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Highlights

What are the main findings?
• A novel dual-branch network integrating Transformer and CNN streams for cloud and

snow segmentation.
• The model effectively fuses global contextual features and local spatial details to dis-

tinguish spectrally similar surfaces.
What is the implication of the main finding?
• Significantly improves boundary accuracy and robustness against noise in complex

remote sensing scenes.
• Achieves state-of-the-art performance on CSWV and SPARCS datasets, enabling reli-able

operational cloud and snow monitoring.

Abstract

Cloud and snow often share comparable visual and structural patterns in satellite obser-
vations, making their accurate discrimination and segmentation particularly challenging.
To overcome this, we design an innovative Transformer-guided architecture with com-
plementary feature-extraction capabilities. The encoder adopts a dual-path structure,
integrating a Transformer Encoder Module (TEM) for capturing long-range semantic de-
pendencies and a ResNet18-based convolutional branch for detailed spatial representation.
A Feature-Enhancement Module (FEM) is introduced to promote bidirectional interaction
and adaptive feature integration between the two pathways. To improve delineation of ob-
ject boundaries, especially in visually complex areas, we embed a Deep Feature-Extraction
Module (DFEM) at the deepest layer of the convolutional stream. This component refines
channel-level information to highlight critical features and enhance edge clarity. Addition-
ally, to address noise from intricate backgrounds and ambiguous cloud-snow transitions,
we incorporate both a Transformer Fusion Module (TFM) and a Strip Pooling Auxiliary
Module (SPAM) in the decoding phase. These modules collaboratively enhance structural
recovery and improve robustness in segmentation. Extensive experiments on the CSWV
and SPARCS datasets show that our method consistently outperforms state-of-the-art
baselines, demonstrating its strong effectiveness and applicability in real-world cloud and
snow-detection scenarios.

Keywords: transformer; cloud snow; semantic segmentation; multibranch; deep learning
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1. Introduction
As artificial satellite technology progresses, satellite imagery is increasingly utilized for

Earth observation. Annually, approximately 67% of the Earth’s surface experiences cloud
cover [1]. Over 30% of the region is affected by seasonal snow, with 10% being permanently
snow-covered [2]. The presence of clouds and snow in satellite images significantly impacts
the effectiveness of Earth observation. Due to the plateau area, every year there will be
heavy snow to bring great losses to animal husbandry, and timely detection of snow cover
can substantially reduce personnel and material losses caused by snowstorms. However,
the spectral characteristics of the panchromatic band of cloud and snow have high similarity,
presenting a technical challenge in satellite cloud and snow image recognition.

On one side, cloud and snow coverage complicates remote sensing by obstructing
targets or altering surface reflectance, thereby affecting image interpretation and processing.
On the other side, their highly similar visual and spectral properties make it difficult
to distinguish between them, especially in cloud segmentation [3] and snow reflection
estimation [4]. Hence, developing accurate cloud and snow-detection techniques is crucial
for enhancing the reliability of remote sensing-based analysis.

Recent advances in deep learning have revolutionized remote sensing image analysis,
achieving significant breakthroughs in cloud and snow detection [5–8]. Many models
have been developed in recent years to address these challenges [9–11], pushing the field
forward considerably. However, even state-of-the-art solutions have limitations.

Prior to the rise of deep learning, detection techniques were generally divided into
three main categories: heuristic-based, temporal-reflectance comparison, and classical
machine learning approaches. Heuristic or rule-based methods rely on spectral and thermal
differences between land covers—such as clouds, snow, and vegetation—typically using
thresholding strategies. Notable examples include the Automatic Cloud Cover Assessment
(ACCA) [12], the Normalized Difference Snow Index (NDSI), Fmask [13], and snow decision
tree algorithms [14]. These approaches, while straightforward, are primarily grounded in
low-level spectral cues and exhibit strong dependence on shortwave infrared and thermal
imaging [15], making them highly sensitive to sensor variability and reducing their cross-
platform robustness [16].

Temporal-reflectance-based approaches (or multi-temporal methods) track radiometric
changes over time to detect transient events like clouds or recent snowfall. Algorithms
such as Tmask [17], CS [18], and ATSA [19] represent this class. Despite their temporal
advantage, these techniques often face issues such as high dependency on dense time-series
data, limited ability to identify persistent snow cover, and vulnerability to natural surface
changes—factors that constrain their scalability.

Supervised machine learning strategies—including support vector machines [20], ran-
dom forests [21], and Bayesian classifiers [22]—aim to learn discriminative features from
labeled samples. Shallow neural networks [17] have also been applied. However, these
models often struggle with feature complexity and fail to generalize well in challenging en-
vironments, falling short when compared to more recent, deep learning-based alternatives.

The introduction of deep learning has substantially improved detection accuracy,
generalizability, and processing efficiency. In particular, Convolutional Neural Networks
(CNNs) have become the standard for large-scale segmentation of clouds and snow [23].
Lightweight architectures like RS-Net [16] and streamlined variants of U-Net [24] are
designed for fast inference while maintaining high accuracy. By utilizing U-Net [25] as a
backbone and optimizing network depth, these models achieve reduced computational
costs and parameter overheads, yet still significantly outperform traditional solutions such
as Fmask in terms of precision and robustness.
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Efforts to enhance prediction accuracy are primarily focused on refining existing
modules, introducing auxiliary components, or redesigning the overall network architec-
ture. One common strategy involves incorporating advanced modules into conventional
frameworks. For instance, CloudNet [26] employs ResNet18 as its backbone and integrates
an improved Atrous Spatial Pyramid Pooling (ASPP) module. This module, placed after
the backbone feature extraction, captures multi-scale contextual features from the deepest
layers, thereby refining the segmentation of cloud and shadow boundaries. The overall
performance surpasses that of DeepLabv2 [27].

Another approach centers on rethinking the network design itself, especially in the
encoder-decoder structure. CDUNet [28] enhances the traditional UNet by introducing
a booster branch—comprising convolution and dropout layers—during training. This
addition facilitates more effective loss computation and contributes to faster network
convergence. In the decoding stage, rather than relying on the basic hierarchical fusion
strategy used in UNet, the authors propose a novel feature fusion layer that simultaneously
integrates three different feature maps. This design not only strengthens the extraction of
fine-grained texture cues but also suppresses high-frequency noise. As a result, CDUNet
yields more precise segmentation at object boundaries and offers stronger global contextual
awareness, which improves its adaptability across different spatial environments. The
model has demonstrated superior generalization on multiple satellite datasets.

Beyond these accuracy-driven strategies, some research also explores lightweight
architectures to balance prediction precision and computational efficiency. For example,
SGBNet [29] significantly reduces model complexity and enhances runtime performance.
However, when applied to cloud and snow-segmentation tasks, it shows limitations in
maintaining high segmentation accuracy.

Recent research efforts [30–32] have extended the use of Transformers—originally
developed for natural language processing—to vision-related tasks by leveraging their
ability to capture long-range dependencies. Transformer models [33] utilize a multi-head
self-attention mechanism, enabling them to aggregate information across the entire input
and emphasize salient regions. The essence of this mechanism lies in modeling the interre-
lations among all pixels, where each pixel participates in the computation but contributes to
varying degrees. This enables the model to achieve a global perceptual field and prioritize
contextually important features.

Building on this, the Vision Transformer (ViT) was initially proposed by Dosovitskiy
et al. [34], which applies a pure Transformer architecture directly to sequences of image
patches for classification tasks. This patch-based modeling approach has shown superior
performance over conventional convolutional architectures in multi-class image classifica-
tion scenarios. However, despite its success in classification, ViT exhibits limitations when
directly applied to dense prediction tasks like semantic segmentation, where maintaining
spatial detail and local context is crucial.

To extend Transformer models to dense vision problems like detection and segmenta-
tion, including object localization and semantic parsing, Wang et al. [35] introduced the
Pyramid Vision Transformer (PVT). This approach adopts ViT as its foundation while incor-
porating a hierarchical design that progressively reduces the spatial resolution of feature
maps, thereby decreasing both memory consumption and computational cost. This makes
PVT particularly suitable for pixel-level prediction tasks. Similarly, Wu et al. [36] proposed
the Convolutional Vision Transformer (CvT), which embeds convolutional operations into
the Transformer framework to improve representational capacity and overall performance.
Furthermore, Zamir et al. [37] presented Restormer, a Transformer-based model tailored
for image restoration tasks such as denoising, motion deblurring, and defocus correction,
leveraging long-range dependencies to enhance reconstruction quality.
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Despite their success in general vision tasks, these models encounter considerable
difficulties when applied to remote sensing scenarios involving cloud and snow segmenta-
tion. The main challenge lies in the frequent occlusion of surface details by cloud and snow
layers, which leads to degraded image quality. Additionally, the interaction between these
elements and background features introduces substantial noise. The primary shortcomings
of current Transformer-based approaches in this domain include:

(1) Limited robustness to noise and complex surface features, often resulting in
false positives;

(2) Ineffective detection of small, isolated targets, contributing to omissions;
(3) Coarse delineation at cloud and snow boundaries, which hinders precise edge

segmentation and affects overall accuracy.
This study tackles the aforementioned challenges by introducing a Transformer-driven

multi-branch architecture for the detection and segmentation of clouds and snow in re-
mote sensing imagery. After extensive experimentation and refinement, we present an
enhanced Transformer framework for both the encoder and decoder stages, termed the
Transformer Encoder Module (TEM) and the Transformer Fusion Module (TFM). The core
of our network integrates TEM with the ResNet18 [38] convolutional backbone. While the
Transformer contributes global self-attention, context modeling, and strong generalization
capabilities [39], the convolutional branch provides robustness to geometric transforma-
tions such as translation, scaling, and distortion [40,41]. By fusing these complementary
advantages, our dual-branch design ensures more effective semantic representation and
spatial detail extraction.

In this study, we focus on the specific spectral bands of the Landsat-8 satellite, which
are essential for cloud and snow classification. Specifically, the visible bands—such as
the Blue (Band 2), Green (Band 3), and Red (Band 4) bands, along with the Near-Infrared
(NIR, Band 5)—are primarily used. These bands are crucial because the contrast between
snow and clouds is most evident in the visible and near-infrared regions. The Blue and
Red bands help distinguish clouds and snow from their surroundings, while the NIR band
is particularly sensitive to snow, allowing for better separation of snow from other land
cover types.

To further boost feature representation, a Feature-Enhancement Module (FEM) is posi-
tioned between the Transformer and convolutional pathways, enabling mutual guidance
and adaptive information exchange. This architecture improves the model’s ability to cap-
ture subtle and scattered cloud-snow structures. Furthermore, a Deep Feature-Extraction
Module (DFEM) is integrated at the deepest convolutional layer to enhance channel-level
representations. By emphasizing salient feature dimensions, DFEM improves the model’s
ability to capture abstract representations and leads to more precise delineation along cloud
and snow contours.

In the decoder, the Transformer Fusion Module (TFM) and the Strip Pooling Auxiliary
Module (SPAM) jointly process multi-scale features from both encoder branches. This
collaborative decoding strategy facilitates the integration of high-level semantics with
low-level spatial cues, enhancing resistance to background interference and reducing classi-
fication errors. Consequently, the network delivers clearer and more reliable segmentation,
particularly in complex cloud-snow boundary regions.

2. Methodology
2.1. Backbone

To capture multi-scale features during encoding, we adopt a hybrid architecture that
integrates both a Transformer-based branch and a convolutional branch, as illustrated in
Figure 1. Convolutional neural networks (CNNs) excel at modeling local spatial correla-



Remote Sens. 2025, 17, 3329 5 of 24

tions by operating on localized receptive fields, which helps minimize parameter count,
reduce overfitting risk, and enhance the model’s ability to learn translation-invariant repre-
sentations [42]. In contrast, the Transformer architecture is adept at capturing long-range
dependencies through its self-attention mechanism, offering a more stable alternative to
recurrent neural networks (RNNs) that are prone to gradient vanishing or explosion when
processing extended sequences. By leveraging this mechanism, the model can dynamically
prioritize informative input regions, thereby improving contextual understanding.
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Figure 1. Multi-scale fusion attention network (Conv denotes convolutional layer, Avg indicates
average pooling layer).

To take full advantage of these complementary strengths, we propose a Transformer
Encoder Module (TEM), incorporated into the encoder stage. Its structure is shown in
Figure 2a. By unifying local feature learning from CNNs with the global modeling ca-
pacity of Transformers, the proposed design achieves superior performance compared to
architectures relying solely on either convolution or attention mechanisms.

The integration of CNNs and Transformers within the TEM allows the network to
effectively capture both local spatial features and long-range dependencies. The convolu-
tional branch excels in learning fine-grained spatial information, which is crucial for tasks
requiring precise localization, such as segmenting objects with well-defined boundaries
like clouds. In contrast, the Transformer branch leverages its global self-attention mecha-
nism to model long-range dependencies, improving the network’s ability to understand
contextual relationships across the entire image. This hybrid design helps the model handle
visually similar regions, such as snow and clouds, by combining detailed local features
with broader contextual understanding, ultimately leading to more accurate segmentation
in complex areas.

The dual-branch structure leverages the complementary advantages of both archi-
tectures, allowing for more effective extraction of spatial details and semantic context.
To tackle the challenge posed by the visual similarity between clouds and snow—both
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of which often share comparable shapes and spectral characteristics—we enhance the
conventional ResNet18 convolutional pathway by integrating a Transformer Encoder Mod-
ule (TEM). This addition significantly increases the network’s ability to suppress mutual
interference, thereby enhancing the precision of cloud and snow segmentation.
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Figure 2. Block diagram of different stages. (a) TEM structure; (b) TFM structure; (c) SPAM structure.
Conv denotes convolution layer. DWConv denotes depthwise separable convolution. Layer Norm
denotes layer normalization. Gelu refers to the gelu activation function. Sigmoid refers to the
sigmoid activation function. Softmax refers to the softmax function. ® indicates the Rearrange
operation. ⊗ represents matrix multiplication. ⊙ represents element-wise multiplication. ⊕ indicates
summation. Drop denotes the dropout operation.

While the Transformer-ResNet18 hybrid architecture we propose effectively captures
both local and global dependencies, it is worth noting that alternative hybrid models, such
as the Swin Transformer combined with CNNs, also have their own advantages. The
Swin Transformer [40], for instance, adopts a shifted window mechanism, which is more
computationally efficient and scalable compared to traditional Transformers. However, the
Swin Transformer may not capture local spatial details as effectively as CNNs, especially in
highly detailed regions like cloud and snow boundaries. In contrast, our approach benefits
from the detailed feature extraction of ResNet18 and the global attention capabilities of
the Transformer, offering a well-rounded solution that improves segmentation accuracy in
challenging scenarios.

Details of the network architecture are provided in Table 1. Feature maps are orga-
nized into one to five stages according to their spatial dimensions. The proposed TEM
incorporates multiple enhancements compared to conventional Transformer modules,
especially in the Multi-Head Self-Attention (MHSA) and MLP components. Within the
MHSA mechanism, a matrix fusion strategy is employed between the query (Q) and key (K)
vectors to enhance the extraction of relevant image-level dependencies. This improves the
model’s ability to handle the complex dependencies between the cloud and snow regions,
addressing their visual similarity more effectively.
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Table 1. The architecture of the proposed network.

Level Resnet18 BranchEnhancemodule TEM DFEM TFM SPAM

L1 7 × 7 conv , 64 FEM Transformer
(d = 64 h = 8)

Transformer
(d = 128 h = 4)

AvgPool
Dr(0.1), 1 × 1

L2 3 × 3 max pool[3 × 3, 64
3 × 3, 64

]
× 2

FEM Transformer
(d = 64 h = 8)

Transformer
(d = 64 h = 4)

AvgPool
Dr(0.1), 1 × 1

L3
[3 × 3, 128
3 × 3, 128

]
× 2 FEM Transformer

(d = 128 h = 8)
Transformer
(d = 64 h = 4)

AvgPool
Dr(0.1), 1 × 1

L4
[ 3×3, 256
3 × 3, 256

]
× 2 FEM Transformer

(d = 256 h = 8)

L5
[3 × 3, 512
3 × 3, 512

]
× 2 FEM Avgpool

liner
Concate

Meanwhile, the standard MLP component in Transformer architectures typically con-
sists of a linear transformation followed by a non-linear activation function. We revise this
component into a Convolutional Feedforward Perceptron (CFP), which incorporates 2D
convolution operations with the Swish activation. Compared to traditional fully connected
layers, the convolutional structure benefits from local connectivity and weight sharing,
which reduces the overall number of trainable parameters and computational load. Addi-
tionally, this convolutional design allows the model to better preserve local spatial features
during downsampling, further improving its ability to capture fine-grained details.

To further improve generalization, dropout is incorporated into the CFP. Specifically, a
1 × 1 convolution is used to encode inter-channel contextual information at the pixel level,
and dropout with a probability of 0.1 is applied during training to randomly deactivate a
portion of the neurons. This stochastic regularization helps reduce overfitting and marginally
improves segmentation performance. These modifications make our model more resilient
to noise and able to segment complex cloud and snow regions more accurately.

In summary, while alternative hybrid architectures such as the Swin Transformer +
CNN may offer advantages in computational efficiency and scalability, the combination
of ResNet18 and Transformer in our model provides a balanced solution that excels in
both local and global feature extraction. The empirical results presented later demonstrate
that our approach outperforms these alternatives in specific segmentation tasks, making
it a more suitable choice for remote sensing applications that involve complex cloud and
snow regions.

The mathematical formulation of the TEM module is as follows:

TEM1 = Conv1×1MHSA(Norm(X1), Norm(X2)), (1)

TEM2 = Conv3×3(Norm(TEM1)), (2)

TEMout = CFP(TEM2), (3)

In this context, X1 and X2 represent the inputs to the Transformer Encoder Mod-
ule (TEM). The operation Conv1×1 refers to a 2D convolution with a 1 × 1 kernel, while
Conv3×3 denotes a 2D convolution with a 3 × 3 kernel. MHSA stands for Multi-Head
Self-Attention, Norm refers to layer normalization, and CFP represents the Convolutional
Feedforward Perceptron.

The calculation process of MHSA is outlined as follows:

Q = DWC2DQ
3×3(C2DQ

(1×1)(Norm(X1))), (4)
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K = DWC2DK
3×3(C2DK

(1×1)(Norm(X1))), (5)

V = DWC2DV
3×3(C2DV

(1×1)(Norm(X1))), (6)

Q
′
= R(Q + Norm(X2)), (7)

K
′
= R(K + Norm(X2)), (8)

MHSAout = R(V′ · So f tmax(K′Q′/α)). (9)

The calculation process of CFP is outlined as follows:

CFP1 = Norm(TEM2), (10)

CFP2 = Drop(Swish(C2D1×1(CFP1))), (11)

CFP3 = Drop(C2D1×1(CFP2)), (12)

CFPout = CFP1 + CFP3, (13)

Here, Q′ ∈ RHW×C, K′ ∈ RC×HW , and V′ ∈ RHW×C are derived from the original
RH×W×C tensor after reshaping. C2D(•)

1×1 refers to a 2D convolution with a 1 × 1 kernel,

while C2D(•)
3×3 represents a depthwise separable 2D convolution with a 3 × 3 kernel. R

denotes the rearrangement operation, and α is a learnable scaling factor that adjusts the
pointwise product between K′ and Q′ before applying the softmax function. Softmax refers
to the normalized exponential function. Swish represents the Swish activation function,
and Drop indicates the dropout operation.

Accurate edge segmentation of clouds and snow remains a major challenge in target
detection and segmentation tasks. To address this, we take advantage of the fact that
the deepest layers of the backbone network contain a high number of channels, which
capture rich contextual and semantic information. Accordingly, we introduce a Deep
Feature-Extraction Module (DFEM) at the bottom of the backbone, as shown in Figure 1.

This module starts by compressing the spatial dimensions to produce a 1 × 1 × C
representation, which summarizes each channel’s global context through global average
pooling, resulting in C global descriptors. These descriptors are then processed through
two parallel transformation paths. In each path, a fully connected layer reduces the channel
dimension, followed by a ReLU activation. The channel dimensions are then restored
through another fully connected layer and refined with a sigmoid activation, helping the
model focus on the most informative channels.

Next, spatial resolution is recovered, and to reinforce semantic and contextual
cues—especially for delineating fine cloud and snow edges—the outputs of the two
branches are merged by stacking features across channels. This fusion strategy encourages
the network to focus more precisely on boundary localization. The above process can be
formally described as:

y = Gavg(x), (14)

y1= Up(sigmoid(liner(relu(liner(y))))), (15)

y2= Up(sigmoid(liner(relu(liner(y))))), (16)

yout = CAT1(y1, y2), (17)

here, x and yout denote the module’s input and the output after feature mapping, respec-
tively. Gavg refers to global average pooling, and CAT indicates concatenation along the
channel dimension.
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2.2. Feature-Enhancement Module (FEM)

Detecting and segmenting thin clouds and scattered small snow patches is challenging
due to their wide dispersion and small size, making them prone to missed detections.

We believe this issue stems from insufficient fusion of location and category feature
information. To improve accuracy, we weight the low-level features from the convolution
branch alongside the high-level semantic features from the Transformer Encoder Module
(TEM) branch. While the convolution branch preserves more spatial detail, the TEM branch
captures higher-level features, making the convolution branch essential for mining deeper
feature information and guiding the TEM branch with spatial context.

To enhance the low-level features, we introduced a Feature-Enhancement Module
(FEM), as shown in Figure 3. This module strengthens spatial context, extracts multi-scale
features, and highlights key elements. Consequently, it improves the model’s ability to
detect target boundaries and manage targets at various scales, boosting overall performance.
The features from all three branches are concatenated and subsequently processed using
depthwise separable convolution (dilation = 2), which restores channel capacity while
broadening the effective receptive area, thereby improving the model’s grasp of both local
context and overall scene structure.
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Figure 3. FEM structure diagram. Conv denotes convolution layer. Sigmoid refers to the sigmoid
activation function. ReLU refers to the ReLU activation function. Rate indicates the dilation rate in
dilated convolution.

Initial input weights for the FEM are adjusted via a 1× 1 convolution. The output from
the depthwise separable convolution is then added for feature fusion, followed by a ReLU
activation function for nonlinear transformation and spatial attention. This allows the
model to focus on specific spatial positions, improving the segmentation’s spatial accuracy.

The channel attention module leverages both global max pooling and global average
pooling to extract high-level features, enabling the capture of richer and more diverse
semantic representations. A pointwise (1 × 1) convolution is subsequently employed to
reduce the number of channels to one-sixteenth of the original, serving as a channel-wise
feature selector that highlights the relative importance of each dimension. This operation is
formulated in Equations (18) and (19):

φmax = C2D1×1(Gmax(x)), (18)
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φavg = C2D1×1(Gavg(x)), (19)

where x denotes the input tensor. Gmax and Gavg perform maximum and average pool-

ing across spatial dimensions, respectively. C2D(•)
1×1 applies a pointwise convolution for

channel-wise transformation. After feature extraction, the ReLU activation function is
applied to the feature map, helping suppress neuron activations without feedback, which
enhances the model’s sparse representation capability, noise resistance, and general-
ization. The channel dimensions are then restored through another 1 × 1 convolution.
The weight vector from the global average pooling branch is added to the result from the
global maximum pooling. The Sigmoid function is applied to recalibrate the feature map,
which is subsequently combined with the original channel attention through element-wise
multiplication. This operation is described by formula (20):

CA(x) = x · σ(C2D1×1(Relu(φavg))) + C2D1×1(Relu(φmax)), (20)

where CA(x) denotes the channel attention output, ReLU is the ReLU activation function,
and σ refers to the Sigmoid activation function.

To enhance feature extraction, the spatial attention module integrates both maximum
and average pooling. The resulting feature maps are then fused along the channel di-
mension through concatenation. After concatenation, a convolution with a 7 × 7 kernel
reduces the number of channels from two to one. This large convolution kernel enables
the extraction of a broader receptive field. The detailed computation process of the spatial
attention module is presented in formula (21):

SA(x) = x · σ(C2D7×7(CAT1(MP(x), AP(x)))), (21)

where SA(x) denotes the spatial attention output, σ represents the Sigmoid activation func-
tion, C2D7×7 is a 2D convolution with a 7 × 7 kernel, and ⊕ indicates concatenation along
the channel axis. MP and AP refer to maximum pooling and average pooling, respectively.

2.3. Transformer Fusion Module (TFM)

When a large area of snow and cloud overlap in the 2D image, cloud shadows may
project onto the snow layer, creating significant color differences and interfering with
surface elements in remote sensing images that resemble both clouds and snow. This
results in incorrect attention to snow by the network, leading to misclassification. During
decoding, a Transformer-driven fusion block is incorporated, illustrated in Figure 2b. This
module effectively integrates the upsampled output from the decoder with multi-level
feature data from the encoder branches. By leveraging diverse feature information, it
strengthens the feature representation and enhances model performance. Additionally, it
improves the network’s ability to resist interference, particularly in regions where snow is
covered by cloud shadows.

In this module, the weights output by the Multi-Head Self-Attention (MHSA) are
passed through a convolutional embedding layer and combined with the three original
weights input to the TFM. This integration allows the model to extract diverse feature infor-
mation across different levels, optimizing the use of semantic details. By merging low-level
and high-level features, the model achieves more comprehensive feature representations.
In the MLP section, we replace the standard linear layer in most Transformers with 2D
and depthwise separable convolutions, creating a Convolutional Feedforward Perceptron
(CFP). This convolutional method extracts local patterns and spatial context via a sliding
window, improving the network’s capacity for fine-grained feature analysis. The use of
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depthwise separable convolution reduces the number of parameters, improving training
efficiency compared to traditional fully connected layers.

The detailed calculation process of the TFM is outlined as follows:

TFM1 = C2D1×1(MHSA(Norm(Y1), Norm(Y2), Norm(Y3))), (22)

TEM2 = TFM1 + Y1 + Y2 + Y3, (23)

TEMout = CFP(TEM2), (24)

where Y1, Y2, and Y3 are the inputs to the TFM. C2D(•)
1×1 denotes a 2D convolution with a

1 × 1 kernel. MHSA stands for Multi-head Self-Attention, Norm refers to layer normaliza-
tion, and CFP represents Convolutional Feedforward Perceptron.

Q = DWC2DQ
3×3(C2DQ

1×1(Y1)), (25)

K = DWC2DK
3×3(C2DK

1×1(Y2)), (26)

V = DWC2DV
3×3(C2DV

1×1(Y3)), (27)

MHSAout = R(V′ · So f tmax(K′ · Q′/α)). (28)

The detailed computation process of the CFP is as follows:

CFP1 = C2D1×1(Norm(TFM2)), (29)

CFP2 = δ(DWC2D3×3(CFP1)), (30)

CFP3 = Drop(Relu(BN(C2D3×3(CFP1)))), (31)

CFPout = C2D1×1(CFP2 ⊙ CFP3) + TFM2, (32)

where Q′ ∈ RHW×C, K′ ∈ RC×HW , and V′ ∈ RHW×C are obtained by reshaping the
original tensor of size RH×W×C. R denotes the rearrangement operation, and α serves as a
trainable scaling factor that controls the dot product magnitude between K′ and Q′ before
the softmax. C2D(•)

1×1 indicates a 2D convolution using a 1 × 1 kernel, while C2D(•)
3×3 refers

to a 2D depthwise separable convolution with a 3 × 3 kernel. δ is the GELU activation
function, BN represents batch normalization, ⊙ stands for element-wise multiplication,
and Drop refers to the Dropout function.

2.4. Strip Pooling Auxiliary Module (SPAM)

Precisely distinguishing clouds and snow in satellite imagery is a challenge due to their
similar colors and shapes. Existing methods often struggle to define precise boundaries,
especially after down-sampling and up-sampling operations, which can result in the loss
of fine details. To address these issues, we introduce the Strip Pooling Auxiliary Module
(SPAM) in the decoding stage, as shown in Figure 2c.

SPAM consists of two parallel strip average pooling branches that extract spatial
information from the feature map. These branches use convolution kernels of 1 × 5 and
5 × 1, respectively, to capture average values along the horizontal and vertical axes. This
dual pooling mechanism enables the model to focus on both width and height dimensions,
improving its ability to capture the shape and size of the target. The averaging process
across both axes generates statistical features that better represent the spatial characteristics
of the target, improving the smoothness and integrity of the feature map, and refining the
segmentation of target boundaries.
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After combining the outputs from both pooling branches, a dropout with a probability
of 0.1 is applied. This regularization technique helps prevent overfitting by randomly
eliminating neurons during the prediction phase, leading to more accurate segmentation
results. The operations of SPAM are formally defined in formulas (33) and (34).

x′ = Avg1×5(Avg5×1(x)) + Avg5×1(Avg1×5(x)), (33)

y = C2D1×1(Drop(x′)), (34)

where x and y denote the input and output values of the module, respectively. Avg5×1

and Avg1×5 refer to average pooling layers with kernel sizes of 1 × 5 and 5 × 1, respec-
tively. C2D1×1(·) indicates a 2D convolution with a 1 × 1 kernel. Drop refers to the
Dropout operation.

3. Experiments
3.1. Dataset Introduction

(1) The Cloud and Snow (CSWV) Dataset [43] is used to evaluate the generalization
performance of the proposed network. It consists of 27 high-resolution WorldView2 images,
collected between June 2014 and July 2016 in the Cordillera Mountains, North America.
The dataset features diverse landscapes, including forests, grasslands, ridges, and deserts,
with cloud types (cirrus, cumulus, altocumulus, stratus) and snow forms (permanent,
stable, discontinuous). These variations in shape, size, and texture make the dataset both
comprehensive and challenging.

Each image is partitioned into 256 × 256 pixel patches, resulting in 3200 samples, which
are divided into training (80%) and validation (20%) sets. To address the common issue of
limited data in deep learning, augmentation techniques, such as translation, flipping, and
random rotation, are applied, expanding the dataset to 10,240 training and 2560 validation
images. Figure 4 displays sample images with cloud (pink), snow (white), and background
(black) labels.

:Cloud :Snow :Background:Cloud :Snow :Background:Cloud :Snow :Background

Figure 4. CSWV dataset part of the picture display.

Regarding the satellite data used in this study, we focus on specific spectral bands of the
Landsat-8 satellite. Specifically, the visible bands—such as the Blue (Band 2), Green (Band 3),
and Red (Band 4) bands, along with the Near-Infrared (NIR, Band 5)—are primarily used
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for cloud and snow classification. These bands are crucial because the contrast between
snow and clouds is most evident in the visible and near-infrared regions. The Blue and
Red bands help distinguish clouds and snow from their surroundings, while the NIR band
is particularly sensitive to snow, allowing for better separation of snow from other land
cover types.

(2) The SPARCS Dataset [17] serves to evaluate the effectiveness of our method in
multi-spectral image analysis. Developed by M. Joseph Hughes, it includes 80 Landsat-
8 images sized 1000 × 1000 pixels, annotated with classes like clouds, cloud shadows,
snow/ice, water, and background.

Due to GPU memory constraints, these images were cropped into smaller patches
of 256 × 256 pixels, yielding 2000 samples. These were then divided into training and
validation subsets with an 80:20 split. To enhance model generalization, data augmen-
tation—incorporating translation, flipping, and rotation—expanded the training set to
6400 images and the validation set to 1600 images. Examples from the SPARCS dataset are
presented in Figure 5, where cloud regions appear white, cloud shadows black, snow/ice
light blue, water dark blue, and background gray.

:Snow/Ice:Snow/Ice :Cloudshadow:Cloudshadow:Cloud:Cloud :Water:Water :Background:Background:Snow/Ice :Cloudshadow:Cloud :Water :Background:Snow/Ice :Cloudshadow:Cloud :Water :Background:Snow/Ice :Cloudshadow:Cloud :Water :Background

Figure 5. SPARCS dataset part of the picture display.

For the SPARCS dataset, we also use Landsat-8 spectral bands, specifically the visible
bands (Blue, Green, Red) and the Near-Infrared (NIR) band. These bands are chosen
because they effectively highlight the differences between snow and cloud regions, which
are crucial for accurate classification in multi-spectral image analysis.

3.2. Experimental Details

We conducted experiments using PyTorch 2.2.2 with CUDA 12.1 support for GPU
acceleration. [44]. The learning rate followed the “Steplr” schedule, computed as lrnew =

lrinitial × γ
epoch

stepsize . Initially set to 0.001, the learning rate decays by a factor of 0.98 every
3 epochs. We used the Adam optimizer [45], which is known for its stable and rapid
convergence, with β1 and β2 set to 0.9 and 0.999, respectively. The experiments were
performed on an NVIDIA GeForce RTX 3070 with 8 GB of memory, with a batch size of
4 due to GPU limitations. Training was carried out over 200 epochs. Performance on the
CSWV and SPARCS datasets was assessed using key evaluation metrics: precision (P),
recall (R), F1 score, pixel accuracy (PA), FWIoU, and MIoU. The corresponding formulas
are listed as follows:
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P =
(TP)

(TP) + (FP)
, (35)

R =
(TP)

(TP) + (FN)
, (36)

F1 = 2 × P × R
P + R

, (37)

PA =

k
∑

i=0
pi,i

k
∑

i=0

k
∑

j=0
pi,j

, (38)

FwioU =
1

k
∑

i=0

k
∑

j=0
pij

k

∑
i=0

k
∑

j=0
pij pii

k
∑
0

pij +
k
∑

j=0
pji − pii

, (39)

MioU =
1

k + 1

k

∑
i=0

pi,i
k
∑

j=0
pi,j +

k
∑

j=0
pj,i − pi,i

, (40)

In these formulas, TP represents the correctly predicted cloud (or snow) pixels, while
FP refers to incorrect predictions. FN indicates cloud (or snow) pixels that were misclas-
sified. The number of categories, excluding the background, is denoted by k. For each
category i, pi,i denotes the true positives, while pi,j represents pixels of category i predicted
as category j.

3.3. Ablation Experiment

We conducted ablation studies on the CSWV cloud and snow dataset to evaluate
the contribution of each module. Initially, we used the ResNet18 convolutional branch
as the backbone, applying upsampling at each layer before connecting them for output.
Then, we progressively added the modules (FEM, TEM, DFEM, SPAM, TFM) to assess their
individual and collective impact. As shown in Table 2, the performance of each module was
evaluated using MIoU, and the results demonstrate clear improvements with the inclusion
of each module. To better visualize the effects of each module, we performed a thermal
visualization experiment, which is illustrated in Figure 6.

FEM Ablation: To achieve precise localization and segmentation of thin clouds and
small scattered snow patches, we designed the Feature-Enhancement Module (FEM) to
facilitate cross-level connections between the two encoder branches. This module enhances
the exchange of information and feature fusion. As shown in Table 2, the inclusion of
FEM increased the network’s MIoU to 86.33%, marking a 0.5% improvement. Thermal
visualization in Figure 6d demonstrates that FEM improves the network’s focus on cloud
regions, enhances the detection of small, scattered targets, and reduces both missed and
false detections.

TEM Ablation: Snow cover can interfere with cloud detection, reducing network
attention to clouds and causing missegmentation. A single convolutional or transformer
branch cannot fully extract the necessary features for accurate segmentation of both cloud
and snow. To overcome this, we introduced the Transformer Encoder Module (TEM) as
a parallel branch to the ResNet18 convolution branch, creating a dual-branch structure.
This setup leverages the transformer’s ability to capture long-range dependencies and
the convolution’s capability for extracting local details. The result is improved multi-
scale feature extraction and better resistance to cloud-snow interference. As shown in
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Table 2, incorporating TEM increased the MIoU to 87.52%, an improvement of 1.19%.
Figure 6e illustrates that the TEM module significantly refines the focus on cloud prediction,
improving segmentation accuracy.
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Figure 6. Heat map representation: (a) Real image, (b) Label, (c) ResNet18,
(d) ResNet18 + FEM, (e) ResNet18 + FEM + TEM, (f) ResNet18 + FEM + TEM + DFEM,
(g) ResNet18 + FEM + TEM + DFEM + SPAM, (h) ResNet18 + FEM + TEM + DFEM + SPAM + TFM.
The first row shows cloud attention, and the second row shows snow attention.

Table 2. The performance of the network is evaluated progressively using the designed modules,
with bold indicating the best-performing configuration and ↑ denoting performance improvement.

Method MIoU (%)

Resnet18 85.83
Resnet18 + FEM 86.33 (↑ 0.5)
Resnet18 + FEM + TEM 87.52 (↑1.19)
Resnet18 + FEM + TEM + DFEM 87.64 (↑0.12)
Resnet18 + FEM + TEM + DFEM + SPAM 87.80 (↑0.16)
Resnet18 + FEM + TEM + DFEM + SPAM + TFM 89.23 (↑1.43)

DFEM Ablation: The Deep Feature-Extraction Module (DFEM) was introduced at
the base of the encoder’s convolution branch, which holds the largest number of channels
and contains rich semantic and contextual information. DFEM compresses and restores
channels via linear layers, concatenates the output feature maps from the two parallel
branches along the channel dimension, and maximizes the extraction of semantic and
contextual information. This process enhances edge and texture details, improving the
accuracy of edge segmentation for detection targets. As indicated in Table 2, the addition
of DFEM raised the MIoU to 87.64%, a 0.12% increase. Heat map visualization in Figure 6f
shows that the DFEM module helps the network focus on edge details, leading to more
precise segmentation.

SPAM Ablation: The Strip Pooling Auxiliary Module (SPAM) was incorporated into the
decoding stage to enhance the network’s ability to perceive the shape, size, and boundaries
of detected targets. This helps achieve precise segmentation of complex cloud and snow
junctions. As shown in Table 2, adding SPAM increased the MIoU to 87.80%, a 0.16%
improvement. Figure 6g highlights that SPAM enables the network to focus better on the
cloud-snow junction, refining edge details and improving segmentation accuracy.

TFM Ablation: The Transformer Fusion Module (TFM) was designed in the decoding
stage to fuse the feature information output by the upsampling decoding with the feature
information extracted from the two encoder branches at different levels. This fusion process
enhances feature mining, fully extracts spatial and semantic information, improves the
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network’s resistance to interference, and increases focus on the detection target. As seen
in Table 2, the addition of TFM raised the MIoU to 89.23%, a 1.43% increase. Thermal
visualizations in Figure 6h show that TFM significantly improves the network’s attention
to snow covered by cloud shadows in large-area snow images, reducing misjudgments and
missed detections, while enhancing the robustness of the network.

3.4. Comparative Testing of Cloud and Snow (CSWV) Dataset

In this section, we compare our proposed network with several top-performing mod-
els, such as FCN, PAN, PSPNet, DeepLabV3Plus, BiSeNetV2, and others, to demonstrate its
effectiveness. Each of these networks has distinct strengths. FCN uses a fully convolutional
structure for pixel-wise classification. PSPNet captures multi-scale semantic information
through pooling layers of different sizes, while DeepLabV3Plus incorporates an ASPP
module with atrous convolutions at varying rates. BiSeNetV2, designed for real-time se-
mantic segmentation, employs a dual-branch architecture to separately extract detailed and
semantic features. In the Transformer-based models, PVT integrates feature pyramids with
Transformers to leverage both methods’ strengths, improving feature representation and
small target detection. CvT enhances performance by introducing convolution operations
within the Transformer framework. DBNet, a dual-branch model combining Transformer
and convolutional networks, targets both semantic and spatial details to reduce false and
missed detections in cloud-detection and -segmentation tasks.

Table 3 presents a comparison of various networks. For cloud detection, our network
outperforms others in both recall (R) and F1 score, achieving 91.64% and 92.19%, respec-
tively. Similarly, our network attains a recall of 93.59% and an F1 score of 94.25% for snow
detection, surpassing other methods. While our network does not achieve the highest
precision (P) in either cloud or snow detection, the gap compared to the top-performing
method is minimal. Moreover, the proposed method achieves top performance in pixel
accuracy (PA), frequency-weighted intersection over union (FWIoU), and mean intersection
over union (MIoU), with values of 94.81%, 90.19%, and 89.23%, respectively. The findings
confirm the outstanding capability and efficiency of our model.

Table 3. Comparison of network evaluation metrics on the cloud and snow (CSWV) dataset (bold
indicates the best result).

Method Cloud Snow Overall Results
P (%) R (%) F1 (%) P (%) R (%) F1 (%) PA (%) FWIoU (%) MIoU (%)

DFANet [46] 76.83 84.70 80.57 90.43 77.62 83.54 88.06 79.33 76.21
ESPNetV2 [47] 80.67 87.34 83.87 94.16 79.07 85.96 90.00 82.43 79.55
MFANet [48] 78.69 89.21 83.62 95.22 79.92 86.90 89.86 81.98 79.56
SGBNet [29] 79.59 89.33 84.18 95.32 78.38 86.03 90.14 82.62 79.82
BiSeNetV2 [49] 88.83 81.60 85.06 89.08 86.29 87.66 90.15 82.47 80.22
ENet [50] 80.80 88.81 84.61 94.35 80.20 86.70 90.45 83.07 80.43
PADANet [51] 82.10 87.64 84.78 93.36 81.20 86.86 90.50 83.15 80.53
DDRNet [52] 83.35 87.74 85.49 94.61 82.11 87.92 90.55 83.11 80.91
SP_CSANet [53] 84.57 87.31 85.92 94.08 83.87 88.68 91.34 84.46 82.13
DeepLabV3plus [54] 85.13 88.46 86.76 95.32 82.83 88.63 91.24 84.24 82.16
DenseASPP [55] 85.52 88.91 87.18 93.39 84.05 88.48 91.38 84.45 82.45
PVT [35] 85.85 87.04 86.44 92.60 86.09 89.23 91.50 84.65 82.57
MSPFANet [56] 85.14 88.46 86.76 95.96 84.06 89.61 91.72 85.03 82.96
MFENet [57] 86.13 88.73 87.41 93.31 85.34 89.15 91.82 85.18 83.18
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Table 3. Cont.

Method Cloud Snow Overall Results
P (%) R (%) F1 (%) P (%) R (%) F1 (%) PA (%) FWIoU (%) MIoU (%)

DABNet [58] 87.83 85.98 86.89 92.87 87.78 90.26 91.80 85.13 83.21
Restormer [37] 87.25 86.97 87.11 94.78 85.99 90.17 91.99 85.48 83.46
CvT [36] 89.42 86.17 87.77 93.03 87.53 90.20 92.12 85.69 83.79
CcNet [59] 91.77 86.81 89.22 95.48 87.27 91.19 92.31 85.91 84.56
LCDNet [60] 90.41 86.45 88.38 93.70 88.40 90.97 92.54 86.39 84.62
MCANet [61] 86.13 91.40 88.69 95.25 85.89 90.33 92.77 86.76 84.93
CDUNet [28] 87.42 90.03 88.71 95.11 87.97 91.40 92.92 86.96 85.31
ACFNet [62] 90.78 88.74 89.75 95.20 88.15 91.54 92.80 86.73 85.41
HRNet [63] 91.28 86.82 88.99 94.94 90.24 92.53 93.07 87.23 85.75
UNet [25] 91.75 87.57 89.61 96.14 88.62 92.23 93.04 87.17 85.80
SegNet [64] 91.84 88.05 89.90 95.70 88.58 92.00 93.10 87.27 85.91
DBNet [65] 91.89 87.28 89.52 94.00 90.22 92.07 93.31 87.66 86.10
CSDNet [43] 91.79 87.82 89.76 95.96 89.69 92.72 93.34 87.69 86.33
PSPNet [66] 94.91 87.44 91.02 90.99 94.12 92.53 93.78 88.40 87.22
DFN [67] 94.11 89.79 91.90 93.88 90.73 92.27 93.70 88.25 87.29
CloudNet [26] 93.67 88.58 91.05 94.51 91.79 93.13 93.97 88.76 87.57
PAN [68] 92.70 90.65 91.66 95.17 91.05 93.07 93.99 88.76 87.77
FCN8s [69] 92.44 90.47 91.45 95.80 90.64 93.15 94.06 88.90 87.81
Our 92.73 91.64 92.19 94.91 93.59 94.25 94.81 90.19 89.23

Figure 7 presents examples from various representative scenarios. In the selected
examples, we highlight the network segmentation results at the same location with yellow
boxes for easy comparison. In scenes with forest, grassland, and desert backgrounds,
FCN8s, PAN, PSPNet, DeepLabV3Plus, and BiSeNetV2 miss or incorrectly detect scattered
small clouds and snow. In contrast, our network accurately detects and segments nearly
all clouds and snow in the image. In the third row, featuring urban backgrounds, our
network’s TFM module, with its self-attention mechanism, effectively fuses and decodes
feature information. It extracts semantic details from supplementary hierarchical context,
minimizing the impact of interference factors and enhancing segmentation accuracy and
robustness. PAN also performs well by constructing a feature pyramid that captures multi-
scale semantic information, improving robustness to size and position changes. However,
only our network and PAN avoid misjudging snow caused by the white roof in the image,
while other networks make errors. In the fourth and fifth rows, our network shows higher
segmentation accuracy, especially at the irregular junctions of cloud and snow. In the sixth
row, when large areas of snow and clouds overlap and cloud shadows are cast onto the
snow, our network more accurately segments the snow beneath the cloud shadow. Finally,
in the seventh and eighth rows, our network, aided by the DFEM module, provides more
detailed edge segmentation of clouds and snow compared to other networks. These results
demonstrate the superior performance and robustness of our proposed network across
various backgrounds.
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(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Comparison of segmentation performance across different networks under various envi-
ronmental conditions in the CSWV dataset. (a) Real image, (b) ground truth label, (c) segmentation
results of our network, (d) FCN8s results, (e) PAN results, (f) PSPNet results, (g) DeepLabV3+ results,
(h) BiSeNetV2 results.

In the cloud and snow-segmentation task, we observed a significant presence of thin
clouds and scattered small cloud clusters and snow patches in remote sensing images.
To address this, we selected relevant images and segmentation results for comparative
analysis, as shown in Figure 8. The results indicate that networks such as BiSeNetV2,
DeepLabV3Plus, and PSPNet struggle with many missed and false detections when de-
tecting thin clouds and small snow patches. This is primarily due to the noise present
on the cloud boundaries, which can confuse the model’s decision-making process. These
methods fail to extract sufficient semantic and spatial information, leading to poor perfor-
mance on small-scale, scattered clouds and snow. In contrast, our network demonstrates
superior detection accuracy for these types of targets. As illustrated in the third, fourth,
and eighth rows, our network performs better in both cloud-detection accuracy and edge
detail segmentation. The FEM module, by weighting low-level features from the convo-
lution branch and combining them with high-level features rich in semantic information
from the TEM branch, guides the network with location information. This feature fusion
allows our network to more accurately predict and segment thin clouds and scattered small
snow blocks.
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Figure 8. Comparison of segmentation effects of different networks for thin clouds, scattered small-
sized cloud clusters and snow patches. (a) Real image, (b) label, (c) segmentation results of our
net, (d) segmentation results of FCN8s, (e) segmentation results of PAN, (f) segmentation results of
PSPNet, (g) segmentation results of DeepLabV3plus, (h) segmentation results of BiSeNetV2.

3.5. Generalization Experiment of SPARCS Dataset

To additionally assess our method’s segmentation capabilities on multi-spectral satel-
lite imagery, we performed generalization tests with the SPARCS dataset. The results are
presented in Table 4. On the left side of the table, we can observe that our network achieves
the highest F1 scores for snow/ice, water, and land categories, reaching 94.07%, 91.22%,
and 95.72%, respectively. Although our F1 score for cloud and cloud shadow detection is
not the highest, it is very close to the best-performing network. On the right side of the
table, our network outperforms others in terms of PA, FWIoU, and MIoU, demonstrating
its effectiveness and strong generalization ability.

Figure 9 presents the segmentation performance of various networks on the SPARCS
dataset across different scenarios. The third, fourth, and seventh rows focus on the segmen-
tation of scattered small-scale clouds and snow, while the fifth and sixth rows highlight
the segmentation of thin clouds. From the results, it is clear that BiSeNetV2 and PSPNet
struggle with large-scale misdetections, insufficient small target detection, and rough edge
segmentation. While FCN8s performs better overall, it still has some error detections,
particularly in segmenting the cloud-snow junction, where the details are lacking.
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Table 4. Comparison of network performance across different evaluation metrics for the SPARCS
dataset (bold indicates the best result).

Method F1 (%) Overall Results (%)
Cloud CloudShadow Snow/Ice Water Land PA FWIoU MIoU

BiseNetV2 77.25 64.76 90.26 85.56 91.19 86.63 77.14 70.33
SegNet 83.00 61.03 91.14 83.42 92.75 88.50 80.45 71.33
SGBNet 84.43 64.47 89.35 84.09 92.59 88.61 80.14 72.02

ENet 84.30 66.61 89.91 85.89 93.12 89.19 81.06 73.37
PADANet 85.42 64.31 91.04 86.91 93.61 89.89 82.54 74.07

DeepLabV3plus 83.18 72.08 89.92 85.48 93.04 89.16 80.74 74.17
PSPNet 85.79 65.38 90.65 87.62 93.92 90.35 83.36 74.62

ESPNetV2 83.91 68.65 89.81 90.43 94.16 90.42 83.28 75.51
MSPFANet 87.00 66.09 92.12 88.69 94.56 91.02 84.33 76.22

DABNet 87.31 69.09 91.00 88.66 94.71 91.25 84.55 76.66
PAN 88.13 70.72 91.98 87.17 94.60 91.39 84.79 77.13
CvT 87.13 73.56 92.62 87.57 94.59 91.40 84.66 77.85
PVT 86.20 71.84 92.89 89.75 94.48 91.20 84.32 77.90

DBNet 88.79 72.71 92.91 88.30 95.14 92.19 86.23 78.70
SP_CSANet 89.43 74.23 92.45 88.26 95.23 92.35 86.33 79.15

UNet 88.31 74.88 92.94 88.90 95.06 92.14 85.94 79.27
CDUNet 87.12 76.00 92.79 90.30 95.33 92.27 86.19 79.68
CSDNet 88.95 77.97 92.76 87.49 95.23 92.38 86.23 79.83
FCN8s 89.44 75.41 91.79 90.12 95.57 92.75 87.00 79.96

Our 89.27 75.27 94.07 91.22 95.72 93.02 87.33 81.49

(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Comparison of segmentation results for different networks in various scenarios of
the SPARCS dataset. (a) Real image, (b) label, (c) our network’s segmentation, (d) FCN8s seg-
mentation, (e) PAN segmentation, (f) PSPNet segmentation, (g) DeepLabV3plus segmentation,
(h) BiSeNetV2 segmentation.
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Our network, however, benefits from a dual-branch design that combines convolution
and transformer branches in the encoding stage. By leveraging the strengths of both, we
enhance the feature-extraction process and improve decoding. This significantly boosts the
network’s robustness and anti-interference capabilities, leading to more accurate segmenta-
tion. The FEM module, placed between the convolution and transformer branches, further
strengthens cross-level information exchange, improving the network’s ability to detect
thin clouds and small targets.

The first and second rows demonstrate the network’s ability to handle large snow
and cloud areas, where cloud shadows are projected onto the snow layer in the remote
sensing image. Our network effectively fuses multi-level feature information thanks to the
TFM module, improving feature representation and segmentation accuracy. This results in
better segmentation of clouds, snow, and cloud shadows, outperforming other networks.
Additionally, the SPAM module extracts feature map averages in both horizontal and
vertical directions, providing width and height information to enhance the network’s
ability to perceive the shape, size, and boundaries of the target. This contributes to a
more accurate segmentation of complex junctions between cloud, snow, and cloud shadow.
Compared to other networks, our approach demonstrates superior segmentation accuracy
in these intricate regions.

These results confirm that our network outperforms others in the five-category multi-
spectral remote sensing image-segmentation task, showcasing its effectiveness in complex
semantic segmentation scenarios.

4. Conclusions
This paper presents a Transformer-based multi-branch feature fusion network de-

signed for end-to-end cloud and snow segmentation in visible and multispectral high-
resolution remote sensing images. The network integrates a transformer branch for extract-
ing high-level semantic information and a convolution branch for capturing spatial location
details. This fusion strengthens the network’s robustness against cloud-snow interference
and image noise, sharpening its attention to cloud detection.

The Feature-Enhancement Module (FEM) facilitates mutual guidance between the
transformer and convolution branches during the encoding phase, promoting effective
feature mining and fusion. This improves the network’s attention to thin clouds, small
scattered snow blocks, and clouds. To refine the segmentation boundaries, the Deep
Feature-Extraction Module (DFEM) is introduced at the deepest layer of the convolution
branch. It leverages fully connected layers to adjust the channels and extract deep-level
contextual information, thereby enhancing boundary clarity.

To address background interference and rough segmentation of the cloud-snow junc-
tion, we design the Transformer Fusion Module (TFM) and Strip Pooling Auxiliary Module
(SPAM) in the decoding stage. These modules boost the network’s resilience to noise,
enhance attention to snow detection, and improve the segmentation of irregular cloud-
snow junctions.

Compared to existing methods, our approach significantly improves segmentation
accuracy and handles complex scenarios effectively. Nevertheless, improvements can still
be made. Upcoming efforts will aim to decrease the number of parameters in the model to
boost inference speed without sacrificing segmentation accuracy.
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