. The candidate points are still included as NROY at
these input values because of the combination of the emula-
tor uncertainty and the assumed observational uncertainty.

In the remainder of this section, we use a number of anal-
ysis techniques to investigate why a region on the edge of pa-
rameter space was initially considered plausible, and which
does not contain the default parameter settings, is identified
as NROY.

3.2 Finding the active parameters with sensitivity
analysis

We perform a sensitivity analysis to identify the active sub-
space of simulator inputs and quantify relationships between
inputs and outputs. In a descriptive sensitivity analysis, we
show emulated mean regional and global forest fraction with
inputs sampled from across input parameter space in a one-
factor-at-a-time fashion, holding all but one parameter at
their standard values while varying the remaining parame-
ter (Fig. 6). The emulator is not a perfect representation of
the simulator, and so we include the emulator uncertainty es-
timates at &1 SD, shown as shaded regions in the plot.
V_CRIT_ALPHA, and NLO are the most influential in-
dividual parameters and counter each other when both in-
creased. The Q10 parameter has little or no influence on
forest fraction. The TUPP parameter is important only to
the Central African (termed “Congo” here, for brevity) and
South East Asian forest fraction, much less important to the
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Amazon, and not important at all to the North American
forests.

The relationships change across parameter space and are
therefore dependent on the somewhat arbitrary range of the
initial input parameters of the ensemble design. Sensitivity
can change in importance as parts of input space are ruled
out. For example, the forests are most sensitive to NLO in
the lower part of the ensemble range, and most sensitive to
V_CRIT_ALPHA in the upper part of the ensemble range.

Following Carslaw et al. (2013), we quantify the sensitiv-
ity of the simulated forest fraction to the input parameters,
using the FAST methodology (Saltelli et al., 1999), conve-
niently coded in the R package sensitivity (Pujol et al., 2015)
and easily calculated using the emulator. We calculate the
global sensitivity of the simulator output due to each input,
as both a main effect and total effect, including interaction
terms (Fig. 7). V_CRIT_ALPHA (soil moisture photosyn-
thesis control parameter) is the most important parameter
across the tropical forests and globally, with a total effect in-
dex of around 0.6. In tropical forests, NLO (leaf nitrogen pa-
rameter) is next most important, with a total effect index be-
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tween 0.2 and 0.3. In all cases, interaction terms are relatively
unimportant, accounting for only a few percent of the vari-
ance. North American forests show slightly different results,
with NLO being the most important parameter with a sensi-
tivity index near 0.4, followed by LAI_MIN (leaf area index
parameter) at around 0.3 and V_CRIT_ALPHA at 0.25. This
difference is unsurprising, as the North American forests are
a mix of broadleaf and needleleaf trees, which will have dif-
ferent sensitivities from a broadleaf tropical forest.
Parameter Q10 has almost no influence on forest fraction,
in line with the expectations of land surface modellers. This
non-zero estimate of sensitivity is likely due to the fact that
the emulator is not a perfect representation of the simulator,
and a zero sensitivity is well within the uncertainty bounds
of the sensitivity analysis. Parameters TUPP and R_GROW
have very little impact on forest fraction. Parameter FO has
virtually no influence away from the tropics; conversely,
LAI_MIN is only important in the North American forest.
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3.3 Mapping simulator error in parameter space

In this section, we examine the ability of the simulator to
reproduce the observed forest fraction, as well as how that
ability varies across input parameter space, and assess the
region of parameter space which is consistent with each of
the forest fraction observations.

We show a map of simulator error in the two-dimensional
space of the most important parameters identified in
Sect. 3.2, in Fig. 8. We sample uniformly across all param-
eter space, and plot the mean emulated difference between
simulator output and the observations for each point. The
maps appear noisy because of the impact of randomly cho-
sen values of the remaining dimensions, but the structure is
clear. For the Central African, South East Asian, and North
American forests there is a broad sweep of parameter space,
running from low NLO, low V_CRIT_ALPHA to high NLO,
high V_CRIT_ALPHA, where simulator error is close to
zero. The Amazon input space does not have this region —
only the high NLO, high V_CRIT_ALPHA corner has a sim-
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ulator error close to zero, suggesting a bias not common to
all forests. The lack of overlapping regions where simulator
error is close to zero suggests we are unlikely to find a re-
gion where we do not need a simulator discrepancy term. It
is possible to find a portion of parameter space where the er-
ror is similar for all simulator outputs in the low NLO, high
V_CRIT_ALPHA corner. However, the error is rather large
(at least —0.6) at this point.

3.4 How much input space is ruled out by combinations
of observations?

We find the potential of the history-matching technique to
rule out parameter space under a number of scenarios of tol-
erance to observational and simulator structural error. The
denominator of Eq. (2) is the sum of the squared variances
of the emulator, discrepancy, and observational uncertainty.
Our emulator uncertainty is emergent, but we can experiment
by assuming an overall uncertainty budget or by partition-
ing assumed uncertainty between observations and simulator
discrepancy.

Different observations rule out different parts of param-
eter space, while combining observations can be a power-
ful method of ruling out large parts of parameter space. A
number of approaches to combining data in history matching
are discussed in Vernon et al. (2010) and Williamson et al.
(2013). A simple strategy is to calculate max[/] at a candi-
date input across all data independently and then reject those
candidates with a value larger than 3 in any. A danger of this
approach is that a single poorly specified emulator or sim-
ulator discrepancy term could lead to large swathes of pa-
rameter space being incorrectly ruled out. As the number of
comparisons with data goes up, so does the probability of
including a poorly specified simulator discrepancy. For ex-
ample, comparing a simulator with a serious but undiagnosed
bias could lead to all a priori plausible parameter space being
ruled out as a poor match to the observations. It is important
to first combine knowledge and judgement about the system
being modelled, and the way that the parameters represent
their real-world counterparts (or do not), before relying on
observations to remove plausible parameter space.

A conservative approach is to reject a candidate point only
if it is judged implausible using a number of measures. This
will be more robust to a poorly specified simulator discrep-
ancy term. Vernon et al. (2010) use the second and third high-
est implausibility score, where a simulator has implausibil-
ity scores for multiple outputs calculated. This is to guard
against poor emulators, but in practice it works just as well
for poorly specified simulator discrepancy. An alternative
suggested by Vernon et al. (2010) is to use a multivariate
measure of implausibility.

To understand the value of individual observations, we ask
the following questions: what is our tolerance to error? And
what level of uncertainty in observations or simulator dis-
crepancy can we tolerate before our observations become in-
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effective for history matching? Figure 9 shows the declining
proportion of input parameter space ruled out as we increase
tolerance to error in a number of scenarios. Tolerance to error
is specified as a single standard deviation, so the full distri-
bution of the uncertainty of the observation or discrepancy
(e.g. the 95 % range) will be at least 3 times as large, using
Pukelsheim’s rule.

North American, South East Asian, and Central African
forest observations constrain parameter space to between
40 and 50 % of parameter space, even when our tolerance to
error is very low. The proportion of NROY space increases
quickly, particularly using North American forest fraction,
which becomes no constraint at all when our error tolerance
is above 0.07 (1 SD). The other forests offer some constraint
up to about 0.1 (1SD), and the Amazon is more of a con-
straint, only losing power as a constraint when the standard
deviation of our tolerance to error is above 0.15 (1 SD).

Combining data and using the maximum implausibility of
any dataset improves the constraint, particularly when the
tolerance to error is low. However, we urge caution. The fact
that (a) the performance of the Amazon dataset appears dif-
ferent from the other observations and (b) that all parameter
space is ruled out at lower values, even though there is emu-
lator uncertainty, again raises concerns of a poorly specified
Amazon simulator discrepancy.

A more robust calculation of tolerance to error can be
found by excluding the Amazon observations and using the
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maximum implausibility from the other observations. This Table 3. Amount of overlap in NROY input space for forest com-

excludes more input parameter space than any single obser- binations.
vation on its own, up to a tolerance to error of around 0.85
(1SD), where it performs in a similar manner to using South Forest A Forest B Input agreement
East Asian forest fraction. (%)

To what extent do the input spaces that are NROY when Amazon South East Asia 26
history matching with two forests overlap? We suppose that Amazon Central Africa 33
data that suggest highly overlapping input spaces give us Amazon North America 40
confidence that those input spaces are valid. Another per- South East Asia  Central Africa 84
spective is that overlapping input spaces give us little extra South East Asia  North America 61

Central Africa North America 66

information, and we should seek out those data that minimise
overlap. We sample uniformly from the input space and test
each point using a comparison with each forest observation
to see if it is ruled out. If a point has the same status using
both forests in the history match, we class that as an over-
lapping point. Table 3 gives the proportion of the samples
which have the same status using each permutation of two
forests for the history matching.

The most similar input space is found if we use the South
East Asian and Central African rainforests. Comparing these
forests with the North American forests gives a fairly high
overlap — 61 and 66 % for South East Asia and Central Africa
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respectively. The Amazon has markedly lower overlap with
the other forests: 40 % at the most with North America and
only 26 % with South East Asia.
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3.5 What do the individual forests tell us about the best
parameters?

To more fully explore the causes of simulator discrepancy
and its consequences, we make the illustrative assumption
that simulator discrepancy uncertainty is zero, and that obser-
vational uncertainty is very low. We sample a large number
of points uniformly across input space and assume simulator
discrepancy uncertainty of zero and an observational uncer-
tainty of 0.01.

We classify as NROY only those emulated samples where
the implausibility (or maximum implausibility in the case of
combined data) is below 3. Setting such a demanding thresh-
old allows us to find and describe the relatively small re-
gions in input space where the simulator performs best, in
two cases: first, using the South East Asian, Central Africa,
and North American forest fraction in the history-matching
exercise, and second using the Amazon forest fraction.

When plotted in two-dimensional projections (Fig. 10),
the “best” set of parameters as defined by matching to the
observed Amazon forest fraction, and to the other forests,
form nearly non-overlapping sets in the most active sub-
space comprising V_CRIT_ALPHA and NLO. Again, we
see a swathe of input parameter space, running from low
V_CRIT_ALPHA, low NLO through to high values of those
parameters. This pattern is confirmed when using the individ-
ual datasets for history matching (not shown). The three non-
Amazonian forests have a high degree of overlap of NROY
space.

FAMOUS struggles to simulate both the Amazon and the
other forests simultaneously, at any parameter combination
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when using a low threshold of implausibility. It is very dif-
ficult to reconcile the simulation of the Amazon simultane-
ously with the other forests if there is little uncertainty about
the observations. A simulator discrepancy term and corre-
sponding uncertainty is therefore necessary to attain an ade-
quately performing simulator.

3.6 The forests at best parameters

To examine the implications of using each observation sep-
arately to tune the simulator, we use the emulator to project
each forest at the set of “best” inputs: those where the sim-
ulator reproduces each forest with a very small tolerance of
error. We then use the emulator to project the Amazon forest
fraction using the “best” parameters for each forest, as well
as the forest fraction for each of those forests using the “best”
parameters for the Amazon in Fig. 11. As there is some un-
certainty, due to emulator uncertainty and a small tolerance
to error, these are plotted as histograms.

We find that the using the best set of parameters as de-
fined for each non-Amazon forest would likely lead to an un-
derestimate of the Amazon forest fraction by around 50 %,
compared to the observed fraction (around 0.3, compared to
an observation of around 0.6). Conversely, using the best pa-
rameters as defined for the Amazon leads to an overestimate
of the other forests — around 0.3 for the tropical forests and
0.15 for the North American forest — even though the ob-
served aggregate forest fraction is very similar for the tropi-
cal forests.

To further explore this difference, we project the “best”
set of input parameters, found using the Amazon and African
forest to match the simulator against, over a map of the entire
FAMOUS land surface. In each case, an independent emula-
tor is trained on the ensemble for each grid box. The maps
of the mean forest fraction for each parameter set, and the
difference between them, are shown in Fig. 12.

Even using the “best” Amazon parameters, the simula-
tor underestimates the Amazon coverage in the north-east
of South America. This makes it very difficult to simulate
a sensible forest fraction, even when overestimating the for-
est fraction in places where the simulator does have forest
cover.

3.7 History matching allowing for discrepancy in the
Amazon

The previous sections show that the inputs where FAMOUS
best simulates Central African, South East Asian, and North
American forests cover a similar input space, whereas the
best inputs for the Amazon are in a different region. A par-
simonious approach would be to use a non-zero-mean dis-
crepancy for the Amazon: allowing the Amazon to be less
vigorous in our simulations, while maintaining that the sim-
ulator output should broadly match the other forests.
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Observed forest fractions are shown as marks underneath the his-
tograms.

We perform a history match using all of the forest ob-
servations, along with a simulator discrepancy term for the
Amazon forest. We use the best estimate of the difference
between Amazon observations and that simulated by FA-
MOUS at the default set of parameters as the best esti-
mate of the discrepancy mean. The difference in forest frac-
tion at the default parameters is approximately 0.3. Fig-
ure 13 shows the histograms of emulated simulator output
using this discrepancy term, along with credible estimates
for observational uncertainty (1 SD = 0.05) and tolerable dis-
crepancy uncertainty (1 SD =0.03). The corresponding two-
dimensional density plots of NROY emulated input samples
can be seen in Fig. 14. The remaining NROY input space
represents around 57 % of the original input space defined
by the input design, meaning that we have ruled out 43 %
of the space. This contrasts with ruling out around 88 % of
the space in the initial history match in Sect. 3.1. Marginal
histograms of the relative density of NROY points for each
individual input parameter (not shown) indicate that no part
of the marginal input space is completely ruled out, and so
we cannot “constrain” any of the parameters in an individual
dimension.
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4 Discussion

Our analysis illustrates the challenges in distinguishing be-
tween simulator discrepancy, parameter uncertainty, and ob-
servational uncertainty during simulator development. For
example, forest fraction in the simulator can be tuned largely
by using the two most active parameters: V_CRIT_ALPHA
and NLO. As these parameters alter forest fraction in coun-
teracting directions, a number of solutions can be found
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term for the Amazon, and credible discrepancy uncertainty.

that give plausible forest fractions. Information from out-
side sources about the “true” values of one these parame-
ters might therefore offer a strong constraint on the value
of the other. NLO is the leaf nitrogen parameter — the ra-
tio of nitrogen to carbon found in leaves. In theory, this is
something that is well observed and recorded, but it is uncer-
tain what value should be to reflect the observational range
across the spatial scale of FAMOUS. Nitrogen content deter-
mines the maximum photosynthesis, and therefore how much
CO; can be assimilated, or the productivity of a plant. Low
(high) NLO values correspond to low (high) nitrogen con-
tent and hence a low-productivity (high-productivity) plant.
V_CRIT_ALPHA is the soil moisture threshold below which
plants are water-limited, so if this parameter is high the plant
is more often in a water-limited regime. If it is low, then a
plant is not as often water-limited.

Using observations of the Amazon rainforest along with
the other forests major forests in the history-matching exer-
cise results in ruling out a large swathe of parameter space,
including the default set of parameters, and leaving a cor-
ner of parameter space not ruled out yet. While it appears
that here simulator output is tolerably close to the observa-

www.earth-syst-dynam.net/7/917/2016/

tions given a zero-mean discrepancy, there are good reasons
to be suspicious of this region. For illustration, we imagine
a situation where we are forced to choose between keeping
the default parameters and including a simulator discrepancy
function, or rejecting them and accepting a candidate from
the new NROY region. Our choices will be dictated by the
objective of our analysis: do we wish to provide only the best
possible prediction, or do we wish to find parameter values
which are, to some extent, “true”? For a simple prediction
problem, we will be less concerned that the parameters more
accurately reflect something we might measure in the real
system, and might be less inclined to include a discrepancy
term. However, sustainable development of the simulator re-
quires that we get things right for the right reason. We argue
that we should include a larger discrepancy function for the
Amazon rather than ruling out the default parameters, for a
number of reasons.

First, the NROY region excludes the default set of param-
eters, chosen as the result of multiple lines of evidence, sci-
entific judgement, and experience using this and other simu-
lators. Second, the NROY region is close to the edge of the
ensemble in the active parameter subspace, so that emula-
tor uncertainty, combined with the generous observational
and discrepancy uncertainty, may dominate the implausibil-
ity calculation. Emulators tend to increase in uncertainty near
the edge of an ensemble, as they are forced to extrapolate
more than at the centre of the ensemble. Third, the informa-
tion obtained from using each of the four forests shows that
the Central African, South East Asian, and North American
forests all indicate very similar, highly overlapping NROY
regions. In contrast, the NROY region suggested by compar-
ing FAMOUS to observations from the Amazon is very dif-
ferent. Finally, tuning to each of the “best” parameters for
each of the forests suggests that the NROY region produces
an inevitable compromise: the Amazon will be very likely be
underestimated, and the other forests overestimated, if obser-
vational uncertainty is reduced. It is possible that there are
correlated errors in the other forests, rather than in the Ama-
zon. However, we argue that this is less likely, given that the
other forests include tropical (like the Amazon) and the bo-
real forest of North America.

We therefore urge caution with a naive or automatic ap-
plication of history-matching conclusions, particularly when
using multiple observations for comparison with the simu-
lator. Even in our relatively simple history-matching exer-
cise, there is a clear need to include simulator discrepancy,
to increase simulator discrepancy uncertainty, or to apply a
conservative version of the measure of implausibility. One
strategy, adopted, for example, by Vernon et al. (2014), is
to reject parameter space that has a second- or third-highest
implausibility metric larger than some threshold. This would
be effective in the case of our comparison. Another strategy
might be to reject only parameter space where the minimum
implausibility is higher than some threshold. We believe that
this would not rule out much input space in many circum-
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Figure 14. A density plot of the two-dimensional projections of NROY samples from the design input space, using all forest observations

and a discrepancy function for the Amazon.

stances. We call for more research on the behaviour of mea-
sures of implausibility when the number of data comparisons
is high and there is a chance that many of them may suffer
from structural biases. Conducting a full probabilistic cali-
bration as an alternative approach to our study might offer a
powerful tool to overcome some of the difficulties we men-
tion here. In particular, it would allow us to weight inputs as
candidates for the “best”, using the rules of probability, at the
cost of expending effort in specifying prior distributions and
likelihood functions.

We are able to offer a counter-example to the hypothesis
of Williamson et al. (2014), who found regions of parameter
space where what was thought to be a structural error in the
simulator was significantly reduced. In this case, we believe
it likely that better observations would simply confirm that
the “best” regions of parameter space for the Amazon and
other forests were non-overlapping. While individual forest
fraction observations may have some uncertainty, we would
expect the uncertainty on the differences between those ob-
servations to be smaller. A systematic bias in the way that
the forests are measured would be common to all observa-
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tions, for example, even though it would need to be taken
into account in the uncertainty calculation for an individual
observation.

We find that forest fraction does not offer a marginal con-
straint on the parameters: that is, there is little or no con-
straint on each parameter individually, but there is a signif-
icant constraint on the joint input space of the parameters.
Approximately 43 % of a priori parameter space is ruled out,
which is relatively little compared to other studies. This is
explained by several factors: (1) the ensemble covers a rela-
tively small input space, compared to other studies, due to
the fact that the simulator is based on a well-studied cli-
mate model, HadCM3; (2) our observational uncertainty is
assumed conservatively large; and (3) we have only a single
wave of history matching. A further experiment could run the
climate simulator within the NROY space in order to reduce
emulator uncertainty and provide a basis to further rule out
input space. The value of further waves of history matching
might be diminished by the fact that the simulator likely has a
large discrepancy in the Amazon, and the simulator discrep-
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ancy uncertainty is likely a large component of the overall
uncertainty budget.

Causes of discrepancy

We suggest three possible causes of fundamental structural
error which are external and internal to the vegetation model,
although a combination of these causes is not ruled out. First,
is there a problem with the emulator that would lead us to
think that such a discrepancy exists? We believe that this
is not the case, as the emulator performs sufficiently well
across parameter space in cross-validation experiments (see
Fig. S2).

Second, is there a missing processes in the vegetation
model that impacts the Amazon or other forests in FAMOUS,
or has the Amazon perhaps developed in other ways not seen
in the other forests? For example, it is possible that the real
Amazon can access water to a deeper level than other forests,
through deep rooting. This would cause a low Amazon bias,
seen in the simulator output. If the simulated Amazon can-
not access water through deep enough roots, and simulator
parameters were tuned to make Amazon as vigorous as in
the real world, other forests would be more vigorous in the
simulator than in observations. A bias that leads to a reduc-
tion in Amazon forest extent (such as that climatological or
root depth) is likely to lead to further rainfall reductions, and
its associated warming, as the region loses water cycling ca-
pability that the forest canopy provided. This is a feedback,
and it can be expected to enhance any dry/warm bias that re-
sults from other factors and in turn enhance any forest loss.
Such a simulator discrepancy could be countered by allow-
ing different parameters in different regions, perhaps through
ancillary parameter maps. Alternatively, the number of plant
functional types allowed in the simulator could be increased
— an approach adopted by many vegetation modelling efforts.

Finally, does the simulator simulate the climatic boundary
conditions of the forest well enough? Malhi et al. (2009) and
Staver et al. (2011) note the dramatic influence of climate
on Amazon forest cover, albeit mediated by fire, a process
not included in FAMOUS. Evidence from previous studies
shows that HadCM3, which FAMOUS is designed to repli-
cate, does have some climatic biases in the Amazon. Cox
et al. (2004) find that rainfall in the Amazon is underes-
timated, particularly along the north-east coastline. Precip-
itation is underestimated by approximately 20 %. The dry
season is too long (it starts a month early), and there is
an underestimate of wet season rainfall. This precipitation
anomaly persists in FAMOUS, although it is perhaps not as
severe as in HadCM3 (Jones et al., 2005, Fig. 4). Good et al.
(2008) note that simulated Amazon dry season precipitation
is closely tied to meridional sea surface temperature gradi-
ents in the region. Joetzjer et al. (2013) and Yin et al. (2012)
note similar climatic biases across the CMIP5 archive. We
suggest that attributing the simulator discrepancy to these
causes might be a fruitful direction for further study.
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5 Conclusions

We analyse an ensemble of the fast climate simulator FA-
MOUS with the aim of constraining carbon cycle parameters
through a comparison of simulator output with forest obser-
vations. We find that we are unable to constrain the parame-
ters individually, but that areas of joint parameter space are
effectively ruled out. With a defensible simulator discrepancy
term for the Amazon and assumed observational uncertainty
we are able to rule out 43 % of the input parameter space
defined by the ensemble design.

We identify moisture control on photosynthe-
sis (V_CRIT_ALPHA) as the most important parameter
control on forest fraction, with the next most important
parameter, leaf nitrogen (NLO), being approximately half as
important, but still twice as important as any other parameter.
These parameters have counteracting effects on the forest
fraction, so we are unable to rule out a broad swathe of the
joint space of these two parameters.

We suggest that we should exercise care if using obser-
vations of the Amazon rainforest to constrain the input pa-
rameters of FAMOUS, as an apparent structural bias in the
climate simulator could lead to misleading results. Using the
Amazon forest as an observational constraint suggests very
different parts of input parameter space as not implausible
compared to using other forests. Although we are able to
find a region of parameter space that we are unable to rule
out, given a defensible assumed observational uncertainty,
we have reason to suspect that this region does not offer a
credible alternative to default parameter settings. Further in-
vestigation reveals that choosing the region would systemat-
ically overestimate the forest fraction of the Central African,
South East Asian, and North American forests, while simul-
taneously underestimating the Amazon. We fail to find a set
of parameters that eliminates the discrepancy between the
simulated fraction of the Amazon and other tropical and bo-
real forests. We suggest that we cannot find a set of vege-
tation model parameters that improve the Amazon without
making the other forests worse. This satisfies the criterion of
Williamson et al. (2014) to identify a simulator bias.

Using a history-matching technique, we investigate the
limits of observational and simulator discrepancy uncer-
tainty, beyond which observations no longer offer a con-
straint on input parameter space. We find that if this total
error budget is larger than approximately 0.1 (1 SD of forest
fraction), and excluding the Amazon rainforest as a compari-
son, the observations will not offer any form of constraint on
the current ensemble, even in joint parameter space.

6 Data availability

Underlying data are available as an R data file: https://dx.doi.
org/10.6084/m9.figshare.4244561.v1.
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