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ABSTRACT
Mitigating against the impacts of catastrophic flooding requires funding for the communities at risk, ahead of an event. Simulation 
library flood forecasting systems are being deployed for forecast-based financing (FbF) applications. The FbF trigger is usually 
automated and relies on the accuracy of the flood inundation forecast, which can lead to missed events that were forecast below 
the trigger threshold. However, earth observation data from satellite-based synthetic aperture radar (SAR) sensors can reliably 
detect most large flooding events. A new data assimilation framework is presented to update the flood map selection from a simu-
lation library system using SAR data, taking account of observation uncertainties. The method is tested on flooding in Pakistan, 
2022. The Indus River in the Sindh province was not forecast to reach flood levels, which resulted in no selection of the flood 
maps and no triggering of the FbF scheme. Following observation assimilation, the flood map selection could be triggered in four 
out of five sub-catchments tested, with the exception occurring in a dense urban area due to the simulation library flood map 
accuracy here. Thus, the analysis flood map has potential to be used to trigger a secondary finance scheme during a flood event 
and avoid missed financing opportunities for humanitarian action.

1   |   Introduction

The warmer climate is increasing the frequency and intensity of 
extreme weather events as well as the exposure and vulnerabil-
ity of communities and individuals (Pörtner et al. 2022). Large-
scale flood forecasting systems predicting flood inundation 
extent are increasingly used for disaster risk reduction to im-
prove preparedness ahead of a major flooding event (Stephens 
and Cloke  2014; Hooker et  al.  2023b; Wu et  al.  2020). An en-
semble flood forecasting system creates probabilistic flood maps 
indicating the likelihood of flooding across a region or country. 
Flood impact risk factors such as population density, land-use 

types or vulnerable infrastructure can also be mapped for the 
same area. The forecast-flood-likelihood maps can be overlaid 
with impact maps and depending on the severity of the hazard 
and the level of impact, a risk profile can be determined. The 
flood risk profile can be used to inform forecast-based financ-
ing (FbF) schemes that enable the pre-release of funds based on 
the flood forecast, ahead of the flood event (Coughlan de Perez 
et al. 2015, 2016). Automation of FbF schemes is important for 
rapid action to take place to mitigate against flooding impacts. 
The skill of the flood forecasting system is key to triggering the 
FbF scheme. A non-trigger of FbF ahead of or during a flood 
event might prove catastrophic for those impacted.
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Advanced flood forecasting systems, both at global and local 
levels, link together meteorological and hydrological forecasts 
of river discharge that drive the selection of pre-computed flood 
maps from a simulation library (Speight et  al.  2021; Hooker 
et al. 2023a). The use of a simulation library obviates the need 
to run a hydrodynamic model as part of the forecast process, 
reducing computation time and allowing near real-time up-
dating for large areas, which otherwise presents a significant 
computational challenge. The flood maps within the library 
are at a relatively higher spatial resolution (e.g., 30 m) com-
pared to the resolution of the driving global hydrological model 
(e.g., approximately 5 km). This mismatch in scales can lead to 
problems with flood map selection and can cause gaps where 
the minimum return period threshold has not been exceeded (a 
non-trigger) by the forecast discharge (Hooker et al. 2023b). The 
three main issues that cause this in the global scale model are 
the representation of river networks, the return period thresh-
olds determined and the exclusion of dam operations. Rivers 
that are narrower than a particular width, or catchment areas 
smaller than a pre-determined size are not resolved by global 
scale models. In addition, the return period thresholds set may 
be poorly calibrated due to a lack of ground truth observational 
data such as river discharge or river water level (Boelee 2022; 
Matthews et al. 2022). These two limitations can lead to a non-
trigger, that is, no flood map is selected from the simulation li-
brary for a particular sub-catchment. Also, local dam operations 
such as diversions of river water for irrigation purposes or rapid 
releases of flood waters downstream, are not generally included 
in global scale models. This can lead to over- or under-prediction 
of forecast discharge, resulting in inaccurate or non-trigger of 
flood map selection in the forecast.

Satellite-derived observations of flooding have the potential to 
bring additional spatial information into flood inundation fore-
casts compared to in  situ point gauging stations. These obser-
vations could be used to update and improve the FbF scheme 
either as part of a secondary finance payment following the ac-
quisition of the satellite data or to improve the flood inundation 
forecasts going forwards as the flood event evolves. Synthetic 
aperture radar (SAR) sensors are particularly useful for remote 
flood detection, since they can see through cloud, most weather 
and are active both day and night (Mason et al. 2012; Schumann 
et  al.  2023). Previously, SAR data have been used in several 
different ways to improve hydraulic models and flood predic-
tion through data assimilation (DA). DA finds an optimal state 
(such as water level) or model parameter values by accounting 
for the previous forecast, the observations available, and both 
of their associated uncertainties. The updated state (analysis) or 
parameter set are used to initiate the next forecast in a feedback 
loop or cycle. A review of approaches used to assimilate satellite-
derived data into hydraulic models (from 2007 until 2015) can 
be found in tab. 7 of Grimaldi et al. (2016) and tab. 1 of Revilla-
Romero et al. (2016).

When building a new DA system, there are some fundamen-
tal choices that have to be made, including the choice of un-
derlying DA method. Several different DA methods have 
been used for flood inundation studies including ensemble 
Kalman filters (García-Pintado et al. 2013, 2015; Andreadis and 
Schumann 2014; Cooper et al. 2018; Annis et al. 2022; Nguyen 
et  al.  2023), particle filters, (Hostache et  al.  2018; Dasgupta, 

Hostache, Ramsankaran, et al. 2021; Di Mauro et al. 2021, 2022) 
and variational techniques (Lai et  al.  2014; Pujol et  al.  2022). 
Variational assimilation solves an optimization problem, find-
ing the single solution that maximises the posterior proba-
bility, given the observations and their uncertainties (Lorenc 
et al. 2000).

A second fundamental choice in building a new DA system, is 
the approach for comparing the model data to the observations. 
For SAR observations, a first step is often to extract flood extent 
using an image classification technique (see Section 3, Grimaldi 
et al. (2016)). The flood extent information could be directly assim-
ilated, as a binary flood map (e.g., Lai et al. 2014). An alternative 
is to intersect the edge of the binary flood map with a digital ele-
vation model (DEM) and derive a water level observation (Mason 
et al. 2007, 2012). SAR-derived water levels only provide informa-
tion at the flood edge and rely on the spatial resolution and the 
vertical accuracy of the underlying DEM (Dasgupta, Hostache, 
Ramasankaran, et al. 2021), which makes them difficult to ob-
tain. Nevertheless, water level observations can provide more 
long-lasting impact than binary flood extents in DA cycling sys-
tems (Cooper et al. 2019). Probabilistic flood mapping procedure 
for SAR data was first introduced by Giustarini et al. (2016). This 
created the potential for flooding probabilities to be assimilated 
directly via particle filter approaches (e.g., Dasgupta, Hostache, 
Ramsankaran, et al. 2021; Di Mauro et al. 2021, 2022). More re-
cently, observation uncertainty associated with classifying flood 
extent from SAR data is openly available through the Copernicus 
Emergency Management Service (CEMS) (Copernicus 
Programme 2021) with a time lag of less than 8 h between satellite 
data acquisition and the generation of flood maps.

All of these previous studies involved the assimilation of satellite-
derived data to update hydrodynamic model states or param-
eter values by taking a DA cycling approach. The assimilation 
provides updated initial conditions ahead of the next forecast 
cycle. The new approach here differs significantly by aiming to 
develop a DA framework to assimilate probabilistic flood maps 
into a simulation library flood inundation forecasting system. 
A variational approach is taken as it is particularly suited to a 
simulation library system. The set of states ranged over in the 
optimization process can be limited to the pre-computed solu-
tions in the library. This ensures that the resulting analysis flood 
map remains consistent with the flood forecasting system. The 
goal is to improve flood map selection by creating a new anal-
ysis flood map. Spatially distributed flood likelihood informa-
tion derived from SAR data is used within the DA framework. 
It is important to note that this DA approach does not include a 
feedback loop to the forecasting system. The DA framework is 
tested using forecast data and optical satellite observations from 
a major flood event in Pakistan, August 2022. (Floodlist 2022).

In this article, the flood forecasting system and derivation of the 
static simulation library along with satellite-derived observations 
of flood likelihood are outlined in Section 2. The development of 
a new DA method is described in Section 3. Recently published 
verification methods that are used to evaluate the results are de-
scribed in the same section (Hooker et al. 2022, 2023a, 2023b). 
Section 4 presents an overview of the 2022 Pakistan flood and 
details of the data used. The observation data includes sub-
catchments where the flooding is well observed, but also dense 
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3 of 13Meteorological Applications, 2025

urban areas, which are masked out in the flood likelihood prod-
uct as they are deemed unsuitable for SAR-derived flood detec-
tion. The DA framework successfully triggered flood maps in 4 
out of 5 sub-catchments tested as shown in the results, discussed 
in Section 5. Section 6 concludes with recommendations for fu-
ture work to improve the use of SAR flood likelihood data to up-
date a simulation library flood forecasting system through DA.

2   |   Simulation Library Forecasting System and 
Observation Data

Flood Foresight, a simulation library flood inundation forecast-
ing system and its application for disaster risk reduction through 
FbF, is outlined in Section  2.1 (Revilla-Romero et  al.  2017). 
Section  2.2 details the derivation of the flood likelihood data 
from SAR that will be used as observation data in the assimi-
lation process. The extraction of flood extent information from 
optical images that will be used for validation is explained in 
Section 2.3.

2.1   |   Flood Foresight and  
Forecast-Based-Financing

The chain of flood forecasting systems used to predict flood 
inundation and to produce flood impact forecasts are detailed 
in Figure  1. The Global Flood Awareness System (GloFAS) 
couples global ensemble weather forecasts with a hydrological 
model and provides daily ensemble forecast river discharge at 
approximately 10 km grid size (v3.2, GloFAS 2021). The GloFAS 
forecast river discharge is used to as an input to drive the Flood 
Foresight system. Flood Foresight (Revilla-Romero et al. 2017; 
Hooker et al. 2023a) is a fluvial, probabilistic flood inundation 
forecasting system. Flood Foresight is set up by dividing the 
catchment into ‘Impact Zones’ (IZ) or sub-catchments using 
the HydroBASINS data set (Lehner  2014). Each IZ in Flood 
Foresight is linked to a GloFAS grid cell that provides a 51 en-
semble member forecast of river discharge. Flood Foresight con-
tains a simulation library of precomputed flood depth and extent 
maps. The flood map library was hydrodynamically modelled 
using JFlow, (Bradbrook 2006) and RFlow using a detailed 30 
m digital surface model. The maps were modelled at specific 

return period thresholds (20, 50, 100, 200, 500, and 1500 years). 
Subsequently, these were linearly interpolated at 5 intermediate 
intervals between each return period threshold and extrapolated 
between zero and the 20 year return period flood map (total-
ling 36 flood maps). Depending on the forecast discharge from 
GloFAS for each IZ, a flood map is selected from the simulation 
library. The flood map selected is determined by the return pe-
riod threshold exceeded within each IZ. The resultant forecast 
flood map is created by stitching together individual IZ flood 
maps (at various RPs) and is produced daily out to 10 days ahead.

The charity Start Network (Start Network  2022) brings to-
gether a group of over 80 humanitarian agencies and aims to 
develop local community-led, early action through a model 
of proactive funding to mitigate against the impacts of crises. 
JBA Consulting, in partnership with Start Network, have devel-
oped a disaster risk financing system for the Indus River basin 
in Pakistan that links Flood Foresight forecast flood maps to 
populations impacted by flooding (Figure 1). For the purposes 
of setting FbF trigger threshold levels, the disaster risk financ-
ing system quantifies the flood risk to the population through 
a commercial probabilistic global catastrophe risk model, FLY 
(Dunning  2019). The dynamic operational index triggering 
could be linked to the analysis flood map (produced here as a 
result of the DA) to provide a secondary finance payment.

2.2   |   Satellite-Derived Flood Likelihood

The Copernicus global flood monitoring (GFM) is an open 
source service that combines the outputs of three different al-
gorithms to extract flood extent and uncertainty information 
from Sentinel-1 SAR data (GloFAS Global Flood Monitoring 
(GFM) 2021). The process is automatic and runs continuously 
in near real-time (within 8 h after image acquisition) for every 
SAR image detecting flooding on a global-scale. The resulting 
flood information layers are available through open access. 
The mini-ensemble approach used for flood detection increases 
the confidence in the resulting derived observations. The 
first flood mapping algorithm developed by the Luxembourg 
Institute of Science and Technology uses a pair of SAR images 
(pre-flood and flood) and a hierarchical split-based change 
detection approach to classify permanent and flood waters 

FIGURE 1    |    Flood foresight/start network ensemble flood inundation forecasting and disaster risk financing system.
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(Chini et al. 2017). The classification uncertainty depends on 
the Bayesian inference classification probabilities. The second 
flood mapping algorithm by the German Aerospace Research 
Centre uses a hierarchical tile-based thresholding approach 
and the optimization of the classification by combining various 
information sources using fuzzy-logic theory and region grow-
ing (Martinis et al. 2015; Twele et al. 2016). The uncertainty in-
formation depends on fuzzy memberships. The final algorithm 
from the Vienna University of Technology uses the historical 
time series of the SAR backscatter values per pixel and classi-
fies flood extent from the backscatter probability distribution 
(Wagner et  al.  2020; Bauer-Marschallinger et  al.  2022). The 
classification uncertainty is based on the Bayesian posterior 
probability. The output flood layer is derived using the mini-
ensemble with a pixel classified as flooded where two out of 
three of the algorithms determines a flood class. The flood 
likelihood values are aggregated, first by converting each to 
lie in the same range [0, 100] before averaging the likelihood 
values. Regions where SAR is unable to detect flooding due to 
shadow or layover effects are removed from the classification 
process. This usually includes dense urban areas, densely veg-
etated areas, regions with steep slopes and regions that might 
appear flooded such as dry, sandy desert-like surfaces. The ex-
clusion mask is available to download as an additional layer. 
Permanent and seasonal water bodies are classified separately 
as a reference water mask layer.

Krullikowski et al.  (2023) applied and assessed the usefulness 
of GFM ensemble likelihood on two test sites in Myanmar and 
Somalia, both situated in challenging areas for flood detection 
using SAR data. Krullikowski et al. found that the GFM ensem-
ble likelihood layer resulted in improved trust in the ensemble 
flood extent detection approach and provides more reliable and 
robust uncertainty information for detecting flooding compared 
to using a single algorithm only.

2.3   |   Optical Normalised Difference Water Index 
(NDWI)

Occasionally, optical satellite data can be useful for observations 
of flood extent. Flood detection from optical satellites depends 
on a near cloud-free sky where the satellite acquisition coincides 
with the flood event. The Normalised Difference Water Index 
(NDWI) for flood and surface water detection is calculated with 
Sentinel-2 optical data using the green band (B03, ≈560 nm) and 
the near infrared band (B08, ≈842 nm) (Albertini et al. 2022). 
The NDWI is given by:

where positive values indicate water. Albertini et al. (2022) re-
viewed the performance of surface water and flood detection 
metrics using multispectral satellite data. They found that the 
average overall accuracy from previous flood studies applying 
NDWI to be 87.85% and for permanent surface water studies 
scored 94.41%. This included studies using data from differ-
ent satellite sensors with spatial resolutions ranging from 10 
m for Sentinel-2 to 500 m for Terra-Aqua Moderate Resolution 
Imaging Spectroradiometer (MODIS, Justice et al. (2002)).

3   |   Methods

3.1   |   Data Assimilation Framework

The aim of the DA framework is to update a previous forecast 
of flood inundation extent and depth from Flood Foresight 
(the background) where a non-trigger has occurred in the 
forecast system but where flooding was derived from concur-
rent satellite-based SAR data. Using observation uncertainty 
information from the GFM flood likelihood layer (explained 
in Section 2.2), the objective is to improve the flood map selec-
tion for non-triggered IZ by minimising a cost function per IZ 
(Figure 2).

The DA framework aims to update the state vector, x ∈ Rn, 
which contains flood depths at each grid cell location. The 
components of x, xi, are the individual flood depths for a spe-
cific grid cell location. The total number of grid cells across 
an IZ is n, the total of observed unmasked grid cells is m. To 
find the optimum state accounting for observation uncertainty 
the observation likelihood term is defined P (y|x) where the 
components of observations, y ∈ Rm have two possible binary 
outcomes, yi = 1 (flooded) and yi = 0 (unflooded), following 
classification from SAR data. The likelihood term can be 
represented by a Bernoulli distribution (Lauritzen 2023), de-
fined as:

where Li is the GFM flood likelihood value (see Section 2.2). The 
i-th component of the observation operator H(x), defined as

acts to convert flood depths (state space) to a binary flood class 
(observation space) at unmasked grid cells, excluding observa-
tion likelihood information for masked grid cells where SAR 
data cannot reliably detect flooding. To find the maximum 

(1)NDWI =
B03 − B08

B03 + B08
,

(2)P(y| x) =
m∏

i= 1

L
[H(x)]i
i

(
1−Li

)1−[H(x)]i ,

(3)[H(x)]i =

{
1 flooded xi>0.2m

0 unflooded otherwise
,

FIGURE 2    |    Simulation library data assimilation framework flow 
diagram.
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posterior likelihood of the state variable, the negative log 
likelihood of P (y|x) is taken and divided by the number of 
unmasked grid cells m to derive the cost function (averaged 
across unmasked grid cells per IZ)

The cost function in Equation  (4) has a similar derivation to 
conventional three-dimensional variational DA, but its form 
is different since, unlike conventional variational DA, the 
observation likelihood is not Gaussian. The cost function in 
Equation  (5) adds labelled terms to Equation  (4) for a binary 
flooded or unflooded application. One term on the right-hand-
side of Equation  (5) is calculated per grid cell depending on 
whether the corresponding grid cell in the flood map library is 
flooded or unflooded. The relationship between the loss func-
tion and the observed likelihoods is plotted in Figure  3. For 
flooded grid cells, high probability values are penalised less 
heavily compared to low probability values, the opposite is true 
for unflooded grid cells. The value of J (x) is calculated per IZ 
by iterating through the flood map library (36 flood maps) and 
finding the flood map return period by minimising J (x), which 
is equivalent to maximising the posterior likelihood, given the 
observation uncertainty data. To ensure that the minimum 
is reached across the flood map library, J (x) is calculated for 
all 36 flood maps. Note that this is different to the standard 
DA approach where minimisation would be accomplished via 
a gradient descent algorithm (Bannister  2017). However, the 
approach does have an analogy with conventional strong-
constraint four-dimensional variational DA, where the solu-
tion must fit the forecast model.

Following the assimilation process, replacing the non-triggered IZ 
with updated flood maps results in an analysis flood depth and ex-
tent map (the flood depth information is contained within the sim-
ulation library). This means that the analysis flood map remains 
consistent with the Flood Foresight system where the flood maps 
have been hydrodynamically modelled, that is, they are physically 
realistic. Retaining the flood depth information is important for 
FbF applications for quantifying the risk of flood impacts. Since 
the observations have binary values (flooded/unflooded), it is not 
possible to distinguish between floods that have the same extent 
but different depths from the observation data. This property is in-
herited in the cost function. The cost function computation time 
per IZ for 36 flood maps takes an order of seconds on a laptop. 
By utilising parallel processing, multiple IZs could be computed 
simultaneously enabling near real-time implementation across a 
region in an operational environment.

3.2   |   Validation Methods

The resulting analysis flood map, following assimilation of 
SAR-derived flood likelihood data, is validated by comparing 
against independent flood extent observation data derived 
from optical satellite data, the NDWI (Section 2.3). The results 
will be validated by calculating the Fraction Skill Score (FSS, 
Roberts and Lean  (2008); Hooker et  al.  (2022)) and by map-
ping the performance on a Categorical Scale Map (CSM, Dey 
et al. (2014); Hooker et al. (2022, 2023a)). Both the FSS and the 
CSM avoid issues with the double penalty impact of conven-
tional binary performance measures as well as the impact of 
flood magnitude on the skill score (Hooker et al. 2022). The 
FSS is based on the Brier Skill Score and uses a neighbour-
hood approach to determine the skillful spatial scale of the 
analysis flood map. The fraction of flooding within a given 
square neighbourhood size of length n is compared by calcu-
lating the mean-squared-error (MSE) between the analysis 
and the validation flood maps to give

(4)J(x)= −
1

m

m∑

i=1

{
[H(x)]i ln

(
Li
)
+ (1−[H(x)]i ln (1−

(
Li
)}
,

(5)J(x)= −
1

m

m∑

i=1

{[H(x)]i In
(
Li
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

flooded

+ (1−[H(x)]i In(1−
(
Li
)
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

unflooded

.

FIGURE 3    |    Negative log loss function relationship with observed flood likelihood for flooded (a) and unflooded (b) grid cells.
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6 of 13 Meteorological Applications, 2025

where MSEn(ref) is a potential maximum MSE that depends on 
the fraction of flooding across the IZ on the analysis and the 
validation flood maps. A skilful scale is determined when FSS 
≥ FSST, the target FSS score, where FSST ≥ 0.5

fo
2.

 depends on 
the fraction of observed flooding across the IZ, fo. When the 
analysis and validation flood extents are equal in area across 
an IZ there is said to be no background bias and the maximum 
FSS is 1. Otherwise, the maximum asymptotic FSS (AFSS) is 
given by:

where fa is the fraction of flooding on the analysis flood map 
per IZ.

The CSM plots a local agreement scale (S) at every grid cell. 
An overview of the method is presented here. Please see Dey 
et  al.  (2014); Hooker et  al.  (2022, 2023a) for full details of the 
methodology. A background bias between the analysis and veri-
fication flood maps that is deemed acceptable is predetermined. 
The pre-set bias is used to calculate an agreement criterion that 
must be reached by the flood map comparison calculation. The 
comparison begins at each grid cell n = 1, if the agreement crite-
rion is met at grid level, the grid cell is labelled with an agreement 
scale S = 0. Where the criterion is not met, a larger neighbour-
hood size is compared (e.g., n = 3). The fraction flooded in each 
of the analysis and validation flood maps are compared and 
if the criterion is met, the agreement scale assigned would be 
S = 1. The process continues to larger neighbourhoods (e.g., 

n = 7, S = 3) until either the criterion is met or a predetermined 
limit is reached (Slim, set to 9 for this application). The agreement 
scale at this limit would indicate a false alarm or miss for the 
grid cell. Note that the relationship between n, the neighbour-
hood size used for the FSS, and S is given by S = (n − 1)∕2. The 
agreement scales are combined with data from a conventional 
contingency map (indicating whether the flood map grid cell is 
over- or under-estimating flooding, Stephens et al.  (2014)) and 
are mapped across an IZ. The CSM indicates a location-specific 
level of agreement and shows where the flood maps are over- 
or under-estimating flooding. Grid cells coloured red indicate 
under-estimation, while blue grid cells indicate over-estimation.

4   |   Pakistan Flood 2022

4.1   |   Event Overview

In Spring 2022, Pakistan experienced a record-breaking heatwave 
with temperatures exceeding 50°C. The heat exacerbated upstream 
glacial snow melt feeding the Indus River basin, which runs over 
3000 km across the length of Pakistan, draining the Himalayas to 
the Arabian Sea. An intense monsoon season followed in July and 
August, driving multiple flood-producing mechanisms includ-
ing multi-day extreme precipitation that was the primary driver 
of floods (World Weather Attribution 2022; Nanditha et al. 2023). 
Attribution studies indicate that the 5-day maximum rainfall over 
the provinces Sindh and Balochistan, which led to catastrophic 
flooding, was made 75% more intense by 1.2°C of global warming 
(World Weather Attribution 2022). The northern Sindh province 
received an estimated 442.5 mm of rainfall in August, 784% more 
than usually recorded, causing inundation of 55,000 km2 across 
the region (Floodlist 2022). Despite early warnings of the potential 
for significant flooding from GloFAS, the unimaginable scale and 

(6)FSSn = 1 −
MSEn

MSEn(ref)
,

(7)AFSS =
2fofa
f 2o + f 2a

,

FIGURE 4    |    (a) The domain of interest (DOI) is located in the Indus Basin, Sindh province, Pakistan. A map of the DOI is generated using Bing 
Maps. 2024 Microsoft Corporation. (b) The region is divided into sub-catchments or Impact Zones (IZ) in Flood Foresight. Satellite-derived flooding 
(NDWI) from Sentinel-2 data (Section 2.3) from 31 August 2022 is highlighted along with permanent water bodies (PWB).

 14698080, 2025, 5, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.70104 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [13/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7 of 13Meteorological Applications, 2025

magnitude of the flood impacted over 33 million people with over 
1700 lives lost and costing more than $40 billion in economic dam-
ages (Floodlist 2022; World Resources Institute 2023).

4.2   |   Data

The DA framework (Section  3.1) was tested in the northern 
Sindh province where widespread flooding occurred during 
August 2022. Figure 4 maps the NDWI derived from Sentinel-2 
optical data (Section 2.3) that was used to verify the resultant 
analysis flood map following DA. Local reports and photographs 
of flooding were made in the cities of Sukkur and Larkana 
(DAWN  2022; The Guardian  2022; Sky News  2022). The DA 
was applied to 5 IZ covering 3 different scenarios (Figure  5): 
(1) One IZ where a large proportion of the IZ is a dense urban 
area and is masked (where the GFM product is currently un-
able to detect flooding), Sukkur (S), see Figure 5a; (2) Two IZ 
with mixed urban and rural areas, Larkana north and south 
(LN, LS); and (3) two flood edge locations (FE1, FE2). The GFM 

flood likelihood data used to represent observation uncertainty 
in the DA is mapped in Figure 5a where darker shades of orange 
indicate a higher likelihood of flooding (Section 2.2). The fore-
cast data from Flood Foresight is mapped in Figure 5b where the 
purple shades indicate the maximum return period flood map 
triggered by the system from 10 to 31 August, 2022. Each of the 
IZ selected were non-triggered IZ during this period. The driv-
ing forecast river discharge data from GloFAS did not reach the 
required threshold to trigger a flood map along the central Indus 
channel. This is likely due to poor calibration of GloFAS due to a 
lack of observation of river stage or discharge. The Sukkur bar-
rage operations for diversion and altering of river water flows 
are not currently included in the GloFAS system, which makes 
forecasts unreliable along this stretch of the Indus River.

5   |   Results and Discussion

Results are presented for the 3 scenarios tested in the follow-
ing section. The benefits and limitations of the approach are 

FIGURE 5    |    (a) GFM flood likelihood derived from Sentinel-1 SAR data, masked areas (grey) indicate where flooding cannot be reliably detected 
from SAR data. (b) The maximum return period threshold triggered per IZ by the Flood Foresight system during peak flooding 10–31 August 2022. 
Five non-triggered IZ of interest labelled: S—Sukkur, LN—Larkana North, LS—Larkana South, FE1—flood edge 1, FE2—flood edge 2. Note that 
PWB means permanent water bodies.
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8 of 13 Meteorological Applications, 2025

discussed and how the method could potentially be modified for 
improved performance.

5.1   |   Scenario 1

The DA framework was applied to 3 different scenarios totalling 
5 IZ. The first scenario tested was an IZ centred on the city of 
Sukkur. Sukkur is located just south of a large barrage, used to 
control flood waters. Significant flooding was observed locally 
in the Sukkur region (Sky News 2022), however the dense city 
centre means that flooding is difficult to detect using Sentinel-1 
imagery at 20 m spatial resolution. Around one third of the IZ 
is masked by the GFM process (Figure 6c) but high flood likeli-
hood values are visible across some areas of the IZ (Figure 5a). 
The aim is to test whether the DA framework can select a 
flood map from the simulation library based on limited usable 
SAR data.

The value of the cost function J (x) from Equation (4), Section 3.1 
is plotted against the return period value of each flood map from 
the simulation library in Figure 6a. The cost function was min-
imised at the lowest return period flood map (3 years) and a ‘no 
flood’ map gave a slightly lower value of J (x). In this instance, 
the lower return period flood maps over-estimated flooding in 
areas where low flood likelihood values were derived from SAR. 
The influence of the Sukkur barrage and river canals running 
across the IZ made the hydrodynamic modelling more difficult. 

Also, the flood maps do not include local defence information 
and the flood map interpolation process is highly uncertain at 
return periods less than 20 years. The results mean that no flood 
map was triggered following the DA (Figure 6b,c) with the CSM 
map (Figure 6d) indicating where the flooding was underesti-
mated, particularly upstream of the Sukkur Barrage, with no 
flood map selected.

5.2   |   Scenario 2

The second scenario focused on a mixed urban and rural area 
with 2 IZ chosen around Larkana city. The dense urban area 
is again masked and is split across the 2 IZ (Figure  5a), but 
there are large unmasked areas with high and low flood like-
lihood values. The assimilation results for scenario 2 are plot-
ted in Figure  7a where the cost function minimum value is 
similar for both LN and LS with a 7 year return period flood 
map triggered for LN and a 13 year return period flood map 
triggered for LS (Figure 7b). The resultant analysis flood maps 
selected (Figure 7c) also indicate flooding within Larkana city, 
overlapping the masked area. This is consistent with local ob-
servations and is important for population impact calculations 
for FbF schemes. The CSM indicates that whilst a large area 
is now correctly indicating flooding there are also large areas 
that are under-estimated by the analysis flood map (Figure 7d). 
The neighbouring IZ that were triggered by the forecast system 
(Figure  7b) are at much higher return period thresholds than 

FIGURE 6    |    Scenario 1: Sukkur, a dense urban area. (a) The cost function (Equation (4)) plotted against the return period value, the yellow star 
highlights the minimum value of J (x). (b) The analysis return period triggered following DA. (c) The analysis flood extent map (note that no map was 
triggered for Sukkur) and (d) the CSM comparing the analysis flood extent map against Sentinel-2 NDWI.
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9 of 13Meteorological Applications, 2025

the ones selected following the DA. By inspecting higher return 
period flood maps than those selected by the DA (for LN and LS) 
it became clear that these were over-estimating flooding in loca-
tions where low flood likelihood values were located causing J 
(x) (Figure 7a) to increase.

One potential solution to the inconsistency seen across the do-
main could be overcome by including information from the fore-
cast system. The assimilation process could be carried out across 
a region including multiple IZ at the same time, rather than con-
sidering individual IZ. Conditions could be imposed, such as a 
consistent flood depth across IZ boundaries away from the flood 
edge. One way to impose some smoothness would be through 
the use of a background error term. Note that the background 
error is the prior or forecast error. Information from neighbour-
ing IZ could be spread across a domain by the background error 
covariance (B) matrix used in variational DA (Bannister 2008). 
The matrix B could be calculated offline using the flood depth 
maps from the simulation library.

Once the entire IZ becomes inundated at a 20-year return period, 
J (x) remains constant with increasing return period (Figure 7a). 
Although the depth values are increasing, there are no signifi-
cant changes in flood extent possible across the IZ, meaning the 
cost function cannot distinguish between flood maps over a 20-
year return period. For the IZ tested here, the minimum has al-
ready occurred at lower return period, but it is possible that the 
minimum could occur where J (x) is constant, meaning a range 

of potential RPs are possible solutions. In order to distinguish be-
tween equally plausible flood maps, additional observation data 
would be required to measure flood depth. Flood depth data for 
sufficiently large floods could be derived from satellite altimetry 
data such as the Surface Water and Ocean Topography (SWOT) 
mission (Frasson et al. 2019; de Moraes Frasson et al. 2023).

5.3   |   Scenario 3

The final scenario investigates the impact of assimilating SAR-
derived flood likelihood data on flood map selection where 
the flood edge lies within the IZ. The cost function value of 
J (x) drops relatively sharply for FE1 in the north (Figure 8a) 
from 0.56 at 3 years return period to a minimum of 0.34 at 
17 years return period. Further south, J (x) for FE2 is initially 
lower at 0.21 at 3 years return period, gradually decreasing to 
a minimum of 0.17 at 20 years return period. The shape of the 
cost function shows a smoother descent to a minimum com-
pared to scenarios 1 and 2 as there is more variation in flood 
extent between flood maps at different RPs at the flood edge 
location. In similarity to scenario 2 (Larkana), neighbouring 
IZ are again at very high return period levels (Figure  8b). 
The analysis flood map for FE1 does not reach the edge of 
the IZ, whereas FE2 virtually flood fills the IZ (Figure  8c). 
The CSM (Figure  8d) shows that some flooding close to the 
main Indus River has been under-estimated in FE1 but with 
overall good accuracy and limited over-estimation. FE2 shows 

FIGURE 7    |    Scenario 2: Larkana, a mixed urban and rural area. (a) The cost function (Equation (4)) plotted against the return period value, the 
yellow star highlights the minimum value of J (x). (b) The analysis return period triggered following DA. (c) The analysis flood extent map and (d) 
the CSM comparing the analysis flood extent map against Sentinel-2 NDWI.
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10 of 13 Meteorological Applications, 2025

over-estimation in the west but again a large area in agree-
ment with the flood extent derived from Sentinel-2 NDWI. 
Using flood extent observation likelihood data would be more 
useful where the flood edge stays within the IZ tested for the 
maximum return period flood map. There would be more 
chance of variation in the cost function value across the full 
range of return period flood maps. In contrast, for a (near) 
flood filled IZ there would be less variation seen in J (x) due 
to limited changes in flood extent. Future work could focus 
on assimilating flood edge IZ and sharing information with 
neighbouring IZ by including a background term to update 
regions closer to the river channel where the IZ are more likely 
to be flood filled (Section 5.2).

5.4   |   Analysis Flood Map Validation

In Table  1 the FSS (Section  3.2) has been calculated by com-
paring the analysis flood map selected per IZ with the corre-
sponding Sentinel-2 NDWI representing observed flooding, 
with permanent water bodies excluded from the validation. The 
target skill score FSST and the asymptotic FSS AFSS are also 
calculated. Prior to DA, when no flood map is selected, the flood 
inundation area is zero. Therefore, the FSS without DA equals 
zero. The FSS for scenario 1 (Sukkur) equals zero as no flood 
map was triggered. For scenario 2 (LN and LS) the FSS score at 
grid level n = 1 (0.32 and 0.38) is around half of FSST. Usually, 
by increasing the neighbourhood size the value of FSS also 

FIGURE 8    |    Scenario 3: Flood edge location. (a) The cost function (Equation (4)) plotted against the return period value, the yellow star highlights 
the minimum value of J (x). (b) The analysis return period triggered following DA. (c) The analysis flood extent map and (d) the CSM comparing the 
analysis flood extent map against Sentinel-2 NDWI.

TABLE 1    |    Validation skill scores for each IZ analysis flood map compared against independent Sentinel-2 NDWI.

IZ code
Analysis return 

period FSS at (n = 1) FSST AFSS n at FSST

S 0 0 n/a n/a n/a

LN 7 0.32 0.64 0.40 AFSS < FSST

LS 13 0.38 0.65 0.51 AFSS < FSST

FE1 17 0.55 0.66 0.71 n = 35 (525 m)

FE2 20 0.49 0.63 0.77 n = 15 (225 m)

Note: FSST is the target skill score and AFSS is the maximum asymptotic skill score. Note that without DA, no flood map would be triggered and all grid cells would be 
classed as unflooded; therefore, the FSS equals zero.
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increases, eventually exceeding FSST. In this case AFSS (which 
is calculated using the fraction flooded across the IZ from both 
the analysis and observed flood maps) is less than FSST mean-
ing the total differences in flood extent are too large for the FSS 
to reach or exceed FSST. The result of this is that there is not a 
meaningful or skilful scale of the analysis flood maps for sce-
nario 2. This is due to the under-estimation of flood extent seen 
on the CSM (Figure  7d). For scenario 3, FSST < AFSS which 
makes it possible to calculate a skilful scale where FSS ≥ FSST. 
For FE1 this occurs when n = 35 or 525 m and FE2 at n = 15 or 
225 m confirming that FE2 was the most accurate analysis. 
These results confirm that future work should focus on flood 
edge IZ first during the assimilation process.

6   |   Conclusions

In this article a new DA framework was introduced to update 
and improve the flood map selection within a flood forecast-
ing system designed for FbF applications. Open access flood 
likelihood data derived from satellite-based SAR were used to 
update the flood map selection for previously non-triggered 
sub-catchments or IZ during a flood event. The framework was 
tested on the catastrophic flooding in Pakistan, August 2022 for 
three different scenarios.

The first scenario tested an IZ where limited useful SAR data 
was available due to a dense urban area. This resulted in no 
flood map selection following the DA. The second scenario, 
where two IZ contained a mix of urban and rural areas did 
trigger flood maps but at low return period levels, relative to 
neighbouring IZ that were previously triggered. This resulted 
in under-estimation of the flood extent. However, the analysis 
flood map included flooding across parts of the city of Larkana. 
Information from the flood likelihood data from other areas of 
the IZ could select a flood map that included urban flooding. 
This is useful for FbF applications where population impacts are 
considered. The final scenario examined flood edge locations 
and these gave the best results as the variation in flood extent 
selected higher return period flood maps that were more closely 
matched to the validation data. The skilful scale of the analysis 
flood maps in the flood edge IZ was 225–525 m. Out of the 5 IZ 
tested, 4 resulted in a flood map selection with the dense urban 
area and limited SAR coverage the exception. Each of these 4 IZ 
were non-triggered, and now they are, which is beneficial, even 
if the extents are not perfect.

The non-triggered flood maps could be updated quickly follow-
ing the production of the GFM flood likelihood layer (approx-
imately 8-h after SAR acquisition). Although observed flood 
extent is used in the assimilation, the flood maps selected contain 
depth values that are already linked to a catastrophe risk model 
and population impact maps. Therefore the analysis is suitable 
to inform secondary financing schemes for flood response and 
recovery, during an event. In this application the entire flood 
map library was analysed using variational minimisation. For 
operational applications across a wider area, optimal iteration 
methods could be used to save computation time and storage. 
Improvements could also be made by the inclusion of prior in-
formation from the simulation library system. Currently, within 
the flood forecasting system, the IZ flood maps are spatially 

independent of each other. Adding an additional background 
term in the DA framework could improve the consistency of the 
flood maps selected across a region and help prevent water level 
discrepancies across the boundaries of IZs.

An additional benefit of the new approach is that the analysis 
flood map could be used in a feedback loop to update the river 
discharge (e.g., in the associated GloFAS grid cell). This could 
be useful for hydrological model calibration or in updating the 
initial conditions for the next forecast.

Currently the SAR-derived flood likelihood data includes both 
flooding from direct rainfall (pluvial or surface water flooding) 
as well as fluvial flooding. Flood Foresight maps are currently 
fluvial only, which partly explains the underestimation of flood 
extent seen in the analysis flood map results when compared to 
independent satellite-derived observations. Ideally, the system 
would also include pluvial flood maps that could be combined 
with the fluvial maps to capture all flooding impacts and to 
enable a more complete FbF system. Alternatively, the SAR-
derived flooding could be separated into pluvial and fluvial 
drivers. This would require an up-to-date detailed digital terrain 
model with excellent vertical accuracy by utilising, for example, 
LiDAR (Light Detection and Ranging) data (Chen et al. 2017). 
The first option is preferable as the analysis is more likely to 
represent flooding as observed ‘from the ground’ with the FbF 
scheme benefiting more people impacted by flooding.

Future options for optimising the simulation library flood maps 
could use flood depth observations if available, including from op-
portunistic sources such as camera images (Vandaele et al. 2021, 
2023). In this case, a conventional iterative approach (such as a 
gradient descent methods) could step through depth values within 
each individual grid cell. The resultant analysis depth map would 
represent the best estimate of the true flood extent and could be 
used to inform secondary insurance payments.
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