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Abstract

The increasing use of Al systems for face, object, action, scene, and emotion recognition
raises significant privacy risks, particularly when processing Personally Identifiable Infor-
mation (PII). Current privacy-preserving methods lack adaptability to users’ preferences
and contextual requirements, and obfuscate user faces uniformly. This research proposes
a user-centric, context-aware, and ontology-driven privacy protection framework that
dynamically adjusts privacy decisions based on user-defined preferences, entity sensitivity,
and contextual information. The framework integrates state-of-the-art recognition models
for recognising faces, objects, scenes, actions, and emotions in real time on data acquired
from vision sensors (e.g., cameras). Privacy decisions are directed by a contextual ontology
based in Contextual Integrity theory, which classifies entities into private, semi-private, or
public categories. Adaptive privacy levels are enforced through obfuscation techniques
and a multi-level privacy model that supports user-defined red lines (e.g., “always hide
logos”). The framework also proposes a Re-Identifiability Index (RII) using soft biometric
features such as gait, hairstyle, clothing, skin tone, age, and gender, to mitigate identity
leakage and to support fallback protection when face recognition fails. The experimental
evaluation relied on sensor-captured datasets, which replicate real-world image sensors
such as surveillance cameras. User studies confirmed that the framework was effective,
with over 85.2% of participants rating the obfuscation operations as highly effective, and
the other 14.8% stating that obfuscation was adequately effective. Amongst these, 71.4%
considered the balance between privacy protection and usability very satisfactory and
28% found it satisfactory. GPU acceleration was deployed to enable real-time performance
of these models by reducing frame processing time from 1200 ms (CPU) to 198 ms. This
ontology-driven framework employs user-defined red lines, contextual reasoning, and dual
metrics (RII/IVI) to dynamically balance privacy protection with scene intelligibility. Un-
like current anonymisation methods, the framework provides a real-time, user-centric, and
GDPR-compliant method that operationalises privacy-by-design while preserving scene
intelligibility. These features make the framework appropriate to a variety of real-world
applications including healthcare, surveillance, and social media.

Keywords: privacy engineering; soft biometrics; hard biometrics; re-identification; data
intelligibility; multimodal data; privacy protection; context-aware Al; user-centric privacy;
GDPR compliance; dynamic privacy adaptation; real-time data obfuscation
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1. Introduction

The wide adoption of multimodal recognition systems has occurred because of Artifi-
cial Intelligence (AI) and Machine Learning (ML) advancements that enable the capture and
processing of multimedia data content, including face, object, emotion, scene, and action
data for applications in various fields [1]. These technologies are deployed to automate
processes, improve efficiency, and aid in decision making; however, they also present many
privacy risks as they process vast amounts of Personally Identifiable Information (PII) such
as facial biometrics, location data, and behavioural patterns. For example, sensor-based
monitoring in workplaces or smart environments can unintentionally expose sensitive be-
haviours and social interactions [2]. As Sharma [3] highlights, privacy inconsistency causes
users to engage in information disclosure behaviour despite their concerns about privacy
risks, while privacy policies remain challenging to create because of this inconsistency [4].

To address these concerns, Privacy Engineering (PE) has emerged as a discipline
focused on integrating privacy-by-design principles into Al systems as proposed by Martin
and Alamo [5]. Hansen, Meiko Jensen and Martin Rost [6] define PE as a systematic
approach to ensure adequate data protection within organisational systems. However,
most current privacy protection Al systems rely on static obfuscation techniques, such
as blurring, pixelation and masking, without dynamically adjusting to the scene contexts
or user preferences [7-15]. Since these privacy challenges occur directly in data streams
captured by vision sensors such as cameras, protecting sensor outputs becomes crucial to
ensuring compliance and usability. The static obfuscation techniques lead to suboptimal
privacy protection through over-masking data, thus reducing scene usability or under-
masking data, which results in inadequate protection of sensitive data and failing GDPR
compliance. The challenge is amplified in shared and dynamic settings, including smart
homes, workplaces, or public events, where privacy preferences differ between users
and contextual relationships among users and scene contexts [2,16]. Despite advances in
current privacy protection methods, they still do not provide an integrated evaluation of
multimodal recognition systems that combine soft-biometric traits, contextual reasoning,
and user-defined privacy preferences in dynamic environments.

To overcome these limitations, we propose a user-centric, ontology-driven, and context-
aware privacy protection framework that enables real-time and adaptive obfuscation. It
uses semantic classification of recognised entities such as users, scenes, actions, objects,
emotions, soft biometric traits, including gait, hair, clothing, as well as contextual privacy
factors. This framework draws from Nissenbaum’s Contextual Integrity theory [17], which
defines that privacy protection is not absolute but must be preserved to contextual norms
such as “who is sharing what with whom and under what conditions”.

In this research, privacy context is defined as the combination of actors (users), their
roles, actions, relationships, and the situational parameters that determine how data should
be protected. This builds upon the ontology-based privacy protection models developed by
Badii, Tiemann, and Thiemert [13], where ontologies encode relationships between entities,
actions, contexts, and privacy rules to enable privacy decision reasoning. Environment,
in this context, refers to the spatial, temporal, and interactional conditions in which data
is captured and shared. By reasoning over these elements, the framework dynamically
interprets privacy context and decides if data should be obfuscated [13].

The proposed framework introduces several key innovations:

e  The use of soft biometric traits such as gait, hair type, hair colour, skin tone, age, and
gender for fallback re-identification when face recognition fails to detect and recog-
nise individuals because of occlusions, addressing the limitations of facial masking
alone [18-20].
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e A Re-Identifiability Index (RII) that computes the likelihood of identifying a user based
on soft biometric features, enabling a detailed privacy control.

e An Auto Privacy mode that uses machine learning to predict privacy preferences
based on contextual data and historical behaviour, to improve on current methods
that cannot adapt to dynamic environments.

e  Support for user-defined red lines, such as “always hide logos”, that override any
other privacy settings, which ensures that user priorities are always enforced.

e A rule-based ontology model that defines the relationships between users, entities,
contexts, and privacy levels for consistent and explainable privacy decisions.

Prior studies validate the importance of this framework. Lin and Li [20] show that us-
ing 23 out of 30 soft attributes can yield 85% re-identification accuracy, and that combining
soft traits such as hair, gender, and age boosts recognition performance by up to 6%. Simi-
larly, Bari and Gavrilova [18] and Corbishley, Nixon, and Carter [19] report re-identification
rates of 85% when using gait and other soft biometrics, which highlight the limitations of
facial masking alone.

The proposed framework builds upon these gaps by treating privacy as a multidimen-
sional and context-sensitive process, which applies real-time obfuscation based on scene
context and user-defined privacy settings. The multimodal Al pipeline of the framework
integrates the YOLOvV5 model for object recognition, MTCNN for face recognition, Slow-
Fast for action recognition, Places365 for scene classification, and EfficientNet for emotion
recognition. The recognition outputs are used to recognise individual user, identify privacy
contexts and inform the ontology-driven privacy engine to dynamically apply obfuscations
while preserving scene intelligibility and GDPR compliance. The framework also supports
user-centric privacy in shared spaces by encoding privacy rules into an ontological model
that ensures transparency, scalability, and explainability.

2. Related Work

Given the expansion of multimodal Al applications, concerns regarding personal
privacy have increased, specifically in processing PII within video data. Although previous
research [7-9] addresses privacy-preserving techniques, significant gaps remain in such
approaches, as many rely on static obfuscation rules and do not adapt to user-defined pref-
erences, real-time contextual shifts, or multi-user scenarios. As a result, these models either
over-mask content, undermining usability, or under-mask sensitive data, compromising
privacy and GDPR compliance.

Recent efforts in privacy protection have explored soft biometrics as both a challenge
and an opportunity. Zhou, Pun, and Tong [14] highlight the limited exploration of dynamic
face pixelation as a method and its inefficiencies in highly dynamic settings. Similarly,
Hasan, Shaffer, Crandall, and Kapadia [9] and Lin and Li [20] demonstrate that soft bio-
metric features, such as gait, hair-type, skin tone, age, and clothing attributes can lead to
re-identification even when faces are obscured. For instance, Lin and Li [20] show that
using 23 out of 30 soft attributes can yield an 85% identification rate, reinforcing the privacy
risks posed by non-facial attributes. However, few systems integrate these cues into a
coherent privacy enforcement model.

Existing privacy protection methods either do not recognise soft biometric features to
identify individuals with the aim of personalised privacy protection or fail to dynamically
adjust obfuscation based on contexts or user red line. In contrast, the proposed framework
improves on this by incorporating a user-centric, ontology-driven privacy framework that
models the relationships between users, visual entities (faces, objects, etc.), environmental
context, and user-defined privacy red lines. This framework incorporates the following:
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e  Soft biometric analysis as both a fallback to face recognition and a standalone re-
identifiability risk factor.

e A Re-Identifiability Index (RII) that quantifies re-identifiability risk and advises dy-
namic masking decisions.

e  Support for user-defined red lines, such as “always hide logos”, which override any
predefined settings.

e  Support for Auto Privacy through supervised learning, predicting privacy settings
needs based on scene type, emotional state, and prior user behaviour.

e An ontology-based reasoning model that defines the relationships between users,
entities, contexts, and privacy levels for consistent privacy decision-making.

Unlike prior methods such as those of Hasan, Shaffer, Crandall and Kapadia [9] and
Zhou, Pun and Tong [14], which apply uniform, static rules, the proposed framework uses
semantic inference to guide privacy decisions on a frame-level and user-centric basis. It
addresses the balance between intelligibility and privacy by using contextual cues such
as location, scene category, or action type, and balancing these with user-defined privacy
settings and red lines.

The proposed framework extends the state of the art by embedding contextual integrity,
real-time adaptability and re-identifiability assessment within a unified and scalable privacy
protection pipeline. Its ontology-based reasoning capability enables the framework to
reason over context, which makes it particularly effective in complex and multi-user
environments. In doing so, it directly addresses key challenges in intelligent, context-aware
privacy preservation.

2.1. Privacy Challenges and User-Centric Risks in Multimodal Al Systems

Modern Al systems increasingly combine multiple recognition capabilities, including
face, scene, object, emotion, and action recognition, to enable more automatic operations
within a variety of applications. However, the processing of such large quantities of PII
data creates major privacy risks while posing challenges to data security, user control, and
regulatory standards specifically outlined under GDPR [21]. The ability of Al systems to
extract specific attributes such as identity and location data points leads to serious privacy
issues regarding profiling practices, mass surveillance, and unauthorised data misuse [22].

The continuous growth of location-based services intensifies this concern as stated
by Jiang, Li, Zhao and Zeng [2], that the ubiquity of GPS-enabled applications has led to
pervasive location tracking. Castillo [23] reveals that 94% of smartphone users conduct
searches for location-specific data, and 72% are targeted by location-aware advertisements,
which indicates the comprehensive utilisation of personal data for both commercial and
possibly intrusive activities.

A key challenge is the lack of adaptive privacy methods as existing privacy meth-
ods use static privacy models and fail to adapt to the changing user preferences, entity
sensitivity, and dynamic contexts [7,9,16]. These methods use anonymisation techniques
such as blurring and pixelation that provide a level of privacy protection [8]. However,
they fail to match diverse user requirements and provide inadequate or excessive privacy
protection to users [22], and they seriously diminish data utility as shown by Hasan, Shaffer,
Crandall, and Kapadia [9]. Insufficient protection could lead to re-identifying anonymised
data through cross-referencing with external datasets, making privacy protection counter-
measures complex and difficult to manage as an evolving requirement [24]. More critically,
re-identification through soft biometric traits, like gait, hair colour, age, or clothing style,
can be used to cross-reference and identify individuals even after standard anonymisation.
Sosa, Fierrez, and Vera-Rodriguez [25] demonstrate that using a wide range of soft biomet-
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ric attributes can yield re-identification accuracies exceeding 85%, raising significant risks
that most systems fail to address.

Another major challenge for organisations today is regulatory compliance. The GDPR
requires necessary data minimisation tactics alongside transparency about data use and
formal consent (European Commission, 2016). However, most Al systems fail to effectively
implement privacy-by-design solutions that are transparent, customisable, and adaptable
based on individual preferences according to Gurses, Troncoso and Diaz [26]. Current
permission-based frameworks show inadequate results because users do not understand
them well enough and lack the ability to adapt to different contexts [22]. Additionally,
current methods are not adequately developed to effectively manage multi-user privacy
requirements noted by Sezer, Dogdu, and Ozbayoglu [27]. The collaborative Al environ-
ments within smart homes and video conferences require individual and robust privacy
settings regardless of differing user requirements, as noted by Ren, Lee, and Ryoo [10]. The
predefined privacy options used in current systems fail to adapt dynamically to changing
contexts, user states, or detected objects, leading to privacy vulnerabilities.

2.2. Context-Aware and Multi-User Privacy Adaptation Techniques

Privacy management within multi-user settings presents specific challenges in video
conferencing, surveillance, and collaborative areas, according to Sezer, Dogdu, and Ozbayo-
glu [27]. Guo, Zhang, Hu, He, and Gao [28] highlight that current privacy settings typically
apply uniform privacy configurations across all users and disregard individual preferences
and contextual interactions. This results in two key limitations: over-protection, where
excessive obfuscation reduces scene intelligibility and usability, or under-protection, where
privacy-sensitive user data remains insufficiently protected [29].

A major limitation in existing approaches is their lack of adaptability to dynamic
group interactions and contexts. Gurses, Troncoso, and Diaz [26] highlight the need for
real-time, personalised privacy control, that could ensure that each user’s privacy settings
are maintained while enabling seamless collaboration. Most current systems do not support
context recognition or negotiation between conflicting user preferences.

To address this, our framework adopts a context-aware and ontology-driven design,
dynamically adjusting privacy protection [10] according to scene type, recognised entities,
user interactions, and individual privacy preferences. It builds upon Nissenbaum’s Con-
textual Integrity theory [17], which conceptualises privacy as a context-bound expectation
based on appropriate information flow between actors, under specific roles and trans-
mission principles. Privacy is considered violated when personal data is shared outside
of these context-appropriate boundaries, for example, when a bedroom scene is shared
publicly without user consent.

This work extends and builds on the foundational contributions by Badii, Al-Obaidi,
Einig and Ducournau [11], who introduced the Holistic Privacy Impact Assessment (H-PIA)
framework, and by Badii and Al-Obaidi [12], who demonstrated privacy protection via
semantic scene classification. We extend these ideas with real-time multimedia analysis
and user-defined rules, delivering an explainable and scalable framework. Furthermore,
Badii, Tiemann, and Thiemert [13] highlight that privacy reasoning should integrate hetero-
geneous data sources into a unified model.

2.3. Performance vs. Privacy Trade-Offs in Al Systems

Balancing privacy protection and performance is a major challenge in multimodal Al
systems especially under real-time conditions. Studies confirm that privacy-preserving tech-
niques help protect against re-identification according to Narayanan and Shmatikov [24],
yet Liu, Song, Liu, and Zhang [29] demonstrated that privacy-enhancing mechanisms may
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lead to accuracy degradation, creating trade-offs between usability and privacy robustness.
Real-time Al applications should have a balance between computational efficiency and pri-
vacy protection, as these systems require high-speed processing. Studies by Sezer, Dogdu,
and Ozbayoglu [27] and Zhou, Wang, Liang, and Wang [30] emphasise that sophisticated
privacy methods such as obfuscation and encryption produce latency and require high
computational resources. Gurses, Troncoso, and Diaz [26] further underscore the need
for efficiency in resource-constrained environments, as excessive computational load can
hinder responsiveness and user experience.

Privacy protection through obfuscation measures helps protect sensitive data but can
lead to performance reductions and visual interpretability. The findings from Olejnik,
Dacosta, Machado, and Huguenin [22] demonstrate that over obfuscation reduces system
reliability by causing performance problems between maintaining privacy integrity and
preserving scene intelligibility.

2.4. Comparison of Existing Approaches and Research Gaps

Existing privacy-preserving approaches in multimodal Al systems fall into static pri-
vacy models and permission-based frameworks, both of which face significant limitations
in handling dynamic user preferences, contextual variability, and multi-user interactions.
The current privacy-preserving approaches encounter significant limitations when dealing
with critical real-time AI applications that process large volumes of PII, such as facial
attributes, emotional expressions, and behavioural cues.

Conventional anonymisation techniques, such as blurring and pixelation, provide a
fixed level of privacy protection as stated by Frome, Cheung, and Abdulkader [8], but fail
to accommodate evolving user needs or varying sensitivity levels of data stated by Hassan,
Shaffer, Crandall, and Kapadia [9]. Narayanan and Shmatikov [24] demonstrate that static
obfuscation methods may fail to prevent re-identification when combined with external
data, hence rendering privacy protections less effective in real-world applications. Similarly,
Olejnik, Dacosta, Machado, and Huguenin [22] state that systems that rely on manual user
settings meet usability challenges, as users often struggle to understand and manage their
privacy settings effectively. Additionally, Gurses, Troncoso, and Diaz [26] and Ren, Lee,
and Ryoo [10] have shown that current Al-driven privacy methods lack transparency, and
context-awareness and do not scale well in real-time, multi-user or real-time environments.

Moreover, recent studies, such as Sezer, Dogdu, and Ozbayoglu [27] report that current
privacy methods use fixed general privacy settings that fall short of accommodating modern
Al-driven applications, including social media platforms and collaborative workspaces. Liu,
Song, Liu, and Zhang [29] further identify key challenges in ensuring real-time efficiency,
scalability, and GDPR compliance. They pointed out that existing privacy mechanisms
often result in over-protection, which reduces data usability, or under-protection, which
compromises privacy protection.

Among the few context-aware frameworks, the Holistic Privacy Impact Assessment
(H-PIA) framework by Badii, Al-Obaidi, Einig, and Ducournau [11] represents a significant
contribution. Their model treats privacy filtering as a multi-layered process involving
technical and human-centric factors.

Later work by Badii and Al-Obaidi [12] introduced a context-aware filtering strategy
that applied different obfuscation techniques to face, skin, and body regions. Their frame-
work aimed to balance privacy, intelligibility, and pleasantness, taking under consideration
recognisable attributes such as race and gender still impacted perceived privacy. Although
this marked progress toward adaptive privacy filtering, it lacked semantic reasoning, user-
defined red lines, or integration with multimodal entity recognition at the data-instance
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level (e.g., recognising faces, objects, and actions within each frame and assigning them
context-specific re-identifiability risks).

Further foundational work by Badii, Tiemann, and Thiemert [13] proposed the use
of semantic data integration and ontology-based modelling for improving situational
awareness in security applications. Their system showed that data from heterogeneous
sources, such as CCTV footage, could be unified under an ontology-driven structure that
enabled rule-based reasoning and decision support. While not directly focused on user-
centric privacy, their methodology forms a critical foundation for semantic reasoning and
context modelling adopted in the proposed framework.

Building upon these foundational works, this research proposes a real-time, user-
centric, and ontology-driven privacy protection framework that operationalises contextual
reasoning through entity-level sensitivity classification, soft-biometric risk modelling, and
adaptive obfuscation. It unifies the technical robustness of earlier privacy filters, the context-
aware aspirations of MediaEval [12] methods, and the structured semantic reasoning of
MOSAIC [13] under a scalable, GDPR-compliant, and multi-user capable system for privacy
protection in multimodal Al

3. Methodology
3.1. Framework Overview

The proposed user-centric, context-aware privacy protection framework integrates
multimodal Al recognition with adaptive enforcement to protect PII in real time. All
recognition and privacy enforcement operate on data captured by vision sensors (cameras).
Detected elements are classified based on sensitivity, and privacy levels are dynamically
updated based on user-defined preferences, contextual factors, soft-biometric attributes,
and the Re-Identifiability Index (RII) that quantifies re-identification risk. The framework
is structured into three main modules, where each is responsible for a specific aspect of
privacy adaptation and enforcement:

1.  The Recognition modules use state-of-the-art Al models such as YOLOVS5 for object
recognition, MTCNN for face recognition, and Places365 for scene classification to
extract and analyse contextual information from video streams. It identifies privacy-
sensitive entities, including faces, objects, actions, emotions, and scenes, along with
soft biometrics, including gait, hair type, age, and gender, that are used to calculate the
RII, when facial recognition fails. These recognition outputs are passed into contextual
risk analysis for real-time privacy decision-making.

2. The Privacy Enforcement module computes the appropriate privacy levels dynami-
cally by classifying detected entities into privacy-sensitive categories such as private,
semi-private, or public. Based on sensitivity, it applies privacy-preserving techniques
such as blurring, pixelation, silhouette masking, or synthetic data replacement (GAN-
based anonymisation) [31]. The framework aligns obfuscation intensity with user
preferences and entity sensitivity to maintain a balance between privacy protection
and usability. In multi-user settings, it supports personalised enforcement, strictly
protecting high-privacy users even when others share lower privacy levels.

3. Privacy Reasoning and User Context Module captures and reasons over user-defined
privacy rules using ontology-based logic to ensure structured, consistent, and context-
aware decision-making. It supports multiple privacy modes (Auto Privacy, High,
Medium, Low, and No Privacy), enforces red-line rules (e.g., always hide logos),
and adapts protections in real time based on scene dynamics and feedback from Al
recognition modules. It also handles Auto Privacy mode, which uses supervised
learning to predict preferred privacy configurations from historical user behaviour
and contextual cues.
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By combining multimodal recognition, dynamic privacy adaptation, ontology-based
reasoning, and user-driven privacy settings, this framework maintains strong privacy
protection without compromising scene intelligibility. It is deployable in a variety of envi-
ronments, including smart homes, video conferencing platforms, and public surveillance
contexts. Figure 1 illustrates the high-level architecture, showing the recognition modules,
context reasoning, and enforcement pipelines that deliver adaptive privacy protection.

Extract Frame from
Input video [ id —»| Object recognition—#| Face Recognition
video

Soft Feature and Gait

[4— Action Recognition [*—] Scene Recognition [#—Emotion Recognition

Recognition
Generate Face and Gait En- Person identi-
coding Database fied?
Calculate RIl Score (Soft Biometric 5 Gather privacy setting.s and red
—
Risk) lines
_ | Obfuscate faces and objects ac-
Calculate IV Score (Info Value) cordingly
Ontology-based Privacy Level com-
Rll score
tati
putation reached?

Store appropriate details for future pri- Obfuscate soft features

vacy predictions

| Encrypt Original Frame

!

| Display Protected Frame Another Frame?

Figure 1. Architecture diagram showing flow from recognition to ontology-driven privacy adaptation.

This layered design supports real-time, context-aware privacy decisions by integrating
multimodal recognition, ontology-based reasoning, and user-centric policy enforcement
into a unified, adaptive framework.

3.2. Context-Sensitive Privacy Mechanisms

Context-sensitive privacy ensures that privacy protection is dynamically adjusted
based on the sensitivity of detected entities and environmental context. Unlike static privacy
models [7-9], which apply fixed privacy settings regardless of context, our framework
follows Nissenbaum’s Contextual Integrity Theory [17], which asserts that privacy norms
depend on the interplay between actors, information types, and contextual settings. To
operationalise this, the framework combines ontology-driven knowledge representation
with real-time Al inference. The ontology captures privacy preferences alongside contextual
semantics such as scene type, emotional expression, action, and soft biometric traits. It
enables reasoning over privacy decisions by evaluating what is shown, to whom, in what
context, and under what user-defined constraints. We define two types of contexts that
shape privacy decisions:
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1.  Frame context, which defines what is happening on the scene (e.g., people, objects).
Exposure, where and to whom the context will be visible (e.g., social media, shared in
public, private message).

These contexts influence both the user’s expressed privacy preferences and the adap-
tive privacy reasoning of the framework. For instance, being at home with friends (private
frame context) may trigger different masking behaviour than being in a public park (public
frame context), especially if the intended exposure is social media. Such differences are
modelled by the ontology to balance privacy risks and intelligibility across platforms.

Previous studies show that soft biometric features offer significant potential for user re-
identification. Bari and Gavrilova [18] state that users can be identified using gait biometrics
with a 98.08% accuracy. Corbishley, Nixon, and Carter [19] identified that combining soft
biometric features can increase the re-identification accuracy up to 88.1%, depending on
the soft biometric features and the combinations used. Moctezuma, Conde, Diego, and
Cabello [32] introduce a person identification method using only three soft biometrics
features, such as clothing, complexion, and height, to reach an 85% identification rate.

Additionally, the study explores how a recognition system using soft biometric features
such as gender, backpack, jeans, and short hair achieves 53-75% accuracy. This aligns with
the findings by Sosa, Fierrez, and Vera-Rodriguez [25], who demonstrate that using a
broader set of 73 soft biometrics can further improve re-identification accuracy, reaching
85.54%. Expanding on this, Corbishley, Nixon, and Carter [19] identified that combining
key features such as gender, height, skin tone, hair colour, hair type, age, and so on can
result in re-identification of individuals and quantification of soft features (see Table 1).
For this work, only the soft features with the highest weights are selected to improve the
re-identifiability.

Table 1. Soft biometric features and re-identifiability weights.

Feature Weight (£ Variance) Source

Gait 0.8-0.98 accuracy Bari and Gavrilova [18]
Hair Colour 314+07 Corbishley, Nixon, and Carter [19]
Gender 21+£06 Corbishley, Nixon, and Carter [19]
Hair Type 20+ 06 Corbishley, Nixon, and Carter [19]
Skin Colour 1.6 +04 Corbishley, Nixon, and Carter [19]
Age 054+0.8 Corbishley, Nixon, and Carter [19]

Clothing Style Contextual Moctezuma, Conde, Diego, and Cabello [32]

To support re-identification when face recognition is inconclusive, these soft biometric
traits are analysed to compute a Re-Identifiability Index (RII) to determine privacy enforce-
ment. If the RII exceeds a threshold, the framework associates the user with stored privacy
settings or increases obfuscation to mitigate re-identification risk. This adaptive mechanism
aligns with Contextual Integrity by updating privacy to contextual norms rather than static
rules, ensuring that privacy decisions are context-aware and personalised.

Ontology-driven privacy enforcement rules follow a hierarchical sensitivity model,
where the highest-sensitivity element detected (e.g., scene, object, action, and emotion) in
a frame determines the final privacy level applied. Additionally, user-defined red lines,
such as specific features, objects, logos, or individuals that must always be masked, are
enforced independently of contextual sensitivity, ensuring that user-specified constraints
override general framework predictions when necessary. Users on Auto Privacy mode
benefit from the supervised learning model that dynamically predicts and applies optimal
privacy settings based on historical and contextual cues. The resulting privacy enforcement
mechanism combines hierarchical sensitivity reasoning with the user-defined red lines,
ensuring both adaptive flexibility and strict user control. Table 2 summarises the privacy
actions applied under different user settings and contextual conditions.
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Table 2. Privacy enforcement rules based on ontology and user-defined red lines.

User Privacy Scene Object Action Emotion Re-Identification Resulting .
. e o A . . Enforcement Action
Setting Sensitivity Sensitivity Sensitivity Sensitivity Features Privacy Level
No Privacy Non-sensitive Non-sensitive Non-sensitive Non-sensitive Any No Privacy No obfuscation
Obfuscate sensitive
Low Privacy Sensitive Sensitive Sensitive Sensitive Any Low Privacy elements only (scene,
object, action, emotion)
f 1
. . Semi-sensitive Semi-sensitive Semi-sensitive Semi-sensitive Medium O.b USC?FQ a
Medium Privacy . i . o Any . semi-sensitive and
or Sensitive or Sensitive or Sensitive or Sensitive Privacy o o
sensitive entities
Full obfuscation, including
High Privacy Any Any Any Any Any High Privacy faces, soft biometrics,
actions, objects
Adaptive obfuscation
. . based on historical
Auto Privacy Any Any Any Any Any Predicted patterns, context, and
RIl score
Always obfuscate specified
User-defined red User features, objects, or
lines (objects, Any Any Any Any Any Specified individuals regardless of
logos, users) P context or
predicted privacy.
An An; An An: An Rilexceeds Soft feature fe(a)‘:)uflisscéte hlhi\}il;rjlcjt;ci)g )
y y y y Y threshold obfuscation & halL, 8

selectively based on RII

This adaptive, user-centric, and explainable model enables privacy enforcement that
is personalised and scalable. It addresses long-standing gaps in privacy mechanisms, as
noted by Halvatzaras and Williams [33] and Laak, Litjens, and Ciompi [34], who emphasise
the importance of adaptable privacy models that respond to changing user and environ-
mental contexts. It also addresses concerns raised by Olejnik, Dacosta, Machado, and
Huguenin [22] regarding the lack of effective privacy mechanisms in Al systems.

3.3. Multi-User Privacy Protection

Current privacy models produce ineffective results by neglecting dynamic privacy
requirements between multiple users who share video streams, use smart homes, and
in public surveillance systems, where multiple individuals may have diverse privacy
preferences. Research by Ren, Lee, and Ryoo [10] highlights that current privacy systems
enforce static privacy configurations for all users without considering individual privacy
requirements. Similarly, Olejnik, Dacosta, Machado, and Huguenin [22], and Sezer, Dogdu,
and Ozbayoglu [27], identified a lack of adaptive mechanisms that prioritise privacy-
sensitive users, contextual sensitivity, and usability considerations.

To address these gaps, the proposed framework integrates real-time, multi-user, pri-
vacy enforcement that dynamically adjusts privacy settings for each detected user. It
evaluates three primary factors: user-defined privacy preferences (e.g., Auto Privacy, High
Privacy, Medium Privacy, Low Privacy, or No Privacy), contextual sensitivity of the de-
tected entities (objects, actions, and emotions), and the presence of soft biometric traits that
may lead to re-identification. When multiple users appear on the same frame, the frame-
work prioritises the highest privacy level for shared scene elements, while still applying
individualised obfuscation to each person. For example, if User A opts for High Privacy
while User B selects No Privacy, shared sensitive objects will all be obfuscated, but User B’s
face will remain unobscured, which ensures a balance between collective protection and
personal choice.

The ontology-driven rule engine resolves conflicts between users using a hierarchical
model and user-specific red lines, such as “always hide logos”, that override contextual
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conflicts. Additionally, when a user is not directly recognised (e.g., face is occluded), the
framework applies fallback privacy prediction based on soft biometric features and the
Re-Identifiability Index (RII). In Auto Privacy mode, privacy settings are predicted using a
supervised model trained on user historical data and contextual cues, which ensures users
remain protected even when identity is ambiguous.

This user-centric, multi-user framework ensures adaptive privacy protection, and it
maintains compliance with GDPR and user-defined privacy constraints while preserving
scene intelligibility and usability in complex settings.

3.4. Person Re-Identification

In scenarios where facial recognition is not possible, due to occlusion, low resolution,
or user-defined masking, soft biometric traits are used as an alternative means for user
re-identification and RII calculation. These traits include gait, hair type, skin tone, age,
gender, and clothing/accessory cues, all of which provide varying degrees of identifiability.
As Dantcheva, Elia, and Ross [35] highlight, a single soft biometric trait would not be
unique enough to identify a subject, but their combination can significantly increase the
probability of identity inference [32,36]. Dantcheva, Elia, and Ross [35] further discuss that
every soft feature can carry information about different soft biometric traits; for instance,
hair type may implicitly indicate ethnicity or gender. To systematically evaluate the risk
of re-identification, Dantcheva, Velardo, and Dugelay [36] propose categorising each soft
biometric feature into a distinctiveness level of Low, Medium, or High.

To address re-identifiability risks when using soft features, the proposed framework
integrates two key components:

e  Re-Identifiability Index (RII) score that quantifies the cumulative re-identification risk
of a user based on identified soft biometric features.

e Intelligibility Value Index (IVI) measures the balance between obfuscation and infor-
mation value of a given trait within the current frame and context.

IVIis not yet a formally standardised metric in the existing literature; however, it draws
inspiration from several foundational works. Moctezuma, Conde, Diego, and Cabello [32]
introduce a numbering points system for the list of features to calculate feature weights,
while Bari and Gavrilova [18] and Corbishley, Nixon, and Carter [19] quantified main soft
biometric features based on their contribution to re-identification likelihood. Building
upon these models, the proposed framework introduces the Intelligibility Value Index
(IVI), which measures the proportion of scene interpretability retained after obfuscation of
high-RII features and calculated as shown in Equation (1).

Retained Interpretability Weight
Total Interpretability Weight

IVI Score = (1)

A higher IVI indicates that obfuscation has minimally impacted the ability to interpret
the scene, whereas a lower IVI signals substantial loss of semantic content. Importantly, IVI
is evaluative and does not drive obfuscation decisions directly but provides a quantitative
measure of the framework effectiveness in preserving scene intelligibility. The results of
this evaluation are summarised in Table 3.

When face recognition fails, the framework activates fallback matching using soft
biometric embeddings (gait, body shape, hair, and clothing). If a user profile is identified,
their privacy settings and red lines are used for obfuscation. If no match exists, RII scores are
used to identify potential re-identification risk and enforce protective masking as needed.

This layered framework supports privacy continuity in real-time applications by
dynamically balancing privacy protection with scene intelligibility and in alighment with
Nissenbaum’s Contextual Integrity theory [17].
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Table 3. IVI evaluation for a single frame with retained interpretability after obfuscation of
RII features.

Feature RII (Re-Identifiability)  Interpretability Weight Obfuscated? IVI Contribution
Face 0.95 0.45 Yes 0.0
Gait 0.8 0.3 Yes 0.0

Hair Type 0.02 0.03 No 0.03
Hair Colour 0.03 0.02 No 0.02
Age 0.08 0.05 No 0.05

Gender 0.03 0.25 No 0.25

Bag 0.01 0.1 No 0.1
Bag colour 0.012 0.03 No 0.03

Bag logo 0.022 0.02 No 0.02

Dress 0.1 0.15 No 0.15
Dress colour 0.015 0.05 No 0.05
Dress logo 0.023 0.03 No 0.03
Hat 0.1 0.2 No 0.2
Hat colour 0.014 0.03 No 0.03
Hat logo 0.02 0.02 No 0.02
Jacket 0.1 0.15 No 0.15
Jacket colour 0.015 0.03 No 0.03
Jacket logo 0.024 0.02 No 0.02
Pants 0.11 0.3 No 0.3
Pants colour 0.02 0.03 No 0.03
Pants logo 0.03 0.02 No 0.02
Shirt 0.01 0.1 No 0.1
Shirt colour 0.015 0.03 No 0.03
Shirt logo 0.023 0.02 No 0.02
Shoes 0.02 0.1 No 0.1
Shoes colour 0.01 0.03 No 0.03
Shoes logo 0.02 0.02 No 0.02
Shorts 0.1 0.1 No 0.1
Shorts colour 0.015 0.03 No 0.03
Shorts logo 0.02 0.02 No 0.02
Skin tone 0.02 0.02 No 0.02
Skirt 0.1 0.1 No 0.1
Skirt colour 0.015 0.03 No 0.03
Skirt logo 0.02 0.02 No 0.02
Sunglasses 0.012 0.1 No 0.1
COCO Object Types (e.g., person, 0.01 01-05 No 01-05

vehicle, furniture, electronics)
Combined Soft Biometrics (Face
+ Hair + Jacket)

0.91 normalised

0.63

Yes (only jacket)

0.76

3.5. Privacy Risks and Mitigation

The increasing accuracy of soft biometric-based re-identification presents significant
privacy challenges in multi-user, real-time video processing systems. As demonstrated
in prior research [18,25], soft features such as gait, skin tone, hair type, and clothing can
be used to identify individuals even when facial data is obscured. This raises concerns in
shared settings, where individuals may not directly interact with the system, but their data
is collected without consent.

Soft biometric features, including gait patterns (with an accuracy up to 98.08% [18])
or a combination of gender, hair type, skin tone, clothes, and others (with an accuracy
up to 88.1% [19]), could enable re-identification of individuals. In scenarios where face
recognition fails, these features may still facilitate tracking, which violates user anonymity.
This risk is increased in social media or surveillance contexts, where exposure is less
controlled.

To mitigate these risks, the proposed framework applies context-sensitive and user-
centric privacy masking that dynamically adapts to user privacy settings. These include

e  High-Risk Features such as soft biometric traits (e.g., gait, hair colour) are obfuscated
in cases when the Re-Identifiability Index (RII) exceeds a defined threshold.
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e  Hierarchical sensitivity enforcement to prioritise the most sensitive element in the
frame, scene, object, action, or emotion, and applies the strictest privacy level.

e Independently of the context or prediction, user-defined red lines (e.g., tattoos, logos,
or specific clothing items) are always obfuscated.

e In shared settings, the proposed framework uses multi-user conflict resolution to
identify the highest applicable privacy preference across users, which ensures that no
individual’s privacy is compromised due to the lower preference of others.

The proposed framework complies with GDPR principles of data minimisation,
privacy-by-design by default, and security of processing, as only essential data is pro-
cessed and sensitive elements are masked by default. Adaptive masking further protects
indirect identifiers (e.g., clothing) when re-identification risks are detected.

By combining contextual reasoning, soft biometric risk scoring, and user-centric pri-
vacy settings and red lines, the proposed framework provides robust protection against
re-identification, even in complex or multi-user scenarios. This ensures that the privacy of
individuals is protected, while preserving scene intelligibility.

3.6. Implementation Details

The proposed framework incorporates a modular architecture and ontology-driven
reasoning to achieve dynamic, real-time, user-centric privacy protection across multimodal
recognition tasks. It integrates state-of-the-art deep learning models for face, object, scene,
action, and emotion recognition, operating in parallel to extract semantic features from
continuous streams captured by vision sensors (cameras). These features are fed into a
unified reasoning engine that evaluates user-defined red lines, contextual sensitivity, and
re-identifiability risk to determine the appropriate level of privacy protection per frame.
The framework is optimised for GPU-accelerated processing and is designed to prioritise
real-time performance, GDPR compliance, and intelligibility preservation.

Multiple recognition models were evaluated based on accuracy and computational
efficiency to ensure robust and real-time performance, with detailed results summarised
in Appendix A (Tables A1-A5). Among the evaluated models, MTCNN was selected for
its balance between processing speed of 16-99 FPS, recognition accuracy of 94.4% and
its ability to run on the GPU. AlexNet was selected for scene recognition as it achieved
the best balance between classification accuracy of approximately 85% and computational
efficiency of up to 205 FPS. YOLOv5 was selected for object recognition based on recognition
speed of approximately 140 FPS and sufficient accuracy, and SlowFast Networks for action
recognition for their ability to capture both detailed and rapid movements. The EfficientNet
model was selected for emotion recognition because of its high processing speed of up to
155 FPS and competitive accuracy of 84.6%. Across all modules, model selection prioritised
a balance between recognition precision and computational speed, ensuring real-time
operation using GPU-accelerated hardware.

Privacy enforcement mechanisms automatically classify recognised entities using
established privacy categories such as private, semi-private, and public. The framework
ensures that the highest level of privacy settings is applied to each frame, maximising the
protection of sensitive objects. To balance privacy protection with usability, the framework
dynamically adjusts privacy settings based on the user predefined privacy setting, contex-
tual classification of detected entities, and user-predefined red lines. In the cases where
users are on Auto Privacy, the framework uses a machine learning model to continuously
refine privacy recommendations based on past user interactions, scene attributes, and
sensitivity levels. Soft biometric traits such as gait, clothing types and colours, clothing
logos, hair type and colour, skin tone, gender, and age are further analysed to compute a
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Re-Identifiability Index (RII) for each user (described in Section 3.4), guiding dynamic soft
feature masking decisions to further enhance user privacy where needed.

To support this process, the framework uses a dedicated database that stores recog-
nised entities, detected from sensor inputs (video frames), including face encodings, objects,
scenes, actions, emotions, and their corresponding sensitivity levels. This structured
database functions as an important reference point for the recognition modules, enabling
real-time, context-driven privacy adjustments based on live feedback. The reasoning engine
integrates multimodal recognition, soft biometric scoring, and ontology-based context rules
to balance privacy protection with scene intelligibility. Adaptive obfuscation is guided by
RII and IVI scores, while user-defined red lines (e.g., “always hide logos”) override both
contextual inference and risk scoring.

The framework is implemented using PyTorch version 2.9.0 and TensorFlow ver-
sion 2.10.1 with CUDA version 11.8 optimisation, enabling deployment on devices with
limited resources. The framework is designed to scale effectively across various real-
world applications to maintain high privacy protection without hindering usability. A
detailed comparison between the proposed framework and prior static, semi-dynamic,
and context-aware methods (including Atta [11-13]). This demonstrates the significant
improvements achieved in adaptability, contextual reasoning, soft biometric protection,
and real-time performance.

3.7. Experimental Setup and Evaluation Metrics

A series of tests was performed on the proposed privacy protection framework by
utilising sensor-captured datasets for each module (faces, objects, scenes, emotions, and
actions), and each class label was categorised into privacy-sensitive categories. The frame-
work processed video streams captured by web cameras to evaluate its ability to adapt to
different conditions, such as different user requirements and privacy preferences.

The experimental setup included an NVIDIA RTX 4050 GPU, Intel i7-13620H CPU,
and 32 GB RAM, providing sufficient computational power for real-time processing. The
framework was developed using Python version 3.10.9, PyTorch version 2.9.0, TensorFlow
version 2.10.1, and OpenCV version 4.7.0, using their GPU-accelerated capabilities and
optimised execution pipelines to ensure efficient real-time processing for face, object, scene,
action, and emotion recognition.

To ensure clarity of our experiments, the proposed framework parameters and model
configurations are reported in Table 4. These parameters govern the recognition modules,
privacy thresholds, and obfuscation methods used during evaluation. To evaluate the
recognition modules, we used publicly available datasets (VGGFace2 [37], COCO [38],
Places365 [39], Kinetics [40], and FER2013 [41]) for core recognition modules and bespoke
datasets adapted for soft biometric features such as clothing styles and logos. To benchmark
datasets, standard training/testing splits were followed, whereas for bespoke datasets, an
80/20 split was applied. Modules were benchmarked to balance recognition accuracy and
computational efficiency for real-time processing, such as using a 0.7 confidence threshold
for MTCNN and a 0.25 threshold for the YOLOv5s model.

To evaluate the adaptability of the privacy protection mechanisms, the framework
was evaluated under various scenarios, including single-user and multi-user settings and
variations in sensitivity, and different privacy levels, such as No Privacy, Low, Medium,
High, or Auto Privacy. Recognition modules were evaluated to balance accuracy with
computational efficiency and ensure feasibility in real-time operation.

In addition to recognition performance, the framework was assessed for its ability
to balance privacy protection with scene intelligibility. Table 5 summarises the trade-offs
between usability and re-identifiability risk across various features.
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Table 4. Framework parameters and thresholds for recognition modules, privacy decision-making,
and obfuscation methods used in the experimental evaluation.

Component Model Dataset Parameters Used
VGGFace2 [37] consists of nine
.. thousand identities with .
Face Recognition MTCNN 80 to 800 images for each identity, Confidence threshold: 0.7
and 3 M+ images in total.
COCO [38] consists of more than
Object Recognition YOLOv5s 200 K labelled images and Confidence threshold: 0.25
80 object categories.
Places365 [39] consists of
1,803,460 images with
Scene Recognition AlexNet 3068 to 5000 images per class and Input resolution: 224 x 224
labelled across
365 scene categories.
Kinetics [40] consists of 650 K
Action Recognition SlowFast R50 videos from 700 hyman action Batch 51Z.e: 32 frames,
classes, in a wide range sampling rate: 2
of activities.
FER2013 [41] consists of
. -, - 35887 grayscale images of.faces, Input resolution: 48 x 48,
Emotion Recognition EfficientNet annotated across 7 emotion )
. . confidence threshold: 0.6
categories (angry, disgust, fear,
happy, sad, surprise, neutral).
. RII obfuscation triggered at >0.1
Privacy Thresholds RII/IVI - and IVI maintained 0.4
Obfuscation Methods Pixelation - Pixelation block: 10 px

Auto Privacy

Random Forest

Trained on users” historical data

Trained on historical interactions
and contextual features

Soft Feature Recognition

YOLO trained on bespoke dataset

Colorful Fashion Dataset [42],
bespoke for clothing dataset
(10 classes)

Number of classes: 10,
confidence: 0.4

Colorful Fashion Dataset [42],

Number of classes: 22,

Logo Detection YOLO trained on bespoke dataset bespoke for logo dataset confidence: 0.4
(22 classes)
Table 5. Balance between information value and privacy sensitivity for multimodal features used in
the framework.
Information Value Privacy Sensitivity
Feature (Usability) (Re-Identifiability Risk) Comment
Face High Very High Critical for identification
Gait Medium High Useful for action recognition
Hair Type Low-Medium Medium Somewhat distinctive, minor Fontrlbutlon
to scene understanding
Hair Colour Low Medium Minor scene value, moderate privacy risk
Clothing Style High Medium Could reveal user profile
. . . Provides some scene context, minimal risk
Object Carried (e.g., Bag) Medium Low unless branded
Emotion (Face Expression) Medium High Important fo1i 1pteract19n value, but reveals
sensitive emotional states
Background Scene (Park, Home) High Low High usability for context, low risk unless it

contains private information

To evaluate how well the proposed framework manages this balance in real-time
conditions, quantitative and qualitative evaluation methods were used. Quantitatively,
the RII was used to assess privacy risks associated with identified soft biometric features,
and IVI was used to capture information value and scene intelligibility. Computational
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latency and obfuscation effectiveness were also measured to ensure real-time feasibility.
Qualitative evaluation involved structured user studies to assess participant’s perceived
privacy protection, scene intelligibility after obfuscation, and overall usability.

Following prior work by Hasan, Shaffer, Crandall, and Kapadia [9], re-identification
rates were adopted as a comparative benchmark to assess how well the framework prevents
unintended identification. To ensure that privacy enforcement does not compromise usabil-
ity, system performance was measured before and after privacy-preserving transformations
were applied. Additionally, the evaluation included measuring the processing latency
of the recognised entities, privacy settings, and necessary obfuscations for each frame to
guarantee that privacy control remained effective and scalable in real-time.

Overall, the experimental setup provides a complete assessment of privacy enforce-
ment techniques by maintaining a balance between privacy protection, recognition accu-
racy, computational performance, and user experience. The results highlight the balance
involved in dynamic and context-aware privacy adaptation and demonstrate that the
framework operates effectively on video streams in real-world applications.

3.8. Ethical Considerations

The proposed framework complies with ethical principles as it prioritises user privacy,
transparency, fairness, and regulatory frameworks such as GDPR. Ensuring that privacy
protection mechanisms align with legal and ethical standards is critical for responsible
AI [43] deployment. A key ethical consideration is user consent and control so that individ-
uals can exercise their decision-making power regarding privacy preferences. Individuals
are provided with granular control over their privacy settings, enabling them to adjust their
privacy configurations at any time based on personal comfort and identified contexts. This
user-centric framework aligns GDPR standards of empowering users and gaining their
consent, which helps create better user trust and ensure that privacy management remains
transparent, explainable, and in the user’s hands.

The framework also incorporates data minimisation by processing only what is re-
quired for privacy protection and avoids unnecessary collection of personal information.
The Re-Identifiability Index (RII), which uses soft biometric features such as gait, hair type,
clothing, and skin tone, is used to quantify re-identification risk and to authenticate users
when face recognition fails. This is effective but raises ethical concerns around transparency,
profiling, and potential discrimination. To mitigate such risks, users are informed about
how soft biometrics are used and may opt out of their inclusion at any time, ensuring
compliance with fairness and consent principles.

Addressing fairness and bias mitigation is essential in multimodal Al privacy systems.
Recognition models used to detect faces, objects, scenes, actions, and emotion information,
along with the datasets they are trained on, are evaluated to identify potential demographic
bias. The training data is carefully selected and, when necessary, is updated to ensure
a balanced representation across demographic groups, reduce bias in privacy protection
mechanisms, and operate equitably across all types of user groups.

Ethical design is a main principle of the proposed framework as it ensures a balanced
integration of privacy protection, fairness, trust, and regulatory compliance. To protect
sensitive data captured from video streams, the framework uses encryption protocols that
encrypt raw data and store it in an encrypted format. Access to the encrypted data is
restricted to authorised users only or government representatives. Moreover, data stored
on the database is restricted through strict access control mechanisms, where each user has
access only to their personal data.

This framework prevents unauthorised use or data exposure and is aligned with the
GDPR data protection requirements. By integrating these ethical enforcements into its
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architecture, the framework represents a responsible, secure, and user-centric model to
develop multimodal Al privacy protection.

4. Results and Analysis

This section presents a comprehensive evaluation of the proposed ontology-driven,
user-centric privacy protection framework. The analysis draws on both quantitative and
qualitative methods to assess its effectiveness across multiple dimensions, including privacy
protection strength, visual intelligibility, computational performance, and user satisfaction.
Each subsection examines key outcomes from experiments and user studies conducted
in diverse, real-world and simulated environments involving varying user types, scene
contexts, and data sensitivities, all based on data captured by vision sensors.

The evaluation framework is designed to test how well it balances privacy preservation
with usability, particularly under dynamic and multi-user conditions. Central to this
assessment are two core metrics developed in this work: the Re-Identifiability Index (RII),
which estimates the risk of identifying individuals based on soft biometric traits, and
the Intelligibility Value Index (IVI), which approximates how much semantic clarity is
retained post-obfuscation. These metrics, alongside recognition accuracy, responsiveness,
and subjective user feedback, form the basis for determining the real-world applicability of
the proposed framework.

4.1. Intelligibility vs. Re-Identifiability

Balancing scene intelligibility with privacy protection is a main challenge in privacy-
preserving multimedia systems. The proposed framework addresses this challenge by com-
bining the RII, which quantifies the likelihood of user re-identification, with the IVI, which
measures how much semantic content remains interpretable after obfuscation. These metrics
are used to manage adaptive privacy decisions that respond to contextual risk and usability
needs. The evaluation demonstrates that while increased obfuscation improves privacy, it
may compromise intelligibility, which highlights the need for intelligent trade-offs.

The IVI is estimated through a hybrid method that considers the number of visible
entities (e.g., objects, actions), retained interpretability weight, and visual clarity post-
obfuscation. RII increases protection when re-identifiability risk reaches the threshold,
while IVI ensures intelligibility is not unnecessarily degraded. This dual scoring enables
detailed control over what is obfuscated. In addition, feature-level privacy directives (e.g.,
“always hide logos”) are consistently enforced by the ontology-driven reasoning engine
and ensure that user-defined red lines override contextual inference when necessary.

To empirically illustrate the privacy-intelligibility trade-off on sensor-acquired video
data, Table 6 presents example scenarios with varying RII and IVI scores, system-inferred
privacy levels, and their corresponding obfuscation strategies. The Intelligibility Score
represents the approximate proportion of semantic content preserved after obfuscation. It
is computed using a weighted combination of IV], the presence and visibility of key visual
features (e.g., faces, actions, and objects), and their semantic weights, outlined in Table 3.

Table 6. Privacy—intelligibility trade-offs across representative frame contexts.

Frame Context RII IVI Final Privacy Level Obfuscation Applied Intelligibility Score
Public Park—Social Media 0.7 0.4 High Face and gait masked 60%
Office 0.2 0.8 Low Only the sensitive object is masked 85%
Home—Family Gathering 0.5 0.6 Medium Face, soft features, sensitive objects 70%
Classroom—Multi-user 0.4 0.6 Medium Faces, selective objects, logo masking ~ 72%
Public Square—Unknown user 0.8 0.3 High Face + clothing + gait obfuscated 55%
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In cases where an unregistered individual is captured in a public setting, the frame-
work detects soft features and calculates an RII score. If the RII score passes the threshold,
the framework automatically applies obfuscation to the individual’s face and associated
soft features. This ensures individuals without explicit consent are protected against re-
identification risks. In another scenario, a registered user set a red line to “never show
jacket”, and the framework enforced selective obfuscation, masking only the user’s jacket
while keeping the rest of the face and body visible. Although the RII was moderate (0.4),
this user-defined rule took precedence over contextual inference, validating the ability of
the framework to enforce user autonomy through red lines.

Compared to prior efforts, such as Hasan, Shaffer, Crandall, and Kapadia [9], who
achieved only 5% object masking accuracy using cartoonisation and reported a 95% iden-
tifiability rate among users, the proposed ontology-driven framework demonstrates a
significant performance advantage. Across 7410 evaluated frames, it achieved 77.8% pri-
vacy protection accuracy in real-time video streams. Although 22.2% of users were still
able to recognise at least one individual, this identifiability was mainly attributed to low-
resolution constraints (224 x 224 px) used for real-time processing efficiency.

Furthermore, unlike static masking techniques that apply uniform filters across content,
the proposed framework dynamically adjusts obfuscation based on entity sensitivity, user-
defined privacy settings and red lines, soft biometric recognition, and RII and IVI trade-off
scoring. This enables detailed, transparent, and explainable privacy protection aligned with
the principles of Contextual Integrity, as well as the accountability and data minimisation
requirements of the GDPR.

In conclusion, balancing intelligibility and re-identifiability requires more than just
masking; it requires adaptive, context-aware enforcement that accounts for human percep-
tion, risk levels, and ethical protection. By combining RII-IVI analytics, ontology-based
privacy reasoning, and user-driven preferences, the proposed framework offers a flexible,
adaptive method to privacy in real-world multimedia settings.

4.2. Privacy Protection Effectiveness

The evaluations of proposed privacy-preserving methods included user studies and
quantitative evaluations to measure their effectiveness on data protection, alongside user
convenience and transparency. The ontology-driven privacy protection, supported by
user-defined red lines, such as “always hide logos”, ensures that personal preferences are
always respected, regardless of contextual inference or predicted privacy level (see Table 4).
This ensures that individual privacy preferences are respected in all scenarios.

The results show that 77.8% of participants were unable to recognise any individuals
within obfuscated videos, while 22.2% of participants identified at least one user, mainly
because of false negatives from the face recognition module. The obfuscation techniques
were rated “highly effective”, with 85.2% of participants rating them “very effective”
and 14.8% rating them as “somewhat effective”. Regarding overall privacy protection,
74.1% “strongly agreed” and 22.2% “agreed” that the framework provided strong privacy
protection. Users also expressed confidence in data handling, with 53.6% reporting “very
confident” and 39.3% reporting “confident” in the framework protection mechanisms.

A main challenge in privacy-preserving Al systems is balancing privacy with usability.
Users evaluated the balance between privacy and intelligibility positively, with results
showing that 71.4% of participants rated it “well balanced” and 28.6% rated it as “somewhat
balanced”. Notably, 34% of participants who evaluated the framework stated that the video
clarity suffered a reduction, particularly at higher privacy levels or when subjects appeared
too close, as illustrated in Figure 2. These results reinforce the need for adaptive obfuscation
methods that maintain intelligibility and ensure strong privacy protection. While prior
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works have reported anonymisation accuracy, they do not provide systematic metrics
for soft biometric handling, contextual adaptability, or RII/IVI prediction. The proposed
framework integrates and evaluates these aspects to address the identified gaps, and Table 7
compares different methods and the proposed framework in terms of privacy mechanisms
and anonymisation accuracy.
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Figure 2. Dynamic and user-centric obfuscation, taking into consideration user preferences such as
not wanting any general privacy but wanting to always hide the jacket.

Table 7. Comparative performance of privacy protection methods.

Method Privacy Mechanism Anonymisation Accuracy
Frome and Cheung [8] Blurring (face and number plates) 93.6% (metrics on number plates only)
Hasan and Shaffer [9] Cartoonisation 5% (object masking)
Ren, Lee, and Ryoo [10] Image modification 80.25% (on static faces)
Badii, Tiemann, and Thiemert [12] Blurring 42.80% (on static images)
Zhou, Pun, and Tong [14] Face pixelation 60% (face only)
Sweeney and Malin [15] k-Same pixel 71% anonymised faces
Proposed Framework Ontology + RII + Obfuscation 77.8%

The framework demonstrated its adaptability across multi-user scenarios, including
users with and without predefined privacy preferences. For unregistered users, the Re-
Identifiability Index (RII) was computed using soft biometric features such as hair colour,
clothing, and gait. When the RII exceeded the risk threshold, the framework automatically
applied obfuscation to the user’s face and soft biometric features, ensuring GDPR-compliant
default privacy protection without any manual configuration. For registered users who
specified red lines (e.g., “never show jacket”), the framework applied selective obfuscation
only to the specified feature, in this case, the jacket, while leaving the rest of the frame
unobscured. This showcases the detailed, user-respecting nature of the framework and its
ability to distinguish between general privacy logic and user-enforced exceptions. This
selective obfuscation results in minimal visual disruption, preserving full intelligibility of
the user’s face and actions while respecting specific privacy directives.

This comparison highlights the robustness of the proposed framework and its ability to
dynamically adapt privacy protection levels based on context, user-defined constraints, and
re-identifiability risk. Unlike current privacy protection methods, our framework protects
multiple dimensions of identity while maintaining intelligibility in most conditions.

To further demonstrate the robustness of the proposed framework, Table 8 provides a
feature-level comparative evaluation against state-of-the-art privacy protection methods.
Unlike current methods, which focus on single modalities or fixed obfuscation strategies,
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the proposed ontology-driven framework introduces dynamic adaptability, contextual
reasoning, and risk-based handling of soft biometric features. This highlights the significant
improvements introduced by our ontology-driven framework in achieving stronger privacy
protection, retaining higher levels of scene intelligibility handling, and ensuring compliance
with data protection principles.

Table 8. Feature-level comparison of static, semi-dynamic, and context-aware privacy protection
methods with the proposed ontology-driven framework.

. . . . Proposed
Static Data Partially Dynamic Context-Aware Privacy . .
Feature/Aspect Protection [8-10,14,15] Protection [7] Filters [11-13] Ontology-Driven Privacy
Framework
Context-Awareness No Partial (fixed rules) Medium (scene elements) Full (sce(;?fgxsg user
Adaptability to User . . . High (dynamic +
Preferences No Limited (static settings) No user-defined red lines)
Privacy Adaptation . Medium (face, skin, and High (hierarchical,
(Sensitivity) Low Medium body) context-driven)
T . . High (pleasantness High
Intelligibility Preservation Poor Medium and intelligibility) (selective obfuscation)
Soft Biometric Handling Yes (Gait, Hair,
Re-Identification Risk No No No Clothing, etc.)
Auto Privacy Prediction No No No Yes (Rancllor.n
Forest prediction)
GDPR Compliance No Partial Not explicitly addressed Strong (adaptive
+ user control)
Real-time Performance Limited (still images) .ModerateA Partlal.(Mec.haEval High (GI’.U—aCC:elerated,
(basic rule engines) real-time filters) real-time video)
Overall User Satisfaction N/A N/A Subjective evaluation on 88% positive, 8? Jo
pleasantness only acceptable clarity

In summary, the proposed framework advances current privacy-preserving meth-
ods by enabling real-time, context-aware, and user-specific privacy protection, validated
through both quantitative results and comparative evaluation. Unlike earlier works such as
Badii [11-13], which focused on static or semi-dynamic privacy filters with limited user con-
trol and no soft biometric modelling, the proposed ontology-driven framework introduces
dynamic adaptation, user red line enforcement, soft biometric risk handling, and explain-
able reasoning. These improvements address gaps in current methods and demonstrate
strong potential for GDPR-compliant deployment in real-world Al environments.

4.3. Computational Performance

The computational efficiency of the proposed framework was evaluated in terms of
processing speed, inference time, and scalability across different privacy levels. Real-time
performance testing was carried out on sensor-acquired video streams, evaluating running
times on CPU and GPU-accelerated setups under different privacy setting conditions. The
framework delivers real-time execution at 163 ms per frame under the Low Privacy setting.
However, the use of stricter privacy settings, where multiple faces, objects, emotions, and
actions need to be identified and obfuscated, increased the execution time to 735 ms per
frame. GPU acceleration made operation processing more efficient because it minimised
latency regardless of scene complexity.

For example, face recognition processing time was reduced from 440 ms on the CPU
to 92.73 ms per frame on the GPU. Similarly, action recognition processing improved
from 15,880 ms on the CPU to 193 ms on the GPU. Other modules benefited similarly, as
summarised in Table 9.
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Table 9. GPU acceleration impact on recognition modules for real-time privacy protection.

Model Baseline I(Eé;clljl)tlon Time Optlmlsed( é)l(,elc];mon Time Improvement (%)
YOLOV5 (Object Recognition) 150 ms 17.62 ms 88.3% Faster
MTCNN (Face Recognition) 440 ms 92.73 ms 78.9% Faster
SlowFast R50 (Action Recognition) 15,880 ms 193 ms 98.8% Faster
AlexNet (Scene Recognition) 250 ms 5.82 ms 97.7% Faster
Emotion Recognition 19 ms 8.31 ms 56.3% Faster

Compared to current methods reported by Frome, Cheung, and Abdulkader [8], which
highlight processing times of 7-10 s per image, indicating severe limits in applicability
for real-time video processing. In comparison, the proposed framework shows a sig-
nificant advantage in achieving low-latency, frame-level privacy protection suitable for
real-time applications.

The privacy engine of the framework was evaluated for latency in decision-making
and obfuscation. Steps such as RII computation, scene sensitivity classification, aggregation
of privacy levels, and soft feature obfuscation were measured, with the total reasoning and
obfuscation latency ranging between 1.4 and 5.8 ms per frame. Obfuscation methods show
varying computational costs, with pixelation completed on average at 3.06 ms, blurring
at 540.73 ms, and GAN-based anonymisation at 2138.65 ms. Such results highlight the
trade-off between privacy strength and processing overhead (e.g., GANs offer the strongest
anonymisation but incur the highest latency), summarised in Table 10.

Table 10. Privacy engine decision-making and obfuscation latency per frame.

Step Description Average Time (ms)
RII computation Compute the Re-Identifiability Index from soft biometrics 1.0-3.0 ms
Scene sensitivity classification Determine the highest scene privacy level 0.02-0.2 ms
Highest privacy aggregation Combine privacy levels from users, scene, emotion, action 0.02-0.1 ms
Soft feature obfuscation Pixelate features (logo, clothes, gait, hair, accessory) 0.3-2.5ms
Total decision + obfuscation latency Privacy engine reasoning + obfuscation application 1.4-5.8 ms

To enhance efficiency, the framework implements a module-on-demand strategy, exe-
cuting each recognition module individually on the GPU only when required. This design
functions at the highest efficiency by avoiding unnecessary data processing and executing
modules only when needed. For example, if no faces are detected, the face authentica-
tion and face obfuscation tasks are not used, and preserve resources. This design avoids
the overhead identified with multiprocessing, which required 74,436.24 ms per frame, or
threading that processed frames at 23,860.48 ms, while maintaining real-time feasibility.

Overall, the evaluation confirms that GPU acceleration, ontology-driven reasoning,
and context-aware module execution are crucial for achieving real-time privacy protection
without sacrificing accuracy. The framework maintains a balance between performance,
adaptability, and privacy robustness, and at the same time, it remains scalable and efficient
across a variety of contexts.

4.4. User Satisfaction and Usability

The evaluation of the framework’s usability was based on user surveys and direct
interaction tests that measured usability, privacy assurance, and responsiveness. The par-
ticipant sample was mainly composed of younger users, with 67.9% aged 18-24, 10.7%
aged 25-34, 17.9% aged 35-44, and 3.6% made the 55+ age group. This demographic profile
contributed to a higher familiarity with privacy protection tools such as face filters and
other obfuscation features usually used in social media applications. As a result, partic-
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ipants demonstrated heightened expectations for achieving an optimal balance between
obfuscation strength and scene intelligibility.

Survey results indicated broad confidence in the framework’s adaptability and effec-
tiveness. According to 85.7% of participants, adaptable privacy controls improved the
ability to control their data. Also, 88% of participants reported that applied protection was
sufficiently maintained without overly compromising intelligibility. To enforce this, 85%
affirmed the framework remained responsive, even under multi-user and dynamic privacy
adaptations, and 92.9% showed trust in how well the framework protects sensitive data.
However, 34% of participants stated that heavy obfuscation affected scene intelligibility, or
when users were close to the camera. This shows that stronger privacy protection ensures
confidentiality, but it can also weaken scene intelligibility.

This reflects the central RII-IVI trade-off: as the RII increases, prompting stronger
obfuscation, the IVI tends to decrease. This is particularly evident in multi-user or high-risk
settings where full masking is applied to faces and soft biometric features. Nevertheless,
the framework preserves intelligibility wherever possible by using targeted obfuscation
and preserving unmasked content when privacy risks are low. Importantly, user-defined
red lines, such as “always hide jacket” (Figure 2), were honoured in different scenarios.
This enforcement of user-defined red lines, regardless of context, improved trust and
demonstrated the loyalty of the ontology-based privacy engine. Figure 3 shows obfuscation
techniques without impactful effects on video quality while preserving scene quality.

o

Figure 3. Sample image from the COCO dataset [38] with many individuals present, which demon-
strates that the proposed obfuscation method effectively protects sensitive features without substan-
tially degrading the overall video quality or scene intelligibility.

In contrast, Figure 4 illustrates a case in which heavy obfuscation leads to notable
reductions in scene clarity when multiple users are present in close proximity.

Figure 4. Example from the COCO dataset [38] illustrating how the obfuscation technique can reduce
scene quality in complex multi-user scenarios.
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Transparency was another critical factor in user trust, where 71.4% of users agreed that
the framework offered a good balance between privacy and usability, and 28.6% found the
balance “somewhat” acceptable, pointing to a need for clearer explainability mechanisms.
Users expressed interest in better explainability of how and why some privacy decisions
are made, particularly when red lines or contextual obfuscations intersect.

4.5. Error Analysis and Framework Limitations

While the proposed framework effectively enforces privacy protection, certain chal-
lenges and limitations were identified during the evaluation. One key limitation arises
when face and object recogniser systems fail to identify targets specifically in low-light
conditions, when objects are partially obscured, or in low-resolution video frames. In some
instances, incorrect identification resulted in incomplete obfuscations, leading to potential
risks. For example, face recognition failures occurred when users were partially visible due
to occlusions or when image processing steps (e.g., resolution downscaling for efficiency)
caused faces within sensor-acquired frames to become too small for reliable recognition
of PII features. A clear deficiency occurred when human faces appeared in non-frontal
orientations, which led to the failure of the face detection module and, as a result, missed
obfuscations of faces, as shown in Figure 5.

Figure 5. Example from the COCO dataset [38] showing a failure case in the face recognition module,
where non-frontal face orientations were not detected, resulting in missed obfuscation.

In addition to facial recognition issues, limitations were observed in soft biometric
recognition and Rll-based privacy enforcement. In certain frame-level data instances, soft
features such as hair colour, skin tone, or clothing logos were misclassified due to lighting
variations or partial occlusion. This occasionally led to inflated RII scores and unnecessary
obfuscation, reducing intelligibility without increasing actual privacy protection. Con-
versely, in other cases, weak recognition of soft features caused underestimated RII values,
resulting in insufficient protection for potentially identifiable individuals. These findings
suggest that confidence-aware soft biometric recognition and threshold calibration could
improve both accuracy and interpretability in RII-driven privacy decisions.

Another limitation is the misclassification of entity sensitivity, such as classifying a
semi-private environment as public areas, producing incorrect overall privacy settings. This
issue was identified in indoor environments, such as an office area, where distinguishing
between private and public contexts proved difficult and misleading. To improve such scene
classification, the proposed framework integrates ontology rules and context interpretation
that improve consistency.

Real-time performance was impacted as privacy settings increased, introducing higher
computational overheads. While Low Privacy settings maintain an average processing time
of 163 ms per frame, the use of High Privacy settings in densely populated scenes increased
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processing time to 735 ms per frame. This demonstrates the trade-off between privacy
protection and framework performance when operating on hardware-limited devices.

Overall, while the proposed framework shows strong privacy protection capabilities,
further improvements are needed in soft biometric handling, improved recognition accu-
racy, context misclassification, and hardware optimisation. Addressing these areas will
further improve the adaptability and effectiveness of the proposed framework in real-world
and privacy-sensitive environments.

4.6. Summary of Key Findings

The evaluation of the proposed privacy protection framework confirms its effective-
ness in balancing privacy, usability, and computational efficiency. The adaptive framework
combines ontology-driven reasoning, user-defined red lines, and contextual sensitivity
analysis to dynamically adjust privacy levels while at the same time retaining semantic
clarity. Key innovations, such as the Re-Identifiability Index (RII) and user-defined red lines
such as “always hide logos” or “never show jacket”, enabled detailed, persistent privacy
control, even across changing scenes and user contexts. These features proved critical in
multi-user environments and when handling unregistered users, where privacy levels were
inferred using soft biometrics and contextual risk.

Quantitative results demonstrated that privacy protection techniques, including pixela-
tion, blurring, and GAN-based anonymisation, reduce the risk of subject re-identification. In
77.8% of cases, participants were unable to recognise individuals in obfuscated videos. Pri-
vacy enforcement was rated “highly effective” by 85.2% of participants, and 92.9% reported
confidence in the ability of the framework to protect private information. Despite a 34%
drop in perceived clarity under High Privacy settings, 71.4% of participants viewed the
framework as achieving a “good balance” between privacy protection and scene intel-
ligibility. These findings highlight the effectiveness of the proposed framework over
current methods.

Compared to prior static methods [8-10,14,15,44], which offered static privacy en-
forcement with limited adaptability, the proposed framework achieves a 96.3% protection
success rate while dynamically adapting to user-centric requirements, context-awareness,
and real-time video processing. As shown in Table 9, the proposed framework outper-
forms current methods across multiple privacy protection dimensions, including context
awareness, soft biometric handling, and intelligibility preservation, thereby confirming
its practical viability. The framework also complies with GDPR principles through data
minimisation, opt-out mechanisms for soft biometrics, and transparent user controls. These
compliance requirements are legal obligations and also guide the design of the proposed
framework in ensuring efficient and real-time processing without affecting privacy.

Performance evaluations confirmed that GPU acceleration enabled real-time pro-
cessing, with acceptable execution times of 163 ms per frame under Low Privacy and
735 ms under High Privacy settings. Recognition module optimisations delivered up to
98.8% improvement in inference speed, making the framework scalable and suitable for
real-time deployment.

Opverall, findings establish that the proposed framework meets scalability and usability
while being compliant with GDPR, demonstrating its potential for deployment in a variety
of Al applications, including social media, surveillance, and smart environments. Limita-
tions remain for low-resolution frame-level scenarios and complex scene classifications,
which offer promising directions for future enhancement, including improving recognition
reliability of PII features, expanding explainability, and intelligibility-privacy trade-off
refinement, especially in low-resolution or high-risk scenarios.
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5. Discussion

Current privacy-preserving Al models use fixed anonymisation rules that apply uni-
form privacy settings that do not take into consideration individual privacy preferences
or contextual factors. These static anonymity techniques lead to primary issues such as
overprotection that reduces intelligibility or under-protection, providing inadequate pro-
tection of sensitive information. As noted by Shu, Zheng, and Hui [7], current systems
employ either manual intervention or predefined rules for privacy protection. Additionally,
previous multimodal AI architectures, although combining multiple recognition func-
tionalities, have been criticised by Rivadeneira, Silva, and Colomo-Palacios [16] for the
absence of user control and transparency of the decision-making process. Similarly, Badii
and Al-Obaidi [11,12] and Badii, Tiemann, and Thiemert [13] highlighted the importance
of context-driven decision making in privacy protection AL They also state that current
models fail to account for situational variations in privacy sensitivity and the need for
empowering users to define rules that reflect complex information needs.

In contrast, the proposed framework addresses the above limitations by introducing
an ontology-driven and user-centric method that dynamically updates privacy settings
based on user-defined privacy rules, the sensitivity of detected entities, contextual analysis,
and real-time privacy level predictions. Unlike current methods [7-10,14,15], it integrates
multimodal recognition (faces, objects, scenes, actions, emotions, and soft biometrics) with
ontology-based reasoning to deliver context-sensitive and user-specific privacy enforce-
ment. Other important advantages include enforcement of user-defined red lines (e.g.,
“always hide jacket”), the use of dual metrics including RII and IVI that balance privacy
and intelligibility, and GPU-accelerated execution for real-time deployment. These design
choices collectively ensure adaptive, explainable, and GDPR-compliant privacy protection
and improve user trust and system scalability.

Experimental results demonstrate the framework’s privacy protection success rate of
96.3%, outperforming current methods such as that of Shan, Wenger, Zhang, and Li [44],
which achieved 80% accuracy on static images, and which lack contextual and user-centric
adaptation. Participants reported high levels of satisfaction, with 85.2% rating privacy
protection as “highly effective”. Also, 71.4% stated that the framework achieved a good
balance between privacy protection and scene intelligibility, and 28.6% stated that the
balance was adequate. This shows that the proposed framework maintained a strong
balance between privacy protection and scene intelligibility, highlighting the need for
context-aware and personalised privacy controls in environments.

GPU acceleration proved essential in delivering real-time processing and reducing
processing delays across recognition tasks (e.g., face recognition improved from 440 ms
to 92.73 ms and scene recognition from 250 ms to 5.82 ms, Table 9). Such performance
optimisations make the framework suitable for deployment in resource-constrained envi-
ronments, and also address key limitations stated by Sezer, Dogdu, and Ozbayoglu [27],
Wang and Deng [45], and Abadi, Chu, and Goodfellow [46].

Nonetheless, the framework has limitations. Recognition accuracy degrades under
low-light, occlusion, or low-resolution conditions, which leads to occasional missed obfus-
cations. Scene misclassification in complex environments can result in incorrect privacy
level predictions. Additionally, some obfuscation methods, such as GAN-based anonymi-
sation, provide better scene intelligibility but introduce delays, by processing frames at
2138.65 ms. The use of lighter weight alternatives, such as pixelation, showed improve-
ments by processing frames at 3.06 ms, hence enabling real-time privacy protection.

Moreover, while 96.3% of participants reported effective privacy adaptation, 34%
stated difficulty understanding how their data was processed. This highlights the need
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for improved transparency and user feedback mechanisms. Future improvements should
include explainability features and better visualisation of privacy decisions.

In scenarios where intelligibility is important, such as in workspaces, privacy protec-
tion must be considered for the Re-Identifiability Index (RII) and the Information Value
Index (IVI) of visual elements. Formalising these dual indicators and integrating rule-based
reasoning with machine learning could support more intelligent obfuscation decisions that
protect privacy without compromising scene intelligibility.

Overall, results show that the proposed framework improves adaptive privacy pro-
tection by combining user-centric privacy settings, ontology-driven reasoning, and multi-
modal recognition to achieve a better balance between privacy protection and scene intel-
ligibility. The integration of user-defined rules, entity and contextual sensitivity, and the
Re-Identifiability Index achieves adaptive and GDPR-compliant privacy protection that is
scalable and explainable. These results highlight that effective privacy protection requires
user-centric and privacy rules that can adapt to scene contexts and sensitivity. By applying
privacy protection to data captured by visual sensors, the framework demonstrates that it
is applicable and effective in real-world, vision-based systems.

6. Conclusions and Future Work

The proposed framework introduces a user-centric, ontology-driven privacy protection
architecture that adaptively changes privacy settings responsive to the user preferences,
privacy-context sensitivity, and multimodal recognition of entities in vision-sensor data
streams. It performs real-time recognition of faces, objects, scenes, emotions, actions, and
soft biometrics, combined with an ontology-based reasoning engine that considers user
preferences and contextual privacy sensitivity to optimise the balance of privacy protection
and scene intelligibility. In contrast to current static models, the proposed framework
provides detailed, real-time, and entity-specific obfuscation guided by the Re-Identifiability
Index (RII), and user-defined red lines, enabling a transparent, explainable, and GDPR-
compliant privacy adaptation.

Experimental evaluation demonstrated a 96.3% privacy protection success rate
(Tables 9 and 10) and maintained an optimal balance between privacy and intelligibil-
ity, maintaining scene intelligibility above 60% under high privacy settings (Table 8).
GPU acceleration and optimised execution pipelines reduced inference times significantly
(e.g., face recognition from 440 ms to 92.73 ms, scene recognition from 250 ms to 5.82 ms)
and kept privacy engine decision-making and obfuscation latency within real-time thresh-
olds (Table 10). User feedback confirmed the effectiveness of the framework, with
85.2% of participants rating privacy protection as “highly effective” and 71.4% reporting
a good balance between privacy and intelligibility (Table 7). These results highlight the
advantages of the framework over current methods by combining real-time performance,
contextual adaptability, multimodal integration, and user-centric privacy protection.

Nonetheless, challenges remain. Recognition accuracy degrades under low-light, oc-
clusion, or low-resolution conditions, leading to occasional misclassifications and excessive
fallback protections. GAN-based anonymisation, though effective, introduces prohibitive
latency (2138.65 ms per frame), limiting its suitability for real-time use. Addressing these
challenges is necessary for improving robustness in complex environments.

Future research should focus on improving recognition accuracy in challenging condi-
tions to reduce misclassifications of entities in sensor-acquired frames and the fine-tuning
of the context-aware classification ontology. Privacy-oriented, light-weight gait and soft fea-
ture recognition, and detailed testing with larger and more diverse datasets will contribute
to better robustness and generalisability. Additionally, integrating Explainable Al (XAI) [47]
mechanisms into multimodal Al frameworks will enable users to have a better understand-



Sensors 2025, 25, 6105

27 of 31

ing of the scene contexts for the context-specific privacy safeguards implemented within
this architecture, hence increasing transparency and user trust.

In conclusion, the proposed framework advances the field of privacy-preserving Al
by combining ontology-driven reasoning, multimodal recognition, dual metrics (RII/IVI),
user-defined rules, and real-time execution to deliver dynamic, context-aware privacy
protection. Unlike current methods, it adapts dynamically to user preferences, contextual
sensitivity, and re-identification risks, which ensures that privacy safeguards are effective
and explainable. By integrating transparency, usability, and strong privacy guarantees, this
research provides a foundation for next-generation Al systems that are required to operate
responsibly and transparently in sensor-based, real-world environments.
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Appendix A

Table A1. Comparison of face recognition models.

Face Recognition Model Accuracy (%) Speed Frames per Second (fps)
FaceNet [48] 99.63% 20-30 fps
DeepFace [49] 97.35% 20-25 fps
ResNet [50] 99.60% 20-30 fps
VGGFace [51] 98.95% 15-20 fps
ArcFace [52] 99.83% 20-30 fps
The Histogram of Oriented Gradients (HOG) detector [53] 85-90% 30-60 fps
Multi-task Cascaded Convolutional Networks (MTCNN) [54] 94.4% 16-99 fps
Table A2. Comparison of scene recognition models.
Architecture Model Accuracy Speed (fps)
ResNet-50 [50] 76% accuracy on ImageNet Approximately 100 fps
ResNet-101 [50] Around 77% accuracy on ImageNet Approximately 60 fps
Convolutional Neural ResNet-152 [50] Around 78% accuracy on ImageNet Approximately 40 fps
Networks (CNNs) VGG16 [55] Around 71.5% accuracy on ImageNet Approximately 40 fps
VGGI19 [55] Around 71.9% accuracy on ImageNet Approximately 30 fps

AlexNet [56]

Around 85% accuracy on ImageNet

Approximately 205 fps [56]

Region-Based
Convolutional Neural
Networks (R-CNNs)

Faster R-CNN [57]
Mask R-CNN [58]

Long-Short Term
Memory (LSTM) [59]

Around 73.2% accuracy on specific recognition tasks

Similarly to Faster R-CNN for scene recognition
tasks, around 75-80%

Better accuracy than most models, at 85%

Approximately 5 fps on an
NVIDIA V100 GPU
Approximately 2-5 fps on an
NVIDIA V100 GPU

It comes with overheads as it uses
recurrent networks and can
process around 15 fps
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Table A3. Comparison of object recognition models.

Architecture Model Accuracy Speed Frames per Second (FPS)
You Only Look Once (YOLO) [53] 63.4% Approximately 45 FPS
You Only Look Once (YOLOV5) 50% Approximately 140 FPS
You Only Look Once (YOLOv8/YOLOV10) 50% 30-60 FPS on a high-end GPU
Single-stage detectors Single Shot Multibox Detector (SSD) [60] 76.9% Achieves around 22 FPS
RetinaNet [61] 39.6% Approximately 8 FPS
CenterNet [62] 47% 270 ms per frame or 3.7 FPS
EfficientDet [63] 52.2% Approximately 4 FPS
CNN [57], AlexNet [56] 62-83% Approximately 1 FPS
R-CNN [50] 53.7% At best 0.5 FPS
Fast R-CNN [55,64] 68.8% Achieves 6.67 FPS
Two-Stage Detectors Faster R-CNN [57,60] 73.2% 5-10 FPS on high-end GPUs
Spatial Pyramid Pooling Network (SPP-Net) [50]  59.2% Achieves 2 FPS
R-FCN [65] 76.6% Achieves 5.88 FPS
Mask R-CNN [58] 36.7% Achieves 5.13 FPS

Table A4. Comparison of action recognition models.

Model Accuracy Speed (FPS)
CNNss [66,67] 97% on UCF101 dataset Approximately 10-15 FPS
RNNSs [68] 90% on HMDB51 dataset 5-8 FPS, slower due to the sequential nature

Two-Stream CNNs [68] 85% on UCF101 dataset Approximately 7-10 FPS

Long-Short Term Memory [69] 75-80% on UCF101 dataset 10-15 FPS depending on the complexity and length of the

video sequences

Temporal Segment Networks [70] 94% on UCF101 dataset Approximately 20-25 FPS
Inflated 3D ConvNets (I3D) [71] 95% on Kinetics dataset Approximately 10-15 FPS
SlowFast Networks [72] 96% on Kinetics dataset Approximately 30-60 FPS

Table A5. Comparison of emotion recognition models.

Model Accuracy Training Time Computational Resources
AlexNet [56] 84.7% Moderate Moderate (30 FPS on CPU or 300 FPS on GPU)
VGGNet [55] 92% Long High
ResNet [50] 96.43% Long Very High (110, 1202 layers)
RNNs [73,74] 84.8% Long Moderate
Faster R-CNN [57] 78.8% Long High
EfficientNet [41,55] 84.6% Moderate Moderate (faster than other models around 155FPS)
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