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ABSTRACT

Mitigating against the impacts of catastrophic flooding requires funding for the communities at risk, ahead of an event. Simulation

library flood forecasting systems are being deployed for forecast-based financing (FbF) applications. The FbF trigger is usually

automated and relies on the accuracy of the flood inundation forecast, which can lead to missed events that were forecast below

the trigger threshold. However, earth observation data from satellite-based synthetic aperture radar (SAR) sensors can reliably

detect most large flooding events. A new data assimilation framework is presented to update the flood map selection from a simu-

lation library system using SAR data, taking account of observation uncertainties. The method is tested on flooding in Pakistan,

2022. The Indus River in the Sindh province was not forecast to reach flood levels, which resulted in no selection of the flood

maps and no triggering of the FbF scheme. Following observation assimilation, the flood map selection could be triggered in four

out of five sub-catchments tested, with the exception occurring in a dense urban area due to the simulation library flood map

accuracy here. Thus, the analysis flood map has potential to be used to trigger a secondary finance scheme during a flood event

and avoid missed financing opportunities for humanitarian action.

1 | Introduction

The warmer climate is increasing the frequency and intensity of
extreme weather events as well as the exposure and vulnerabil-
ity of communities and individuals (Portner et al. 2022). Large-
scale flood forecasting systems predicting flood inundation
extent are increasingly used for disaster risk reduction to im-
prove preparedness ahead of a major flooding event (Stephens
and Cloke 2014; Hooker et al. 2023b; Wu et al. 2020). An en-
semble flood forecasting system creates probabilistic flood maps
indicating the likelihood of flooding across a region or country.
Flood impact risk factors such as population density, land-use

types or vulnerable infrastructure can also be mapped for the
same area. The forecast-flood-likelihood maps can be overlaid
with impact maps and depending on the severity of the hazard
and the level of impact, a risk profile can be determined. The
flood risk profile can be used to inform forecast-based financ-
ing (FbF) schemes that enable the pre-release of funds based on
the flood forecast, ahead of the flood event (Coughlan de Perez
et al. 2015, 2016). Automation of FbF schemes is important for
rapid action to take place to mitigate against flooding impacts.
The skill of the flood forecasting system is key to triggering the
FbF scheme. A non-trigger of FbF ahead of or during a flood
event might prove catastrophic for those impacted.
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Advanced flood forecasting systems, both at global and local
levels, link together meteorological and hydrological forecasts
of river discharge that drive the selection of pre-computed flood
maps from a simulation library (Speight et al. 2021; Hooker
et al. 2023a). The use of a simulation library obviates the need
to run a hydrodynamic model as part of the forecast process,
reducing computation time and allowing near real-time up-
dating for large areas, which otherwise presents a significant
computational challenge. The flood maps within the library
are at a relatively higher spatial resolution (e.g., 30 m) com-
pared to the resolution of the driving global hydrological model
(e.g., approximately 5 km). This mismatch in scales can lead to
problems with flood map selection and can cause gaps where
the minimum return period threshold has not been exceeded (a
non-trigger) by the forecast discharge (Hooker et al. 2023b). The
three main issues that cause this in the global scale model are
the representation of river networks, the return period thresh-
olds determined and the exclusion of dam operations. Rivers
that are narrower than a particular width, or catchment areas
smaller than a pre-determined size are not resolved by global
scale models. In addition, the return period thresholds set may
be poorly calibrated due to a lack of ground truth observational
data such as river discharge or river water level (Boelee 2022;
Matthews et al. 2022). These two limitations can lead to a non-
trigger, that is, no flood map is selected from the simulation li-
brary for a particular sub-catchment. Also, local dam operations
such as diversions of river water for irrigation purposes or rapid
releases of flood waters downstream, are not generally included
in global scale models. This can lead to over- or under-prediction
of forecast discharge, resulting in inaccurate or non-trigger of
flood map selection in the forecast.

Satellite-derived observations of flooding have the potential to
bring additional spatial information into flood inundation fore-
casts compared to in situ point gauging stations. These obser-
vations could be used to update and improve the FbF scheme
either as part of a secondary finance payment following the ac-
quisition of the satellite data or to improve the flood inundation
forecasts going forwards as the flood event evolves. Synthetic
aperture radar (SAR) sensors are particularly useful for remote
flood detection, since they can see through cloud, most weather
and are active both day and night (Mason et al. 2012; Schumann
et al. 2023). Previously, SAR data have been used in several
different ways to improve hydraulic models and flood predic-
tion through data assimilation (DA). DA finds an optimal state
(such as water level) or model parameter values by accounting
for the previous forecast, the observations available, and both
of their associated uncertainties. The updated state (analysis) or
parameter set are used to initiate the next forecast in a feedback
loop or cycle. A review of approaches used to assimilate satellite-
derived data into hydraulic models (from 2007 until 2015) can
be found in tab. 7 of Grimaldi et al. (2016) and tab. 1 of Revilla-
Romero et al. (2016).

When building a new DA system, there are some fundamen-
tal choices that have to be made, including the choice of un-
derlying DA method. Several different DA methods have
been used for flood inundation studies including ensemble
Kalman filters (Garcia-Pintado et al. 2013, 2015; Andreadis and
Schumann 2014; Cooper et al. 2018; Annis et al. 2022; Nguyen
et al. 2023), particle filters, (Hostache et al. 2018; Dasgupta,

Hostache, Ramsankaran, et al. 2021; Di Mauro et al. 2021, 2022)
and variational techniques (Lai et al. 2014; Pujol et al. 2022).
Variational assimilation solves an optimization problem, find-
ing the single solution that maximises the posterior proba-
bility, given the observations and their uncertainties (Lorenc
et al. 2000).

A second fundamental choice in building a new DA system, is
the approach for comparing the model data to the observations.
For SAR observations, a first step is often to extract flood extent
using an image classification technique (see Section 3, Grimaldi
etal. (2016)). The flood extent information could be directly assim-
ilated, as a binary flood map (e.g., Lai et al. 2014). An alternative
is to intersect the edge of the binary flood map with a digital ele-
vation model (DEM) and derive a water level observation (Mason
et al. 2007, 2012). SAR-derived water levels only provide informa-
tion at the flood edge and rely on the spatial resolution and the
vertical accuracy of the underlying DEM (Dasgupta, Hostache,
Ramasankaran, et al. 2021), which makes them difficult to ob-
tain. Nevertheless, water level observations can provide more
long-lasting impact than binary flood extents in DA cycling sys-
tems (Cooper et al. 2019). Probabilistic flood mapping procedure
for SAR data was first introduced by Giustarini et al. (2016). This
created the potential for flooding probabilities to be assimilated
directly via particle filter approaches (e.g., Dasgupta, Hostache,
Ramsankaran, et al. 2021; Di Mauro et al. 2021, 2022). More re-
cently, observation uncertainty associated with classifying flood
extent from SAR data is openly available through the Copernicus
Emergency Management Service (CEMS) (Copernicus
Programme 2021) with a time lag of less than 8 h between satellite
data acquisition and the generation of flood maps.

All of these previous studies involved the assimilation of satellite-
derived data to update hydrodynamic model states or param-
eter values by taking a DA cycling approach. The assimilation
provides updated initial conditions ahead of the next forecast
cycle. The new approach here differs significantly by aiming to
develop a DA framework to assimilate probabilistic flood maps
into a simulation library flood inundation forecasting system.
A variational approach is taken as it is particularly suited to a
simulation library system. The set of states ranged over in the
optimization process can be limited to the pre-computed solu-
tions in the library. This ensures that the resulting analysis flood
map remains consistent with the flood forecasting system. The
goal is to improve flood map selection by creating a new anal-
ysis flood map. Spatially distributed flood likelihood informa-
tion derived from SAR data is used within the DA framework.
It is important to note that this DA approach does not include a
feedback loop to the forecasting system. The DA framework is
tested using forecast data and optical satellite observations from
a major flood event in Pakistan, August 2022. (Floodlist 2022).

In this article, the flood forecasting system and derivation of the
static simulation library along with satellite-derived observations
of flood likelihood are outlined in Section 2. The development of
a new DA method is described in Section 3. Recently published
verification methods that are used to evaluate the results are de-
scribed in the same section (Hooker et al. 2022, 2023a, 2023b).
Section 4 presents an overview of the 2022 Pakistan flood and
details of the data used. The observation data includes sub-
catchments where the flooding is well observed, but also dense
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urban areas, which are masked out in the flood likelihood prod-
uct as they are deemed unsuitable for SAR-derived flood detec-
tion. The DA framework successfully triggered flood maps in 4
out of 5 sub-catchments tested as shown in the results, discussed
in Section 5. Section 6 concludes with recommendations for fu-
ture work to improve the use of SAR flood likelihood data to up-
date a simulation library flood forecasting system through DA.

2 | Simulation Library Forecasting System and
Observation Data

Flood Foresight, a simulation library flood inundation forecast-
ing system and its application for disaster risk reduction through
FDF, is outlined in Section 2.1 (Revilla-Romero et al. 2017).
Section 2.2 details the derivation of the flood likelihood data
from SAR that will be used as observation data in the assimi-
lation process. The extraction of flood extent information from
optical images that will be used for validation is explained in
Section 2.3.

2.1 | Flood Foresight and
Forecast-Based-Financing

The chain of flood forecasting systems used to predict flood
inundation and to produce flood impact forecasts are detailed
in Figure 1. The Global Flood Awareness System (GloFAS)
couples global ensemble weather forecasts with a hydrological
model and provides daily ensemble forecast river discharge at
approximately 10 km grid size (v3.2, GloFAS 2021). The GloFAS
forecast river discharge is used to as an input to drive the Flood
Foresight system. Flood Foresight (Revilla-Romero et al. 2017;
Hooker et al. 2023a) is a fluvial, probabilistic flood inundation
forecasting system. Flood Foresight is set up by dividing the
catchment into ‘Impact Zones’ (IZ) or sub-catchments using
the HydroBASINS data set (Lehner 2014). Each 1Z in Flood
Foresight is linked to a GIoFAS grid cell that provides a 51 en-
semble member forecast of river discharge. Flood Foresight con-
tains a simulation library of precomputed flood depth and extent
maps. The flood map library was hydrodynamically modelled
using JFlow, (Bradbrook 2006) and RFlow using a detailed 30
m digital surface model. The maps were modelled at specific

Flood Risk Model (static)

return period thresholds (20, 50, 100, 200, 500, and 1500years).
Subsequently, these were linearly interpolated at 5 intermediate
intervals between each return period threshold and extrapolated
between zero and the 20 year return period flood map (total-
ling 36 flood maps). Depending on the forecast discharge from
GIoFAS for each 1Z, a flood map is selected from the simulation
library. The flood map selected is determined by the return pe-
riod threshold exceeded within each IZ. The resultant forecast
flood map is created by stitching together individual IZ flood
maps (at various RPs) and is produced daily out to 10 days ahead.

The charity Start Network (Start Network 2022) brings to-
gether a group of over 80 humanitarian agencies and aims to
develop local community-led, early action through a model
of proactive funding to mitigate against the impacts of crises.
JBA Consulting, in partnership with Start Network, have devel-
oped a disaster risk financing system for the Indus River basin
in Pakistan that links Flood Foresight forecast flood maps to
populations impacted by flooding (Figure 1). For the purposes
of setting FbF trigger threshold levels, the disaster risk financ-
ing system quantifies the flood risk to the population through
a commercial probabilistic global catastrophe risk model, FLY
(Dunning 2019). The dynamic operational index triggering
could be linked to the analysis flood map (produced here as a
result of the DA) to provide a secondary finance payment.

2.2 | Satellite-Derived Flood Likelihood

The Copernicus global flood monitoring (GFM) is an open
source service that combines the outputs of three different al-
gorithms to extract flood extent and uncertainty information
from Sentinel-1 SAR data (GloFAS Global Flood Monitoring
(GFM) 2021). The process is automatic and runs continuously
in near real-time (within 8 h after image acquisition) for every
SAR image detecting flooding on a global-scale. The resulting
flood information layers are available through open access.
The mini-ensemble approach used for flood detection increases
the confidence in the resulting derived observations. The
first flood mapping algorithm developed by the Luxembourg
Institute of Science and Technology uses a pair of SAR images
(pre-flood and flood) and a hierarchical split-based change
detection approach to classify permanent and flood waters

Flood Forecasting Model (dynamic)

-
Global Flood gl -
Maps library U
'\
v PlOOd . Ensemble
Fores:lght ) river flow forecasts
A\
GLOFAS
Exposure Forecast
* flood maps
00 Population
Flood risk w ® ® Data m Forecast
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Design of\)
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NETW:.:RK

FIGURE1 | Flood foresight/start network ensemble flood inundation forecasting and disaster risk financing system.

Mperational

index triggering
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(Chini et al. 2017). The classification uncertainty depends on
the Bayesian inference classification probabilities. The second
flood mapping algorithm by the German Aerospace Research
Centre uses a hierarchical tile-based thresholding approach
and the optimization of the classification by combining various
information sources using fuzzy-logic theory and region grow-
ing (Martinis et al. 2015; Twele et al. 2016). The uncertainty in-
formation depends on fuzzy memberships. The final algorithm
from the Vienna University of Technology uses the historical
time series of the SAR backscatter values per pixel and classi-
fies flood extent from the backscatter probability distribution
(Wagner et al. 2020; Bauer-Marschallinger et al. 2022). The
classification uncertainty is based on the Bayesian posterior
probability. The output flood layer is derived using the mini-
ensemble with a pixel classified as flooded where two out of
three of the algorithms determines a flood class. The flood
likelihood values are aggregated, first by converting each to
lie in the same range [0, 100] before averaging the likelihood
values. Regions where SAR is unable to detect flooding due to
shadow or layover effects are removed from the classification
process. This usually includes dense urban areas, densely veg-
etated areas, regions with steep slopes and regions that might
appear flooded such as dry, sandy desert-like surfaces. The ex-
clusion mask is available to download as an additional layer.
Permanent and seasonal water bodies are classified separately
as a reference water mask layer.

Krullikowski et al. (2023) applied and assessed the usefulness
of GFM ensemble likelihood on two test sites in Myanmar and
Somalia, both situated in challenging areas for flood detection
using SAR data. Krullikowski et al. found that the GFM ensem-
ble likelihood layer resulted in improved trust in the ensemble
flood extent detection approach and provides more reliable and
robust uncertainty information for detecting flooding compared
to using a single algorithm only.

2.3 | Optical Normalised Difference Water Index
(NDWTI)

Occasionally, optical satellite data can be useful for observations
of flood extent. Flood detection from optical satellites depends
on a near cloud-free sky where the satellite acquisition coincides
with the flood event. The Normalised Difference Water Index
(NDWI) for flood and surface water detection is calculated with
Sentinel-2 optical data using the green band (B03, %560 nm) and
the near infrared band (B08, ~842 nm) (Albertini et al. 2022).
The NDWT is given by:

NDWI = w, @
B03 + BO8

where positive values indicate water. Albertini et al. (2022) re-
viewed the performance of surface water and flood detection
metrics using multispectral satellite data. They found that the
average overall accuracy from previous flood studies applying
NDWTI to be 87.85% and for permanent surface water studies
scored 94.41%. This included studies using data from differ-
ent satellite sensors with spatial resolutions ranging from 10
m for Sentinel-2 to 500 m for Terra-Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS, Justice et al. (2002)).

3 | Methods
3.1 | Data Assimilation Framework

The aim of the DA framework is to update a previous forecast
of flood inundation extent and depth from Flood Foresight
(the background) where a non-trigger has occurred in the
forecast system but where flooding was derived from concur-
rent satellite-based SAR data. Using observation uncertainty
information from the GFM flood likelihood layer (explained
in Section 2.2), the objective is to improve the flood map selec-
tion for non-triggered IZ by minimising a cost function per 1Z
(Figure 2).

The DA framework aims to update the state vector, x € R",
which contains flood depths at each grid cell location. The
components of X, x;, are the individual flood depths for a spe-
cific grid cell location. The total number of grid cells across
an IZ is n, the total of observed unmasked grid cells is m. To
find the optimum state accounting for observation uncertainty
the observation likelihood term is defined P (ylx) where the
components of observations, y € R™ have two possible binary
outcomes, y, =1 (flooded) and y, =0 (unflooded), following
classification from SAR data. The likelihood term can be
represented by a Bernoulli distribution (Lauritzen 2023), de-
fined as:

m
H); 1-[HX)];
Pylx) = [] L (1-L,) , )

i=1

where L, is the GFM flood likelihood value (see Section 2.2). The
i-th component of the observation operator H(x), defined as

1 flooded x;>0.2m
[H®)], = o, 6
0 unflooded otherwise

acts to convert flood depths (state space) to a binary flood class
(observation space) at unmasked grid cells, excluding observa-
tion likelihood information for masked grid cells where SAR
data cannot reliably detect flooding. To find the maximum

I Simulation library:
sub-catchment

Forecast state:

Non-triggered Minimise cost

sub-catchment function J(x)
flood map

Updated state:
New flood map

FIGURE 2 | Simulation library data assimilation framework flow
diagram.
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FIGURE3 | Negative log loss function relationship with observed flood likelihood for flooded (a) and unflooded (b) grid cells.

posterior likelihood of the state variable, the negative log
likelihood of P (ylx) is taken and divided by the number of
unmasked grid cells m to derive the cost function (averaged
across unmasked grid cells per 1Z)

Jx)= —% Z{[H(x)]i In(L;) +(1-[H®)]; In(1- (L;) }, @
i=1

Jex)=—

3~

(HE) (L) + 1= [HEL I - (L)) (o
=1 \Q -~/ . /

V V

flooded unflooded

The cost function in Equation (4) has a similar derivation to
conventional three-dimensional variational DA, but its form
is different since, unlike conventional variational DA, the
observation likelihood is not Gaussian. The cost function in
Equation (5) adds labelled terms to Equation (4) for a binary
flooded or unflooded application. One term on the right-hand-
side of Equation (5) is calculated per grid cell depending on
whether the corresponding grid cell in the flood map library is
flooded or unflooded. The relationship between the loss func-
tion and the observed likelihoods is plotted in Figure 3. For
flooded grid cells, high probability values are penalised less
heavily compared to low probability values, the opposite is true
for unflooded grid cells. The value of J (x) is calculated per I1Z
by iterating through the flood map library (36 flood maps) and
finding the flood map return period by minimising J (x), which
is equivalent to maximising the posterior likelihood, given the
observation uncertainty data. To ensure that the minimum
is reached across the flood map library, J (x) is calculated for
all 36 flood maps. Note that this is different to the standard
DA approach where minimisation would be accomplished via
a gradient descent algorithm (Bannister 2017). However, the
approach does have an analogy with conventional strong-
constraint four-dimensional variational DA, where the solu-
tion must fit the forecast model.

Following the assimilation process, replacing the non-triggered 1Z
with updated flood maps results in an analysis flood depth and ex-
tent map (the flood depth information is contained within the sim-
ulation library). This means that the analysis flood map remains
consistent with the Flood Foresight system where the flood maps
have been hydrodynamically modelled, that is, they are physically
realistic. Retaining the flood depth information is important for
FbF applications for quantifying the risk of flood impacts. Since
the observations have binary values (flooded/unflooded), it is not
possible to distinguish between floods that have the same extent
but different depths from the observation data. This property is in-
herited in the cost function. The cost function computation time
per 1Z for 36 flood maps takes an order of seconds on a laptop.
By utilising parallel processing, multiple IZs could be computed
simultaneously enabling near real-time implementation across a
region in an operational environment.

3.2 | Validation Methods

The resulting analysis flood map, following assimilation of
SAR-derived flood likelihood data, is validated by comparing
against independent flood extent observation data derived
from optical satellite data, the NDWI (Section 2.3). The results
will be validated by calculating the Fraction Skill Score (FSS,
Roberts and Lean (2008); Hooker et al. (2022)) and by map-
ping the performance on a Categorical Scale Map (CSM, Dey
et al. (2014); Hooker et al. (2022, 2023a)). Both the FSS and the
CSM avoid issues with the double penalty impact of conven-
tional binary performance measures as well as the impact of
flood magnitude on the skill score (Hooker et al. 2022). The
FSS is based on the Brier Skill Score and uses a neighbour-
hood approach to determine the skillful spatial scale of the
analysis flood map. The fraction of flooding within a given
square neighbourhood size of length n is compared by calcu-
lating the mean-squared-error (MSE) between the analysis
and the validation flood maps to give

Meteorological Applications, 2025
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MSE,

FSS =1— ——n_ ¢
n MSE,ep ©®

where MSE, .. is @ potential maximum MSE that depends on
the fraction of flooding across the IZ on the analysis and the
validation flood maps. A skilful scale is determined when FSS
> FSS,, the target FSS score, where FSS; > 0.5% depends on
the fraction of observed flooding across the IZ, f,. When the
analysis and validation flood extents are equal in area across
an IZ there is said to be no background bias and the maximum
FSS is 1. Otherwise, the maximum asymptotic FSS (AFSS) is
given by:

AFSs = Joa_ 7

2+

where f, is the fraction of flooding on the analysis flood map
per 1Z.

The CSM plots a local agreement scale (S) at every grid cell.
An overview of the method is presented here. Please see Dey
et al. (2014); Hooker et al. (2022, 2023a) for full details of the
methodology. A background bias between the analysis and veri-
fication flood maps that is deemed acceptable is predetermined.
The pre-set bias is used to calculate an agreement criterion that
must be reached by the flood map comparison calculation. The
comparison begins at each grid cell n=1, if the agreement crite-
rion is met at grid level, the grid cell is labelled with an agreement
scale S=0. Where the criterion is not met, a larger neighbour-
hood size is compared (e.g., n=3). The fraction flooded in each
of the analysis and validation flood maps are compared and
if the criterion is met, the agreement scale assigned would be
S=1. The process continues to larger neighbourhoods (e.g.,

(@) (b)

65°E

n=7, S=3) until either the criterion is met or a predetermined
limit is reached (S, set to 9 for this application). The agreement
scale at this limit would indicate a false alarm or miss for the
grid cell. Note that the relationship between n, the neighbour-
hood size used for the FSS, and S is given by S = (n — 1) /2. The
agreement scales are combined with data from a conventional
contingency map (indicating whether the flood map grid cell is
over- or under-estimating flooding, Stephens et al. (2014)) and
are mapped across an IZ. The CSM indicates a location-specific
level of agreement and shows where the flood maps are over-
or under-estimating flooding. Grid cells coloured red indicate
under-estimation, while blue grid cells indicate over-estimation.

4 | Pakistan Flood 2022
4.1 | Event Overview

In Spring 2022, Pakistan experienced a record-breaking heatwave
with temperatures exceeding 50°C. The heat exacerbated upstream
glacial snow melt feeding the Indus River basin, which runs over
3000km across the length of Pakistan, draining the Himalayas to
the Arabian Sea. An intense monsoon season followed in July and
August, driving multiple flood-producing mechanisms includ-
ing multi-day extreme precipitation that was the primary driver
of floods (World Weather Attribution 2022; Nanditha et al. 2023).
Attribution studies indicate that the 5-day maximum rainfall over
the provinces Sindh and Balochistan, which led to catastrophic
flooding, was made 75% more intense by 1.2°C of global warming
(World Weather Attribution 2022). The northern Sindh province
received an estimated 442.5mm of rainfall in August, 784% more
than usually recorded, causing inundation of 55,000km? across
the region (Floodlist 2022). Despite early warnings of the potential
for significant flooding from GloFAS, the unimaginable scale and
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FIGURE 4 | (a) The domain of interest (DOI) is located in the Indus Basin, Sindh province, Pakistan. A map of the DOI is generated using Bing

Maps. 2024 Microsoft Corporation. (b) The region is divided into sub-catchments or Impact Zones (IZ) in Flood Foresight. Satellite-derived flooding
(NDWTI) from Sentinel-2 data (Section 2.3) from 31 August 2022 is highlighted along with permanent water bodies (PWB).
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magnitude of the flood impacted over 33 million people with over
1700 lives lost and costing more than $40 billion in economic dam-
ages (Floodlist 2022; World Resources Institute 2023).

4.2 | Data

The DA framework (Section 3.1) was tested in the northern
Sindh province where widespread flooding occurred during
August 2022. Figure 4 maps the NDWI derived from Sentinel-2
optical data (Section 2.3) that was used to verify the resultant
analysis flood map following DA. Local reports and photographs
of flooding were made in the cities of Sukkur and Larkana
(DAWN 2022; The Guardian 2022; Sky News 2022). The DA
was applied to 5 IZ covering 3 different scenarios (Figure 5):
(1) One IZ where a large proportion of the IZ is a dense urban
area and is masked (where the GFM product is currently un-
able to detect flooding), Sukkur (S), see Figure 5a; (2) Two 1Z
with mixed urban and rural areas, Larkana north and south
(LN, LS); and (3) two flood edge locations (FE1, FE2). The GFM

68.5°E

flood likelihood data used to represent observation uncertainty
in the DA is mapped in Figure 5a where darker shades of orange
indicate a higher likelihood of flooding (Section 2.2). The fore-
cast data from Flood Foresight is mapped in Figure 5b where the
purple shades indicate the maximum return period flood map
triggered by the system from 10 to 31 August, 2022. Each of the
1Z selected were non-triggered I1Z during this period. The driv-
ing forecast river discharge data from GloFAS did not reach the
required threshold to trigger a flood map along the central Indus
channel. This is likely due to poor calibration of GlIoFAS due to a
lack of observation of river stage or discharge. The Sukkur bar-
rage operations for diversion and altering of river water flows
are not currently included in the GloFAS system, which makes
forecasts unreliable along this stretch of the Indus River.

5 | Results and Discussion

Results are presented for the 3 scenarios tested in the follow-
ing section. The benefits and limitations of the approach are

~7

69.0°E
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0
110

[]20
|50
| [ 100
/I 200
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FIGURES5 | (a) GFM flood likelihood derived from Sentinel-1 SAR data, masked areas (grey) indicate where flooding cannot be reliably detected
from SAR data. (b) The maximum return period threshold triggered per I1Z by the Flood Foresight system during peak flooding 10-31 August 2022.
Five non-triggered IZ of interest labelled: S—Sukkur, LN—Larkana North, LS—Larkana South, FE1—flood edge 1, FE2—flood edge 2. Note that

PWB means permanent water bodies.

Meteorological Applications, 2025

7 of 13

85UB0 |7 SUOWILLIOD BAeRID @|qel|dde aup Aq peusenob a1e 31 O 88N JO 3|l o} AReld1 T 8U1UO 8|1/ UO (SUORIPUOD-PUB-SLLBI WD /B 1MAReIq 1 [ou1 u0//SdIY) SUORIPUOD PUe SWIR L 83 88S *[S202/0T/ET] Uo ARigIT 8uluo /AB|IM 80us| X3 212D PUB UiESH 40} @Imiisu] euoteN ‘3DIN AQ ¥OTOL TeW/Z00T OT/I0PALI0D A8 1w AReiqIjeul|uoSieLu.//Sdny woiy pepeojumoq ‘G ‘S2Z ‘080869+T



discussed and how the method could potentially be modified for
improved performance.

5.1 | Scenariol

The DA framework was applied to 3 different scenarios totalling
5 IZ. The first scenario tested was an IZ centred on the city of
Sukkur. Sukkur is located just south of a large barrage, used to
control flood waters. Significant flooding was observed locally
in the Sukkur region (Sky News 2022), however the dense city
centre means that flooding is difficult to detect using Sentinel-1
imagery at 20 m spatial resolution. Around one third of the 1Z
is masked by the GFM process (Figure 6¢) but high flood likeli-
hood values are visible across some areas of the IZ (Figure 5a).
The aim is to test whether the DA framework can select a
flood map from the simulation library based on limited usable
SAR data.

The value of the cost function J (x) from Equation (4), Section 3.1
is plotted against the return period value of each flood map from
the simulation library in Figure 6a. The cost function was min-
imised at the lowest return period flood map (3years) and a ‘no
flood” map gave a slightly lower value of J (x). In this instance,
the lower return period flood maps over-estimated flooding in
areas where low flood likelihood values were derived from SAR.
The influence of the Sukkur barrage and river canals running
across the IZ made the hydrodynamic modelling more difficult.

Also, the flood maps do not include local defence information
and the flood map interpolation process is highly uncertain at
return periods less than 20years. The results mean that no flood
map was triggered following the DA (Figure 6b,c) with the CSM
map (Figure 6d) indicating where the flooding was underesti-
mated, particularly upstream of the Sukkur Barrage, with no
flood map selected.

5.2 | Scenario 2

The second scenario focused on a mixed urban and rural area
with 2 IZ chosen around Larkana city. The dense urban area
is again masked and is split across the 2 IZ (Figure 5a), but
there are large unmasked areas with high and low flood like-
lihood values. The assimilation results for scenario 2 are plot-
ted in Figure 7a where the cost function minimum value is
similar for both LN and LS with a 7 year return period flood
map triggered for LN and a 13 year return period flood map
triggered for LS (Figure 7b). The resultant analysis flood maps
selected (Figure 7c) also indicate flooding within Larkana city,
overlapping the masked area. This is consistent with local ob-
servations and is important for population impact calculations
for FbF schemes. The CSM indicates that whilst a large area
is now correctly indicating flooding there are also large areas
that are under-estimated by the analysis flood map (Figure 7d).
The neighbouring IZ that were triggered by the forecast system
(Figure 7b) are at much higher return period thresholds than

(a) (b)
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’ IZ updated
06 ¢ Il PWB (2021)
05 Maximum return period
’ triggered per 1Z
04 10-31 August 2022
E3 27.7°N 0
0.3 110
02 120
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Analysis flood map
I Depth>0.2m
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FIGURE 6 | Scenario 1: Sukkur, a dense urban area. (a) The cost function (Equation (4)) plotted against the return period value, the yellow star
highlights the minimum value of J (x). (b) The analysis return period triggered following DA. (c) The analysis flood extent map (note that no map was

triggered for Sukkur) and (d) the CSM comparing the analysis flood extent map against Sentinel-2 NDWI.
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FIGURE 7 | Scenario 2: Larkana, a mixed urban and rural area. (a) The cost function (Equation (4)) plotted against the return period value, the

yellow star highlights the minimum value of J (x). (b) The analysis return period triggered following DA. (c) The analysis flood extent map and (d)

the CSM comparing the analysis flood extent map against Sentinel-2 NDWI.

the ones selected following the DA. By inspecting higher return
period flood maps than those selected by the DA (for LN and LS)
it became clear that these were over-estimating flooding in loca-
tions where low flood likelihood values were located causing J
(x) (Figure 7a) to increase.

One potential solution to the inconsistency seen across the do-
main could be overcome by including information from the fore-
cast system. The assimilation process could be carried out across
aregion including multiple IZ at the same time, rather than con-
sidering individual IZ. Conditions could be imposed, such as a
consistent flood depth across IZ boundaries away from the flood
edge. One way to impose some smoothness would be through
the use of a background error term. Note that the background
error is the prior or forecast error. Information from neighbour-
ing IZ could be spread across a domain by the background error
covariance (B) matrix used in variational DA (Bannister 2008).
The matrix B could be calculated offline using the flood depth
maps from the simulation library.

Once the entire IZ becomes inundated at a 20-year return period,
J (x) remains constant with increasing return period (Figure 7a).
Although the depth values are increasing, there are no signifi-
cant changes in flood extent possible across the I1Z, meaning the
cost function cannot distinguish between flood maps over a 20-
year return period. For the IZ tested here, the minimum has al-
ready occurred at lower return period, but it is possible that the
minimum could occur where J (X) is constant, meaning a range

of potential RPs are possible solutions. In order to distinguish be-
tween equally plausible flood maps, additional observation data
would be required to measure flood depth. Flood depth data for
sufficiently large floods could be derived from satellite altimetry
data such as the Surface Water and Ocean Topography (SWOT)
mission (Frasson et al. 2019; de Moraes Frasson et al. 2023).

5.3 | Scenario3

The final scenario investigates the impact of assimilating SAR-
derived flood likelihood data on flood map selection where
the flood edge lies within the IZ. The cost function value of
J (x) drops relatively sharply for FE1 in the north (Figure 8a)
from 0.56 at 3years return period to a minimum of 0.34 at
17years return period. Further south, J (x) for FE2 is initially
lower at 0.21 at 3years return period, gradually decreasing to
a minimum of 0.17 at 20years return period. The shape of the
cost function shows a smoother descent to a minimum com-
pared to scenarios 1 and 2 as there is more variation in flood
extent between flood maps at different RPs at the flood edge
location. In similarity to scenario 2 (Larkana), neighbouring
1Z are again at very high return period levels (Figure 8b).
The analysis flood map for FE1 does not reach the edge of
the 1Z, whereas FE2 virtually flood fills the IZ (Figure 8c).
The CSM (Figure 8d) shows that some flooding close to the
main Indus River has been under-estimated in FE1 but with
overall good accuracy and limited over-estimation. FE2 shows
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TABLE1 | Validation skill scores for each IZ analysis flood map compared against independent Sentinel-2 NDWI.

Analysis return

1Z code period FSSat (n=1) FSS,. AFSS nat FSS,
S 0 0 n/a n/a n/a

LN 7 0.32 0.64 0.40 AFSS <FSS,
LS 13 0.38 0.65 0.51 AFSS < FSS,
FE1 17 0.55 0.66 0.71 n=35(525m)
FE2 20 0.49 0.63 0.77 n=15(225m)

Note: FSS.is the target skill score and AFSS is the maximum asymptotic skill score. Note that without DA, no flood map would be triggered and all grid cells would be

classed as unflooded; therefore, the FSS equals zero.

over-estimation in the west but again a large area in agree-
ment with the flood extent derived from Sentinel-2 NDWI.
Using flood extent observation likelihood data would be more
useful where the flood edge stays within the IZ tested for the
maximum return period flood map. There would be more
chance of variation in the cost function value across the full
range of return period flood maps. In contrast, for a (near)
flood filled I1Z there would be less variation seen in J (x) due
to limited changes in flood extent. Future work could focus
on assimilating flood edge IZ and sharing information with
neighbouring IZ by including a background term to update
regions closer to the river channel where the IZ are more likely
to be flood filled (Section 5.2).

5.4 | Analysis Flood Map Validation

In Table 1 the FSS (Section 3.2) has been calculated by com-
paring the analysis flood map selected per IZ with the corre-
sponding Sentinel-2 NDWTI representing observed flooding,
with permanent water bodies excluded from the validation. The
target skill score FSS, and the asymptotic FSS AFSS are also
calculated. Prior to DA, when no flood map is selected, the flood
inundation area is zero. Therefore, the FSS without DA equals
zero. The FSS for scenario 1 (Sukkur) equals zero as no flood
map was triggered. For scenario 2 (LN and LS) the FSS score at
grid level n=1 (0.32 and 0.38) is around half of FSS,. Usually,
by increasing the neighbourhood size the value of FSS also
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increases, eventually exceeding FSS;. In this case AFSS (which
is calculated using the fraction flooded across the IZ from both
the analysis and observed flood maps) is less than FSS, mean-
ing the total differences in flood extent are too large for the FSS
to reach or exceed FSS,. The result of this is that there is not a
meaningful or skilful scale of the analysis flood maps for sce-
nario 2. This is due to the under-estimation of flood extent seen
on the CSM (Figure 7d). For scenario 3, FSS, < AFSS which
makes it possible to calculate a skilful scale where FSS > FSS,.
For FE1 this occurs when n=235 or 525 m and FE2 at n=15 or
225 m confirming that FE2 was the most accurate analysis.
These results confirm that future work should focus on flood
edge IZ first during the assimilation process.

6 | Conclusions

In this article a new DA framework was introduced to update
and improve the flood map selection within a flood forecast-
ing system designed for FbF applications. Open access flood
likelihood data derived from satellite-based SAR were used to
update the flood map selection for previously non-triggered
sub-catchments or IZ during a flood event. The framework was
tested on the catastrophic flooding in Pakistan, August 2022 for
three different scenarios.

The first scenario tested an IZ where limited useful SAR data
was available due to a dense urban area. This resulted in no
flood map selection following the DA. The second scenario,
where two IZ contained a mix of urban and rural areas did
trigger flood maps but at low return period levels, relative to
neighbouring 1Z that were previously triggered. This resulted
in under-estimation of the flood extent. However, the analysis
flood map included flooding across parts of the city of Larkana.
Information from the flood likelihood data from other areas of
the IZ could select a flood map that included urban flooding.
This is useful for FbF applications where population impacts are
considered. The final scenario examined flood edge locations
and these gave the best results as the variation in flood extent
selected higher return period flood maps that were more closely
matched to the validation data. The skilful scale of the analysis
flood maps in the flood edge I1Z was 225-525 m. Out of the 5 IZ
tested, 4 resulted in a flood map selection with the dense urban
area and limited SAR coverage the exception. Each of these 4 1Z
were non-triggered, and now they are, which is beneficial, even
if the extents are not perfect.

The non-triggered flood maps could be updated quickly follow-
ing the production of the GFM flood likelihood layer (approx-
imately 8-h after SAR acquisition). Although observed flood
extentisused in the assimilation, the flood maps selected contain
depth values that are already linked to a catastrophe risk model
and population impact maps. Therefore the analysis is suitable
to inform secondary financing schemes for flood response and
recovery, during an event. In this application the entire flood
map library was analysed using variational minimisation. For
operational applications across a wider area, optimal iteration
methods could be used to save computation time and storage.
Improvements could also be made by the inclusion of prior in-
formation from the simulation library system. Currently, within
the flood forecasting system, the I1Z flood maps are spatially

independent of each other. Adding an additional background
term in the DA framework could improve the consistency of the
flood maps selected across a region and help prevent water level
discrepancies across the boundaries of 1Zs.

An additional benefit of the new approach is that the analysis
flood map could be used in a feedback loop to update the river
discharge (e.g., in the associated GloFAS grid cell). This could
be useful for hydrological model calibration or in updating the
initial conditions for the next forecast.

Currently the SAR-derived flood likelihood data includes both
flooding from direct rainfall (pluvial or surface water flooding)
as well as fluvial flooding. Flood Foresight maps are currently
fluvial only, which partly explains the underestimation of flood
extent seen in the analysis flood map results when compared to
independent satellite-derived observations. Ideally, the system
would also include pluvial flood maps that could be combined
with the fluvial maps to capture all flooding impacts and to
enable a more complete FbF system. Alternatively, the SAR-
derived flooding could be separated into pluvial and fluvial
drivers. This would require an up-to-date detailed digital terrain
model with excellent vertical accuracy by utilising, for example,
LiDAR (Light Detection and Ranging) data (Chen et al. 2017).
The first option is preferable as the analysis is more likely to
represent flooding as observed ‘from the ground” with the FbF
scheme benefiting more people impacted by flooding.

Future options for optimising the simulation library flood maps
could use flood depth observations if available, including from op-
portunistic sources such as camera images (Vandaele et al. 2021,
2023). In this case, a conventional iterative approach (such as a
gradient descent methods) could step through depth values within
each individual grid cell. The resultant analysis depth map would
represent the best estimate of the true flood extent and could be
used to inform secondary insurance payments.
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