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ABSTRACT Ensuring the quality and reliability of multimodal video data is critical for applications
that rely on accurate interpretation, such as medical imaging, surveillance, remote sensing and intelligent
manufacturing. However, the presence of outliers across different data types such as visual, textual, and
numerical poses a major challenge. To address this, we propose the Multimodal Outlier Optimizer (MOO),
a unified framework designed to detect and filter outliers from heterogeneous data modalities within video
files. MOO decomposes each video into still images, text, and numeric sequences, allowing specialized
algorithms to handle each modality: Nonlocal Means (NLM) for removing Gaussian noise in image frames
and Local Outlier Factor (LOF) for detecting contextual outliers in textual and numerical data. These filtered
components are then recombined into a cleaned, optimized video. The system is trained and evaluated
using synthetically generated datasets to simulate real-world noise while ensuring scalability and control.
Performance is assessed using Jaccard Similarity Score (JSS) and Structural Similarity Index (SSIM), with
results demonstrating consistent improvements even under high contamination levels (up to 50%), achieving
SSIM scores above 0.77 across three domains: medical imaging, remote sensing, and zoomed video data.
These results highlight MOO’s potential as an effective and adaptable tool for enhancing the integrity of
multimodal video data in complex, real-world environments.

INDEX TERMS Sentiment analysis, multimodal outlier optimizer (MOO), Jaccard similarity score (JSS),
intelligent manufacturing.

I. INTRODUCTION
The enhanced use of multimodal content in different fields,
such as security and surveillance, demands robust systems
that may address the issue of outlier detection in multimodal
data, particularly in videos. Existing approaches are devised
for unimodal data formats for textual or image streams and
do not consider interactions occurring when different modal-
ities are involved in videos. This research gap results in a
partial compromise of data integrity and hinders the ability to
conduct robust analyses, as extreme values can distort both
visual and textual representations [1]. Consequently, there is
a pressing need for accurate outlier detection and filtering
frameworks to ensure the reliability of outputs derived from
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multimodal data inputs. This study presents a multimodal
outlier optimizer (MOO) to address the challenges of outlier
detection and filtering multimedia video data. It leverages
the combination of text-mining analysis and numeric and
image-based studies for an optimization-based solution via
a composite approach for different types of data: textual,
numeric, and images. Synthetic outliers are created and
introduced into the dataset. The local outlier factor (LOF)
algorithm is employed to identify and eliminate contextual
outliers from textual data [2]. It is also implemented for
the removal of outliers from numeric data. Gaussian noise,
which is synthetically contaminated, is incorporated into the
image frames, and subsequent post processing is conducted
via a nonlocal means (NLM) filter to detect and filter these
outliers [3]. The filtered, outlier-free data are combined to
form the final compact video format that is devoid of outliers
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and noise. This integrated approach, the MOO, enhances
the quality of the input data. The system’s performance is
evaluated via statistical metrics, specifically the structural
similarity index (SSIM) and the Jaccard similarity score
(JSS), to demonstrate the improved efficacy of the methodol-
ogy [4], [5]. The SSIM is used for assessing image quality and
evaluating the amount of information retained after imple-
menting MOO, which is compared against a goal score that
represents minimal loss of structural information. Taking
MOO as a reference with respect to current state-of-the-art
techniques in each modality, the experiments are conducted
via synthetically bombarded outliers, and public benchmarks
establish the robustness and efficacy of the proposal.

The contributions of this study are as follows:
a. To design and introduce a robust system, MOO, for

accurately identifying and filtering outliers within a
multimodal framework having better accuracy than the
result obtained without filtering outlier.

b. To establish benchmark evaluation techniques to
demonstrate the effectiveness of MOO across different
data modalities.

II. BACKGROUND WORK
Several researchers have emphasized the importance of out-
lier detection in various forms of data. Kang and Park [6]
detected abnormal behavior in e-gaming biometric data of
skin conductivity, temperature, and motion from 50 partic-
ipants playing a bullet-dodge PC game. The study revealed
that 15% of the participants were in single player mode and
that 11% in multiplayer mode, which considers outliers on
the basis of biosignals, with actualization of the proposed
method in identifying the unusual physiological conditions
during gameplay [7]. Ben Chaabene et al. [8] aimed at mod-
elling social network anomaly detection through graph-based
signals and particle swarm optimization. They concluded
that the different combined methods of outlier detection are
22% more effective than the traditional methods in detecting
anomalies in social networking on Facebook. This contri-
bution focuses on increasing the ability of hybrid models
to work with multidimensional data [9], [10]. Zhu [10]
presents an emotion-aware smart assistant system that uses
multimodal signals (including voice, behavior, and text) to
recognize user affect and offer personalized responses. The
system improves user satisfaction by integrating emotional
intelligence into user interaction.

Kannan et al. [11] presented Tensor outlier detection
via nonnegative matrix factorization (TONMF) for identify-
ing anomalous text from blogs via low-rank approximation
and block coordinate descent methods [12], [13]. This
research proposed a high ROC score of 0.9340, imply-
ing the effectiveness of the model in outlier detection for
minute textual data with nonnegative and sparse attributes
in improving outlier analysis for textual datasets. In [14],
Yin and Wangm employed the Gibbs sampling algorithm for
Dirichlet process multinomial mixture model (GSDPMM)
clustering for outlier detection on blogs, microblogs, and

long and short text data with dimensionality. GSDPMM is
time- and space-efficient compared with other clustering
approaches and has high scalability for large datasets, which
contributes to anomaly detection in large-scale text data
[10], [15]. Recent advances in industrial signal processing
have demonstrated the effectiveness of advanced decomposi-
tion techniques for outlier and anomaly detection in complex
systems. [30] proposed a hierarchical hyper-Laplacian prior
prototype combined with singular spectrum analysis for
industrial robot flaw detection, showing superior perfor-
mance over traditional methods. Similarly, [31] developed
SSA-based approaches for detecting weak position oscilla-
tions in rotary encoder signals, demonstrating the potential
of decomposition-based methods for subtle anomaly detec-
tion. These works highlight the growing importance of
sophisticated signal decomposition techniques in industrial
monitoring systems, which parallels the need for advanced
outlier detection in multimodal data processing.

MOO offers a meaningful improvement over existing
multimodal outlier detection methods by adopting a
modality-aware approach that treats each data type—image,
text, and numerical—according to its specific characteristics.
Instead of using a one-size-fits-all approach, MOO applies
specific techniques to each modality: a noise-reduction filter
for image data, and a local density-based method for text and
numerical data. This helps remove outliers more effectively
without losing important information. Unlike some heavier
systems that rely on complex deep learning models, MOO
is lightweight, faster, and easier to implement. It also brings
all the cleaned data back together to recreate a better-quality
version of the original video. This shows that MOO is a
practical and reliable tool for improving multimodal datasets
in a variety of applications.

III. METHODS
This section explores MOO’s methodology for detecting and
filtering outliers frommultimodal data, as illustrated in Fig. 1.
The diagram demonstrates how the MOO (Multimodal Out-
lier Optimizer) system operates step-by-step to clean and
enhance video data. The proposed methodology involves a
multistep process. Synthetic outliers are generated and con-
taminated (n% outliers) in the input video Vorig, gradually
increasing the value of n after every iteration. The video
data are decomposed into three forms: image frames, textual
data, and numeric data. For the image frames, the pixel at
position xi is identified via an NLM filter to detect Gaussian
noise. Image frames often contain visual noise like grain or
blur, which is removed using a Nonlocal Means (NLM) filter.
MOO filters xi if it deviates from the chosen non-means
neighborhood. For textual data, LOF is implemented, where
each phrase wj in the text is assigned a score LOF (wj), and
outliers are filtered based on a predefined threshold for local
density deviation. At the same time, the textual and numer-
ical data—such as captions or user ratings—are checked for
unusual or inconsistent values using the Local Outlier Factor
(LOF) method. Similarly, for numeric data, LOF is applied
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to detect outliers, where each data point zk is evaluated, and
the outliers are discarded if LOF (zk) exceeds the threshold.
After the outliers are filtered, the three data forms (image,
text, and numeric) are recombined into the filtered video.
To assess the performance of MOO, it is evaluated on SSIM
and JSS to compare Vorig with the filtered video Vfiltered.
The difference between n% and the percentage of outliers in
Vfiltered is used as an error detection measure, establishing
the effectiveness of MOO for reducing outliers across multi-
modal data.

A. EXPERIMENTAL SETUP
We decomposed each set of videos, respectively made of
medical imaging data, remote sensing data and zoomed data,
into three specific modalities: image frames, textual metadata
and numerical sensor values. In each modality, we added
synthetic outliers in a systematic manner to mimic real noise.
For image data, Gaussian noise N(0,σ 2) was directly added to
pixel intensities. For the text dataset, random object chunks
were randomly put into the non-contextual phrases (which
can be generated with python faker) as corrupted samples.
For numerical data, also, anomalous spikes and perturbations
were created via Python’s random module. Noise was added
at 10%, 20%, 30%, 40%, and 50% across all the modalities
in a controlled manner, in order to maintain a uniform frame-
work for testing the Multimodal Outlier Optimizer (MOO)
for different levels of noise.

To demonstrate effectiveness of the proposed Multimodal
Outlier Optimizer (MOO), we set up a controlled experiment
where clear multimodal video datasets were contaminated
with synthetic outliers. The video data were mapped into
three modalities: image frames, textual metadata, and numer-
ical sensor data. For text, we used Python’s Faker library to
inject random noncontextual phrases. If denoting the original
corpus of the textsamples as given in equation (1),

Torig = {t1, t2, . . . , tn} (1)

The contaminated set is defined as Tcont =Torig ∪ 1T,
where 1T represents the injected textual noise. For numeric
values, random perturbations were added using Python’s ran-
dom module. Given the original numeric set is shown in
equation (2).

Zorig = {z1, z2, . . . , zm} (2)

The contaminated dataset is expressed as shown in
equation (3),

Zcont = Zorig ∪ 1Z (3)

where 1Z represents anomalous spikes or contextual devi-
ations. Finally, for image data, Gaussian noise was applied
directly on pixel values of the frames. Iorig denotes the clean
frame, the contaminated frame is given by equation (4)

Icont = Iorig + N(0, σ 2) (4)

where N(0, σ 2) represents Gaussian perturbations with vari-
ance σ 2. The contamination rate was systematically varied to
n% outliers per modality, with n∈{20,30,40,50}.

We demonstrate our MOO on three multimodal video
datasets covering different application domains:

Medical Images Dataset – CT and MRI scans along with
diagnostic reports and patient laboratory values. Publicly
available video clips were downloaded from The Cancer
Imaging Archive (TCIA) and transposed to multimodal.

Remote Sensing Dataset: satellite observation videos with
geospatial metadata and measurements that were originally
collected for the IEEE GRSS Data Fusion Contest archives
and NASA Earthdata repositories.

Zoomed Data Dataset—HR zoomed inspection videos
with text tags and machine sensor streams were obtained
from public industrial inspection benchmarks (MVTec Video
Anomaly).

The three synchronized modalities of each dataset were
decomposed as follows:

• Video frames were generated at a 25 fps extraction rate
and normalized as tensors [0, 1].

• We include textual metadata in the form of tokenized
sequences using the Faker library of Python to simulate
synthetic noise.

• Sensor values were ranged [0, 1] by computing the
minimum-maximum normalization.

Synthetic contamination was delivered at a rate under
the control of the user (10–50%) by adding Gaussian noise
into images, non-contextual phrases into text sequences, and
random noise onto numeric information. All data was in
a multimodal triplet format: (Ii,Ti,Zi) where each triplet is
synchronized (frame, annotation, sensor vector).

B. SYNTHETIC DATA CONTAMINATION
Synthetic outliers contaminate the multimodal data to evalu-
ate the efficacy of MOO. For textual data, synthetic outliers
are generated via Python’s Flaker library to introduce noise
by inserting noncontextual phrases. Torig={t1, t2, . . . tn} rep-
resents the original set of textual data, and the contaminated
set Tcont is derived by applying random modifications (17) as
shown in equation (5).

Tcont = TorigU 1T (5)

1T represents the introduced noise. For numeric data, outlier
contamination is performed via Python’s random module.
Zorig = {z1, z2, . . . , zm} denotes the original numeric data,
and the contaminated data Zcont is formed by equation (6).

Zcont = Zorig + 1Z (6)

1Z represents the random noise added to each value in Zorig.
The resulting contaminated data forms Tcont and Zcont are
combined with the original image data. Gaussian noise is
added to the image frames [17].
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FIGURE 1. Architecture diagram of the multimodal outlier optimizer (MOO).

C. LOCAL OUTLIER FACTOR (LOF)
LOF is used for detecting local outliers in data by comparing
the local density of a data point with the densities of its neigh-
bors. LOF identifies outliers in data with varying density
[18], [19]. Let xi be a data point in the data and k be the num-
ber of nearest neighbors used for local density estimation. The
reachability distance between two points xi and xjis defined
as shown in equation (7)

reach-distk(xi,xj) = max(k-distance(xj), ||xi − −xj||) (7)

where k-distance(xj) is the distance from xjto its k-th nearest
neighbor, and ∥xi− xj ∥ is the Euclidean distance between
points xi and xj. The local reachability density (LRD) of a
point xi is the inverse of the average reachability distance of
its k-nearest neighbors is given in equation (8).

LRD(xi) =
1∑1

j=N reach − dist(xi, xj)
(8)

whereN(xi) is the set of k-nearest neighbors of xi. The LOF of
a point xi is computed by comparing its LRD with the LRDs
of its neighbors as shown in equation (9).

LOF(xi) =

∑1
j=N

LRD(xj)
LRD(xi)

| N(xi)|
(9)

If LOF (xi) is greater than 1, then xi is defined as an outlier.

D. NONLOCAL MEANS (NLMS)
The NLM calculates the weighted average of all the pixels
in an image on the basis of their similarity to a target pixel,

where the weight decreases as the difference in the pixel
intensities increases. NLM detects and removes Gaussian
outliers from image frames in MOO [20], [21]. The weight
between pixel i and pixel j in an image I is defined as shown
in equation (10).

w(i, j) = exp(−
||Ii−Ij||
h ∧ 2

) (10)

Ii and Ij represent the neighborhoods of pixels I and j,
respectively, and h is a parameter that controls the decay of the
weight on the basis of the intensity difference. The distance
∥Ii− Ij ∥ is computed via the Euclidean distance between
pixel intensity vectors in a local window. The denoised pixel
I(denoised) is computed as a weighted average of all other
pixels is given in equation (11).

I(denoised) =

∑N
j w(i, j)∑N
j w(i, j)

Ij (11)

LOF and NLM were chosen because they work well for the
specific characteristics of the data types involved. NLM is
effective for images because it removes noise while preserv-
ing important visual details. LOF, on the other hand, is suited
for text and numerical data as it identifies outliers based on
how isolated a data point is compared to its neighbors. These
methods complement each other and together allow MOO
to handle each modality appropriately, making the overall
approach more accurate and efficient.

IV. EXPERIMENTATION
This section presents the experiments carried out on synthetic
data via MOO. The frames are represented as X = {xi,
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TABLE 1. Performance analysis of MOO.

xi+1, . . . , xn}. To mimic real-world scenarios where data
can get noisy or corrupted, we deliberately added a certain
percentage of outliers to each type of data. For the image
part, we added random visual noise similar to what might
occur due to camera issues or compression, and then used a
technique called NLM to clean it—this method reduces noise
while preserving important visual details. For the text and
numbers, we introduced odd or inconsistent values that don’t
match the surrounding data and used another method, called
LOF, which identifies and removes these unusual entries
based on how different they are from nearby data points.
Once the noisy data was cleaned, we put the image, text,
and numbers back together to recreate the video. We then
measured how well our filtering worked using two standard
metrics: SSIM to check the quality of the images, and JSS
to see how closely the cleaned data matched the original,

uncorrupted data. This setup helped us see how reliable and
effective our method is under different levels of noise.

A. MULTIMODAL DATA PREPROCESSING
The preprocessing steps after multimodal data extraction
from the video involve several steps for normalization, scal-
ing, and transformation.

1) IMAGE DATA PREPROCESSING
The pixel values of each frame are normalized and scaled to
the range [0, 1] via the following transformation as shown in
equation (12).

x′
=

xi − µ

σ
(12)

where µ is the mean pixel value and σ is the standard
deviation(23).
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2) TEXTUAL DATA PREPROCESSING
T= {t1, t2, . . . , tm} denotes the text extracted from the video,
where each ti represents metadata. The term frequency-in-
document frequency (TF-IDF) is implemented to convert the
raw text into a numerical feature vector vi ∈ Rd, where d is
the number of features (terms). The TF-IDF transformation
is defined as presented in equation (13).

TF − IDF(ti, j) = TF(ti, j).log
N

DF(tj)
(13)

where TF (ti,j) is the frequency of term tj in document ti,
DF(tj) is the document frequency of term tj, and N is the
total number of documents. The resulting feature vectors vi
for each text are scaled for uniformity [23], [24].

3) NUMERICAL DATA PREPROCESSING
Let Y = {y1, y2, . . . ,yp} represent the numerical features
extracted from the video (e.g., sensor readings). Each feature
yi ∈R is scaled and normalized to the range [0, 1] as shown
in equation (14).

y′
=

yi − min(y)
max(y) − min(y)

(14)

where min(y) and max(y) are the minimum and maximum
values of the numerical feature across the entire dataset,
respectively. The categorical data in the numerical features
are encoded via the label encoder [25], which transforms each
categorical value ci into an integer as shown in equation (15).

c′
= LabelEncoder(ci) (15)

B. BENCHMARK METRICS
MOO is evaluated via SSIM and JSS.

1) STRUCTURAL SIMILARITY INDEX (SSIM)
The SSIM quantifies the similarity between two images by
comparing luminance, contrast, and structure [26]. Given
two images I and I’, the SSIM is computed as shown in
equation (16).

SSIM (I, I’)

=
(2µIµI′ + C1) + (2σ II′ + C2)

(µI ∧ 2 + µI′ ∧ 2 + C1)(σ I ∧ 2 + σ I′ ∧ 2 + C2)
(16)

where µI and µI’ are the mean pixel values of I and I’; σ 2I
and σ 2I’ are the variances of I and I’; σ II’ is the covariance
between I and I’; and C1 and C2 are small constants used to
stabilize the division. The SSIM ranges from −1 to 1, with
1 indicating perfect similarity.

2) JACCARD SIMILARITY SCORE (JSS)
The JSS measures the similarity between two sets. For two
sets A and B, JSS is computed as the following equation (17).

JSS(A,B) =
|A ∩ B|

|A∪B|
(17)

where |A ∩ B| is the size of the intersection of sets A and B
and |A∪B| is the size of the union of sets A and B. In the con-
text of video frames or data, sets A and B represent the pixel
values from the original and filtered frames, respectively.

V. RESULT ANALYSIS
Table 2 presents the features of the medical imaging data
taken as the test set, and the plot in Fig. 6 illustrates the
behavior of MOO when it is applied to the sensing data.

TABLE 2. Features of the medical imaging test data (CT scan images).

Table 1 presents the performance analysis of MOO across
different video lengths, themes, and gradual increases in the
percentage of outliers. Each row in the table represents a
particular video and the percentage of outliers added and
the percentage of outliers detected. For each video segment
presence in the initial video as well as the filtered video is
also specified in this table. The chosen contamination levels
of 20–90% are meant to simulate a wide range of real-world
conditions. Lower levels (around 20–40%) represent com-
mon issues like sensor noise, minor label errors, or occasional
data mismatches, which are typical in moderately noisy envi-
ronments. Higher levels (60–90%) mimic more challenging
scenarios such as corrupted video frames, mislabeled data,
or large-scale disruptions in sensor networks. This broad
range allows us to evaluate how well MOO can adapt to both
everyday and extreme data quality problems across different
application domains. In order to analyze the efficiency of the
proposed filtering technique, two performance parameters are
employed, namely JSS score and SSIM score. The higher
value of JSS and SSIM score indicates higher efficiency
in filtering, which in turn indicates thatthe filtered video is
closely similar to that of the respective original video. Three
thematic areas have been used for evaluation: medical data
(CT Scan Video Set), Zoomed Data (Zoomed In Videos),
Sensing Data(Remote Sensing Earth Demographics Dataset).
As the percentage of added outliers increases (e.g., image,
text, or numeric), the JSS and SSIM scores tend to degrade
for higher outlier percentages. This trend reflects a decrease
in video quality as more outliers are introduced and detected.
When 90% of the outliers are added, both the JSS and SSIM
scores significantly decrease, with JSS ranging from 0.42–
0.45 and the SSIM score decreasing to 0.64–0.69. The data
imply a trade-off between outlier detection accuracy and
video quality, with increased outlier percentages leading to
lower consistency and structural similarity.

VOLUME 13, 2025 177425



K. Das et al.: Multimodal Outlier Optimizer for Textual, Numeric, and Image Data

FIGURE 2. Metric scores of MOO on medical imaging data with increasing
percentages of contaminated outliers.

Fig. 2. shows the performance ofMOOonmedical imaging
data as the percentage of contaminated outliers increases.
The metric scores—JSS and SSIM—are plotted against the
varying contamination levels.

FIGURE 3. Density plot for image pixel intensities of 3 shuffled images
from the CT scan medical imaging video test set.

Fig. 3 illustrates the pixel distribution density plot of three
randomly shuffled images from the test set. The quality of
the scores decreases with increasing percentage of outliers,
indicating the sensitivity of the metric to data contamina-
tion.Fig. 4 focuses on a different theme of the data: zoomed
video data. This shows the effect of increasing contami-
nated outliers on the MOO metrics (JSS and SSIM). Table 3
presents zoomed test set features and Fig. 5 illustrates the
pixel distribution density plot of three randomly shuffled
images from the zoomed test data set.

Table 4 presents the features of the sensing data taken as
the test set and Fig. 7 illustrates the pixel distribution density
plot of three randomly shuffled images from the test set.
MOO performs relatively well at contamination percentages
of under 50%, with SSIM scores greater than 0.77 (the thresh-
old for the accepted quality of images) [27].
Measurements of computational efficiency were made for

the proposed framework by profiling the average processing

TABLE 3. Features of the zoomed test data.

FIGURE 4. Metric scores of MOO on zoomed data with an increase in the
percentage of contaminated outliers.

FIGURE 5. Density plot for image pixel intensities of 3 shuffled images
from the zoomed test data.

TABLE 4. Features of the sensing data.

time per frame, and memory usage in the predominant func-
tioning paths. The outcome is shown in Table 5. Our findings
show that the preprocessing based on NLM is the lightest
presented so far, whereas the LOF thresholding imposes
moderate computational load. SSIM-based image analysis
takes longer time to compute structural similarity however
the computation lies within real time constraints. In gen-
eral, the system strikes a balance between the accuracy and
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FIGURE 6. Metric scores of MOO on sensing data with increasing
percentage of contaminated outliers.

FIGURE 7. Density plot for image pixel intensities of 3 shuffled images
from the sensing test set.

efficiency, so that it can be exerted for live video anomaly
detection. We profiled the proposed framework by running
each part of the system independently and measuring the
average execution time per image as well as memory usage
for each pipeline block. We did this with controlled video
sequences, by running at specific frame rates, utilizing sys-
tem level time and memory profilers to capture the runtime
statistics. All experiments were performed five times and the
average was recorded to reduce variation. as most computa-
tionally intensive among the three stages, LOF thresholding
has intermediate computational overhead, and NLM-based
preprocessing stage is the most lightweight.

VI. DISCUSSION
We have benchmarked MOO’s comparison with [28]. The
central technical comparison with respect to our evaluation
setup and the MVTec Texture benchmark is the target scope

TABLE 5. Comparison of computational efficiency.

FIGURE 8. Computational efficiency across pipeline sections.

of the chosen metrics. The MVTec report 27 investigates also
single-modality texture images on the anomaly detection,
we say the reconstruction-based metric (MSE, SSIM, MS-
SSIM, CW-SSIM) and the performance is normalized AUC.
Such metrics mostly measure the pixel-level reconstruction
quality and the structural coherence in grayscale or color
textures. In addition, our work deals with multimodal video
data including images, textual annotations and numerical
streams, thus calling for metrics reflecting both visual fidelity
and accuracy at the level of anomaly sets. Therefore, they
are combined with SSIM to retain the structure of contami-
nated frames, and Jaccard Similarity Score (JSS) is used to
achieve the direct measurement for the overlap of ground
truth and detected outlier in textual and numeric modalities.
In contrast to the MVTec approach of being texture sensitive
only, our choice of metric results in an aggregated qual-
ity metric for heterogeneous data and therefore, technically
better!for the optimization of multimodal outlier detection
approach. The MVTec 3D-AD experiment [29] benchmarks
the anomaly detection capability according to I-AUROC
under 3D, RGB, and 3D+RGBdata, highlighting the ability
of models to rank the discriminative power for anomaly
detection of object classes within industrial domains. Their
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TABLE 6. Comparison with benchmark dataset.

results also demonstrate a tangible improvement in detection
performance, of importance is the combined 3D+RGBwhich
surpasses I-AUROC of 96%, suggesting robust abnormalities

TABLE 6. (Continued.) Comparison with benchmark dataset.

in visual domains. By contrast, our MOO framework works
over heterogeneous video material that includes images, tex-
tual metadata and numerical signals, all of which comes with
the associated need to fall beyond just image benchmarks.
Since I-AUROC is tailored for modality-specific ranking,
we use SSIM to measure the structural fidelity in the filtered
image frames and Jaccard Similarity Score (JSS) to evaluate
the overlap between the detected and ground-truth outliers for
non-visual modalities. Therefore, although the 3D-AD learns
to rank abnormal samples compared to normal samples in
visual domains, our metric design delivers a more compre-
hensive evaluation of multimodal continuity and anomaly set
accuracy, to make the evaluation of data types more consis-
tently balanced. The detailed comparison is shown in Table 6.

VII. CONCLUSION
In this work, we present a MOO method for outlier detection
and filtering of multimodal video datasets. By rigorously
combining heterogeneous modalities—image, textual, and
numerical data in particular—we show that each modality
can be separately processed using specialized algorithms. For
image data, we apply the NLM filter, which performs robust
noise reduction while retaining crucial structural information.
Conversely, text and numeric data are examined using the
LOF algorithm, which detects and measures anomalies in
terms of local density differences.

The effectiveness of the MOO framework is measured
quantitatively by means of the SSIM and JSS, which are
sound measures for quantifying the quality of the filtered
data. Experimentally, our results show that MOO drastically
improves the integrity of multimodal video data through effi-
cient outlier elimination, thus enhancing the quality of the
data as a whole. Such an approach is specially relevant for
uses that demand high fidelity in video data, such as medical
images, surveillance applications, and analysis of multimedia
content. By meeting the challenges presented by multimodal
data, MOO not just allows for enhanced outlier handling, but
also safeguards against the very nature of multimodal data
presenting diversity.

While the proposed Multimodal Outlier Optimization
(MOO) method shows promising results in improving the
quality of multimodal video data, there are a few limitations
to consider. First, treating each modality separately though
effective, may overlook interdependencies or correlations
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betweenmodalities that could provide richer context for iden-
tifying outliers. For instance, an anomaly that is subtle in one
modality might only be clear when viewed alongside another.
Second, the performance of the method depends on the qual-
ity and balance of the input data. In cases where one modality
is noisy or incomplete (e.g., missing textual metadata), the
filtering process might be less effective or biased. Addition-
ally, the LOF algorithm can struggle with high-dimensional
or highly sparse data, which is often the case in real-world
multimodal datasets. Finally, although SSIM and JSS pro-
vide a solid quantitative measure of filtering effectiveness,
they may not fully capture semantic or contextual nuances,
especially in complex video content. Future workmay benefit
from exploring deeper integration between modalities and
leveraging advanced models that can jointly learn from them.

This research enhances the development of multimodal
data processing methods with an extensive solution improv-
ing the quality and usability of video data for use in diverse
scientific and applied areas. Looking ahead, an important
direction for future work is the integration of deep multi-
modal learning architectures. Unlike traditional approaches
that treat each modality separately, deep models—such as
transformers, multimodal autoencoders, or contrastive learn-
ing frameworks—can jointly learn representations across
modalities, capturing complex relationships and context that
may help in identifying more subtle or cross-modal out-
liers. Incorporating such models into the MOO framework
could significantly improve its robustness and adaptability,
especially in noisy or dynamic environments. Furthermore,
exploring attention mechanisms within these architectures
could enhance interpretability and allow the system to weigh
the importance of different modalities depending on the con-
text. These enhancements could make MOO suitable not
just for pre-processing, but also for end-to-end applications
in fields like healthcare diagnostics, smart surveillance, and
autonomous navigation.
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