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Abstract

Platelets play critical roles in haemostasis and thrombosis. The platelet activation process is
driven by agonist-induced rises in cytosolic [Ca?*];, where the patterns of Ca?* responses
are still incompletely understood. In this study, we developed a number of techniques to
model the [Ca?*]; curves of platelets from a single blood donor. Fura-2-loaded platelets
were quasi-simultaneously stimulated with various agonists, i.e., thrombin, collagen, or
CRP, in the presence or absence of extracellular Ca®* entry, secondary mediator effects,
or Ca®* reuptake into intracellular stores. To understand the calibrated time curves of
[Ca?*]; rises, we developed two non-linear models, a multilayer perceptron (MLP) network
and an autoregressive network with exogenous inputs (NARX). The trained networks
accurately predicted the [Ca®*]; curves for combinations of agonists and inhibitors, with
the NARX model achieving an R? of 0.64 for the trend prediction of unforeseen data. In
addition, we used the same dataset for the construction of a partial least square (PLS)
linear regression model, which estimated the explained variance of each input. The NARX
model demonstrated that good fits could be obtained for the nanomolar [Ca2*]; curves
modelled, whereas the PLS model gave useful interpretable information on the importance
of each variable. These modelling results can be used for the development of novel platelet
[Ca?*J;-inhibiting drugs, such as the drug 2-aminomethyl diphenylborinate, blocking Ca2*
entry in platelets, or for the evaluation of general platelet signalling defects in patients with
a bleeding disorder.

Keywords: calcium signalling; collagen; neuronal network; platelets; thrombin

1. Introduction

Platelets, derived from megakaryocytes, contribute to haemostasis, thrombosis, and
thrombo-inflammation via receptor-induced signalling responses [1-3]. Physiologically im-
portant receptors are the protease-activated receptors (PAR1/4) for thrombin, the purinergic
receptors (P2Y; /1) for ADP, which signal as G-protein coupled receptors (GPCRs), and
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the glycoprotein VI (GPVI) receptor for collagen, acting as a protein tyrosine kinase-linked
receptor (TKLR) [4]. Since the activation and aggregation of platelets frequently drive
arterial thrombotic complications [5], which are prominent causes of death worldwide [6],
a clear understanding of the activation process is a must.

In platelets stimulated via GPCRs or TKLRs, rises in cytosolic [Ca?*];

are a common
initial event, contributing to essentially all platelet functions [7,8]. The receptor-induced
mobilisation of Ca?* from intracellular stores in the endoplasmic reticulum (or dense
tubular system) proceeds via inositol 1,4,5-trisphosphate receptors (IP3Rs), while sarcoplas-
mic/endoplasmic reticulum Ca?*-ATPases (SERCAs) are responsible for the back pumping
of Ca%* into the stores (Figure S1) [7,8]. The IP3R channels are operated via IP3, which is
produced as a result of activation of the GPCRs for thrombin [9] and ADP [10] and upon
the activation of GPVI by collagen or collagen-related peptide (CRP) [8].

In the process of store-operated Ca?* entry (SOCE), Ca?* store depletion is coupled
to entry of Ca?" from the extracellular medium via Orail channels, which open upon
interaction with the Ca?* sensor STIM1 (stromal interaction molecule 1) in the endoplasmic
reticulum membrane [7]. The back pumping of Ca?* over the plasma membrane occurs
via plasma membrane Ca?*-ATPases (PMCAs). Furthermore, primary agonists such as
thrombin and CRP stimulate the release of autocrine agents, which enhance the Ca®*
signalling process. Particularly relevant are the autocrine agents thromboxane A, (TxAj)
and ADP, both of which stimulate IP3 production via GPCRs [11]. Another paracrine-
dependent Ca?* entry mechanism is provided by ATP, which activates P2X; channels that
specifically mediate Ca?* entry [12].

Several pharmacological inhibitors are known to interfere with platelet Ca®* responses.
The entry of Ca®* from blood plasma is prevented by the Ca?* chelator EGTA. The back
pumping of Ca?* from cytosol to intracellular stores is inhibited by the compound thap-
sigargin, which accordingly potentiates Orail-STIM1-dependent entry [7]. The effects of
autocrine agents are suppressed by the addition of apyrase (degrading ATP and ADP) and
indomethacin (blocking TxA, formation). Figure S1 illustrates the actions of these platelet
receptors, ligands, inhibitors, and channels relevant for the present study.

The high complexity of Ca2*-related signalling in platelets has led to the development
of mathematical models, aiming to better understand the process and identify therapeutic
targets. Authors have combined the Ca®* fluxes in various platelet compartments into one
model based on ordinary differential equations (ODEs) [13]. Even though this system did
not include ligand-receptor interactions, it consisted of 34 entities, 35 interactions, and
86 parameters, thus reflecting the complexity of the Ca®* signalling process. An alternative
approach presented by Chatterjee and Diamond [14] was to create a neural network model
that was trained from the Ca?* response patterns to specific agonists. This neural network,
acting as a black box, was able to predict synergistic effects on the Ca®* responses of up to
six agonists. A trade-off of the network model was that all the parameters needed to be
trained, and, hence, required extensive experimental data. Another limitation of the neural
network approach was that it did not predict the contribution of each Ca?* channel and
pump to the overall cytosolic [Ca?*]; level.

In the present study, we constructed computational models to predict the magnitude
and shape of the [Ca?*]; time curves in platelets in response to collagen, thrombin, and
CRP for a given set of experimental conditions in the absence or presence of known
inhibitors. We first built two neural network models to predict agonist and inhibitor effects
on the [Ca®*]; curves. We then used partial least square (PLS) regression analysis to better
understand how specific curve variables contributed to the obtained response. To exclude
inter-individual variation, we used a coherent set of Ca?* response curves taken from the
platelets of one healthy subject, checked to be representative for five healthy subjects.
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2. Results
2.1. Comparing Multiple Agonist-Induced Platelet [Ca®*]; Curves

Using a high-throughput method described before [15], Fura-2-loaded platelets from
a representative healthy donor were incubated in the presence of EGTA or CaCl, with
or without the secondary mediator inhibitors apyrase and indomethacin (Al) and then
stimulated with collagen, CRP, or thrombin. Under these various different conditions,
agonist-induced rises in [CaZ*]; were measured as nM concentrations over a time period of
540 s. By also varying the agonist concentrations, curves were obtained for over 70 different
experimental conditions. By comparing analogous sets of collagen-, thrombin-, and CRP-
activated [Ca%*]; curves from five healthy subjects [15], subject 1 was taken as representative
for all (Figure S2). As shown in a comparative heatmap, the overall concordance between
subjects was high per condition (experiment) and between conditions of the [Ca?*]; rises,
with a mean coefficient of variation of 29%. Accordingly, for the present analysis, we used
a coherent set of 72 [Ca?*]; time curves obtained with the platelets from subject 1 (Figure 1).
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1 0 0 0 0 1 0 370 10 0 0 0 1
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30 1 0 0 0 0 1| 66 0 0 1 0 0 1
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2 1 0 0 1 0 1 [ 68 o 0 1 1 0 1
33 0 10 0 0 0 0 69 0 0 10 0 0 0
34 0 1 0 0 0 0 70 0 0 1 0 0 0
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Figure 1. Assignment matrix of variables of 72 numbered experimental conditions. Calibrated curves
of Fura-2-loaded platelets from one donor, representative for 5 donors, were used as input data. The
conditions highlighted in blue (solid borders) were used as validation set, and those in red (dashed
borders) were used as test set. Abbreviations: Col, collagen (ug/mL); CRP, collagen-related peptide
(ng/mL); Thr, thrombin (nM); EG, EGTA: 0.1 mM if assigned to 1 or 1 mM CaCl, if assigned to 0;
Al apyrase (0.1 U/mL) plus indomethacin (20 uM) if assigned to 1; Thap, thapsigargin (1 uM) if
assigned to 1.
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Comparing the set of original traces (Figure S3), typical characteristics were observed,
in addition to the expected agonist dose dependency [15]. In general, the [Ca®*]; curves
induced by the weak GPVI agonist collagen showed steady increases with lower maximal
amplitudes (Exp. 9-31) when compared to the higher amplitude and often biphasic [Ca?*];
rises induced by the strong GPVI agonist CRP (Exp. 37-48). On the other hand, the curves
with the PAR1/4 agonist thrombin (Exp. 49-72) often had a transient shape, indicating high
activity of the SERCA Ca®* pumps. Other differences included amplitude traces up to four
times higher (depending on other variables) in the presence of CaCl, compared to EGTA,
which can be explained by Orail-dependent Ca®* entry [15]. Furthermore, we confirmed
potent [Ca*]; increases with CaCl, and the SERCA inhibitor thapsigargin, stimulating
SOCE and activating the Orail channels [7]. The autocrine inhibitors indomethacin and
apyrase (IA), in general, lowered most of the curves.

2.2. Workflow of the Modelling Approaches

To prepare the raw experimental data for processing, we first interpolated and
smoothed the 72 curves at 1 s time intervals (Figure S4), and then y-axis scaled each
curve in the range of 0-1 (Figure S5). The subsequent workflow (Figure 2) consisted of
feature generation by combining and squaring the experimental variables (see below) and
splitting the curves into training, validation, and test sets. The processed curves were then
used as inputs for two types of modelling, i.e., a neural network and a PLS (partial least
squares) method. Using neural network analysis, we performed an NARX (non-linear
autoregressive network with exogenous input) procedure for trend prediction and an MLP
(multilayer perceptron) procedure for magnitude prediction. The combined network was
then tested on overall performance. Furthermore, we used PLS regression analysis to
comparatively model scalar characteristics of the curves. The results from these approaches
were interpreted and cross-checked with each other.

Experimental data
collection

Data preparation
(interpolation,
smoothing, scaling)

Feature engineering
(polynomial feature)
Data spliting
(train/validation/test)

Neural networks Scalar characteristics
— 5 — model with PLS
Trend prediction Magnitude prediction

(NARX) (MLP)

Train parameters
(training set)
Evaluate performance
Optimise network (validation + test set)
architecture
(validation set)

Train parameters
(training set)

Evaluate performance
(test set)

Parameter sensitivity
(of scalar characteristics)

Model interpretation

Figure 2. Workflow used for the data processing, neural network construction, and scalar model
development. For explanation, see text.
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2.3. MLP Network for Magnitude Prediction

We first aimed to understand how the smoothed [CaZ*]; curves of the platelets relied
on the chosen experimental conditions (CaCl, /EGTA, agonist, dose, Al, and thapsigargin).
For this purpose, we generated a simple network able to predict the magnitude of the Ca®*
signal. After the training and validation of the constructed MLP network, it appeared that
the best architecture had three nodes with one hidden layer (Figure 3A). We then generated
plots to compare the observed data with the predictions in linear of log scale. In the plots,
each data point represented an experimental and predicted magnitude value (Figure S6).
The MLP parameters associated with each node are shown in Figure S7, also providing
the relative weights of combined and squared parameters. The output plots indicate a
reasonable fitting, especially in the log-scale setting. We concluded that the MLP approach
provided suitable predictions of curve magnitudes, although this procedure did not predict
curve shapes.

1 hidden 3 hidden

layer layer

feedback ‘ G
delay < |
(memory) ‘

Figure 3. Construction of two neural networks. (A) Setup of MLP network as a fully connected
feedforward neural network, which was used for magnitude prediction of the [Ca?*]; time curves.
(B) Setup of closed-loop non-linear autoregressive network with exogenous inputs (NARX), which
was developed as a recurrent neural network for the trend prediction of [Ca?*]; time curves.

2.4. Neural NARX Network for Trend Prediction

To predict the shape or trend of the [Ca?*];

curves, we applied a uniform amplitude
scaling of 0-1. The developed NARX method was then used for prediction modelling of the
scaled curves. For training of the NARX network, we choose 58 scaled curves (Figure S7),
which resulted in the best network architecture (mean R? = 0.84) with three hidden layers
and 4 x 12 x 4 nodes (Figure 3B). The suitability of this network was confirmed using a
validation set of seven curves (mean R? = 0.71) (Figure S8). Subsequent application of a
test set with seven curves resulted in a lesser fitting (R? = 0.64), explained by the transiency
induced by thrombin (Figure 4). In comparison, the testing of unscaled curves in the MLP

network resulted in a good prediction, especially for the high-magnitude curves.
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o o | | o
"R%2=0.81 3 R? = 0.69 S | g2 =/-0Ct/5 Ey
0 ' o ' “ 0 ' S
0 540 540 0 540
Time (s) Time (s) Time (s) log, , Target

Figure 4. Test results of the NARX network to predict curve shapes. (A-G) Testing of trend prediction
of 0-1 scaled [Ca?*]; curves. Experiments of the test set are shown in Figure 1. Red solid lines = ex-
perimental values, blue dashed lines = predicted values. Indicated per condition are the calculated
R? values (a negative R? indicates an explained variance worse than random). (H) For comparison,
results from the same test set are given as obtained by the MLP network. Shown here are the target
and predicted nM [CaZ*]; levels in log scale.

The NARX predictions provided information on the non-linear shapes of some of the
[Ca®*]; curves. Examining the R? trend values, it appeared that these were negative for
Exp. 58 (Figure 59) and Exp. 63 (Figure 4). This indicated an explained variance worse than
random, and, hence, the inability of fitting. Furthermore, other conditions with thrombin as
an agonist (Exp. 67, 70, and 72) gave a relatively low R? < 0.4. This can be explained by the
transiency of several thrombin-induced [Ca?*]; rises. The apparently additive information
from either procedure prompted us to integrate the neural network results of magnitude
and trend prediction.

2.5. Combining the MLP and NARX Networks

For a combined network prediction, we used a training set of 58 curves (Figure 510).
The initial training with respect to magnitude and trend predictions was validated and
tested using the remaining 14 curves (Figure S11). This combined modelling resulted in an
improved outcome. We then performed one-at-a-time (OAT) factor analysis by varying the
agonist concentrations from 1 to 10% of maximum at different inhibitor combinations, pre-
senting the results as magnitude curves (Figure 5A) and heatmaps of scalar characteristics
(Figure 5B).
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Figure 5. Combined effects of magnitude and trend prediction of platelet [Ca?*];

curves at varying
agonist concentrations. (A) Panels of prediction efficacy of scaled curves per agonist concentration.
Lightest grey lines represent basal levels, while darker lines point to predicted curves in the presence
of agonist at 1-10% of the maximum concentration in the training set. Columns show conditions
with indicated agonists, collagen (Col), CRP, or thrombin (Thr). Rows represent different inhibitor
conditions: + or — mean presence or not; from top to bottom: EGTA, apyrase plus indomethacin (AI),
and thapsigargin (Thap). (B) Sensitivity characteristics of the scalar curves generated by MLP and
NARX. Columns indicate: [Ca?*]; level at log10 base (magnitude), time of [Ca®*]; (tmax), final [Ca?*];

level (ylast), and mean deviation from linear (absdev).

The OAT prediction in Figure 5A indicated that the magnitude of the ‘no inhibitor’
[0 0 0] condition was more changed with the thrombin concentration when compared to
collagen or CRP. The presence of EGTA reduced the magnitude prediction mostly with
collagen and CRP. The thrombin concentration showed the highest magnitude effects in
both the absence or presence of inhibitors. Furthermore, thapsigargin increased the overall
magnitude effect at different agonist concentrations, particularly in the absence of EGTA
(i.e., with CaCl2). Overall, this OAT analysis pointed to a high sensitivity of the [Ca%*);
curves in the order of thrombin > CRP > collagen.

Regarding the scalar curves, we compared three indications for non-linearity, i.e.,
tmax, ylast, and absdev (Figure 6). The [Ca%*); peak time (tmax) provided information on
early curve saturation (<540 s). The parameter ylast indicated curve transiency when <1,
whilst absdev informed on the extent of non-linearity. The heatmaps in Figure 5B show
similar trends for ylast and tmax, particularly for thrombin in the absence of thapsigargin.
Thus, the prediction indicated that the non-linear curve pattern with thrombin extended
to higher agonist concentrations. This transiency was not seen for collagen or CRP. The
analysis of absdev showed that most of the thrombin curves were non-monotonic, except
for conditions in which thapsigargin and CaCl, were present, i.e., resulting in more linear
curves (Figure 5B). For all inhibitor conditions, the predicted absdev values for collagen and
CRP were in the same lower range. Accordingly, the scaled curve characteristics informed
on the Ca®* response patterns at low agonist doses in the absence or presence of CaCly,
Al, or thapsigargin. Examination of the unscaled curves showed a better picture of the
prediction at low agonist doses (Figure S12). The model thereby predicted that already
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low concentrations of thrombin (<0.2 nM), CRP (<0.2 ng/mL), or collagen (<0.5 ug/mL)
produced relevant [Ca®*]; rises, i.e., even below the doses inducing platelet aggregation.

1

ylast
0.75

scaling

160 540 tmax = 1
160/540

Figure 6. Scalar characteristic of the [Ca?*]; time curves. Scaling resulted in the following parameters:
magnitude (nM) points to the maximal minus minimal value of a curve; tmax refers to the time point
where the maximal value is reached, scaled by time range (540 s). The parameter ylast indicates the
end value, scaled according to the magnitude; absdev represents the mean deviation of the time curve
from linear (red line). The deviation from this line (green) was calculated per time point, in which
absdev means the average of all deviations.

From combining the tested MLP and NARX networks, several conclusions can be

drawn. The transient [CaZ*];

curves with thrombin required a different modelling approach
than the non-transient responses obtained with other agonists. For the weak GPVI agonist
collagen and the strong agonist CRP, the scaling approach showed monotonic curves,
being close to linear at low agonist concentrations. Further, the combined modelling
indicated additive effects of EGTA (Exp. 36) and Al (Exp. 42) for CRP, of which the former

was stronger.

2.6. Partial Least Square (PLS) Regression Analyses

As an integrative approach, we then investigated how each of the experimental
variables contributed to the scalar curve characteristics tmax, ylast, and absdev. For this
purpose, we used PLS regression analysis as a linear model, directly assessing the impacts
of all input variables.

As inputs for the PLS model, we normalised the experimental conditions to six vari-
ables, i.e., agonist type, concentration, EGTA /CaCl,, Al, and thapsigargin, which all varied
from zero (none) to one (maximum). This resulted in a six-component model. As indicated
in Figure S13, only the first two components contributed to the variance of the target. We
then fitted the two-component PLS regression for the curves of magnitude, tmax, ylast, and
absdev using the training set of 58 experimental conditions, while keeping the remaining
14 conditions (previous validation and test sets) as test set of the PLS model. Regression
analysis was then used to predict the scalar characteristics of the test set, which overall
showed a good or underestimated fit, but also gave errors for the training and test sets,
which pointed to partial overfitting (Figure S14).

It appeared that the first PLS component of the magnitude prediction had a negative
loading in the presence of EGTA and/or Al (Figure 7A), in agreement with the lower
levels of [Ca®*]; reached. On the other hand, the presence of thapsigargin resulted in a
highly positive loading, linked to the increased [Ca?*]; levels. These opposite loading
coefficients reflect that the presence of EGTA prevented the entry of extracellular Ca*,
whereas thapsigargin increased this process by inhibiting the SERCA-type Ca?* pumps
controlling the STIM1-Orail Ca?* entry pathway [15]. The agonists CRP > thrombin had
strong positive predictions in component 2, indicating that these variables differed from
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the inhibitor effects. Furthermore, the ylast and tmax predictions showed opposite loadings
in component 1 for thrombin (negative) and thapsigargin (positive) (Figure 7B,C). This
reflects the transient, non-linear Ca%* responses observed with thrombin in comparison
to the continuously rising curves with thapsigargin. Regarding the absdev prediction, the
thrombin condition showed a particularly high positive weight in component 2, in contrast
to the negative loading in component 1 for thapsigargin (Figure 7D), also as a consequence
of the different curve shapes. Accordingly, the four PLS regression models provided
valuable information on the relations between curve sizes and shapes across conditions.

(A) (B)
magnitude prediction tmax prediction
3 (component coefficient) 15 (component coefficient)
[0 col |
o~ o CRP o~
= Thro o = o
2 EGTA 2 9 o
2 o Al 2
e O Thap £
9 g I}
(&) [$]
%) (%] ©
= 0f o o
o o
o o o
1t L ) 25! 1 n
-3 0 3 -3 0 3
PLS component 1 PLS component 1
(Q) (D)
ylast prediction absdev prediction
1. (component coefficient) 25, (component coefficient)
o~ ° o~
€ 0f o c
2 2
o
g g ° .
IS IS
8 8 ol
2 2 ?
o o
° o
=31 - . -1.5" - .
-2 0 3 -4 0 2
PLS component 1 PLS component 1

Figure 7. Loading coefficients of experimental variables in the PLS regression analysis. PLS regression
analysis was performed for the prediction of curve magnitude (A), tmax (B), ylast (C), and absdev
(D). Colours indicate contributions per variable. Plots show for two principal components the
contribution of six experimental variables (collagen dose, CRP dose, thrombin dose, EGTA /CaCl,,
Al thapsigargin).

For validation of the combined model, based on magnitude, trend, and scalar predic-
tions of the characteristics of agonist-induced [CaZ*]; time curves, we evaluated the effects
of a drug, 2-aminomethyl diphenylborinate (2APB), previously identified as a potent in-
hibitor of the STIM1-Orail Ca?* entry pathway [15]. For this purpose, we generated 16 sets
of curves with the variables collagen, thrombin, CRP, thapsigargin, and EGTA /CaCl, both
in the presence and absence of 2APB. For convenient and logistic reasons, we used only
the high agonist concentrations. The raw curves, representative for platelets from three
subjects, are provided in Figure S15A. The application of PLS regression analyses using
this 16-fold dataset provided interesting insights into platelet Ca>* signalling for all four
curve characteristics, including magnitude, tmax, ylast, and absdev, supporting the known
action mechanism of the drug. Examining the first two PLS components, the opposite
loadings of EGTA and thapsigargin were retained in the magnitude and tmax predictions,
in both the absence and presence of the drug (Figure S15B(a,b)). The transiency of the



Int. J. Mol. Sci. 2025, 26, 6820

10 of 16

traces with thrombin again appeared as separate dots in the ylast and absdev predictions
(Figure S15B(c,d)). Importantly, the PLS linear regression analyses also pointed to a high
similarity of the curve profiles in the absence or presence of the drug 2APB, showing
highly similar loadings for all variables (Figure S15B(i,ii)). In addition, when the drug
was introduced as an additional variable, the loadings in components 1-2 for “Drug” and
“EGTA” were close to each other (Figure S15B(iii)). This indicated that, in general, the drug
2APB did not affect the overall curve shapes, but approached the conditions with EGTA,
hence confirming its action mechanism as a Ca®* entry blocker regardless of the presence
of agonist or other inhibitor.

3. Discussion

The combined modelling approaches presented here introduce a new way to predict
the response size and pattern of agonist-induced platelet Ca?* responses under a great
variety of conditions. The constructed MLP and NARX neural networks were able to
produce mostly correct magnitude curves for [Ca?*];, whereas the modelling by PLS
regression captured the characteristic curve shapes. Our work thereby adds to the idea
of a platelet Ca?Z* calculator introduced by Diamond and colleagues [14], in that, now,
curve patterns can also be predicted without mathematical modelling. However, we did
not consider the synergistic effects of agonist combinations such as those presented in
that study.

It is important to note that, while the present machine learning techniques were able to
fit most of the input data, the obtained output did not give a direct biological interpretation.
This is in contrast to modelling approaches based on biological concepts, such as enzyme
and receptor reaction rates in ODE-based kinetic models. However, the latter approaches
cannot easily capture the complex interactions between signalling steps, for instance due to
combinations of agonists and inhibitors.

Both the NARX network and PLS regression modelling yielded useful results for

understanding the variation in [CaZ*];

curves. The magnitude differences between curves
in the presence of EGTA or CaCl, (due to Ca?* entry into the platelets) were well captured
by the MLP and PLS regression models. The prediction results—i.e., sensitivity for MLP
and components 1/2 for PLS—were well interpretable for this variable. On the other hand,
NARX outperformed in capturing some curve variables. Thus, the subtle curve magnitude
and shape effects (tmax and absdev) induced by thapsigargin were captured by NARX,
but not by PLS regression. This illustrates that neural networks such as NARX can easily
handle non-linear effects due to their complex activation functions, whereas PLS relies on
linear regression analysis.

2+]; curves used

A specific limitation encountered was the shape differences in the [Ca
for training approaches, i.e., more often transient with thrombin and non-transient with
CRP or collagen. Although neural networks can capture any function, they need sufficient
data to train for such curve differences. In our case, a limited number of curves per agonist
was available for training, which caused an imbalance in this set. One way to fix this
problem is to use data augmentation, for example, by a synthetic minority oversampling
technique [16].

In the present paper, we used the platelets from a single donor for training all mod-
els, which allowed for a detailed investigation of the complex Ca?* signalling pathways
involved. We chose this approach because [Ca?*]; curve aspects such as magnitude and
shape often vary between blood donors [14]. However, as shown in Figure S2, it was
checked for the majority of curves that the chosen subject was representative for four other
healthy subjects. On the other hand, the use of blood from a single donor can be seen
as a limitation, because the amount of obtained platelets reduced the number of variable
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experimental conditions and, accordingly, the machine learning models had a limited
predictive power. These models can now be used to generate hypotheses for additional
experimentation and provide insights that are otherwise not obtained by traditional analyt-
ical approaches. Appropriate use is important, ensuring that the data used for training are
representative, while independent data are available for validation. However, comparing
the platelet responses from a large cohort of healthy donors will increase the accuracy of
overall predictions, ultimately aiming to more easily identify systematic aberrations in
donors with suspected platelet bleeding disorders. Conversely, the current predictions of
[CaZ*]; rises with multiple agonists offer a foundation for estimating the thresholds for
platelet activation (OAT) and for testing the effects of new antithrombotic drugs, directly
or indirectly targeting platelet Ca?* responses (PLS). Another application could be effect
prediction in patients with gain- or loss-of-function mutations in genes encoding for Ca*
response modulators, such as STIM1 and ORAI1 [17].

A solution to this issue is the approach of transfer learning [18], in which a generic
model is built for samples from various donors and then refined to obtain adjusted weights
per donor. This approach has already been used to build personalised models for drug de-
velopment [19]. Regardless of the approach followed, modelled analysis will be important
to understand the effects of clinically relevant inhibitors of Ca?* signalling pathways, such
as P2X; Ca?* channel antagonists [20]. In this paper, we examined this for a drug blocking
the clinically important STIM1-Orail pathway [20], namely 2APB. The PLS regression
analyses performed well, capturing the curve size and shape effects of this drug and giving
loadings in the models resembling the condition “EGTA”, with no Ca®* entry.

Differently from the neural network models, the PLS regression analysis performed
better with the available sample size. The present PLS regression analysis to predict the
(scaled) [Ca®*]; curve features would easily allow for comparisons with platelets from more
donors. In work by the Diamond laboratory [14], a NARX model was generalised by fitting
networks constructed from several donors and determining their average prediction. Our
analysis indicates that this can be conducted more easily by PLS regression techniques.

4. Methodology
4.1. Materials

Human o«-thrombin was obtained from Kordia (Leiden, The Netherlands); cross-
linked collagen-related peptide (CRP-XL) from the University of Cambridge (UK); Fura-
2 acetoxymethyl ester from Invitrogen (Carlsbad, CA, USA); and Pluronic F-127 from
Molecular Probes (Eugene, OR, USA). Horm-type collagen was obtained from Nycomed
(Hoofddorp, The Netherlands). 2-Aminomethyl diphenylborinate (2APB) came from Sigma-
Aldrich (St. Louis, MO, USA). Other materials were from sources described before [21].

4.2. Blood Collection and Platelet Preparation

This study was approved by the Medical Ethics Committee of Maastricht University.
Blood donor age and sex could not be recorded. Blood taken into 3.2% sodium citrate
(Vacuette tubes, Greiner Bio-One, Alphen a/d Rijn, The Netherlands) was obtained from
consenting healthy volunteers who had not taken anti-platelet medication in the previous
ten days. Platelet counts were within the reference range.

Platelet-rich plasma (PRP) was obtained from citrated blood by centrifuging, after
which collected platelets were washed in the presence of apyrase (1 unit/mL) and loaded
with Fura-2 acetoxymethyl ester (3 pM) and Pluronic (0.4 ug/mL) at a count of 2 x 108 /mL
for 40 min at room temperature, as described before [22]. The isolated platelets were finally
resuspended at a concentration of 2 x 108/mL in Hepes buffer at pH 7.45 (10 mM Hepes,
136 mM NaCl, 2.7 mM KCl, 2 mM MgCl,, 5.5 mM glucose, and 0.1% bovine serum albumin).
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4.3. Calibrated Cytosolic Ca** Measurements

In the Fura-2-loaded platelets, changes in cytosolic [Ca?*]; were measured in 96-well
plates with a FlexStation 3 (Molecular Devices, San Jose, CA, USA), as previously de-
scribed [22]. When desired, the platelets in the wells were pretreated with apyrase
(0.1 unit/mL) plus indomethacin (20 uM), or with thapsigargin (1 uM) for 10 min. After the
addition of either 0.1 mM EGTA or 1 mM CaCl,, the platelets were stimulated by automated
pipetting with one of the following agonists: CRP (1 or 10 pg/mL), collagen (1, 3, 10, or
30 pug/mL), thrombin (0.3, 1, 3, or 10 nM), or none of these (vehicle controls). In wells
per row, changes in Fura-2 fluorescence were measured quasi-simultaneously over time at
37 °C by ratiometric fluorometry, including appropriate calibrator controls for obtaining
nM concentrations of [Ca?*]; [22]. For the independent testing of pharmacological drugs
known to affect SOCE, the platelets were preincubated with 2APB (30 uM), as studied
and titrated before [15,23]; the agonist concentrations were maximal: CRP 10 ug/mL or
thrombin 10 nM.

4.4. Selection of Platelet [Ca®*]; Curves for Modelling

For the majority of experimental conditions, the Ca?* responses were studied in Fura-
2-loaded platelets obtained from 5 healthy donors, thus resulting in calibrated time series of
nM [Ca?*]; [15]. For the present modelling approach, a complete set of 72 time curves was
taken from subject 1 and checked to be representative for those of all subjects (Figure S2).
In Figure 1, the chosen experiments for model validation and testing are highlighted in
blue and red, respectively, based on criteria indicated below.

4.5. Preparation of Input Data

The raw curves of [Ca?*]; changes in platelets stimulated with CRP or collagen had a
sampling time of 4 s, while those with thrombin had a sampling time of 2 s. To allow for
direct comparisons, the raw nM values (Figure S3) were linearly resampled and interpolated
to generate 1 s time steps from 0 s to 540 s. To minimise noise disturbances, the curves were
smoothed with a Savitzky-Golay filter (Figure 54).

In cases where scaling was needed, the smoothed curves were subjected to a min—
max scaling algorithm, giving values between 0 and 1. To scale the input conditions,
experimental variables were set as [0, 1], except for the agonist concentrations, which were
scaled in the range of [0, 10] (Figure 1). Herein, 0 indicated no agonist or inhibitor present.

For constructing the multilayer perceptron (MLP) network, a regression model was
built using the magnitudes of all [Ca®*]; time series. The experimental variables were
taken as inputs (Figure 3A), while the mean square error was used as a cost function. This
ensured a better fit for the larger values. For this purpose, we set the target (output) for the
model as log-scaled values of the nM [Ca?*]; range as logjp(max — min). This improved
the overall accuracy of log scales.

Considering that the number of total features was small with 6 experimental variables
(Figure 1), we also generated polynomial features (quadratic feature combinations), which
increased this number from 6 to 27. For the MLP network, the number of hidden layers
was set to 1, while the number of nodes was randomly selected from 1 to 10. The network
architecture options were chosen as to train only low numbers of parameters to prevent
overfitting. Networks were trained 100 times, starting from random weights. As the
best structure, the network with a minimal score in the cost function of the validation set
was taken. Network training was performed using the Levenberg—Marquardt algorithm,
containing a rectified linear unit as the activation function in each node. The modelling
was conducted using Matlab R2022a and the Neural Network Toolbox.



Int. J. Mol. Sci. 2025, 26, 6820

13 of 16

4.6. Trend Prediction of NARX Network

A separate neural network was constructed to predict the trends (shapes) of smoothed
and scaled [Ca2*]; time curves. To better capture the time dynamics, we chose a non-linear
autoregressive network with exogenous input (NARX) and parallel architecture [24,25],
which is also known as a closed-loop neural network. For this NARX network, the model’s
output y(f) was used to fit the target (i.e., the smoothed and scaled [CaZ*]; curves). The
output then generated feedback as an additional input to the network when combined with
the experimental condition (Figure 3B). The mathematical expression for [CaZ*](t) is then
written as follows:

y(t) = f(Lg X f(Hz Xy + Lg X f(Ho X yp + Lo X f(Hy Xy + W x I +by) + by) 4 b3) + by) (1)

where y(t) is [Ca?*]; over time, I is an input matrix of the experimental conditions, and y;, is
the feedback delay (history) of y. Furthermore, W and H,, are the input matrix weight and
feedback delay of y, respectively; b, are biases; L, are the weights of each hidden layer; and
f is the activation (transfer) function. Note that the product of the matrix is also a matrix,
meaning that the equation represents a summation of numerous parameters and functions.

For feedback delays, we chose the values at 1, 3, 6, 10, 15, 21, 28, and 36 s prior to the
current value of a [Ca?*]; time series. Hence, these feedback delays kept the information
about current values, while preserving the long-term memory of the system. The initial
values of the feedback delays were set to zero, as the system was assumed to be in a steady
state prior to the agonist-induced activation of platelets. The use of MSE as a cost function

allowed us to make predictions of the scaled min-max [Ca?*];

time series. Scaling was
performed per time series, implying that each series had the same range [0, 1]. Polynomial
features were used also in this network, thus expanding the number of inputs from 6 to 27.

The neural network architecture was optimised to maximise the goodness of fit but
to prevent overfitting. We used three hidden layers, with each layer’s size varying be-
tween 2 and 20 nodes (not including feedback delays). This gave approximately 7000
different architectures being trained. A randomised grid search was employed to find
the best architecture. For training, the Levenberg-Marquardt algorithm was used with a
hyperbolic tangent sigmoid as an activation function. Since parameter fitting in the neural
network depended on a random seed, each architecture was fitted 100 times, after which
the best parameters were used for comparison. The networks were built and trained in
Matlab R2022a.

4.7. Parameter Sensitivity Analysis

To perform agonist concentration sensitivity analysis, the method of one-at-a-time
(OAT) factor was applied [26]. This kept the variables fixed to the central or baseline value,
while changing one variable at a time. Since effects were computed with reference to the
same central point in space, this improved the comparability of the outcomes. As default,
we set the conditions of EGTA or CaCly, autocrine inhibitors (Al) or not, and thapsigargin
or not as 1 or 0 (2% = 8 combinations). Furthermore, we scaled the agonist concentration
from 0 to 10% of the maximal concentrations (30 ng/mL collagen, 10 pg/mL CRP, or 10 nM
thrombin). The shape of each [CaZ%*]; time curve was defined according to four scalar
characteristics, namely the magnitude of the response, peak time, relative terminal level,
and the mean deviation from a straight line (Figure 2).

4.8. Partial Least Square (PLS) Regression Analysis

Regression analysis with PLS was used as an extension of principal component analy-
sis [27,28], which maximises the covariance between an input matrix X and output matrix
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Y. In this method, each component has a latent variable ¢;, while the linearly weighted com-
bination of the latent variables generates the prediction of outcomes (Y matrix), as follows:

Y = Cyf1 + Cotp + ..., where C; = a1;x1 + agX (2)

The experimental conditions of Figure 1 were used as the X matrix and the scalar
characteristics of a [Ca?*]; time series were used as the Y matrix. The number of components
in the PLS analysis was taken from the optimal variance achieved. The loading weights
depended on the input variables that contributed most to the prediction. By maximising
the covariance between explanatory variable X and response variable Y, the most relevant
components in X were obtained for changes in Y. Stated otherwise, by examining the
loading weights of a few latent variables accounting for most of the explained covariance,
we could identify the experimental conditions with the most significant impact on the
[CaZ*]; time curves.

5. Conclusions

Of the two developed non-linear models, a multilayer perceptron (MLP) network
and an autoregressive network with exogenous inputs (NARX), the trained networks

accurately predicted platelet [Ca%*];

curves in the presence of combinations of agonists and
inhibitors. The NARX model achieved good results for the trend prediction of unforeseen
data. Furthermore, the NARX model demonstrated good fits for the modelled calcium
curves, whereas the PLS regression models gave useful interpretable information on the
importance of each variable. These modelling results are suitable for the development of
novel platelet [Ca®*];-inhibiting drugs, as we demonstrated for the drug 2APB, blocking

agonist-induced Ca?* entry in platelets.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms26146820/s1.

Author Contributions: Conceptualisation, methodology, and formal analysis, C.T., J.L.D., and
R.C.; investigation, C.T. and H.Y.E.C,; resources and supervision, ] M.G., JW.M.H., and R.C.; data
curation, C.T. and H.Y.E.C.; writing—original draft preparation, C.T. and R.C.; writing—review and
editing, C.T., JW.M.H,, and R.C.; funding acquisition, ] M.G. and ]. WM.H.; manuscript revision, C.T.,
JJW.M.H,, and J.L.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Union’s Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agreement No. 766118 to all co-authors. C.T. was
enrolled in a joint PhD program at the Universities of Maastricht (The Netherlands) and Reading
(United Kingdom). H.Y.F.C. was enrolled in a joint PhD program at the Universities of Birmingham
(United Kingdom) and Maastricht (The Netherlands).

Institutional Review Board Statement: The study was approved by the local Medical Ethics Com-
mittees (Maastricht University Medical Centre, NL31480.068.10, 29 May 2013). All subjects gave
full informed consent according to the Declaration of Helsinki, and all methods were performed in
accordance with the relevant guidelines and regulations.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. According to ethical permission, all subjects gave blood without tracing samples to certain
individuals.

Data Availability Statement: The data are included in the manuscript as figures, tables, or Supple-
mentary Materials.

Conflicts of Interest: ] WM.H. is an advisor of the Synapse Research Institute Maastricht. The other
authors declare no relevant conflicts of interest.


https://www.mdpi.com/article/10.3390/ijms26146820/s1
https://www.mdpi.com/article/10.3390/ijms26146820/s1

Int. J. Mol. Sci. 2025, 26, 6820 15 of 16

References

1.  Patel, SR,; Hartwig, ].H.; Italiano, ].E. The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Investig. 2005, 115,
3348-3354. [CrossRef]

2. Chesterman, C.; Owe-Young, R.; Macpherson, J.; Krilis, S. Substrate for endothelial prostacyclin production in the presence of
platelets exposed to collagen is derived from the platelets rather than the endothelium. Blood 1986, 67, 1744-1750. [CrossRef]
[PubMed]

3.  Davis, G.E,; Senger, D.R. Endothelial extracellular matrix: Biosynthesis, remodelling, and functions during vascular morphogene-
sis and neovessel stabilisation. Circ. Res. 2005, 97, 1093-1107. [CrossRef] [PubMed]

4. Van der Meijden, P.E.; Heemskerk, J.W. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol.
2019, 16, 166-179. [CrossRef]

5. Jerjes-Sanchez, C. Venous and arterial thrombosis: A continuous spectrum of the same disease? Eur. Heart ]. 2005, 26, 3—4.
[CrossRef] [PubMed]

6.  Jackson, S.P. Arterial thrombosis-insidious, unpredictable and deadly. Nat. Med. 2011, 17, 1423-1436. [CrossRef]

7. Mammadova-Bach, E.; Nagy, M.; Heemskerk, ].W.; Nieswandt, N.; Braun, A. Store-operated calcium entry in blood cells in
thrombo-inflammation. Cell Calcium 2019, 77, 39-48. [CrossRef]

8.  Versteeg, H.H.; Heemskerk, ].W.; Levi, M.; Reitsma, P.S. New fundamentals in hemostasis. Physiol. Rev. 2013, 93, 327-358.
[CrossRef]

9. Watson, S.P.; McConnell, R.T.; Lapetina, E.G. The rapid formation of inositol phosphates in human platelets by thrombin is
inhibited by prostacyclin. J. Biol. Chem. 1984, 259, 13199-13203. [CrossRef]

10. Daniel, ].L.; Dangelmaier, C.A.; Selak, M.; Smith, ].B. ADP stimulates IP3 formation in human platelets. FEBS Lett. 1986, 206,
299-303. [CrossRef]

11. Capra, V.; Back, M.; Angiolillo, D.J.; Cattaneo, M.; Sakariassen, K.S. Impact of vascular thromboxane prostanoid receptor
activation on hemostasis, thrombosis, oxidative stress, and inflammation. J. Thromb. Haemost. 2014, 12, 126-137. [CrossRef]

12. Oury, C; Toth-Zsamboki, E.; Thys, C.; Tytgat, J.; Vermylen, J.; Hoylaerts, M.F. The ATP-gated P2X; ion channel acts as a positive
regulator of platelet responses to collagen. Thromb. Haemost. 2001, 86, 1264-1271.

13. Dolan, A.T.; Diamond, S.L. Systems modelling of CaZ* homeostasis and mobilisation in platelets mediated by IP; and store-
operated Ca’* entry. Biophys. J. 2014, 106, 2049-2060. [CrossRef] [PubMed]

14. Chatterjee, M.S.; Purvis, J.E.; Brass, L.F.; Diamond, S.L. Pairwise agonist scanning predicts cellular signalling responses to
combinatorial stimuli. Nat. Biotechnol. 2010, 28, 727-732. [CrossRef] [PubMed]

15. Cheung, H.Y.; Zou, J.; Tantiwong, C.; Ferndndez, D.I,; Huang, J.; Ahrends, R.; Roest, M.; Cavill, R.; Gibbins, ].M.; Heemskerk, J.W.
High-throughput assessment identifying major platelet Ca®* entry pathway via tyrosine kinase-linked and G protein-coupled
receptors. Cell Calcium 2023, 112, 102738. [CrossRef] [PubMed]

16. Chawla, N.V.; Bowyer, K.W,; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. . Artific. Intell.
Res. 2002, 16, 321-357. [CrossRef]

17.  Shawer, H.; Norman, K.; Cheng, C.W.; Foster, R.; Beech, D.]J.; Bailey, M.A. ORAI1 Ca?* channel as a therapeutic target in
pathological vascular remodelling. Front. Cell Dev. Biol. 2021, 9, 653812. [CrossRef]

18. Neyshabur, B.; Sedghi, H.; Zhang, C. What is being transferred in transfer learning? In Proceedings of the 34th International
Conference on Neural Information Processing Systems, Vancouver BC, Canada, 6-12 December 2020.

19. Dana, D.; Gadhiya, S.V,; Surin, L.G,; Li, D.; Naaz, E; Ali, Q.; Paka, L.; Yamin, M.A.; Narayan, M.; Goldberg, LD.; et al. Deep
learning in drug discovery and medicine; scratching the surface. Molecules 2018, 23, 2384. [CrossRef]

20. Bennetts, EM.; Mobbs, ].I.; Ventura, S.; Thal, D.M. The P2X; receptor as a therapeutic target. Purinergic Signal. 2022, 18, 421-433.
[CrossRef]

21. Gilio, K;; Munnix, I.C.; Mangin, P.; Cosemans, ].M.; Feijge, M.A.; van der Meijden, P.E; Olieslagers, S.; Chrzanowska-Wodnicka,
M.B,; Lillian, R.; Schoenwaelder, S.; et al. Non-redundant roles of phosphoinositide 3-kinase isoforms & and 3 in glycoprotein
VI-induced platelet signalling and thrombus formation. J. Biol. Chem. 2009, 284, 33750-33762. [CrossRef]

22. Jooss, N.J.; De Simone, I.; Provenzale, I.; Fernandez, D.I,; Brouns, S.L.; Farndale, R.W.; Henskens, Y.M.; Kuijpers, M.].; ten Cate,
H.; van der Meijden, PE,; et al. Role of platelet glycoprotein VI and tyrosine kinase Syk in thrombus formation on collagen-like
surfaces. Int. . Mol. Sci. 2019, 20, 2788. [CrossRef]

23. Zou,].; Zhang, P; Solari, F.A.; Schonichen, C.; Provenzale, I.; Mattheij, N.J.; Kuijpers, M.]J.; Rauch, ].S.; Swieringa, F.; Sickmann, A.;
et al. Suppressed ORAI1-STIM1-dependent Ca?* entry by protein kinase C isoforms regulating platelet procoagulant activity. J.
Biol. Chem. 2024, 300, 107899. [CrossRef]

24. Xie, H,; Tang, H.; Liao, Y. Time series prediction based on NARX neural networks: An advanced approach. In Proceedings of the
2009 International Conference on Machine Learning and Cybernetics, Hebei, China, 12-15 July 2009.

25. Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future

directions. Int. J. Forecast. 2021, 37, 388—427. [CrossRef]


https://doi.org/10.1172/JCI26891
https://doi.org/10.1182/blood.V67.6.1744.1744
https://www.ncbi.nlm.nih.gov/pubmed/3085750
https://doi.org/10.1161/01.RES.0000191547.64391.e3
https://www.ncbi.nlm.nih.gov/pubmed/16306453
https://doi.org/10.1038/s41569-018-0110-0
https://doi.org/10.1093/eurheartj/ehi041
https://www.ncbi.nlm.nih.gov/pubmed/15615791
https://doi.org/10.1038/nm.2515
https://doi.org/10.1016/j.ceca.2018.11.005
https://doi.org/10.1152/physrev.00016.2011
https://doi.org/10.1016/S0021-9258(18)90677-0
https://doi.org/10.1016/0014-5793(86)81000-6
https://doi.org/10.1111/jth.12472
https://doi.org/10.1016/j.bpj.2014.03.028
https://www.ncbi.nlm.nih.gov/pubmed/24806937
https://doi.org/10.1038/nbt.1642
https://www.ncbi.nlm.nih.gov/pubmed/20562863
https://doi.org/10.1016/j.ceca.2023.102738
https://www.ncbi.nlm.nih.gov/pubmed/37060673
https://doi.org/10.1613/jair.953
https://doi.org/10.3389/fcell.2021.653812
https://doi.org/10.3390/molecules23092384
https://doi.org/10.1007/s11302-022-09880-4
https://doi.org/10.1074/jbc.M109.048439
https://doi.org/10.3390/ijms20112788
https://doi.org/10.1016/j.jbc.2024.107899
https://doi.org/10.1016/j.ijforecast.2020.06.008

Int. J. Mol. Sci. 2025, 26, 6820 16 of 16

26. Razavi, S.; Gupta, H.V. What do we mean by sensitivity analysis? The need for comprehensive characterisation of global
sensitivity in earth and environmental systems models. Water Resourc. Res. 2015, 51, 3070-3092. [CrossRef]

27. Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109-130.
[CrossRef]

28. Abdi, H. Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdiscip. Rev.
Comput. Stat. 2010, 2, 97-106. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1002/2014WR016527
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1002/wics.51

	Introduction 
	Results 
	Comparing Multiple Agonist-Induced Platelet [Ca2+]i Curves 
	Workflow of the Modelling Approaches 
	MLP Network for Magnitude Prediction 
	Neural NARX Network for Trend Prediction 
	Combining the MLP and NARX Networks 
	Partial Least Square (PLS) Regression Analyses 

	Discussion 
	Methodology 
	Materials 
	Blood Collection and Platelet Preparation 
	Calibrated Cytosolic Ca2+ Measurements 
	Selection of Platelet [Ca2+]i Curves for Modelling 
	Preparation of Input Data 
	Trend Prediction of NARX Network 
	Parameter Sensitivity Analysis 
	Partial Least Square (PLS) Regression Analysis 

	Conclusions 
	References

