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ABSTRACT
Biodiversity surveys are critical for detecting environmental change; however, undertaking them at scale and capturing all avail-
able diversity through observation is challenging and costly. This study evaluated the potential of soil-extracted eDNA to describe 
plant communities and compared these findings to traditional, observation-based field surveys. We analyzed 789 soil samples 
using high-throughput amplicon sequencing and compared DNA-based diversity metrics, indicator taxa, predicted vegetation 
class, and plant cover in a comparison with co-located field survey data. The results indicated that taxonomically aggregated 
(genus) eDNA-derived data, while showing slightly reduced Shannon's diversity scores, yielded remarkably similar overall rich-
ness and composition estimates. However, the DNA indicator taxa and predictive power for vegetation community classification 
were also lower overall than those recorded by the field survey. In many cases, plant cover could be inferred from amplicon 
abundance data with some accuracy despite widely differing scales of sampling—0.25 g crumb of soil versus a 1 m2 quadrat. 
Overall, results from eDNA demonstrated lower sensitivity but were broadly in accordance with traditional surveys, with our 
findings revealing comparable taxonomic resolution at the genus level. We demonstrate the potential and limitations of a simple 
molecular method to inform landscape-scale plant biodiversity surveys, a vital tool in the monitoring of land use and environ-
mental change.

1   |   Introduction

In the face of accelerating climate change, landscape-scale mon-
itoring of biodiversity is essential for detecting shifts in species 
composition, ecosystem function, and habitat health (Belaire 
et al. 2022), which can have profound implications for ecosys-
tem resilience and the services upon which human societies 
rely. Landscape-scale temporal biodiversity inventories, when 
combined with comprehensive environmental metadata, allow 
the observation of ecosystem trends and are vital tools for un-
derstanding and estimating habitat change, informing models, 
and enabling the forecast of future change (Franklin et al. 2016). 

Such models can be used to estimate the response of ecosystems 
and their services to anthropogenic impacts, the effects of cli-
matic change, or even government policy (Wood et  al.  2017). 
Arguably, because of the increasing rate of change and our 
dependence on ecosystem services, monitoring the natural en-
vironment through biodiversity assessment has never been as 
important, yet monitoring is often patchy or piecemeal in cover-
age and is dependent upon resource availability and legislative 
drivers (Donaldson et al. 2017).

Conventional approaches for national, landscape-scale, biodi-
versity surveys require an expansive group of field ecologists 
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to visit many hundreds of locations to perform consistent and 
accurate measurements of plant species (Carey et  al.  2008; 
Maskell et  al.  2008). Because these surveys offer a snapshot 
of visible plant growth, dormant, ephemeral, or cryptic plants 
may not be observed (Hiiesalu et al. 2012). Resource availabil-
ity, both human and financial, is a limiting determinant of sur-
vey scale and sampling intensity. New methods to maximize 
efficiency, facilitate greater sampling depth, and increase the 
scale of surveys are desirable. At large scale, methods such as 
drone (Cruzan et al. 2016), aircraft or satellite remote sensing 
are useful tools (Sharma et al. 2017), however, their resolution 
is limited. Environmental DNA (eDNA) monitoring offers the 
potential to simplify the field effort required and enable the pro-
cessing of vast numbers of samples with high taxonomic resolu-
tion (Ruppert et al. 2019).

eDNA analysis has provided insight into many otherwise 
difficult-to-monitor environments and assists in estimating 
biodiversity and distribution of both micro-organisms and, 
more recently, macro-organisms (Ruppert et al. 2019; Thomsen 
and Willerslev 2015). The accuracy of eDNA for plant commu-
nity analysis from soil is relatively novel and untested at scale. 
Fahner et al.  (2016) assessed a suite of plant taxonomic mark-
ers in 35 forest soils, upon which we built herein by applying 
the best-performing taxonomic markers to examine the ability 
of soil eDNA to represent local plant communities from differ-
ent soils across a national landscape. In this study, we extracted 
eDNA from 789 soil samples collected as part of the UK Centre 
for Ecology and Hydrology (UKCEH) Countryside Survey of 
2007 (Carey et al. 2008), where each sampling location was si-
multaneously subjected to vegetative studies by trained plant 
ecologists. The limitations of amplicon sequencing to resolve 
taxonomies below genus level with accuracy (Fahner et al. 2016; 
Alteio et  al.  2021; Odom et  al.  2023; Vallin et  al.  2025) were 
taken into account, and we used taxonomies collapsed to genus 
level to assess how data derived from a high-throughput molec-
ular and classical field survey methods compared to each other 
and explored the merits and limitations of this eDNA-amplicon 
approach within the context of a national survey. Specifically, 
we compared the key indicators of Aggregate Vegetation 
Classification (AVC) types and examined the potential for mo-
lecularly derived abundance data to describe plant cover.

Additionally, we used a machine learning approach to assess the 
predictive ability of the data to ascribe a sample's AVC—a po-
tentially important use of an eDNA sample in predicting broad 
habitat within a survey context.

Our findings highlight the merits of each approach and, impor-
tantly, inform the potential for molecularly derived methods, 
specifically amplicon-based soil-eDNA, to describe plant cover, 
overall biodiversity, and habitat classification.

2   |   Materials and Methods

2.1   |   Vegetation Survey

Surveyors undertook vegetation surveys as part of the 2007 UK 
Countryside Survey (https://​www.​ceh.​ac.​uk/​our-​scien​ce/​proje​
cts/​count​rysid​e-​survey) following published guidelines (Maskell 

et al. 2008) (Figure 1). The Countryside Survey is a long-running 
survey of the UK landscape and is designed to encompass mul-
tiple sites from each of the recognized land classes of the UK. 
For the purposes of this study, we used the 1 m2 plant species 
recordings (nest 0). The surveys were conducted at a minimum 
of one meter and a maximum of 2.5 m distance from the location 
of the soil sample.

2.2   |   Soil Collection

Soil sampling and vegetation surveys were conducted simulta-
neously. A clean, unused plastic tube of 5 cm diameter was used 
to collect soil core samples from the top 15 cm at each sample 
site; cores were sealed into pre-labeled plastic bags to prevent the 
transfer of soil residue between samples. The cores were trans-
ferred to the laboratory on the day of collection and subjected 
to multiple analyses (Emmett et al. 2008). For molecular work, 
cores were frozen at −20°C for later processing, where the cores 
were lightly defrosted, and a sub-sample of soil collected from 
below the organic horizon (thus excluding fine roots) was ho-
mogenized and archived at −20°C for later DNA extraction and 
plant ITS2 amplicon sequencing.

2.3   |   Vegetation Classification

Vegetation communities are closely aligned with habitat defi-
nitions and assessments of habitat health. An Aggregate 
Vegetation Classification (AVC) was applied to each sample 
site based on the surveyor's plant species cover estimates. AVCs 
are determined as per Bunce et al. (1999); briefly, plant survey 
data is lumped and subjected to multivariate analysis using 
DECORANA and ordinated. Clustering of the sample within 
one of eight groups forms the basis for the classification, where 
the eight AVC classes are defined as: (1) “Crops and weeds,” 
(2) “Tall grass and herb,” (3) “Fertile grassland,” (4) “Infertile 
grassland,” (5) “Lowland wooded,” (6) “Upland wooded,” (7) 
“Moorland grass mosaics,” and (8) “Heath and bog.”

2.4   |   Molecular Analyses of Plant ITS2

DNA was extracted from 0.25 g of the archived soil. Briefly, soil 
was weighed by means of pre-sterilized (immersion in 5% bleach 
and 70% ethanol wash) apparatus (Figure 1, inset) into Powersoil 
DNA 384 Isolation Kit (Qiagen Ltd.) plates, and the DNA 
was extracted according to the manufacturer's instructions. 
Samples were randomly distributed across extraction plates, 
and each extraction plate incorporated negative extraction con-
trols. Amplicons were generated using a 2-step amplification 
approach, with Illumina Nextera tagged ITS2 region primers, 
forward primer ITS2-S2 ATGCGATACTTGGTGTGAAT and 
reverse primer ITS4 TCCTCCGCTTATTGATATGC following 
the approach of Fahner et  al.  (2016), each primer was modi-
fied at the 5′ end with the addition of Illumina pre-adapter 
and Nextera sequencing primer sequences. Amplicons were 
generated using high-fidelity DNA polymerase (Q5 Taq; New 
England Biolabs). After initial denaturation at 95°C for 2 min, 
the PCR conditions were as follows: denaturation at 95°C for 
15 s, annealing at 55°C, annealing for 30 s with extension at 
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72°C for 30 s, repeated for 35 cycles. A final extension step of 
10 min at 72°C was performed. PCR products were cleaned 
using a Zymo ZR-96 DNA Clean-up Kit (Zymo Research, US) 
following the manufacturer's instructions. MiSeq adapters 
and 8 nt dual-indexing barcode sequences were added during 
the second PCR amplification step. After an initial denatur-
ation at 95°C for 2 min, the PCR conditions were as follows: 
denaturation at 95°C for 15 s, annealing at 55°C, annealing for 
30 s with extension at 72°C for 30 s, repeated for eight cycles 
with a final extension of 10 min at 72°C. Both extraction and 
PCR negative control samples were verified as negative using 
gel electrophoresis. Amplicon sizes were determined using an 
Agilent 2200 TapeStation system. Libraries were normalized 
using the SequalPrep Normalization Plate Kit (Thermo Fisher 
Scientific), quantified using the Qubit dsDNA HS kit (Thermo 
Fisher Scientific), and pooled. The pooled library was diluted 
to 400 pM after denaturation and neutralization. Denaturation 
was achieved with 0.2N NaOH for 5 min, followed by neutral-
ization with 0.2N HCl. The library was then diluted to a load 
concentration of 12 pM with HT1 Buffer and a 10% denatured 
PhiX control library. The final denaturation was performed by 
heating to 96°C for 2 min, followed by cooling in crushed ice. 
Sequencing was performed on an Illumina MiSeq using V3 600 
cycle reagents. The 789 samples were randomly split into three 
sequencing libraries, each being sequenced on its own flow 
cell, and with each flow cell generating more than 17 million 
raw reads.

2.5   |   Molecular Bioinformatics

Illumina demultiplexed sequences for each of the three sequenc-
ing libraries were processed independently using HONEYPI 
(Oliver et  al.  2021), a bioinformatics pipeline developed for 
the processing of ITS2 sequences for the UK National Honey 
Monitoring scheme (https://​github.​com/​hsgwe​on/​honeypi). 
Amplicon Sequence Variant (ASV) tables and sequence tax-
onomies were generated using the standard workflow. Briefly, 
raw sequences were quality-filtered using DADA2 within 
HONEYPI, with the parameters: reads truncated at a quality 
score drop below Q = 30, and reads shorter than 150 bp were 
removed. On average, ~17,605 reads per sample passed the ini-
tial quality (Q ≥ 30) filtering step, with a standard deviation of 
13,566 reads per sample. Denoising and ASV inference were 
performed using default DADA2 parameters as implemented 
in HONEYPI. Subsequently, taxonomy was assigned using a 
custom-trained naive Bayesian classifier on an updated NCBI 
nucleotide (nt; https://​www.​ncbi.​nlm.​nih.​gov/​nucle​otide/​​) data-
base, with assignments based on 97% sequence similarity. The 
output files included taxonomies and ASV tables. After passing 
through HONEYPI, taxonomies and ASV tables for the three 
libraries were merged by ASV sequence using R to generate a 
composite table for all samples. Samples with fewer than 1000 
reads were deemed, through examination of sample read depth 
frequency, to lie outside the range of normal distribution and 

FIGURE 1    |    Distribution of survey sites within England, Scotland, and Wales; colored by AVC classification. For data protection site co-ordinates 
are rounded to the nearest 10 km. (inset) 0.25 g of homogenized soil prior to DNA extraction.
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were therefore removed. Samples with greater than 1000 reads 
(n = 798) were maintained, and all samples were rarefied to this 
read depth for subsequent analysis.

2.6   |   Analysis

Tests were conducted to compare (i) diversity measures of gen-
era, (ii) richness of the genera recorded, (iii) AVC indicator gen-
era, and (iv) the AVC predictive accuracy of each survey method.

The number of sites examined totaled 789, of which 126 were of 
AVC-1 “Crops and weeds,” 35 of AVC-2 “Tall grass and herb,” 
173 of AVC-3 “Fertile grassland,” 190 of AVC-4 “Infertile grass-
land,” 19 of AVC-5 “Lowland wooded,” 28 of AVC-6 “Upland 
wooded,” 69 of AVC-7 “Moorland grass mosaics,” and 149 of 
AVC-8 “Heath and bog.”

All non-flowering plant data were removed from both the ASV 
and survey tables; thus, bryophytes, algae, gymnosperms, bare 
ground, leaf litter, and rock were excluded. To minimize the risk of 
spurious species-level assignments, we conducted all downstream 
analyses at the genus level. For example, sequences derived from 
Oil-seed Rape (Brassica napus) were variably misassigned as one 
or both of its parental lineages (Brassica rapa and Brassica olera-
cea), necessitating collapsing all Brassica detections to the genus 
level. This conservative approach ensures consistency and avoids 
introducing artifacts from uncertain species identifications.

Proportional abundances were then calculated for each sample's 
molecular data using decostand (R package vegan; Oksanen 
et  al.  2015), and each sample's rare genera (< 5% abundance) 
were removed from each dataset before subsequent comparison 
and analysis.

To assess the similarities in taxonomic observations between mo-
lecular and survey data, each site's AVC classification was used 
to determine indicator genera (R package labdsv; Roberts 2025), 
Shannon's diversity, and the richness of genera recorded by each 
survey method (R package vegan; Oksanen et al. 2015). Data de-
rived from either survey method were determined by the Shapiro 
test to be non-normally distributed; therefore, non-parametric 
Spearman's correlations were used to assess the relationships 
between the survey methods. Statistical comparison of eDNA 
abundance and 1 m2 plant cover survey methods: Spearman's Rho 
statistic was calculated to estimate a rank-based measure of asso-
ciation between the survey methods (base R), with p value adjust-
ments made with the Benjamini–Hochberg method. Specifically, 
the correlation between the abundance of co-recorded genera at 
each site within each AVC, as well as the correlation of genus level 
diversity measures at each site and within each AVC.

We compared the predictive ability of the eDNA abundance 
and 1 m2 plant cover surveys in ascribing the sample site's AVC 
classification using machine learning. To do this, we used the 
R package xgboost (Chen and Guestrin  2016), an approach to 
assess each dataset's predictive sensitivity (how many of the ac-
tual positive cases we were able to predict correctly), specific-
ity (how many of the correctly predicted cases actually turned 
out to be positive), and accuracy (how often the classifier cor-
rectly predicts) with a 4:1 training to testing split, using settings: 

method = “xgbTree,” tuneGrid = expand.grid (nrounds = c(50, 
100), max_depth = c(2, 4, 6), eta = c(0.1, 0.3), gamma = c(0, 1), 
colsample_bytree = c(0.7), min_child_weight = c(1), subsam-
ple = c(0.8)), with a 5-fold cross validation check.

3   |   Results

3.1   |   Measured Genus Level Diversity 
and Richness and Correlation Between Methods

The community-level relative abundance data for flowering 
plants from each site, collapsed to the genus level, were used to 
calculate Shannon diversity scores per survey (Figure 2). Score 
averages were calculated per AVC and the results were, for mo-
lecular and 1 m2 surveys: Crops and weeds: 0.57 (SD 0.48) and 
0.16 (SD 0.35), Tall grass and herb: 0.48 (SD 0.37) and 0.69 (SD 
0.58), Fertile grassland: 0.65 (SD 0.43) and 0.8 (SD 0.50), Infertile 
grassland: 0.85 (SD 0.49) and 1.32 (SD 0.49), Lowland wooded: 
0.56 (SD 0.44) and 0.78 (SD 0.46), Upland wooded: 0.35 (SD 0.39) 
and 0.73 (SD 0.52), Moorland grass mosaics: 0.64 (SD 0.43) and 
1.22 (SD 0.53), Heath and bog: 0.38 (SD 0.35) and 1.93 (SD 0.43). 
Across all samples, the average Shannon's diversity scores were 
0.61 (SD 0.47) and 0.89 (SD 0.61) for molecular and 1 m2 surveys, 
respectively.

Aside from AVC-1 “Crops and weeds,” the molecular survey re-
corded, on average, lower Shannon's diversity scores. Spearman's 
rank correlation coefficients (Rho) between the survey meth-
od's Shannon's scores were: Crops and weeds: 0.00 (padj = 0.96), 
Tall grass and herb: 0.23 (padj = 0.25), Fertile grassland: 0.31 
(padj = 0.00), Infertile grassland: 0.12 (padj = 0.17), Lowland 
wooded: 0.13 (padj = 0.68), Upland wooded: 0.39 (padj = 0.08), 
Moorland grass mosaic: 0.28 (padj = 0.06), and Heath and bog: 
0.38 (padj = 0.00). Two of the AVCs (Fertile grassland and Heath 
and bog) demonstrate significant (padj ≤ 0.05) association be-
tween the two survey methods; however, the Rho coefficients 
do not exceed 0.38, indicating “weak” or “moderate” associa-
tions. Diversity metrics built on community-level relative abun-
dances did not appear to correlate well between the two survey 
methods.

Similarly, the richness of genera detected by molecular and 1 m2 
surveys for each site was assessed (Figure 2). Average richness 
scores per site were lower in the molecular survey, except for 
“Crops and weeds” habitats. The total genera recorded by each 
method within each AVC were calculated and compared, and 
the genera that occurred in both survey types were counted as 
co-recorded. Unique genera values by AVC were, for molecular 
and 1 m2 surveys: Crops and weeds: 69 and 38 (27 co-recorded), 
Tall grass and herb: 42 and 42 (25 co-recorded), Fertile grass-
land: 70 and 38 (31 co-recorded), Infertile grassland: 88 and 68 
(49 co-recorded), Lowland wooded: 28 and 28 (15 co-recorded), 
Upland wooded: 29 and 39 (17 co-recorded), Moorland grass mo-
saics: 41 and 42 (24 co-recorded), Heath and bog: 23 and 29 (14 
co-recorded). Within the AVC “Crops and weeds,” the molecular 
method records higher richness; in the former, this is likely due 
to both the residue of previous crops and the detection of ephem-
eral weeds. The total genera recorded by the molecular method 
in “Fertile” and “Infertile grassland” was also higher than tradi-
tional methods, where surveying dense grass swords may result 
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FIGURE 2    |    Scatter plots, faceted by AVC, showing each site's genus level diversity score and richness of genera; 1 m2 plant cover (X-axis) and 
molecular surveys (Y-axis) with dotted 1:1 line, Spearman's Rho scores and adjusted p values.
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in lower richness being recorded. Across all samples and all 
AVCs, the total richness of genera was 158 and 151 for molecu-
lar and 1 m2 surveys, respectively, with 110 genera co-recorded.

3.2   |   Co-Recorded Genus Abundance Correlations 
Between Survey Methods

To assess the ability to predict the amount of flowering plant 
cover from molecular abundance data, comparisons were made 
against the 1 m2 plant survey data. For this assessment, only 
genera that were co-recorded within each AVC by both survey 
types were compared using Spearman's rank correlation of the 
total percentage abundances of each genus. The coefficients of 
abundance correlations were: Crops and weeds: 0.51 (padj = 0.01), 
Tall grass and herb: 0.37 (padj = 0.08), Fertile grassland: 0.66 
(padj = 0.00), Infertile grassland: 0.75 (padj = 0.00), Lowland 

wooded: 0.39 (padj = 0.17), Upland wooded: 0.75 (padj = 0.00), 
Moorland grass mosaic: 0.58 (padj = 0.00), Heath and bog: 0.19 
(padj = 0.52). Five of the AVCs (Crops and weeds, Fertile grass-
land, Infertile grassland, Upland wooded, Moorland grass mosa-
ics) demonstrate significant (padj ≤ 0.05) association between the 
survey methods, with Rho coefficients > 0.50. The abundance 
associations were “moderate” to “good,” indicating that where 
taxa are co-recorded, abundances are generally well correlated 
(Figure 3).

3.3   |   Genus Level Indicators of Aggregate 
Vegetation Classification

We assessed the commonality of indicator genera between sur-
vey methods to determine whether molecular data could provide 
relevant taxonomic discriminators of AVC habitats. Indicator 

FIGURE 3    |    Scatter plots of all co-recorded flowering plant genera across all sites for each AVC habitat. Axis are log10 cumulative percentage of 
genera's relative abundance (see Methods), X-axis molecular, Y-Axis 1 m2 plant cover, red dotted 1:1 line. log10 percentages were used for visualization 
and clarity.
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genera with significance (p < 0.05) were determined for each 
AVC from each survey type. Table  1 lists the significant indi-
cators per AVC ranked by the indicator values (indval). Genera 
names in bold are those recorded as significant indicators by 
both survey methods. As per the earlier diversity and richness 
metrics, the molecular data records more indicators of “Crops 
and weeds” than the 1 m2 plant survey data, where the common 
weeds of agricultural or disturbed land are also recorded as indi-
cators (genera Aegilops, Capsella, Vicia, and Atriplex). The mo-
lecular data also recorded the same indicator taxa for “Fertile 
grasslands” and more indicator taxa for “Infertile grasslands.” 
In the remaining AVC classes, the 1 m2 plant survey data pro-
duced more indicators of vegetation type.

3.4   |   Inventory of Recorded Genera by 
Survey Method

A summary of genus-level abundance data is shown in Figure 4. 
It displays a complete inventory of the flowering plant genera 
recorded by each survey method, along with summary statistics 
for each AVC, including the number of sample sites, the total 
richness of genera recorded and of which the number that are 
co-recorded, Spearman's correlation scores of abundances, and 
average AVC Shannon's diversity scores. The abundance scores 
from each survey method (log10 of percentage abundance) pro-
vided the basis for the heat map.

3.5   |   Aggregate Vegetation Classification 
Prediction Through Machine Learning

Genus-level abundance data were used to train and validate 
XGBoost models for the prediction of each sample's AVC classifi-
cation from either eDNA or 1 m2 plant cover survey-derived data. 
Across all AVCs, cross-validation confusion matrix accuracy for 
molecular eDNA output was 0.61 compared to the 1 m2 plant cover 
survey's accuracy of 0.74. The predictive power, measured by sen-
sitivity (how many of the actual positive cases we were able to 
predict correctly), specificity (how many of the correctly predicted 
cases actually turned out to be positive), and accuracy (how often 
the classifier correctly predicts), was broadly comparable between 
the survey types (Figure  5), with molecular survey data having 
lower predictive power, most notably for Lowland wooded and 
Tall grass and herb AVCs. The overall accuracy of the model was 
improved only slightly (0.64 and 0.75, molecular and 1 m2 survey 
respectively, Figure S1) when using data at the highest resolution, 
i.e., data not collapsed to genus level and 1 m2 survey data that in-
cluded measures of bare ground, rock, and bryophytes.

4   |   Discussion

Temporal large-scale survey programs encompassing the col-
lection of ecological variables, such as soil state, land use, and 
plant cover, improve our understanding of the significance, 
causes, and consequences of large-scale ecological change 
(Wood et  al.  2017). The relative ease of sample collection for 
eDNA analysis has huge potential for large-scale surveys and 
citizen science schemes, and could arguably assist in expand-
ing a survey's range, allowing a more comprehensive inventory 

to be taken (Biggs et al. 2015). Given the lack of similar anal-
yses over such a large geographic area, we hope to highlight 
the potential caveats of utilizing eDNA-based surveys. These 
include but are not limited to DNA being a stable biomolecule 
(Yoccoz et al. 2012), with differential persistence and degrada-
tion of DNA presenting possible biases in the data. Moreover, 
soil properties can influence the sequestration and persistence 
of biological molecules. Indeed, the stability of DNA in soil 
has been shown to depend on moisture, temperature, manage-
ment, exposure to UV, clay particle type and size, and pH (Cai 
et  al.  2006; Strickler et  al.  2015). Similarly, post-sampling soil 
storage can have an effect on DNA therein for similar reasons, 
and the consistency of the storage method should be applied to 
all samples within a study (Clasen et al. 2020). Options to this 
end would include freezing, drying, freeze-drying, or the use 
of proprietary storage buffers. Other biases, which are partic-
ularly pertinent for studies looking for the presence of rare or 
invasive species, are the relative ease of transmission of eDNA 
from the site of initial deposition, through a transportive phase 
(hydrology or disturbance), to a place of persistence (Harrison 
et  al.  2019), ultimately leading to a study site's contamination 
(Pedersen et al. 2015). Additionally, Jones et al. (2025), in their 
assessment of sources of uncertainty in DNA metabarcoding, 
found that differing sequence read depth and even processing at 
differing laboratories could result in differences in family level 
richness results. It is also important to note that traditional plant 
surveys are not immune from inaccuracies. Plant characteristics 
(such as small size, rarity, ephemerality, and morphological con-
fusion), along with environmental factors (such as topography 
and inclemency) and observer variability, contribute and com-
bine to introduce significant variation and bias, which should 
ideally be quantified as a quality indicator (Morrison  2016; 
Ullerud et  al.  2018; Verheyen et  al.  2018). It is imperative to 
note that both traditional and eDNA-based survey methods are 
susceptible to bias and inaccuracy, highlighting the need for fu-
ture research focusing on clear guidelines, standardization, and 
quality assurance schemes (Jones et al. 2025) to ensure accuracy 
and permit temporal comparability.

DNA has been shown to persist in temperate soils at very detect-
able levels for > 60 years (Yoccoz et al. 2012; Foucher et al. 2020), 
and it is this persistence that may help explain the high diversity 
measures for AVC-1 “crops and weeds,” where the legacy DNA 
of previous crops and weeds enhances the diversity of plants 
described by the eDNA method. This persistence raises some 
questions regarding the time scale needed to detect vegetation 
change; that is, the sensitivity to land use change. Recently, 
Foucher et  al.  (2020) examined eDNA from soil samples in 
plots for which the crop rotation history was documented and 
found that the last grown crop formed the dominant taxa in the 
eDNA inventory, alongside variable detection of past crops up to 
8 years, with relic-eDNA from historic grape-vines also present. 
Similarly, Ariza et al.  (2023) found that eDNA, collected from 
the top 11 cm of forest soil, contained taxa from inventories up 
to 30 years previous, though inventories most closely matched 
the contemporary taxa composition. Detection of legacy eDNA 
may also be advantageous, as it negates the effect of ephemeral 
genera, those that are small and easily overlooked, or those that 
are particularly difficult to identify. Indeed, habitat reconstruc-
tion through examination of ancient eDNA can facilitate our un-
derstanding of lost landscapes, land use change, and migrations 

 26374943, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edn3.70191 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [16/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 13 Environmental DNA, 2025

TABLE 1    |    Aggregate vegetative class indicator genera determined by molecular and 1 m2 plant cover surveys.

AVC

Molecular survey 1 m2 field survey

Rank Genera Indval p Rank Genera Indval p

1. Crops and weeds 1 Brassica* 0.381 0.001 1 Triticum* 0.263 0.001

2 Triticum* 0.249 0.001 2 Hordeum* 0.114 0.003

3 Aegilops 0.101 0.001 3 Brassica* 0.076 0.008

4 Capsella 0.079 0.003 4 Beta* 0.041 0.016

5 Hordeum* 0.072 0.003

6 Vicia 0.056 0.02

7 Beta* 0.047 0.03

8 Atriplex 0.033 0.044

2. Tall grass and herb 1 Urtica* 0.115 0.002 1 Urtica* 0.172 0.001

2 Arrhenatherum 0.083 0.015

3 Heracleum 0.044 0.009

4 Anthriscus 0.043 0.012

5 Brassica 0.039 0.043

3. Fertile grassland 1 Lolium* 0.344 0.001 1 Poa* 0.132 0.003

2 Poa* 0.139 0.001 2 Phleum* 0.116 0.001

3 Phleum* 0.049 0.029 3 Lolium* 0.503 0.001

4. Infertile grassland 1 Agrostis* 0.110 0.006 1 Trifolium* 0.269 0.001

2 Rumex 0.100 0.002 2 Agrostis* 0.257 0.001

3 Ranunculus* 0.094 0.006 3 Holcus* 0.249 0.001

4 Trifolium* 0.094 0.021 4 Cynosurus* 0.245 0.001

5 Holcus* 0.081 0.014 5 Ranunculus* 0.128 0.001

6 Cerastium 0.053 0.042 6 Dactylis 0.079 0.017

7 Plantago* 0.050 0.028 7 Plantago* 0.057 0.017

8 Cynosurus* 0.047 0.023

5. Lowland wooded 1 Quercus* 0.217 0.001 1 Rubus 0.253 0.001

2 Fraxinus* 0.203 0.001 2 Fraxinus* 0.227 0.001

3 Ilex* 0.143 0.001 3 Hedera* 0.190 0.001

4 Hedera* 0.140 0.001 4 Quercus* 0.166 0.001

5 Fagus 0.139 0.001 5 Mercurialis* 0.126 0.001

6 Arrhenatherum 0.063 0.009 6 Crataegus 0.124 0.001

7 Carpinus* 0.048 0.033 7 Corylus* 0.123 0.001

8 Mercurialis* 0.048 0.029 8 Glechoma* 0.095 0.001

9 Sambucus* 0.048 0.026 9 Ilex* 0.095 0.003

10 Glechoma* 0.047 0.026 10 Viola 0.088 0.003

11 Corylus* 0.045 0.009 11 Acer* 0.058 0.008

12 Acer* 0.041 0.026 12 Elytrigia 0.054 0.018

13 Nicotiana 0.039 0.03 13 Sambucus* 0.048 0.024

14 Tripleurospermum 0.037 0.046 14 Ballota 0.048 0.017

15 Ulmus 0.048 0.023

16 Rosa 0.048 0.033

17 Carpinus* 0.048 0.026

18 Circaea 0.032 0.042

(Continues)
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(Pedersen et al. 2015; Haile et al. 2007). To improve the recov-
ery and accuracy of our findings, it is plausible that samples 
collected above-ground, that is, surface-collected soil samples, 
may better align with the visual quadratic botanical surveys. 
Particularly, by capturing signals from plant presence such as 
pollen, leaf litter, or seeds, this approach may also reduce any 
temporal lag associated with deeper soil layers. Furthermore, 
above-ground sampling may enhance the spatial resolution of 
eDNA surveys, offering promising avenues for large-scale, har-
monized vegetation monitoring in the future.

In this study, we chose ITS2 over a multimarker approach, based 
on previous findings by Fahner et al. (2016) who reported ITS2 
in particular, alongside rbcL, was effective in plant metabar-
coding for ecological monitoring. A single marker approach 
has some taxonomic limitations yet currently offers a more 
cost-effective approach for large-scale surveys. Importantly, we 
developed a curated, in-house workflow, and therefore chose to 
use our bioinformatics pipeline HONEYPI (Oliver et  al.  2021) 
to ensure reproducibility and comparability of sequence pro-
cessing. A caveat of our workflow is that the taxonomic classi-
fication utilizes an open, continuously updated NCBI database. 
While providing simplicity, worldwide applicability, and the 
ability to utilize the most recent genomic accessions, this ap-
proach also has the potential to introduce uncertainty, particu-
larly at the species level or for rare taxa (Blackman et al. 2023). 
More recently, Jones et al.  (2021) produced a curated database 
of UK flowering plants, which could increase the reliability 

of taxonomic assignments, while limiting geographic scope. 
However, the issue of the limited resolution of short-read ampl-
icon sequencing remains (Fahner et al. 2016; Alteio et al. 2021; 
Odom et al. 2023), as observed by Vallin et al. (2025), taxonomic 
discrepancies were evident in our dataset at the species level, 
but unlike their study, where manual resolution was feasible, the 
frequency of conflicting assignments in our dataset was much 
higher. To account for this, we collapsed our data to genus level 
to ensure comparisons were reliable, reproducible, robust, and 
applicable beyond the UK.

On average, the eDNA molecular approach used in this study 
recorded lower genus level diversity scores and richness scores. 
Similarly, the eDNA approach produced fewer vegetation type 
indicators. However, within the “Crops and weeds” vegeta-
tion type, eDNA recorded greater richness and more indica-
tor taxa. It is worth noting that within “Crops and weeds,” no 
correlation was observed for diversity, indicating that eDNA 
methods are likely recording taxa through the presence of 
relic-eDNA. This detection of old DNA could be crucial for as-
sessing cropping histories or land use change, but it also high-
lights the potential to record biases in soil eDNA methods due 
to the variables associated with eDNA persistence within the 
soil matrix. The molecular data performed well in producing 
indicator taxa for “Fertile” and “Infertile” grassland habitats, 
highlighting more indicators for “Infertile grasslands,” pos-
sibly due to the increased difficulty of surveying thoroughly 
through dense grass swards.

AVC

Molecular survey 1 m2 field survey

Rank Genera Indval p Rank Genera Indval p

6. Upland wooded 1 Betula* 0.181 0.001 1 Deschampsia 0.101 0.006

2 Ficaria 0.050 0.005 2 Oxalis 0.086 0.001

3 Betula* 0.081 0.004

4 Ulex 0.043 0.014

7. Moorland grass mosaics 1 Potentilla* 0.194 0.001 1 Nardus* 0.343 0.001

2 Nardus* 0.176 0.001 2 Anthoxanthum 0.300 0.001

3 Carex* 0.090 0.007 3 Juncus 0.256 0.001

4 Viola 0.073 0.011 4 Carex* 0.147 0.001

5 Potentilla* 0.134 0.001

6 Festuca 0.095 0.015

7 Galium 0.056 0.022

8 Vaccinium 0.052 0.026

9 Sagina 0.029 0.034

8. Heath and bog 1 Calluna* 0.450 0.001 1 Eriophorum 0.477 0.001

2 Erica* 0.381 0.001 2 Trichophorum 0.434 0.001

3 Calluna* 0.429 0.001

4 Molinia 0.365 0.001

5 Erica* 0.223 0.001

6 Narthecium 0.129 0.001

Note: The indicators are listed per AVC habitat and ranked by indicator value (indval) with significance value (p). Genera names given in bold with an asterisk are 
those recorded as significant indicators by both survey methods.

TABLE 1    |    (Continued)
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FIGURE 4    |     Legend on next page.

1.96

2.23
0.87

1.18
1.01 1.40
1.43
1.96
1.76

1.18
1.56 2.00

1.65
0.70

1.10

2.36 1.18
2.73

1.55

2.83 2.57
1.20

3.54 3.03

1.95
1.12

1.00
2.70 1.70

1.92 1.48

1.75

0.80

0.98

0.75
1.00

0.70
1.67

1.75
1.48

1.90
1.81 0.70
1.23 1.18

0.76

1.49
2.67 3.23

0.82

1.30

0.71

2.45 1.65
2.13 1.48

1.33 1.48

1.95 1.00

1.01

1.66

0.70
1.81

1.44
1.90 1.18

1.76
1.56

2.43 2.32
0.81
1.53 1.90

1.43 2.11

1.49

1.08

1.51

1.01

1.73 1.18

1.70
2.10 1.18

1.86

2.15
1.36 0.70
2.24 0.70

0.70

2.63 1.48

0.80

2.77
1.15 0.70

3.15 3.51

1.68

1.59 1.74
2.19
1.24 1.00

2.20

2.15 1.90

0.74
1.98

0.97
2.15 1.40

1.00

1.63 1.18

1.95 2.55

1.65

1.81

1.00
1.98 2.02

1.04

1.30

0.70
1.74 1.30

1.47 1.70
1.79

1.34 1.78

1.05
1.93

1.92 1.30

2.03 1.88

1.40

1.92 2.30
1.43 1.30

1.00

1.72 2.00

2.06 1.81

2.60 2.53

1.24

1.48
1.30

0.93
2.16 2.37

1.85

0.80
0.82

1.30

0.86

1.18

0.96

2.44 2.46

0.79 1.98

2.01 2.00

0.88 1.88
1.65

1.90 1.00
1.85 1.40
0.89

1.18

1.93

1.77
2.40

2.09 1.70

0.84 2.29

2.50 2.24

0.91
1.98

1.61

1.34
1.89 1.48
0.94

2.75 3.20

0.99
1.80
2.65 2.26

1.48
0.76 1.30
1.87

1.83 1.48
1.26 2.10

1.25
2.33 1.54

2.10
0.70
1.54

1.80

1.71
1.11

2.36 1.48

1.21

2.69 2.06

2.01 1.00

0.86

2.10
1.81 2.56

1.60

2.22
1.18

2.28 2.06

1.45

1.95 2.59
0.83

1.90
0.89

0.98 1.18

1.46 1.30
0.71
1.11

1.10
1.07

2.93 3.20
1.49 2.76

2.09

0.70

0.72

3.69 3.90

1.95

1.65
1.72

2.00

0.72

0.76

1.10

2.43 2.74

1.82
1.59 1.18
3.27 3.09

0.90

1.09
1.45

1.91 1.70
2.76 2.44

2.47 2.15

0.98

0.71 1.30

1.83 1.93

1.19

2.56 1.95
0.95

2.26 1.78

3.14 2.98
0.74

1.52 1.74

2.12 1.78

1.62

1.52
2.23 1.93

3.30 3.49

1.12
1.95 1.90
2.21 2.10

1.44 0.70

2.52 2.76
1.13 0.70

1.18
1.43 2.18
1.25

0.85

1.91 1.54
1.96

1.90
1.38

2.00
1.09 1.18
1.78

0.87

2.54 0.70
2.18 2.41

1.92 1.54
2.73 1.74

0.93

2.38 2.15
2.10
1.30

1.60
1.18
1.00

0.71
2.22 3.03
2.25 2.72

1.00
2.26

0.96
1.60

0.73

1.74 1.30
1.98

2.56 2.94
1.20
2.07 2.00
1.73
2.24 1.78
1.65

0.73

1.22 1.18

3.20 3.50
1.54

1.87 1.40

0.88

2.69

0.79 0.70
1.83 1.18

1.00
1.22
3.20 3.58

1.71 1.70

1.54

1.48
1.12
2.18 1.30

1.64

1.35

2.05 1.54

1.00
1.18
0.70

0.90 0.70

1.04
1.33 0.70

1.69 1.98
1.25

2.66 2.33
3.03 2.95

2.07 1.90
1.01
2.11 1.40

1.00
1.57 1.70
3.13 2.85
0.95
0.74 0.70

0.87 1.65
3.18 2.11
1.43

1.98 1.74
2.43

1.70 1.18

1.37

1.07

0.97
1.12

1.30
2.31 1.93
2.06
1.17

3.21 3.22

0.98 1.78

1.18

1.64

1.74 1.00
1.61
1.74 1.30

1.98 2.04

1.35

1.97 2.29

0.70

1.09 1.88
1.48

1.76

1.99 1.98

0.70
1.11

1.10 2.34
2.10

1.00

1.81

0.70

2.32 2.00

1.31

2.49 2.58

1.70 1.40

1.87 1.90

1.10

1.50 1.30

2.10 1.40

0.74

0.92 1.88

0.72

1.41

0.98

0.70

2.53 2.48

1.18
2.45

1.31 0.70

0.78

1.40
0.91

0.70
1.84
2.00 0.70

0.70

1.40

1.86 1.74

2.69 2.37

1.65

1.79 1.48

1.78

1.95

2.43 2.48

2.61 2.29

1.00

1.84
0.70

2.00

1.78
1.40

1.18

1.99 2.22
1.97

0.78 0.70

1.85

1.48
1.47
1.83 1.78
1.98
1.89 1.54

1.64 0.70
1.95 2.34

0.70

1.70

1.93
1.40

1.00

1.60 0.70

1.88 1.81

1.59

0.70
0.70

1.41 1.00
0.70

1.38 2.30
1.86

1.90
1.54

1.90

1.83

1.00

1.63 1.18

1.18

1.87

1.90

1.00

0.84 1.00

1.49

2.61 2.70

0.80

2.09 2.61

2.25

3.17 2.86

1.79

2.10
2.49 2.40

0.70

2.17 1.40

1.09 0.70

0.70
1.30

1.19 2.44
0.70

1.60
0.70

2.43 1.88
1.78

1.23

2.19 2.45

0.90
2.18 2.00

1.87 2.45

1.18

2.91

0.70

1.73 0.70

1.30 1.30

1.54
1.70

1.00

2.87

0.81

1.88
2.83 2.82

1.00

1.32 0.70

1.76 1.30
1.53 1.30
1.69

2.81 2.00
0.70

2.02 1.30

1.18
2.29 1.00

1.65

1.67

1.83

1.79

1.61 0.70

0.70

2.00
1.95

1.23 1.70

2.34 2.11
1.57

2.40 1.30

2.36 1.88

1.00

1.40

1.84

1.33

3.92 3.52

2.48 2.55

0.70
1.20 1.78

0.70
1.00

1.78

3.51 2.67
1.15 3.19

2.04

1.18

0.95

2.54
1.66

2.00

1.40

1.01 3.43

2.25 2.02
2.53 2.54

2.39

2.29

1.78
2.77 1.74

1.00

1.79

0.70

0.80

1.48

0.98 0.70

2.00 3.22

1.94 2.02

2.55 2.29

1.23

2.66 2.39
2.44 2.06
2.25
0.87
0.74 1.18
3.57 3.75
1.43
2.05
2.42 1.90
2.88 2.54
1.56 2.04
1.53 0.70

1.60
2.72 3.03
2.30 1.30

0.70
1.10
1.83 1.65
2.36 2.95
2.39 1.18

2.76
2.58

0.70
1.25
2.47 1.85
1.96
2.87 2.57
2.50 2.57

2.08
3.58 3.07

2.02
1.09 1.70
4.02 3.63
1.12
0.87
1.86
2.75 1.70
2.68 0.70
2.88 2.94
1.99 1.98
1.92 1.54
2.88 1.95
1.84

1.40
0.93
2.00 1.48

1.00
3.04 2.48
2.10
2.20 1.78
1.79
1.30 2.45

2.28
0.98 1.18

1.00
0.71
2.25 3.08
2.42 2.98

0.70
1.54

2.11 2.86
1.97 0.70

0.70
1.00

2.28
2.33
2.00

2.45 2.18
3.55 2.74
1.15 3.21
1.74 1.30
2.71 2.39

1.48
2.80 3.23
1.72
2.27 2.20
2.85 2.76
2.70 2.37
1.79 1.18

1.00
0.98 1.18
1.74 1.40
1.46 1.30
0.71
1.94 1.90
1.72 2.00
1.10
2.21 1.90
1.64 0.70
3.48 3.75
2.69 3.36

0.70
0.95
1.87 1.40
2.10 1.40
2.21
0.82

3.23
1.66

1.48
1.60
0.70

0.79 0.70
1.89 1.30

1.00
2.49 1.65
3.84 4.08

1.40
1.85 1.85
1.95

2.24
1.70

1.48
1.93 1.48
2.32 1.30

1.00
0.92 1.98
1.01 3.54
1.64
0.81
2.34 1.00
2.25 2.26
3.07 3.02

2.41
1.73
0.72 1.18

0.70
1.71
1.93 1.81

0.70
1.81
0.90 0.70
1.32 0.70
1.44
2.01 1.18
1.33 0.70
1.76
1.56
2.50 2.82
1.25
1.59
2.54 2.32
2.75 2.41
3.51 3.40
2.39
1.54 2.11

1.78
3.15 2.39
1.01 1.00
2.15 1.40
1.67 1.98

1.00
2.71 2.78
3.35 3.04
1.28
0.74 0.70

1.00
1.18

1.48 2.68
3.33 2.57
1.43 1.65

1.93
1.31 0.70
1.98 1.74
2.52
1.70
2.52 1.78
1.85 1.40
2.01

1.18
2.15
1.36 0.70
2.41 1.95
1.83 1.00

1.93
0.70

1.19
1.77
3.06 2.13
1.34
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2.00
2.00 3.24
3.58 3.43
1.45 0.70
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0.70
2.78 2.37
2.83 2.53
2.14 1.85
2.38 1.98
2.54 1.93

2.20
1.61

Acer
Achillea
Aegilops
Aegopodium
Aethusa
Agrostis
Alchemilla
Allium
Alnus
Alopecurus
Anagallis
Angelica
Anisantha
Anthoxanthum
Anthriscus
Aphanes
Arenaria
Armeria
Arrhenatherum
Atriplex
Avena
Avenella
Ballota
Barbarea
Bellis
Bencomia
Beta
Betula
Brachypodium
Brassica
Bromopsis
Bromus
Calluna
Calystegia
Camellia
Cannabis
Capsella
Cardamine
Carex
Carpinus
Centaurea
Cerastium
Chamaenerion
Chamerion
Chenopodiastrum
Chenopodium
Circaea
Cirsium
Conopodium
Convolvulus
Cornus
Corylus
Crataegus
Crepis
Cruciata
Cucumis
Cynosurus
Dactylis
Dactylorhiza
Danthonia
Deschampsia
Digitalis
Drosera
Eleocharis
Elymus
Elytrigia
Empetrum
Epilobium
Erica
Eriophorum
Euphrasia
Fagus
Fallopia
Festuca
Ficaria
Filipendula
Fraxinus
Galium
Geranium
Geum
Glaux
Glechoma
Glyceria
Glycine
Hedera
Helianthus
Helminthotheca
Heracleum
Hieracium
Holcus
Hordeum
Hyacinthoides
Hypericum
Hypochaeris
Ilex
Jacobaea
Juglans
Juncus
Lactuca
Lamiastrum
Lamium
Lapsana
Lathyrus
Leontodon
Ligustrum
Linum
Lolium
Lonicera
Lotus
Lupinus
Luzula
Lysimachia
Malus
Matricaria
Medicago
Menyanthes
Mercurialis
Molinia
Montia
Musa
Myosotis
Myrica
Nardus
Narthecium
Nicotiana
Odontites
Oenanthe
Onobrychis
Oxalis
Panicum
Papaver
Pastinaca
Pedicularis
Pentaglottis
Persicaria
Petasites
Petroselinum
Phacelia
Phleum
Phyteuma
Pilosella
Pisum
Plantago
Poa
Polygala
Polygonum
Potamogeton
Potentilla
Primula
Prunella
Prunus
Pulicaria
Quercus
Ranunculus
Raphanus
Rhinanthus
Rhynchospora
Rosa
Rubus
Rumex
Sagina
Salix
Sambucus
Sanguisorba
Scorzoneroides
Secale
Senecio
Silene
Sinapis
Sison
Sisymbrium
Solanum
Sonchus
Sorbus
Spartina
Spergula
Spergularia
Sporobolus
Stellaria
Stenanona
Succisa
Taraxacum
Thymus
Tilia
Tinospora
Trichophorum
Trifolium
Tripleurospermum
Trisetum
Triticum
Ulex
Ulmus
Urtica
Vaccinium
Veronica
Vicia
Viola
Zea
Zostera

AVC
Group

Total richness

Co-recorded genera

Spearman's Rho
(adj. P)

Average Shannon’s
(Std.dev.)

69 38 42 43 70 38 88 68 28 28 29 39 41 42 23 29 158 151

0.57 0.16 0.48 0.69 0.65 0.8 0.85 1.32 0.56 0.78 0.35 0.73 0.64 1.22 0.38 1.93 0.61 0.89
(0.48) (0.35) (0.37) (0.58) (0.43) (0.50) (0.49) (0.49) (0.44) (0.46) (0.39) (0.52) (0.43) (0.53) (0.35) (0.43) (0.47) (0.61)

27 25 31 49 15 17 24 14 110

0.51 0.37 0.66 0.75 0.39 0.75 0.58 0.19 0.66
0.01 0.08 0.00 0.00 0.17 0.00 0.00 0..52 0.00

** ns *** *** ns *** *** ns ***

Value

Low

Medium

High

Group
Molecular

1m2

AVC
1 (n=126)

2 (n=35)

3 (n=173)

4 (n=190)

5 (n=19)

6 (n=28)

7 (n=69)

8 (n=149)
Total 
(n=789)
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Using the co-recorded genera of each AVC, we examined the po-
tential of using amplicon-derived relative abundance data to es-
timate plant cover, a tall ask given the possibility of ploidy, copy 
number variation, and PCR amplification biases (length and GC 
content) (Álvarez and Wendel 2003). Given these concerns, we 
were surprised that for the majority of vegetation types, the re-
lationship between molecular-derived relative abundance and 
plant survey cover was moderate to good, demonstrating that 
it is possible to infer the plant cover of many genera from eDNA 
abundance data on the proviso that the habitat and genera are 
appropriate.

To assess the ability to predict AVC from genus-level data, we 
applied a machine learning approach to each survey method 
and found through cross validation that, overall, the predictive 
performance was broadly lower for the molecular survey. In par-
ticular, lower sensitivity was observed for Lowland wooded, Tall 
grass and herb, and Moorland grass mosaic AVCs, where low 
Spearman's correlation scores were also recorded. Further, we 
observed that using data at the highest possible resolution, i.e., 
species level, led to marginal improvements in the overall accu-
racy of either survey type.

In concordance with the findings reported by Vasar et al., our 
molecular results are broadly in agreement with those of tradi-
tional surveys; however, the level of agreement varied by hab-
itat. In this study, across all AVC classes the molecular survey 
was able to detect 73% of angiosperm genera recorded by the 
traditional survey method, a result in line with observations by 
Ariza et al. (2023) who recorded a molecular coverage of 60%, 
albeit using samples from a limited range of habitat types. The 

reduced sensitivity of the molecular data is perhaps unsurpris-
ing given the extremely small sample size. Importantly, a key 
aspect of our study that is perhaps surprising is the ability of 
the eDNA from 0.25 g of soil to describe the immediate above-
ground vegetation with some accuracy. Increasing the sample 
size, pooling from a larger area, or increasing the sample num-
ber (Alsos et al. 2018) would increase the resolving power of the 
eDNA method. However, there are undesirable cost (increase) 
and throughput (decrease) implications that need to be weighed 
carefully. Once collected and stored, soil eDNA can be utilized 
to examine a range of taxonomic and ecological profiles (Deiner 
et al. 2017). The relative ease of sample collection and process-
ing, and the large amount of genetic information held within soil 
eDNA makes surveys based on high-throughput eDNA methods 
very appealing.

The results presented here demonstrate that flowering plant 
communities and habitats can be described with a degree of 
accuracy using molecular methods based on small soil-eDNA 
samples, and complementarily to field survey, a molecular ap-
proach can provide useful and valuable ecological insights. 
While our molecular results are promising, they primarily high-
light the supplementary and synergistic value of molecular tech-
niques alongside traditional methods of biodiversity assessment. 
Collectively, these findings are critical for understanding the 
efficiencies and disparities between traditional and molecular 
biomonitoring methodologies. Our national-scale analysis pro-
vides insights that highlight the utility of these methods, both 
traditional and molecular, for large-scale ecological biodiversity 
measurements.

4.1   |   Maximizing the Value of eDNA 
for Long-Term Biodiversity Monitoring

Building on these findings, we recommend that future biodi-
versity monitoring adopt an integrated molecular–traditional 
framework. eDNA metabarcoding enables rapid and cost-
effective detection of taxa at scale, while traditional field surveys 
remain critical for validation and providing ecological context. 
Future versions of the UK Countryside Survey could implement 
a hybrid design, combining extensive eDNA-based assessments 
across all sites with targeted resampling via traditional surveys 
at a subset of locations to ground-truth molecular detections and 
calibrate species-level identifications. Furthermore, coordinated 
efforts to curate high-quality, habitat-specific reference libraries 
for UK flora to reduce taxonomic misassignments and increase 
molecular resolution could be developed. Improvements in sam-
pling design, including replication and strategic pooling, along-
side standardization of protocols across surveys, would further 
improve accuracy and comparability. Finally, incorporating 
molecular approaches into long-term monitoring frameworks 

FIGURE 4    |    Flowering plant genera inventory and heat map showing occurrence and abundance of all genera recorded by Molecular and 1 m2 
plant cover surveys, with summary statistics for each AVC, including the number of sample sites, the total richness of genera recorded and of which 
the number that are co-recorded, Spearman's correlation scores of abundances and average AVC Shannon's diversity scores. The abundance scores 
from each survey method (log10 of percentage abundance) provide the basis for the heat-map. AVC classes: (1) “Crops and weeds,” (2) “Tall grass and 
herb,” (3) “Fertile grassland,” (4) “Infertile grassland,” (5) “Lowland wooded,” (6) “Upland wooded,” (7) “Moorland grass mosaics,” and (8) “Heath 
and bog.” log10 percentages were used for visualization and clarity.

FIGURE 5    |    XGBoost model for AVC assignment from genera data—
scatter plot showing degree of predictability of molecular (X-axis) and 
1 m2 plant cover (Y-axis) surveys in AVC assignment. Point color = AVC 
classification; point shape = model's predictive sensitivity (circle), speci-
ficity (triangle), and accuracy (square).
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would allow us to better capture temporal and spatial biodiver-
sity patterns, enhance comparability with historical datasets, 
and maximize the value of biodiversity data for long-term eco-
logical monitoring and policy applications.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: XGBoost model for AVC 
assignment from “species” data—scatter plot showing degree of pre-
dictability of molecular (X-axis) and 1 m2 plant cover (Y-axis) surveys in 
AVC assignment. Point color = AVC classification; point shape = mod-
el's predictive sensitivity (circle), specificity (triangle), and accuracy 
(square). 
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