University of
< Reading

Deciphering landscape-scale plant cover
and biodiversity from soil eDNA

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Goodall, T. ORCID: https://orcid.org/0000-0002-1526-4071,
Griffiths, R. |., Gweon, H. S. ORCID: https://orcid.org/0000-
0002-6218-6301, Norton, L., Busi, S. B. and Read, D. S.
ORCID: https://orcid.org/0000-0001-8546-5154 (2025)
Deciphering landscape-scale plant cover and biodiversity from
soil eDNA. Environmental DNA, 7 (5). e70191. ISSN 2637-
4943 doi: 10.1002/edn3.70191 Available at
https://centaur.reading.ac.uk/125035/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1002/edn3.70191

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur



http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online



'.) Check for updates
Environmental DNA

WILEY

Environmental DNA

Dedicated to the study and use of environmental DNA for basic and applied sciences

| oRIGINAL ARTICLE CEIEED

Deciphering Landscape-Scale Plant Cover and Biodiversity
From Soil eDNA

Tim Goodall' 2 | Robert I. Griffiths? | Hyun S. Gweon® 2 | Lisa Norton* | Susheel Bhanu Busi' | Daniel S. Read!

UK Centre for Ecology & Hydrology (UKCEH), Wallingford, UK | 2Bangor University, Bangor, UK | 3University of Reading, Reading, UK | *UK Centre
for Ecology & Hydrology (UKCEH), Lancaster, UK

Correspondence: Tim Goodall (timgoo@ceh.ac.uk)
Received: 15 January 2025 | Revised: 26 August 2025 | Accepted: 8 September 2025

Funding: This project was funded by UKCEH under the ASSIST programme (NERC Reference: NE/N018125/1) and BBSRC Institute Strategic Programme:
Decoding Biodiversity (DECODE) (BBSRC Reference: BB/X020037/1).

Keywords: DNA sequencing | landscape biology | metabarcoding | molecular ecology | plant biodiversity | plant ITS | soil eDNA

ABSTRACT

Biodiversity surveys are critical for detecting environmental change; however, undertaking them at scale and capturing all avail-
able diversity through observation is challenging and costly. This study evaluated the potential of soil-extracted eDNA to describe
plant communities and compared these findings to traditional, observation-based field surveys. We analyzed 789 soil samples
using high-throughput amplicon sequencing and compared DNA-based diversity metrics, indicator taxa, predicted vegetation
class, and plant cover in a comparison with co-located field survey data. The results indicated that taxonomically aggregated
(genus) eDNA-derived data, while showing slightly reduced Shannon's diversity scores, yielded remarkably similar overall rich-
ness and composition estimates. However, the DNA indicator taxa and predictive power for vegetation community classification
were also lower overall than those recorded by the field survey. In many cases, plant cover could be inferred from amplicon
abundance data with some accuracy despite widely differing scales of sampling—0.25g crumb of soil versus a 1 m? quadrat.
Overall, results from eDNA demonstrated lower sensitivity but were broadly in accordance with traditional surveys, with our
findings revealing comparable taxonomic resolution at the genus level. We demonstrate the potential and limitations of a simple
molecular method to inform landscape-scale plant biodiversity surveys, a vital tool in the monitoring of land use and environ-
mental change.

1 | Introduction Such models can be used to estimate the response of ecosystems

and their services to anthropogenic impacts, the effects of cli-

In the face of accelerating climate change, landscape-scale mon-
itoring of biodiversity is essential for detecting shifts in species
composition, ecosystem function, and habitat health (Belaire
et al. 2022), which can have profound implications for ecosys-
tem resilience and the services upon which human societies
rely. Landscape-scale temporal biodiversity inventories, when
combined with comprehensive environmental metadata, allow
the observation of ecosystem trends and are vital tools for un-
derstanding and estimating habitat change, informing models,
and enabling the forecast of future change (Franklin et al. 2016).

matic change, or even government policy (Wood et al. 2017).
Arguably, because of the increasing rate of change and our
dependence on ecosystem services, monitoring the natural en-
vironment through biodiversity assessment has never been as
important, yet monitoring is often patchy or piecemeal in cover-
age and is dependent upon resource availability and legislative
drivers (Donaldson et al. 2017).

Conventional approaches for national, landscape-scale, biodi-
versity surveys require an expansive group of field ecologists
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to visit many hundreds of locations to perform consistent and
accurate measurements of plant species (Carey et al. 2008;
Maskell et al. 2008). Because these surveys offer a snapshot
of visible plant growth, dormant, ephemeral, or cryptic plants
may not be observed (Hiiesalu et al. 2012). Resource availabil-
ity, both human and financial, is a limiting determinant of sur-
vey scale and sampling intensity. New methods to maximize
efficiency, facilitate greater sampling depth, and increase the
scale of surveys are desirable. At large scale, methods such as
drone (Cruzan et al. 2016), aircraft or satellite remote sensing
are useful tools (Sharma et al. 2017), however, their resolution
is limited. Environmental DNA (eDNA) monitoring offers the
potential to simplify the field effort required and enable the pro-
cessing of vast numbers of samples with high taxonomic resolu-
tion (Ruppert et al. 2019).

eDNA analysis has provided insight into many otherwise
difficult-to-monitor environments and assists in estimating
biodiversity and distribution of both micro-organisms and,
more recently, macro-organisms (Ruppert et al. 2019; Thomsen
and Willerslev 2015). The accuracy of eDNA for plant commu-
nity analysis from soil is relatively novel and untested at scale.
Fahner et al. (2016) assessed a suite of plant taxonomic mark-
ers in 35 forest soils, upon which we built herein by applying
the best-performing taxonomic markers to examine the ability
of soil eDNA to represent local plant communities from differ-
ent soils across a national landscape. In this study, we extracted
eDNA from 789 soil samples collected as part of the UK Centre
for Ecology and Hydrology (UKCEH) Countryside Survey of
2007 (Carey et al. 2008), where each sampling location was si-
multaneously subjected to vegetative studies by trained plant
ecologists. The limitations of amplicon sequencing to resolve
taxonomies below genus level with accuracy (Fahner et al. 2016;
Alteio et al. 2021; Odom et al. 2023; Vallin et al. 2025) were
taken into account, and we used taxonomies collapsed to genus
level to assess how data derived from a high-throughput molec-
ular and classical field survey methods compared to each other
and explored the merits and limitations of this eDNA-amplicon
approach within the context of a national survey. Specifically,
we compared the key indicators of Aggregate Vegetation
Classification (AVC) types and examined the potential for mo-
lecularly derived abundance data to describe plant cover.

Additionally, we used a machine learning approach to assess the
predictive ability of the data to ascribe a sample's AVC—a po-
tentially important use of an eDNA sample in predicting broad
habitat within a survey context.

Our findings highlight the merits of each approach and, impor-
tantly, inform the potential for molecularly derived methods,
specifically amplicon-based soil-eDNA, to describe plant cover,
overall biodiversity, and habitat classification.

2 | Materials and Methods
2.1 | Vegetation Survey
Surveyors undertook vegetation surveys as part of the 2007 UK

Countryside Survey (https://www.ceh.ac.uk/our-science/proje
cts/countryside-survey) following published guidelines (Maskell

et al. 2008) (Figure 1). The Countryside Survey is a long-running
survey of the UK landscape and is designed to encompass mul-
tiple sites from each of the recognized land classes of the UK.
For the purposes of this study, we used the 1 m? plant species
recordings (nest 0). The surveys were conducted at a minimum
of one meter and a maximum of 2.5m distance from the location
of the soil sample.

2.2 | Soil Collection

Soil sampling and vegetation surveys were conducted simulta-
neously. A clean, unused plastic tube of 5cm diameter was used
to collect soil core samples from the top 15cm at each sample
site; cores were sealed into pre-labeled plastic bags to prevent the
transfer of soil residue between samples. The cores were trans-
ferred to the laboratory on the day of collection and subjected
to multiple analyses (Emmett et al. 2008). For molecular work,
cores were frozen at —20°C for later processing, where the cores
were lightly defrosted, and a sub-sample of soil collected from
below the organic horizon (thus excluding fine roots) was ho-
mogenized and archived at —20°C for later DNA extraction and
plant ITS2 amplicon sequencing.

2.3 | Vegetation Classification

Vegetation communities are closely aligned with habitat defi-
nitions and assessments of habitat health. An Aggregate
Vegetation Classification (AVC) was applied to each sample
site based on the surveyor's plant species cover estimates. AVCs
are determined as per Bunce et al. (1999); briefly, plant survey
data is lumped and subjected to multivariate analysis using
DECORANA and ordinated. Clustering of the sample within
one of eight groups forms the basis for the classification, where
the eight AVC classes are defined as: (1) “Crops and weeds,”
(2) “Tall grass and herb,” (3) “Fertile grassland,” (4) “Infertile
grassland,” (5) “Lowland wooded,” (6) “Upland wooded,” (7)
“Moorland grass mosaics,” and (8) “Heath and bog.”

2.4 | Molecular Analyses of Plant ITS2

DNA was extracted from 0.25 g of the archived soil. Briefly, soil
was weighed by means of pre-sterilized (immersion in 5% bleach
and 70% ethanol wash) apparatus (Figure 1, inset) into Powersoil
DNA 384 Isolation Kit (Qiagen Ltd.) plates, and the DNA
was extracted according to the manufacturer's instructions.
Samples were randomly distributed across extraction plates,
and each extraction plate incorporated negative extraction con-
trols. Amplicons were generated using a 2-step amplification
approach, with Illumina Nextera tagged ITS2 region primers,
forward primer ITS2-S2 ATGCGATACTTGGTGTGAAT and
reverse primer ITS4 TCCTCCGCTTATTGATATGC following
the approach of Fahner et al. (2016), each primer was modi-
fied at the 5 end with the addition of Illumina pre-adapter
and Nextera sequencing primer sequences. Amplicons were
generated using high-fidelity DNA polymerase (Q5 Taq; New
England Biolabs). After initial denaturation at 95°C for 2min,
the PCR conditions were as follows: denaturation at 95°C for
15s, annealing at 55°C, annealing for 30s with extension at
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FIGURE1 | Distribution of survey sites within England, Scotland, and Wales; colored by AVC classification. For data protection site co-ordinates
are rounded to the nearest 10km. (inset) 0.25g of homogenized soil prior to DNA extraction.

72°C for 30s, repeated for 35cycles. A final extension step of
10min at 72°C was performed. PCR products were cleaned
using a Zymo ZR-96 DNA Clean-up Kit (Zymo Research, US)
following the manufacturer's instructions. MiSeq adapters
and 8nt dual-indexing barcode sequences were added during
the second PCR amplification step. After an initial denatur-
ation at 95°C for 2min, the PCR conditions were as follows:
denaturation at 95°C for 15s, annealing at 55°C, annealing for
30s with extension at 72°C for 30s, repeated for eight cycles
with a final extension of 10min at 72°C. Both extraction and
PCR negative control samples were verified as negative using
gel electrophoresis. Amplicon sizes were determined using an
Agilent 2200 TapeStation system. Libraries were normalized
using the SequalPrep Normalization Plate Kit (Thermo Fisher
Scientific), quantified using the Qubit dsDNA HS kit (Thermo
Fisher Scientific), and pooled. The pooled library was diluted
to 400 pM after denaturation and neutralization. Denaturation
was achieved with 0.2N NaOH for 5min, followed by neutral-
ization with 0.2N HCI. The library was then diluted to a load
concentration of 12pM with HT1 Buffer and a 10% denatured
PhiX control library. The final denaturation was performed by
heating to 96°C for 2min, followed by cooling in crushed ice.
Sequencing was performed on an Illumina MiSeq using V3 600
cycle reagents. The 789 samples were randomly split into three
sequencing libraries, each being sequenced on its own flow
cell, and with each flow cell generating more than 17 million
raw reads.

2.5 | Molecular Bioinformatics

Illumina demultiplexed sequences for each of the three sequenc-
ing libraries were processed independently using HONEYPI
(Oliver et al. 2021), a bioinformatics pipeline developed for
the processing of ITS2 sequences for the UK National Honey
Monitoring scheme (https://github.com/hsgweon/honeypi).
Amplicon Sequence Variant (ASV) tables and sequence tax-
onomies were generated using the standard workflow. Briefly,
raw sequences were quality-filtered using DADA2 within
HONEYPI, with the parameters: reads truncated at a quality
score drop below Q=30, and reads shorter than 150bp were
removed. On average, ~17,605 reads per sample passed the ini-
tial quality (Q>30) filtering step, with a standard deviation of
13,566 reads per sample. Denoising and ASV inference were
performed using default DADA2 parameters as implemented
in HONEYPI. Subsequently, taxonomy was assigned using a
custom-trained naive Bayesian classifier on an updated NCBI
nucleotide (nt; https://www.ncbi.nlm.nih.gov/nucleotide/) data-
base, with assignments based on 97% sequence similarity. The
output files included taxonomies and ASV tables. After passing
through HONEYPI, taxonomies and ASV tables for the three
libraries were merged by ASV sequence using R to generate a
composite table for all samples. Samples with fewer than 1000
reads were deemed, through examination of sample read depth
frequency, to lie outside the range of normal distribution and
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were therefore removed. Samples with greater than 1000 reads
(n=798) were maintained, and all samples were rarefied to this
read depth for subsequent analysis.

2.6 | Analysis

Tests were conducted to compare (i) diversity measures of gen-
era, (ii) richness of the genera recorded, (iii) AVC indicator gen-
era, and (iv) the AVC predictive accuracy of each survey method.

The number of sites examined totaled 789, of which 126 were of
AVC-1 “Crops and weeds,” 35 of AVC-2 “Tall grass and herb,”
173 of AVC-3 “Fertile grassland,” 190 of AVC-4 “Infertile grass-
land,” 19 of AVC-5 “Lowland wooded,” 28 of AVC-6 “Upland
wooded,” 69 of AVC-7 “Moorland grass mosaics,” and 149 of
AVC-8 “Heath and bog.”

All non-flowering plant data were removed from both the ASV
and survey tables; thus, bryophytes, algae, gymnosperms, bare
ground, leaflitter, and rock were excluded. To minimize the risk of
spurious species-level assignments, we conducted all downstream
analyses at the genus level. For example, sequences derived from
Oil-seed Rape (Brassica napus) were variably misassigned as one
or both of its parental lineages (Brassica rapa and Brassica olera-
cea), necessitating collapsing all Brassica detections to the genus
level. This conservative approach ensures consistency and avoids
introducing artifacts from uncertain species identifications.

Proportional abundances were then calculated for each sample's
molecular data using decostand (R package vegan; Oksanen
et al. 2015), and each sample's rare genera (< 5% abundance)
were removed from each dataset before subsequent comparison
and analysis.

To assess the similarities in taxonomic observations between mo-
lecular and survey data, each site's AVC classification was used
to determine indicator genera (R package labdsv; Roberts 2025),
Shannon's diversity, and the richness of genera recorded by each
survey method (R package vegan; Oksanen et al. 2015). Data de-
rived from either survey method were determined by the Shapiro
test to be non-normally distributed; therefore, non-parametric
Spearman’s correlations were used to assess the relationships
between the survey methods. Statistical comparison of eDNA
abundance and 1m? plant cover survey methods: Spearman’s Rho
statistic was calculated to estimate a rank-based measure of asso-
ciation between the survey methods (base R), with p value adjust-
ments made with the Benjamini-Hochberg method. Specifically,
the correlation between the abundance of co-recorded genera at
each site within each AVC, as well as the correlation of genus level
diversity measures at each site and within each AVC.

We compared the predictive ability of the eDNA abundance
and 1m? plant cover surveys in ascribing the sample site's AVC
classification using machine learning. To do this, we used the
R package xgboost (Chen and Guestrin 2016), an approach to
assess each dataset's predictive sensitivity (how many of the ac-
tual positive cases we were able to predict correctly), specific-
ity (how many of the correctly predicted cases actually turned
out to be positive), and accuracy (how often the classifier cor-
rectly predicts) with a 4:1 training to testing split, using settings:

method =“xgbTree,” tuneGrid=expand.grid (nrounds=c(50,
100), max_depth=c(2, 4, 6), eta=c(0.1, 0.3), gamma=c(0, 1),
colsample_bytree=c(0.7), min_child_weight=c(1), subsam-
ple =c(0.8)), with a 5-fold cross validation check.

3 | Results

3.1 | Measured Genus Level Diversity
and Richness and Correlation Between Methods

The community-level relative abundance data for flowering
plants from each site, collapsed to the genus level, were used to
calculate Shannon diversity scores per survey (Figure 2). Score
averages were calculated per AVC and the results were, for mo-
lecular and 1 m? surveys: Crops and weeds: 0.57 (SD 0.48) and
0.16 (SD 0.35), Tall grass and herb: 0.48 (SD 0.37) and 0.69 (SD
0.58), Fertile grassland: 0.65 (SD 0.43) and 0.8 (SD 0.50), Infertile
grassland: 0.85 (SD 0.49) and 1.32 (SD 0.49), Lowland wooded:
0.56 (SD 0.44) and 0.78 (SD 0.46), Upland wooded: 0.35 (SD 0.39)
and 0.73 (SD 0.52), Moorland grass mosaics: 0.64 (SD 0.43) and
1.22 (SD 0.53), Heath and bog: 0.38 (SD 0.35) and 1.93 (SD 0.43).
Across all samples, the average Shannon's diversity scores were
0.61 (SD 0.47) and 0.89 (SD 0.61) for molecular and 1 m? surveys,
respectively.

Aside from AVC-1 “Crops and weeds,” the molecular survey re-
corded, on average, lower Shannon's diversity scores. Spearman's
rank correlation coefficients (Rho) between the survey meth-
od’s Shannon's scores were: Crops and weeds: 0.00 (p, ;;=0.96),
Tall grass and herb: 0.23 (padJ.:O.ZS), Fertile grassland: 0.31
(padJ.:O.OO), Infertile grassland: 0.12 (padj=0.17), Lowland
wooded: 0.13 (padj:0.68), Upland wooded: 0.39 (padj:0.0S),
Moorland grass mosaic: 0.28 (padj:0.06), and Heath and bog:
0.38 (padj =0.00). Two of the AVCs (Fertile grassland and Heath
and bog) demonstrate significant (padj <0.05) association be-
tween the two survey methods; however, the Rho coefficients
do not exceed 0.38, indicating “weak” or “moderate” associa-
tions. Diversity metrics built on community-level relative abun-
dances did not appear to correlate well between the two survey
methods.

Similarly, the richness of genera detected by molecular and 1 m?
surveys for each site was assessed (Figure 2). Average richness
scores per site were lower in the molecular survey, except for
“Crops and weeds” habitats. The total genera recorded by each
method within each AVC were calculated and compared, and
the genera that occurred in both survey types were counted as
co-recorded. Unique genera values by AVC were, for molecular
and 1 m? surveys: Crops and weeds: 69 and 38 (27 co-recorded),
Tall grass and herb: 42 and 42 (25 co-recorded), Fertile grass-
land: 70 and 38 (31 co-recorded), Infertile grassland: 88 and 68
(49 co-recorded), Lowland wooded: 28 and 28 (15 co-recorded),
Upland wooded: 29 and 39 (17 co-recorded), Moorland grass mo-
saics: 41 and 42 (24 co-recorded), Heath and bog: 23 and 29 (14
co-recorded). Within the AVC “Crops and weeds,” the molecular
method records higher richness; in the former, this is likely due
to both the residue of previous crops and the detection of ephem-
eral weeds. The total genera recorded by the molecular method
in “Fertile” and “Infertile grassland” was also higher than tradi-
tional methods, where surveying dense grass swords may result
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FIGURE 3 | Scatter plots of all co-recorded flowering plant genera across all sites for each AVC habitat. Axis are log!® cumulative percentage of
genera's relative abundance (see Methods), X-axis molecular, Y-Axis 1 m? plant cover, red dotted 1:1 line. log'® percentages were used for visualization

and clarity.

in lower richness being recorded. Across all samples and all
AVCs, the total richness of genera was 158 and 151 for molecu-
lar and 1 m? surveys, respectively, with 110 genera co-recorded.

3.2 | Co-Recorded Genus Abundance Correlations
Between Survey Methods

To assess the ability to predict the amount of flowering plant
cover from molecular abundance data, comparisons were made
against the 1m? plant survey data. For this assessment, only
genera that were co-recorded within each AVC by both survey
types were compared using Spearman'’s rank correlation of the
total percentage abundances of each genus. The coefficients of
abundance correlations were: Crops and weeds: 0.51 (p, 4= 0.01),
Tall grass and herb: 0.37 (padj=0.08), Fertile grassland: 0.66
(paclj =0.00), Infertile grassland: 0.75 (padJ:O.OO), Lowland

wooded: 0.39 (padj:0.17), Upland wooded: 0.75 (padj:0.00),
Moorland grass mosaic: 0.58 (padj:0.00), Heath and bog: 0.19
(padj:O.SZ). Five of the AVCs (Crops and weeds, Fertile grass-
land, Infertile grassland, Upland wooded, Moorland grass mosa-
ics) demonstrate significant (p, g < 0.05) association between the
survey methods, with Rho coefficients >0.50. The abundance
associations were “moderate” to “good,” indicating that where
taxa are co-recorded, abundances are generally well correlated
(Figure 3).

3.3 | Genus Level Indicators of Aggregate
Vegetation Classification

We assessed the commonality of indicator genera between sur-
vey methods to determine whether molecular data could provide
relevant taxonomic discriminators of AVC habitats. Indicator
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genera with significance (p<0.05) were determined for each
AVC from each survey type. Table 1 lists the significant indi-
cators per AVC ranked by the indicator values (indval). Genera
names in bold are those recorded as significant indicators by
both survey methods. As per the earlier diversity and richness
metrics, the molecular data records more indicators of “Crops
and weeds” than the 1 m? plant survey data, where the common
weeds of agricultural or disturbed land are also recorded as indi-
cators (genera Aegilops, Capsella, Vicia, and Atriplex). The mo-
lecular data also recorded the same indicator taxa for “Fertile
grasslands” and more indicator taxa for “Infertile grasslands.”
In the remaining AVC classes, the 1 m? plant survey data pro-
duced more indicators of vegetation type.

3.4 | Inventory of Recorded Genera by
Survey Method

A summary of genus-level abundance data is shown in Figure 4.
It displays a complete inventory of the flowering plant genera
recorded by each survey method, along with summary statistics
for each AVC, including the number of sample sites, the total
richness of genera recorded and of which the number that are
co-recorded, Spearman'’s correlation scores of abundances, and
average AVC Shannon's diversity scores. The abundance scores
from each survey method (log'® of percentage abundance) pro-
vided the basis for the heat map.

3.5 | Aggregate Vegetation Classification
Prediction Through Machine Learning

Genus-level abundance data were used to train and validate
XGBoost models for the prediction of each sample’s AVC classifi-
cation from either eDNA or 1m? plant cover survey-derived data.
Across all AVCs, cross-validation confusion matrix accuracy for
molecular eDNA output was 0.61 compared to the 1 m? plant cover
survey's accuracy of 0.74. The predictive power, measured by sen-
sitivity (how many of the actual positive cases we were able to
predict correctly), specificity (how many of the correctly predicted
cases actually turned out to be positive), and accuracy (how often
the classifier correctly predicts), was broadly comparable between
the survey types (Figure 5), with molecular survey data having
lower predictive power, most notably for Lowland wooded and
Tall grass and herb AVCs. The overall accuracy of the model was
improved only slightly (0.64 and 0.75, molecular and 1 m? survey
respectively, Figure S1) when using data at the highest resolution,
i.e., data not collapsed to genus level and 1 m? survey data that in-
cluded measures of bare ground, rock, and bryophytes.

4 | Discussion

Temporal large-scale survey programs encompassing the col-
lection of ecological variables, such as soil state, land use, and
plant cover, improve our understanding of the significance,
causes, and consequences of large-scale ecological change
(Wood et al. 2017). The relative ease of sample collection for
eDNA analysis has huge potential for large-scale surveys and
citizen science schemes, and could arguably assist in expand-
ing a survey's range, allowing a more comprehensive inventory

to be taken (Biggs et al. 2015). Given the lack of similar anal-
yses over such a large geographic area, we hope to highlight
the potential caveats of utilizing eDNA-based surveys. These
include but are not limited to DNA being a stable biomolecule
(Yoccoz et al. 2012), with differential persistence and degrada-
tion of DNA presenting possible biases in the data. Moreover,
soil properties can influence the sequestration and persistence
of biological molecules. Indeed, the stability of DNA in soil
has been shown to depend on moisture, temperature, manage-
ment, exposure to UV, clay particle type and size, and pH (Cai
et al. 2006; Strickler et al. 2015). Similarly, post-sampling soil
storage can have an effect on DNA therein for similar reasons,
and the consistency of the storage method should be applied to
all samples within a study (Clasen et al. 2020). Options to this
end would include freezing, drying, freeze-drying, or the use
of proprietary storage buffers. Other biases, which are partic-
ularly pertinent for studies looking for the presence of rare or
invasive species, are the relative ease of transmission of eDNA
from the site of initial deposition, through a transportive phase
(hydrology or disturbance), to a place of persistence (Harrison
et al. 2019), ultimately leading to a study site's contamination
(Pedersen et al. 2015). Additionally, Jones et al. (2025), in their
assessment of sources of uncertainty in DNA metabarcoding,
found that differing sequence read depth and even processing at
differing laboratories could result in differences in family level
richness results. It is also important to note that traditional plant
surveys are not immune from inaccuracies. Plant characteristics
(such as small size, rarity, ephemerality, and morphological con-
fusion), along with environmental factors (such as topography
and inclemency) and observer variability, contribute and com-
bine to introduce significant variation and bias, which should
ideally be quantified as a quality indicator (Morrison 2016;
Ullerud et al. 2018; Verheyen et al. 2018). It is imperative to
note that both traditional and eDNA-based survey methods are
susceptible to bias and inaccuracy, highlighting the need for fu-
ture research focusing on clear guidelines, standardization, and
quality assurance schemes (Jones et al. 2025) to ensure accuracy
and permit temporal comparability.

DNA has been shown to persist in temperate soils at very detect-
able levels for > 60years (Yoccoz et al. 2012; Foucher et al. 2020),
and it is this persistence that may help explain the high diversity
measures for AVC-1 “crops and weeds,” where the legacy DNA
of previous crops and weeds enhances the diversity of plants
described by the eDNA method. This persistence raises some
questions regarding the time scale needed to detect vegetation
change; that is, the sensitivity to land use change. Recently,
Foucher et al. (2020) examined eDNA from soil samples in
plots for which the crop rotation history was documented and
found that the last grown crop formed the dominant taxa in the
eDNA inventory, alongside variable detection of past crops up to
8years, with relic-eDNA from historic grape-vines also present.
Similarly, Ariza et al. (2023) found that eDNA, collected from
the top 11 cm of forest soil, contained taxa from inventories up
to 30years previous, though inventories most closely matched
the contemporary taxa composition. Detection of legacy eDNA
may also be advantageous, as it negates the effect of ephemeral
genera, those that are small and easily overlooked, or those that
are particularly difficult to identify. Indeed, habitat reconstruc-
tion through examination of ancient eDNA can facilitate our un-
derstanding of lost landscapes, land use change, and migrations
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TABLE1 | Aggregate vegetative class indicator genera determined by molecular and 1 m? plant cover surveys.

Molecular survey 1m? field survey
AVC Rank Genera Indval D Rank Genera Indval D
1. Crops and weeds 1 Brassica* 0.381 0.001 1 Triticam* 0.263 0.001
2 Triticum* 0.249 0.001 2 Hordeum* 0.114 0.003
3 Aegilops 0.101 0.001 3 Brassica* 0.076 0.008
4 Capsella 0.079 0.003 4 Beta* 0.041 0.016
5 Hordeum* 0.072 0.003
6 Vicia 0.056 0.02
7 Beta* 0.047 0.03
8 Atriplex 0.033 0.044
2. Tall grass and herb 1 Urtica* 0.115 0.002 1 Urtica* 0.172 0.001
2 Arrhenatherum 0.083 0.015
3 Heracleum 0.044 0.009
4 Anthriscus 0.043 0.012
5 Brassica 0.039 0.043
3. Fertile grassland 1 Lolium* 0.344 0.001 1 Poa* 0.132 0.003
2 Poa* 0.139 0.001 2 Phleum* 0.116 0.001
3 Phleum* 0.049 0.029 3 Lolium* 0.503 0.001
4. Infertile grassland 1 Agrostis* 0.110 0.006 1 Trifolium* 0.269 0.001
2 Rumex 0.100 0.002 2 Agrostis* 0.257 0.001
3 Ranunculus* 0.094 0.006 3 Holcus* 0.249 0.001
4 Trifolium* 0.094 0.021 4 Cynosurus* 0.245 0.001
5 Holcus* 0.081 0.014 5 Ranunculus* 0.128 0.001
6 Cerastium 0.053 0.042 6 Dactylis 0.079 0.017
7 Plantago* 0.050 0.028 7 Plantago* 0.057 0.017
8 Cynosurus* 0.047 0.023
5. Lowland wooded 1 Quercus* 0.217 0.001 1 Rubus 0.253 0.001
2 Fraxinus* 0.203 0.001 2 Fraxinus* 0.227 0.001
3 Ilex* 0.143 0.001 3 Hedera* 0.190 0.001
4 Hedera* 0.140 0.001 4 Quercus* 0.166 0.001
5 Fagus 0.139 0.001 5 Mercurialis* 0.126 0.001
6 Arrhenatherum 0.063 0.009 6 Crataegus 0.124 0.001
7 Carpinus* 0.048 0.033 7 Corylus* 0.123 0.001
8 Mercurialis* 0.048 0.029 8 Glechoma* 0.095 0.001
9 Sambucus* 0.048 0.026 9 Ilex* 0.095 0.003
10 Glechoma* 0.047 0.026 10 Viola 0.088 0.003
11 Corylus* 0.045 0.009 11 Acer* 0.058 0.008
12 Acer* 0.041 0.026 12 Elytrigia 0.054 0.018
13 Nicotiana 0.039 0.03 13 Sambucus* 0.048 0.024
14 Tripleurospermum 0.037 0.046 14 Ballota 0.048 0.017
15 Ulmus 0.048 0.023
16 Rosa 0.048 0.033
17 Carpinus* 0.048 0.026
18 Circaea 0.032 0.042
(Continues)
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TABLE1 | (Continued)

Molecular survey

1m? field survey

AVC Rank Genera Indval D Rank Genera Indval D
6. Upland wooded 1 Betula* 0.181 0.001 1 Deschampsia 0.101 0.006
2 Ficaria 0.050 0.005 2 Oxalis 0.086 0.001
3 Betula* 0.081 0.004
4 Ulex 0.043 0.014
7. Moorland grass mosaics 1 Potentilla* 0.194 0.001 1 Nardus* 0.343 0.001
2 Nardus* 0.176 0.001 2 Anthoxanthum 0.300 0.001
3 Carex* 0.090 0.007 3 Juncus 0.256 0.001
4 Viola 0.073 0.011 4 Carex* 0.147 0.001
5 Potentilla* 0.134 0.001
6 Festuca 0.095 0.015
7 Galium 0.056 0.022
8 Vaccinium 0.052 0.026
9 Sagina 0.029 0.034
8. Heath and bog 1 Calluna* 0.450 0.001 1 Eriophorum 0.477 0.001
2 Erica* 0.381 0.001 2 Trichophorum 0.434 0.001
3 Calluna* 0.429 0.001
4 Molinia 0.365 0.001
5 Erica* 0.223 0.001
6 Narthecium 0.129 0.001

Note: The indicators are listed per AVC habitat and ranked by indicator value (indval) with significance value (p). Genera names given in bold with an asterisk are

those recorded as significant indicators by both survey methods.

(Pedersen et al. 2015; Haile et al. 2007). To improve the recov-
ery and accuracy of our findings, it is plausible that samples
collected above-ground, that is, surface-collected soil samples,
may better align with the visual quadratic botanical surveys.
Particularly, by capturing signals from plant presence such as
pollen, leaf litter, or seeds, this approach may also reduce any
temporal lag associated with deeper soil layers. Furthermore,
above-ground sampling may enhance the spatial resolution of
eDNA surveys, offering promising avenues for large-scale, har-
monized vegetation monitoring in the future.

In this study, we chose ITS2 over a multimarker approach, based
on previous findings by Fahner et al. (2016) who reported ITS2
in particular, alongside rbcL, was effective in plant metabar-
coding for ecological monitoring. A single marker approach
has some taxonomic limitations yet currently offers a more
cost-effective approach for large-scale surveys. Importantly, we
developed a curated, in-house workflow, and therefore chose to
use our bioinformatics pipeline HONEYPI (Oliver et al. 2021)
to ensure reproducibility and comparability of sequence pro-
cessing. A caveat of our workflow is that the taxonomic classi-
fication utilizes an open, continuously updated NCBI database.
While providing simplicity, worldwide applicability, and the
ability to utilize the most recent genomic accessions, this ap-
proach also has the potential to introduce uncertainty, particu-
larly at the species level or for rare taxa (Blackman et al. 2023).
More recently, Jones et al. (2021) produced a curated database
of UK flowering plants, which could increase the reliability

of taxonomic assignments, while limiting geographic scope.
However, the issue of the limited resolution of short-read ampl-
icon sequencing remains (Fahner et al. 2016; Alteio et al. 2021;
Odom et al. 2023), as observed by Vallin et al. (2025), taxonomic
discrepancies were evident in our dataset at the species level,
but unlike their study, where manual resolution was feasible, the
frequency of conflicting assignments in our dataset was much
higher. To account for this, we collapsed our data to genus level
to ensure comparisons were reliable, reproducible, robust, and
applicable beyond the UK.

On average, the eDNA molecular approach used in this study
recorded lower genus level diversity scores and richness scores.
Similarly, the eDNA approach produced fewer vegetation type
indicators. However, within the “Crops and weeds” vegeta-
tion type, eDNA recorded greater richness and more indica-
tor taxa. It is worth noting that within “Crops and weeds,” no
correlation was observed for diversity, indicating that eDNA
methods are likely recording taxa through the presence of
relic-eDNA. This detection of old DNA could be crucial for as-
sessing cropping histories or land use change, but it also high-
lights the potential to record biases in soil eDNA methods due
to the variables associated with eDNA persistence within the
soil matrix. The molecular data performed well in producing
indicator taxa for “Fertile” and “Infertile” grassland habitats,
highlighting more indicators for “Infertile grasslands,” pos-
sibly due to the increased difficulty of surveying thoroughly
through dense grass swards.
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FIGURE4 | Legend on next page.
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FIGURE 4 | Flowering plant genera inventory and heat map showing occurrence and abundance of all genera recorded by Molecular and 1m?

plant cover surveys, with summary statistics for each AVC, including the number of sample sites, the total richness of genera recorded and of which

the number that are co-recorded, Spearman’s correlation scores of abundances and average AVC Shannon's diversity scores. The abundance scores
from each survey method (log'® of percentage abundance) provide the basis for the heat-map. AVC classes: (1) “Crops and weeds,” (2) “Tall grass and
herb,” (3) “Fertile grassland,” (4) “Infertile grassland,” (5) “Lowland wooded,” (6) “Upland wooded,” (7) “Moorland grass mosaics,” and (8) “Heath

and bog.” log!® percentages were used for visualization and clarity.
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FIGURES5 | XGBoost model for AVC assignment from genera data—
scatter plot showing degree of predictability of molecular (X-axis) and
1m? plant cover (Y-axis) surveys in AVC assignment. Point color=AVC
classification; point shape =model's predictive sensitivity (circle), speci-
ficity (triangle), and accuracy (square).

Using the co-recorded genera of each AVC, we examined the po-
tential of using amplicon-derived relative abundance data to es-
timate plant cover, a tall ask given the possibility of ploidy, copy
number variation, and PCR amplification biases (length and GC
content) (Alvarez and Wendel 2003). Given these concerns, we
were surprised that for the majority of vegetation types, the re-
lationship between molecular-derived relative abundance and
plant survey cover was moderate to good, demonstrating that
it is possible to infer the plant cover of many genera from eDNA
abundance data on the proviso that the habitat and genera are
appropriate.

To assess the ability to predict AVC from genus-level data, we
applied a machine learning approach to each survey method
and found through cross validation that, overall, the predictive
performance was broadly lower for the molecular survey. In par-
ticular, lower sensitivity was observed for Lowland wooded, Tall
grass and herb, and Moorland grass mosaic AVCs, where low
Spearman’s correlation scores were also recorded. Further, we
observed that using data at the highest possible resolution, i.e.,
species level, led to marginal improvements in the overall accu-
racy of either survey type.

In concordance with the findings reported by Vasar et al., our
molecular results are broadly in agreement with those of tradi-
tional surveys; however, the level of agreement varied by hab-
itat. In this study, across all AVC classes the molecular survey
was able to detect 73% of angiosperm genera recorded by the
traditional survey method, a result in line with observations by
Ariza et al. (2023) who recorded a molecular coverage of 60%,
albeit using samples from a limited range of habitat types. The

reduced sensitivity of the molecular data is perhaps unsurpris-
ing given the extremely small sample size. Importantly, a key
aspect of our study that is perhaps surprising is the ability of
the eDNA from 0.25g of soil to describe the immediate above-
ground vegetation with some accuracy. Increasing the sample
size, pooling from a larger area, or increasing the sample num-
ber (Alsos et al. 2018) would increase the resolving power of the
eDNA method. However, there are undesirable cost (increase)
and throughput (decrease) implications that need to be weighed
carefully. Once collected and stored, soil eDNA can be utilized
to examine a range of taxonomic and ecological profiles (Deiner
et al. 2017). The relative ease of sample collection and process-
ing, and the large amount of genetic information held within soil
eDNA makes surveys based on high-throughput eDNA methods
very appealing.

The results presented here demonstrate that flowering plant
communities and habitats can be described with a degree of
accuracy using molecular methods based on small soil-eDNA
samples, and complementarily to field survey, a molecular ap-
proach can provide useful and valuable ecological insights.
While our molecular results are promising, they primarily high-
light the supplementary and synergistic value of molecular tech-
niques alongside traditional methods of biodiversity assessment.
Collectively, these findings are critical for understanding the
efficiencies and disparities between traditional and molecular
biomonitoring methodologies. Our national-scale analysis pro-
vides insights that highlight the utility of these methods, both
traditional and molecular, for large-scale ecological biodiversity
measurements.

4.1 | Maximizing the Value of eDNA
for Long-Term Biodiversity Monitoring

Building on these findings, we recommend that future biodi-
versity monitoring adopt an integrated molecular-traditional
framework. eDNA metabarcoding enables rapid and cost-
effective detection of taxa at scale, while traditional field surveys
remain critical for validation and providing ecological context.
Future versions of the UK Countryside Survey could implement
a hybrid design, combining extensive eDNA-based assessments
across all sites with targeted resampling via traditional surveys
at a subset of locations to ground-truth molecular detections and
calibrate species-level identifications. Furthermore, coordinated
efforts to curate high-quality, habitat-specific reference libraries
for UK flora to reduce taxonomic misassignments and increase
molecular resolution could be developed. Improvements in sam-
pling design, including replication and strategic pooling, along-
side standardization of protocols across surveys, would further
improve accuracy and comparability. Finally, incorporating
molecular approaches into long-term monitoring frameworks
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would allow us to better capture temporal and spatial biodiver-
sity patterns, enhance comparability with historical datasets,
and maximize the value of biodiversity data for long-term eco-
logical monitoring and policy applications.

Author Contributions

T.G.: Conception and design of the study; acquisition, analysis, and in-
terpretation of data; writing of the manuscript. R.I.G.: Conception and
design of the study; analysis and interpretation of data; writing of the
manuscript. H.S.G.: conception of the study; writing of the manuscript.
L.N.: conception of the study; writing of the manuscript. S.B.B.: acquisi-
tion, analysis, and interpretation of the data; writing of the manuscript.
D.S.R.: conception of the study; interpretation of the data; writing of the
manuscript.

Acknowledgments

This project was funded by UKCEH under the ASSIST programme
(NERC Reference: NE/N018125/1), and the BBSRC Institute Strategic
Programme: Decoding Biodiversity (DECODE) (BBSRC Reference: BB/
X020037/1).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Raw sequence files are available via the NCBI Sequence Read Archive
under BioProject ID PRINA1201089. R scripts and associated files were
uploaded to Zenodo. The files are publicly available and can be accessed
at 10.5281/zenodo.14644160.

References

Alsos, 1. G., Y. Lammers, N. G. Yoccoz, et al. 2018. “Plant DNA
Metabarcoding of Lake Sediments: How Does It Represent the
Contemporary Vegetation.” PLoS One 13: €0195403. https://doi.org/10.
1371/journal.pone.0195403.

Alteio, L. V., J. Séneca, A. Canarini, et al. 2021. “A Critical Perspective
on Interpreting Amplicon Sequencing Data in Soil Ecological Research.”
Soil Biology and Biochemistry 160: 108357. https://doi.org/10.1016/j.
50i1bi0.2021.108357.

Alvarez, I., and J. F. Wendel. 2003. “Ribosomal ITS Sequences and Plant
Phylogenetic Inference.” Molecular Phylogenetics and Evolution 29: 417-
434. https://doi.org/10.1016/S1055-7903(03)00208-2.

Ariza, M., B. Fouks, Q. Mauvisseau, R. Halvorsen, I. G. Alsos, and H.
J. de Boer. 2023. “Plant Biodiversity Assessment Through Soil eDNA
Reflects Temporal and Local Diversity.” Methods in Ecology and
Evolution 14: 415-430. https://doi.org/10.1111/2041-210X.13865.

Belaire, J. A., C. Higgins, D. Zoll, et al. 2022. “Fine-Scale Monitoring
and Mapping of Biodiversity and Ecosystem Services Reveals Multiple
Synergies and Few Tradeoffs in Urban Green Space Management.”
Science of the Total Environment 849: 157801. https://doi.org/10.1016/j.
scitotenv.2022.157801.

Biggs, J., N. Ewald, A. Valentini, et al. 2015. “Using eDNA to Develop
a National Citizen Science-Based Monitoring Programme for the Great
Crested Newt (Triturus cristatus).” Biological Conservation 183: 19-28.
https://doi.org/10.1016/j.biocon.2014.11.029.

Blackman, R. C., J.-. C. Walser, L. Riiber, et al. 2023. “General Principles
for Assignments of Communities From eDNA: Open Versus Closed
Taxonomic Databases.” Environmental DNA 5: 326-342. https://doi.org/
10.1002/edn3.382.

Bunce, R. G. H., C. J. Barr, M. K. Gillespie, et al. 1999. Vegetation of
the British Countryside—The Countryside Vegetation System. ECOFACT
Volume 1. 224pp. UKCEH.

Cai, P., Q. Huang, X. Zhang, and H. Chen. 2006. “Adsorption of DNA
on Clay Minerals and Various Colloidal Particles From an Alfisol.” Soil
Biology and Biochemistry 38: 471-476. https://doi.org/10.1016/j.soilbio.
2005.05.019.

Carey, P. D., S. Wallis, P. M. Chamberlain, et al. 2008. Countryside
Survey: UK Results From 2007. NERC/Centre for Ecology & Hydrology.
105pp.

Chen, T., and C. Guestrin. 2016. “XGBoost: A Scalable Tree Boosting
System.” In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 785-794.
Association for Computing Machinery. https://doi.org/10.1145/29396
72.2939785.

Clasen, L. A., A. P. Detheridge, J. Scullion, and G. W. Griffith. 2020. “Soil
Stabilisation for DNA Metabarcoding of Plants and Fungi. Implications
for Sampling at Remote Locations or via Third-Parties.” Metabarcoding
and Metagenomics 4: €58365. https://doi.org/10.3897/mbmg.4.58365.

Cruzan, M. B., B. G. Weinstein, M. R. Grasty, et al. 2016. “Small
Unmanned Aerial Vehicles (Micro-UAVs, Drones) in Plant Ecology.”
Applications in Plant Sciences 4: 1600041. https://doi.org/10.3732/apps.
1600041.

Deiner, K., H. M. Bik, E. Michler, et al. 2017. “Environmental DNA
Metabarcoding: Transforming How We Survey Animal and Plant
Communities.” Molecular Ecology 26: 5872-5895. https://doi.org/10.
1111/mec.14350.

Donaldson, L., R. J. Wilson, and I. M. D. Maclean. 2017. “Old Concepts,
New Challenges: Adapting Landscape-Scale Conservation to the
Twenty-First Century.” Biodiversity and Conservation 26: 527-552.
https://doi.org/10.1007/s10531-016-1257-9.

Emmett, B. A., Z. L. Frogbrook, P. M. Chamberlain, et al. 2008. CM
Wood CS Technical Report No.3/07 Soils Manual. UK Centre for Ecology
and Hydrology.

Fahner, N. A., S. Shokralla, D. J. Baird, and M. Hajibabaei. 2016.
“Large-Scale Monitoring of Plants Through Environmental DNA
Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four
DNA Markers.” PLoS One 11: e0157505. https://doi.org/10.1371/journal.
pone.0157505.

Foucher, A., O. Evrard, G. F. Ficetola, et al. 2020. “Persistence of
Environmental DNA in Cultivated Soils: Implication of This Memory
Effect for Reconstructing the Dynamics of Land Use and Cover
Changes.” Scientific Reports 10: 10502. https://doi.org/10.1038/s41598-
020-67452-1.

Franklin, J., J. M. Serra-Diaz, A. D. Syphard, and H. M. Regan.
2016. “Global Change and Terrestrial Plant Community Dynamics.”
Proceedings of the National Academy of Sciences 113: 3725-3734. https://
doi.org/10.1073/pnas.1519911113.

Haile, J., R. Holdaway, K. Oliver, et al. 2007. “Ancient DNA Chronology
Within Sediment Deposits: Are Paleobiological Reconstructions Possible
and Is DNA Leaching a Factor?” Molecular Biology and Evolution 24:
982-989. https://doi.org/10.1093/molbev/msm016.

Harrison, J. B., J. M. Sunday, and S. M. Rogers. 2019. “Predicting
the Fate of eDNA in the Environment and Implications for Studying
Biodiversity.” Proceedings of the Royal Society B: Biological Sciences 286:
20191409. https://doi.org/10.1098/rspb.2019.1409.

Hiiesalu, I., M. Opik, M. Metsis, et al. 2012. “Plant Species Richness
Belowground: Higher Richness and New Patterns Revealed by Next-
Generation Sequencing.” Molecular Ecology 21: 2004-2016. https://doi.
org/10.1111/j.1365-294X.2011.05390.x.

Jones, J. I., A. Arnold, D. Buchner, et al. 2025. “Sources of Uncertainty
in DNA Metabarcoding of Whole Communities: Implications for Its Use

12 0f 13

Environmental DNA, 2025

85UBJ11 SUOLIWIOD SAERID) 3 [qea1|dde U Aq peunob 8.2 SDPNE VO ‘88N JO S3|N J0j ARRIq1T BUIUO 8|1 UO (SUOHIPUOD-PLE-SLLBHWOD" A8 I AXe1d)1oU 1 UO//SdIY) SUORIPUOD PUe SW L 3L} 385 *[5Z0Z/0T/9T] U0 ARiq178U1IUO AB]IM S0UB|R0X3 818D PUE UI[ESH 0} 31niisu| uoieN ‘301N AQ TETOL EUPS/Z00T OT/I0p/w0d B 1mAReiqju! uo//Sdiy Wwouj popeojumoa ‘S ‘G202 ‘Er67.E92


https://doi.org/10.5281/zenodo.14644160
https://doi.org/10.1371/journal.pone.0195403
https://doi.org/10.1371/journal.pone.0195403
https://doi.org/10.1016/j.soilbio.2021.108357
https://doi.org/10.1016/j.soilbio.2021.108357
https://doi.org/10.1016/S1055-7903(03)00208-2
https://doi.org/10.1111/2041-210X.13865
https://doi.org/10.1016/j.scitotenv.2022.157801
https://doi.org/10.1016/j.scitotenv.2022.157801
https://doi.org/10.1016/j.biocon.2014.11.029
https://doi.org/10.1002/edn3.382
https://doi.org/10.1002/edn3.382
https://doi.org/10.1016/j.soilbio.2005.05.019
https://doi.org/10.1016/j.soilbio.2005.05.019
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3897/mbmg.4.58365
https://doi.org/10.3732/apps.1600041
https://doi.org/10.3732/apps.1600041
https://doi.org/10.1111/mec.14350
https://doi.org/10.1111/mec.14350
https://doi.org/10.1007/s10531-016-1257-9
https://doi.org/10.1371/journal.pone.0157505
https://doi.org/10.1371/journal.pone.0157505
https://doi.org/10.1038/s41598-020-67452-1
https://doi.org/10.1038/s41598-020-67452-1
https://doi.org/10.1073/pnas.1519911113
https://doi.org/10.1073/pnas.1519911113
https://doi.org/10.1093/molbev/msm016
https://doi.org/10.1098/rspb.2019.1409
https://doi.org/10.1111/j.1365-294X.2011.05390.x
https://doi.org/10.1111/j.1365-294X.2011.05390.x

in Biomonitoring.” Methods in Ecology and Evolution 16: 1658-1673.
https://doi.org/10.1111/2041-210X.70093.

Jones, L., A.D. Twyford, C.R. Ford, et al. 2021. “Barcode UK: A Complete
DNA Barcoding Resource for the Flowering Plants and Conifers of the
United Kingdom.” Molecular Ecology Resources 21: 2050-2062. https://
doi.org/10.1111/1755-0998.13388.

Maskell, L. C., L. R. Norton, S. M. Smart, et al. 2008. CS Technical
Report No.2/07 Vegetation Plots Handbook. UK Centre for Ecology and
Hydrology.

Morrison, L. W. 2016. “Observer Error in Vegetation Surveys: A Review.”
Journal of Plant Ecology 9: 367-379. https://doi.org/10.1093/jpe/rtv077.

Odom, A. R., T. Faits, E. Castro-Nallar, K. A. Crandall, and W. E.
Johnson. 2023. “Metagenomic Profiling Pipelines Improve Taxonomic
Classification for 16S Amplicon Sequencing Data.” Scientific Reports 13:
13957. https://doi.org/10.1038/s41598-023-40799-x.

Oksanen, J., F. Guillaume Blanchet, R. Kindt, et al. 2015. “Vegan:
Community Ecology Package.” R Package Version 2.2-1 2: 1-2.

Oliver, A. E., L. K. Newbold, H. S. Gweon, D. S. Read, B. A. Woodcock,
and R. F. Pywell. 2021. “Integration of DNA Extraction, Metabarcoding
and an Informatics Pipeline to Underpin a National Citizen Science
Honey Monitoring Scheme.” MethodsX 8: 101303. https://doi.org/10.
1016/j.mex.2021.101303.

Pedersen, M. W., S. Overballe-Petersen, L. Ermini, et al. 2015. “Ancient
and Modern Environmental DNA.” Philosophical Transactions of the
Royal Society, B: Biological Sciences 370: 20130383. https://doi.org/10.
1098/rstb.2013.0383.

Roberts, D. 2025. “labdsv: Ordination and Multivariate Analysis for
Ecology.” R Package Version 2.1-1. https://doi.org/10.32614/CRAN.pack-
age.labdsv.

Ruppert, K. M., R.J. Kline, and M. S. Rahman. 2019. “Past, Present, and
Future Perspectives of Environmental DNA (eDNA) Metabarcoding: A
Systematic Review in Methods, Monitoring, and Applications of Global
eDNA.” Global Ecology and Conservation 17: €00547. https://doi.org/10.
1016/j.gecco.2019.e00547.

Sharma, R. C., K. Hara, and H. Hirayama. 2017. “A Machine Learning
and Cross-Validation Approach for the Discrimination of Vegetation
Physiognomic Types Using Satellite Based Multispectral and
Multitemporal Data.” Scientifica 2017: 9806479. https://doi.org/10.1155/
2017/9806479.

Strickler, K. M., A. K. Fremier, and C. S. Goldberg. 2015. “Quantifying
Effects of UV-B, Temperature, and pH on eDNA Degradation in Aquatic
Microcosms.” Biological Conservation 183: 85-92. https://doi.org/10.
1016/j.biocon.2014.11.038.

Thomsen, P. F., and E. Willerslev. 2015. “Environmental DNA—AnN
Emerging Tool in Conservation for Monitoring Past and Present
Biodiversity.” Biological Conservation 183: 4-18. https://doi.org/10.
1016/j.biocon.2014.11.019.

Ullerud, H. A., A. Bryn, R. Halvorsen, and L. ©. Hemsing. 2018.
“Consistency in Land-Cover Mapping: Influence of Field Workers,
Spatial Scale and Classification System.” Applied Vegetation Science 21:
278-288. https://doi.org/10.1111/avsc.12368.

Vallin, H., H. Hipperson, J. Titéra, L. Jones, and M. Fraser. 2025.
“Comparative Analysis of Pasture Composition: DNA Metabarcoding
Versus Quadrat-Based Botanical Surveys in Experimental Grassland
Plots.” Ecology and Evolution 15: €71195. https://doi.org/10.1002/ece3.
71195.

Verheyen, K., M. Bazany, E. Checko, et al. 2018. “Observer and
Relocation Errors Matter in Resurveys of Historical Vegetation Plots.”
Journal of Vegetation Science 29: 812-823. https://doi.org/10.1111/jvs.
12673.

Wood, C. M., S. M. Smart, R. G. H. Bunce, et al. 2017. “Long-Term
Vegetation Monitoring in Great Britain—The Countryside Survey

1978-2007 and Beyond.” Earth System Science Data 9: 445-459. https://
doi.org/10.5194/essd-9-445-2017.

Yoccoz, N. G., K. A. Brathen, L. Gielly, et al. 2012. “DNA From Soil
Mirrors Plant Taxonomic and Growth Form Diversity.” Molecular
Ecology 21: 3647-3655. https://doi.org/10.1111/j.1365-294X.2012.
05545.x.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: XGBoost model for AVC
assignment from “species” data—scatter plot showing degree of pre-
dictability of molecular (X-axis) and 1 m? plant cover (Y-axis) surveys in
AVC assignment. Point color=AVC classification; point shape =mod-
el's predictive sensitivity (circle), specificity (triangle), and accuracy
(square).

13 0f 13

85UBJ11 SUOLIWIOD SAERID) 3 [qea1|dde U Aq peunob 8.2 SDPNE VO ‘88N JO S3|N J0j ARRIq1T BUIUO 8|1 UO (SUOHIPUOD-PLE-SLLBHWOD" A8 I AXe1d)1oU 1 UO//SdIY) SUORIPUOD PUe SW L 3L} 385 *[5Z0Z/0T/9T] U0 ARiq178U1IUO AB]IM S0UB|R0X3 818D PUE UI[ESH 0} 31niisu| uoieN ‘301N AQ TETOL EUPS/Z00T OT/I0p/w0d B 1mAReiqju! uo//Sdiy Wwouj popeojumoa ‘S ‘G202 ‘Er67.E92


https://doi.org/10.1111/2041-210X.70093
https://doi.org/10.1111/1755-0998.13388
https://doi.org/10.1111/1755-0998.13388
https://doi.org/10.1093/jpe/rtv077
https://doi.org/10.1038/s41598-023-40799-x
https://doi.org/10.1016/j.mex.2021.101303
https://doi.org/10.1016/j.mex.2021.101303
https://doi.org/10.1098/rstb.2013.0383
https://doi.org/10.1098/rstb.2013.0383
https://doi.org/10.32614/CRAN.package.labdsv
https://doi.org/10.32614/CRAN.package.labdsv
https://doi.org/10.1016/j.gecco.2019.e00547
https://doi.org/10.1016/j.gecco.2019.e00547
https://doi.org/10.1155/2017/9806479
https://doi.org/10.1155/2017/9806479
https://doi.org/10.1016/j.biocon.2014.11.038
https://doi.org/10.1016/j.biocon.2014.11.038
https://doi.org/10.1016/j.biocon.2014.11.019
https://doi.org/10.1016/j.biocon.2014.11.019
https://doi.org/10.1111/avsc.12368
https://doi.org/10.1002/ece3.71195
https://doi.org/10.1002/ece3.71195
https://doi.org/10.1111/jvs.12673
https://doi.org/10.1111/jvs.12673
https://doi.org/10.5194/essd-9-445-2017
https://doi.org/10.5194/essd-9-445-2017
https://doi.org/10.1111/j.1365-294X.2012.05545.x
https://doi.org/10.1111/j.1365-294X.2012.05545.x

	Deciphering Landscape-Scale Plant Cover and Biodiversity From Soil eDNA
	ABSTRACT
	1   |   Introduction
	2   |   Materials and Methods
	2.1   |   Vegetation Survey
	2.2   |   Soil Collection
	2.3   |   Vegetation Classification
	2.4   |   Molecular Analyses of Plant ITS2
	2.5   |   Molecular Bioinformatics
	2.6   |   Analysis

	3   |   Results
	3.1   |   Measured Genus Level Diversity and Richness and Correlation Between Methods
	3.2   |   Co-Recorded Genus Abundance Correlations Between Survey Methods
	3.3   |   Genus Level Indicators of Aggregate Vegetation Classification
	3.4   |   Inventory of Recorded Genera by Survey Method
	3.5   |   Aggregate Vegetation Classification Prediction Through Machine Learning

	4   |   Discussion
	4.1   |   Maximizing the Value of eDNA for Long-Term Biodiversity Monitoring

	Author Contributions
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	References


