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Abstract Cloud feedback is the largest uncertainty in estimating Equilibrium Climate Sensitivity. In this
study we focus on the equatorial Pacific, where CMIP6 model cloud feedback spread is notably large. Cloud
radiative effects in this region are relevant for the global climate. Our findings show that models predict a
consistent shift towards the ascent regime in response to El Nino‐like sea surface warming. Models diverge in
terms of the radiative impact due to differences in cloud characteristics in ascent and subsidence regimes. Using
the observed relationship between circulation regime and cloud radiative effect, we find a reduction in the
regional mean cloud feedback estimate from 0.77 to 0.22 W m− 2 K− 1, though this does not substantially lessen
the model spread in total feedback. Pathways to reduce this spread include: improving confidence in the regional
ocean warming pattern, and using observations and models to understand cloud type and circulation
interactions.

Plain Language Summary The radiative response of clouds to warming, that is, their feedback,
represents the biggest uncertainty in predicting how much the Earth as a whole will warm as greenhouse gases
increase. This study focuses on the equatorial Pacific, where climate models show significant differences in
cloud feedback estimates. Clouds in this region, particularly through their role in the El Nino phenomenon, are
important for global climate. Our research shows that, for a given model, the more sea surface temperatures
warm in the Eastern Pacific, the larger a shift to convective circulations. However, models vary in their
predictions of the properties of the clouds that form under different circulations, and therefore what radiative
effect can be expected with such a change in circulation. By using the observed relationship between cloud
radiative effect and circulation regime, this study reduces the estimated cloud feedback in the region from 0.77
to 0.22 W m− 2 K− 1, but this does not reduce the size of differences between models. To improve cloud
feedback predictions, future work should focus on better understanding regional ocean warming patterns and
cloud behavior in relation to atmospheric circulation.

1. Introduction
Despite the clear and increasingly urgent need for accurate climate predictions, even the equilibrium global mean
temperature increase arising from a doubling of carbon dioxide concentrations (known as the equilibrium climate
sensitivity [ECS]) remains highly uncertain (Arias et al., 2021; Meehl et al., 2020). This uncertainty is in large part
caused by uncertainty in the response of clouds to warming, which are known as cloud feedbacks (Forster
et al., 2021; Zelinka et al., 2020). Feedbacks in tropical clouds are particularly uncertain (Sherwood et al., 2020).

It is becoming clear that climate models alone are not appropriate for constraining ECS, and a wider evidence base
must be used, as demonstrated by Sherwood et al. (2020). However, global climate models remain vital tools for
predicting the impact of climate change on quantities relevant to human activity, such as precipitation, surface
temperature, and occurrence of severe weather events (e.g., Di Sante et al., 2021). Since many of these changes
are dependent on the models' ECS, it is crucial to understand the differences in climate sensitivity between the
models, which are primarily driven by differences in cloud feedbacks (Zelinka et al., 2020).

Much of the uncertainty in cloud feedbacks arises from the fact that clouds are complex and highly dynamic
phenomena. In particular, the impact that a change in one cloud property has on the cloud radiative effects de-
pends on the other properties of the cloud and the surrounding environment (McKim et al., 2024). To reduce this
complexity, research efforts often focus on a specific cloud type or change (e.g., Sokol et al., 2024; M. J. Webb
et al., 2015; Zelinka & Hartmann, 2011). This has led to significant progress in understanding cloud feedbacks
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(Sherwood et al., 2020). However, climate model spread has shown little reduction (Zelinka et al., 2020). In this
study we take a different approach, focusing on the differences between climate model cloud feedbacks in a
specific region. This approach provides a different perspective from the widely used focus on specific cloud types,
and enables different analysis methods to be used. Moreover, focusing on cloud feedbacks within a specific region
may provide insight into how feedbacks from different cloud types are correlated with each other. Regional
differences in cloud feedbacks are also important to understand as both a tracer and contributor to circulation
changes which may affect local and teleconnected weather. Motivated by these ideas and by analysis of how the
inter‐model standard deviation of cloud feedbacks in climate models varies with location (see Section 3), this
study focuses specifically on the causes of differences in cloud feedbacks between climate models in the
equatorial Pacific, which we define as the region bounded by 160°E–270°E and 10°S–10°N.

This region has received a lot of attention due to the well documented teleconnections of El Nino and consequent
societal impacts (e.g., Alizadeh, 2023). Additional motivation is provided by the broadly consistent shift towards
an El Nino‐like state under future warming (Erickson & Patricola, 2023; Heede & Fedorov, 2023; Shin
et al., 2022) in the 6th Coupled Model Intercomparison Project (CMIP6) models. Given the known strong El
Nino‐clouds‐circulation coupling (Middlemas et al., 2019; Rädel et al., 2016), it is imperative to characterize and
understand the response of equatorial Pacific cloud feedbacks. Bock and Lauer (2024) considered the Pacific
ITCZ in their analysis of low, mid, and high ECS CMIP models. Their Figure 7d showed a correspondence
between the cloud feedbacks in the region and model variability in global ECS. The results we will present add
impetus to investigate cloud feedbacks in the equatorial Pacific, provide a focused analysis of CMIP6 model
cloud feedback variability, and offer insights into the causes of this variability.

2. Methods
This study focuses on the latest generation of CMIP6 models and includes both coupled atmosphere‐ocean and
atmosphere‐only simulations. The study includes 45 models for which comparable piControl and abrupt4xCO2

simulations are available with one ensemble member for each model, as listed in Table S1 in Supporting In-
formation S1. In addition to these coupled atmosphere‐ocean simulations, we study cloud feedbacks in an
atmosphere‐only configuration for 10 models which also provide AMIP‐p4K simulations and the diagnostics
required to compute cloud feedbacks using cloud radiative kernels (i.e., ISCCP simulator output), as indicated in
Table S1 in Supporting Information S1.

Total cloud feedbacks, computed as the adjusted change in cloud radiative effect (CRE) via radiative kernels, are
taken from Zelinka et al. (2020), including additional models that populated the CMIP6 archive post‐publication
(Zelinka, 2022, 2024). Atmosphere‐only cloud feedbacks are computed using the cloud radiative kernel approach
Zelinka et al. (2012). An assessment of feedback estimation methodology is discussed in Text S1 in Supporting
Information S1. Cloud feedbacks in both the coupled and atmosphere‐only experiments are further separated into
those due to low clouds and those due to non‐low clouds following the breakdown advocated in Zelinka
et al. (2016). For the atmosphere‐only feedbacks that are estimated using cloud radiative kernels, this is done by
considering only low (cloud top pressures >680 hPa) or non‐low (cloud top pressures <680 hPa) bins of the cloud
fraction histogram in the calculation. For the coupled model cloud feedbacks, Zelinka et al. (2020) used the M. J.
Webb et al. (2006) decomposition which distinguishes low and non‐low cloud feedbacks based on the relative
strength of longwave and shortwave radiation anomalies. Low and non‐low cloud feedbacks estimated via the M.
J. Webb et al. (2006) decomposition agree closely with those computed using the Zelinka et al. (2016) method for
the 11 models for which ISCCP simulator output is available in Zelinka et al. (2020).

Cloud feedbacks can be further decomposed into dynamic, thermodynamic, and co‐variation components (Bony
et al., 2004; Wyant et al., 2006) as given by the following equation

δC̄ =∫
∞

− ∞
C(ω)δP(ω)dω

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
dynamic

+∫

∞

− ∞
δC(ω)P(ω)dω

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
thermodynamic

+∫

∞

− ∞
δC(ω)δP(ω)dω

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
co‐variation

, (1)

where C(ω) is the net CRE as a function of the 500 hPa vertical velocity, P(ω) is the PDF of the 500 hPa vertical
velocity, and δC(ω) and δP(ω) represent the changes in the CRE and PDF of ω500 under climate change.
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For the purposes of this article, the thermodynamic and co‐variation terms are combined into a single term, which
we shall henceforth refer to as the non‐dynamic cloud feedback. This new non‐dynamic term is calculated as the
difference between the total and dynamic cloud feedbacks, which enables us to calculate cloud feedback com-
ponents that are consistent with the kernel derived total cloud feedback without recalculating the kernels as a
function of the 500 hPa vertical velocity that is,

δC̄ =∫
∞

− ∞
C(ω)δP(ω)dω

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
dynamic

+ (δC̄ − ∫
∞

− ∞
C(ω)δP(ω)dω)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
non‐dynamic

, (2)

These calculations are based on monthly mean data with all models regridded to a fixed 2° latitude‐longitude grid.
A 2 hPa day− 1 bin width is used for the 500 hPa vertical velocity. Observed CRE as a function of the 500 hPa
vertical velocity is calculated based on averaging the combination of CERES‐EBAF satellite observations (Loeb
et al., 2018) with three different reanalyses (ERA5; (Hersbach et al., 2020), JRA55; (Kobayashi et al., 2015), and
MERRA2; (Gelaro et al., 2017)), as described by Hill et al. (2023).

3. Climate Model Cloud Feedbacks in the Equatorial Pacific
Figure 1 shows the multi‐model mean (Figure 1a) and inter‐model standard deviation (Figures 1b–1d) of cloud
feedbacks in the latest generation of climate models, CMIP6. Net cloud feedbacks are particularly large in the
equatorial Pacific (Figure 1a), which has been the case for several generations of climate models (Ceppi
et al., 2017; Soden & Vecchi, 2011). Even more remarkable is the inter‐model standard deviation of net cloud
feedback in this region (Figure 1b), which, along with the southeast subtropical Pacific, is notably larger than
elsewhere in the globe. Whilst the southeast region is dominated by low cloud feedback variability, and is well
characterized under the marine low‐cloud feedback (Sherwood et al., 2020), the large variability in net cloud
feedback within the equatorial Pacific is primarily due to non‐low clouds (Figure 1c). The non‐low cloud
feedback characterization is ambiguous in terms of its potential drivers and therefore warrants further investi-
gation. Atmosphere‐only experiments have much lower variability in cloud feedback in this region (Figure 1d).

Figure 1. Multi‐model mean and inter‐model standard deviations of net cloud feedback. (a, b) Are based on 45 atmosphere‐
ocean coupled simulations, (c) shows the net non‐low cloud feedback standard deviation for the same 45 simulations, and
(d) shows the net cloud feedback standard deviation for 10 atmosphere‐only simulations.
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Moreover, the coupled equivalents of these atmosphere‐only simulations do have similar variability to the full set
of coupled models (Figure S1 in Supporting Information S1).

For the coupled models considered in this study, the multi‐model mean net cloud feedback in this region is
0.77W m− 2 K− 1, with an inter‐model standard deviation of 1.33W m− 2 K− 1. Since this region occupies 5.3% of
the earth's area, this region contributes∼0.04W m− 2 K− 1 to the global mean cloud feedback, with an inter‐model
standard deviation of 0.07 W m− 2 K− 1. This represents ∼19% of the inter‐model standard deviation in global
mean cloud feedback (0.38 W m− 2 K− 1) and is as large as the inter‐model standard deviation in cloud feedback
for the majority of individual cloud types in CMIP6 (Zelinka et al., 2022). Models are known to exhibit notable
differences in the location of changes to the ITCZ within the Pacific region. However since these occur within our
domain the effect is averaged out (Figure S2 in Supporting Information S1), and changes in ITCZ location do not
contribute to the model feedback spread presented here. Moreover, the domain mean cloud feedback for this
region is only weakly linked to cloud feedbacks outside the region (Figure S3 in Supporting Information S1).
Alternative domain bounds were tested using ±20° latitude, and additionally 130°W for the western edge. High
correlation between model domain‐mean feedback in the original and new domains showed that results are not
sensitive to domain definition.

This region has previously been highlighted as an exception to the high correlations seen between cloud radiative
feedbacks in atmosphere‐only and coupled atmosphere‐ocean simulations across both CMIP5 and CMIP6 models
(Qin et al., 2022), which was attributed to differences in SST and ω500. This motivates decomposing the cloud
feedbacks in this region into dynamic and non‐dynamic components (Bony et al., 2004; Byrne &
Schneider, 2018). Moreover, these differences suggest that (atmosphere‐only) process models that may be used to
study tropical cloud feedbacks (e.g., Mackie & Byrne, 2023; Sokol et al., 2024; Stauffer & Wing, 2022; Wing
et al., 2020) may be missing a significant dynamic feedback component linked to changes in SST patterns.

4. Causes of Equatorial Pacific Feedback Variability
As detailed in the methodology, cloud feedbacks in this region are decomposed into dynamic and non‐dynamic
components for each model (Figure 2a). The coupled models show a wide spread in both the dynamic and non‐
dynamic components. Qin et al. (2022) hypothesized that the dynamic component was the main driver of poor
correlation between coupled and atmosphere‐only models in the tropical Pacific. However, we find that corre-
lation between coupled and atmosphere‐only versions of models is not significant at 5% level for either dynamic
(0.60) or non‐dynamic (0.35) components. Both the lack of correlation between the thermodynamic feedbacks
and the smaller variability in the atmosphere‐only cloud feedbacks are partially due to differences in local SST.
As a result the atmosphere‐only models are less useful for understanding the spread in the coupled models

Both dynamic and non‐dynamic components of the cloud feedback show large spread in the coupled models.
Previous studies have found that spread in net dynamic cloud feedback is much smaller than the spread in net non‐
dynamic cloud feedback in both idealized models (e.g., Mackie & Byrne, 2023) and climate models over the
entire tropics (e.g., Hill et al., 2023). However, circulation changes with warming in smaller regions such as the
equatorial Pacific are not expected to balance; increased ascent in this region may be balanced by increased
subsidence in another region. It is, therefore, important to consider the dynamic cloud feedback when looking to
understand regional cloud feedbacks. Consequently, in this study we focus on controls of the dynamic cloud
feedback spread in coupled models. The focus on dynamic feedback is also motivated by work finding that
tropical ascent fraction changes with warming (Su et al., 2020). Mackie and Byrne (2023) also find that changes in
ascent fraction provides an important control on dynamic cloud feedback in a set of cloud resolving models. In
this study, we take the opportunity to investigate whether the dynamic feedback and its controls play a role in a
region of high cloud feedback spread across CMIP6 models.

In all models, the dynamic cloud feedback has a positive contribution from subsidence regimes (Figure 2b), with
the frequency of the most commonly occurring weak subsidence regimes (Figure S4 in Supporting Informa-
tion S1) predicted to decrease in frequency in all models (Figure 2c). This is countered by a negative contribution
from ascent regimes, which are predicted to increase in frequency in all models (Figures 2b and 2c). Figure 2d
suggests that the sign of the dynamic cloud feedback is strongly related to the net CRE, in particular the difference
between the net CRE in ascent and subsidence regimes (CREasc‐CREsub). The upper tercile of models, based on
their dynamic feedback component, have a more negative net CRE in subsidence regimes than in ascent regimes
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(Figure 2d), so that the shift from subsidence to ascent increases the net CRE and gives a positive dynamic
feedback. On the other hand, the lower tercile of models have a less negative CRE in subsidence regimes than in
ascent regimes so that the shift from subsidence to ascent causes a decrease in net CRE and gives a negative
dynamic cloud feedback. The lower tercile results are more consistent with the observations which show a
maximum in the net CRE around 20 hPa day− 1 (Figure 2d) and a more negative net CRE in ascent regimes. Net
CRE differences between the two terciles are primarily driven by SW CRE differences (Figure S8 in Supporting
Information S1) with increased magnitude SW CRE for ascending regimes for the lower tercile.

This contrast between the net CRE for the two different terciles suggests that it may be possible to approximate the
dynamic cloud feedback simply by focusing on the change in ascent fraction (Δasc; note that Δasc = − Δsub so
either could be used) and CREasc‐CREsub, which can be expressed mathematically as

Figure 2. (a) Dynamic (“d”) and non‐dynamic (“nd”) cloud feedbacks for the region bounded by 160°E–270°E and
10°S–10°N for each of the coupled (circles) and atmosphere‐only (triangles) models listed in Table S1 in Supporting
Information S1. Color of the circles and triangles indicates the total cloud feedback (dynamic+ non‐dynamic) for that model.
(b–d) Dynamic cloud feedback, global mean surface temperature normalized change in circulation regime frequency, and net
Cloud Radiative Effect (CRE) as a function of 500 hPa vertical velocity for the coupled models. Observations in panel (d) are
based on a combination of CERES‐EBAF satellite observations of CRE and reanalyses estimates of 500 hPa vertical velocity
(see Section 2). Panel (b) is the product of panels (c, d). Model tercile groupings for all plots are based on the dynamic cloud
feedback. The SW and LW equivalents of panel (d) are shown in Figure S8 in Supporting Information S1.
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∫

∞

− ∞
C(ω)δP(ω)dω

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
dynamic feedback

≈ ∫

0

− ∞
δP(ω)dω

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
ascent f rac. change

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

0

− ∞
C(ω)P(ω)dω

⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟
ascent CRE

− ∫

∞

0
C(ω)P(ω)dω

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
subsidence CRE

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

In fact, there is excellent correlation between dynamic cloud feedback and the terms on the right hand side of this
equation (Figure 3a). Models with a positive CREasc‐CREsub have a positive dynamic feedback and vice versa,
and the magnitude of the dynamic cloud feedback increases both with increasing magnitude of CREasc‐CREsub
and with increasing Δasc (Figure S5 in Supporting Information S1). The reduced spread in the atmosphere‐only
models is clearly due to the reduced magnitude of changes in ascent fraction for this set of models (Figure S5 in
Supporting Information S1). The CREasc‐CREsub term explains more of the variability than the Δasc term, but

Figure 3. (a) Dynamic cloud feedback as defined by Equation 1 versus the approximate dynamic cloud feedback given by
Equation 3 for the equatorial Pacific region for each of the 45 coupled models. (b) Map of gridcell Pearson correlation, across
models, of change in domain mean (black box) ascent fraction (K− 1) and change in grid‐cell surface temperature (K K− 1),
where change is relative to global mean surface temperature change. A subset of 26 coupled models are used, denoted by an
asterisk in Table S1 in Supporting Information S1. Hatching is where correlations are not significant at the 5% level. (c) Vertical
profile of upper and lower tercile average cloud fraction in ascent and subsidence regimes. The number of models (n) in each
tercile is listed in the legend. Cloud fraction was interpolated from model level data to a common set of pressure levels. The
difference profile between the two circulation regimes is given in Figure S9 in Supporting Information S1. (d) Coupled model
dynamic and total regional mean cloud feedbacks when derived directly from the model (first two columns) and when
constrained using the observed CREasc‐CREsub to constrain dynamic cloud feedback component (third and fourth column).
Black circle indicates the multi‐model mean. Values of the multi‐model mean (μ) and inter‐model standard deviation (σ) are
given below the plot.
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significantly less than the product of the two (Figure S6 in Supporting Information S1), as models with a large
magnitude CREasc‐CREsub but a weak Δasc have weaker dynamic cloud feedbacks (Figure S5 in Supporting
Information S1). Breaking the CREasc‐CREsub into its individual SW and LW and ascent and subsidence regime
components, correlations with the dynamic cloud feedback are strongest for the SW CRE in ascending regimes,
but much weaker than for CREasc‐CREsub (Figure S7 in Supporting Information S1). This highlights the need for
models to accurately capture both SW and LW CREs in both ascent and subsidence regimes, and for improved
understanding of the variability in predicted change in ascent fraction.

Figure 3b shows the correlation between Δasc and surface temperature, clearly highlighting a role of the El Nino‐
like pattern of warming known to occur in CMIPmodels (Fox‐Kemper et al., 2021). This supports the conclusions
of Su et al. (2020) about the importance of SSTwarming for ascent fraction. Since coupled models are the primary
means to assess this SST response to warming, future work will need to increase confidence in the response
pattern in order to better constrain this component of cloud feedback.

In order to understand the CREasc‐CREsub influence on the dynamic feedback we analyze the subset of coupled
models that provide a broader set of cloud diagnostics. The equivalent of Figure 2d is reproduced for this subset in
Figure S8b in Supporting Information S1. It is clear that this smaller subset still captures the key differences
between the tercile groupings in terms of the circulation dependence of net CRE.

For the same subset as Figure S8 in Supporting Information S1, Figure 3c shows average vertical profiles of cloud
fraction for the two terciles and for each circulation regime. First, in both ascent and subsidence regimes, high
cloud is present, explaining the categorization as a non‐low cloud feedback in Figure 1c. In the subsidence regime
(dashed lines), the upper tercile models (darker lines) have more low cloud than the lower tercile models (lighter
lines), consistent with the more negative SW and net CRE of upper tercile models in this regime (Figure S8 in
Supporting Information S1). In the ascent regime (solid lines), low cloud is similar between the tercile sets, but the
upper tercile models have less mid‐level cloud. A reduction of mid‐level cloud is consistent with a less negative
SW and net CRE for upper tercile models in the ascent regime. These differences in prevalence of different cloud
types amongst models cause differences in net CRE between ascent and subsidence regimes, which causes
differences in the dynamic cloud feedbacks.

The model dynamic cloud feedbacks in this region can be constrained by using the observed CREasc‐CREsub of
− 7.79 W m− 2 (Figure 2d) in combination with the approximation given by Equation 2, as shown in Figure 3a.
Since the observations show less negative net CRE in subsidence regimes than ascent regimes, the consistent
increase in ascent fraction across models leads to a negative dynamic cloud feedback. Removing this component
of variability leads to a much smaller inter‐model standard deviation of dynamic feedback, reduced to
0.28W m− 2 K− 1 from 0.78W m− 2 K− 1 (though this is in part due to a slight underestimate by the approximation,
i.e., the regression line in Figure 3a). This also leads to a more negative multi‐model mean value of
− 0.46 W m− 2 K− 1 compared to 0.10 W m− 2 K− 1 for the unconstrained calculations. Using the constrained
estimate of the dynamic cloud feedback to calculate the total cloud feedback sees a smaller reduction in model‐
spread (from 1.33 to 1.26 W m− 2 K− 1) due to the co‐variation between the dynamic cloud feedback and the non‐
dynamic cloud feedback. However, the decrease in the mean value remains, with the regional multi‐model mean
total cloud feedback reduced from 0.77 W m− 2 K− 1 to 0.21 W m− 2 K− 1. Accounting for the area of the region,
this corresponds to a reduction in the multi‐model global mean total cloud feedback of 0.03 W m− 2 K− 1; a small,
but not insignificant decrease.

Two models appear as outliers in the constrained total feedback: GISS‐E2‐2G and CAMS‐CSM1‐0. It is beyond
the scope of this study to assess the robustness of individual models. However, if confidence in these outlier
estimates of Pacific cloud feedback was determined to be low, then their removal would result in the constrained
total feedback spread (without outliers, σ = 0.89 W m− 2 K− 1) being a third less than the unconstrained model
spread, with the mean estimate then sitting somewhat higher (μ = 0.4 W m− 2 K− 1).

5. Conclusions
In this study, we have presented an investigation of the equatorial Pacific region which shows notably large
CMIP6 model spread in cloud feedback. This region is associated with a non‐low cloud feedback. Our assessment
of cloud profiles highlights that this region has a complex mix of cloud types, with both high and low clouds
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present in both ascent and subsidence regimes. The circulation decomposition shows that the difference across
models in prevalence of low and mid‐level clouds, in this mixed‐cloud type region, is fundamental to the esti-
mation of cloud feedback. Although there is a consistent shift across models towards increased occurrence of the
ascent regime in response to warming, the sign of the resulting dynamic cloud feedback depends on whether the
CRE is more negative in the ascent or the subsidence regime, which models do not agree on.

When we constrain dynamic feedback with the observed dependence of CRE on circulation regime, we find a
reduction in the regional total cloud feedback from 0.77 to 0.22 W m− 2 K− 1. Our constraint reduces the model
spread in dynamic feedback dramatically, but the reduction of model spread in total feedback is more limited.
However, the decomposition method used in this study points to a selection of research pathways for reducing the
model spread in total feedback for this notable region:

1. The current set of AMIP‐p4K models are not suitable for understanding cloud feedbacks in this region, so a
targeted change in contributing models or an increase in coupled model diagnostics is needed. Atmosphere‐
only models, which archive more detailed cloud diagnostics for assessment, significantly underestimate the
variability in cloud feedbacks seen in coupled models. Atmosphere‐only models underestimate both dynamic
and non‐dynamic cloud feedback variability. The lack of correlation between atmosphere‐only and coupled
model cloud feedbacks in this region has already been highlighted by Qin et al. (2022), but in contrast to their
hypothesis, we find that, for this region, the correlation between non‐dynamic cloud feedbacks is actually
smaller than the correlation between dynamic cloud feedbacks. It's possible that a different set of models may
better represent the coupled cloud feedback distribution, and would improve on this correlation. But unless a
better set can be established in future model intercomparisons, our results highlight the need for more
widespread provision of ISCCP simulator output from coupled models in order to facilitate understanding of
the non‐dynamic, as well as the dynamic, cloud feedback in this region. Whilst our analysis provides an
indication of cloud changes involved in the spread, available diagnostics are not sufficient to interpret radiative
changes in relation to cloud type changes.

2. Dynamic cloud feedback depends on the strength of the regional circulation shift towards the ascent regime,
with confidence in this requiring a more robust understanding of Pacific cloud‐ocean coupling and response.
The shift towards greater ascent in the region with warming is difficult to constrain using observations alone;
building confidence in this change requires further analysis of the coupling between the ocean and atmosphere
in this region in both coupled models and observations. We show that the shift in ascent regime in models is
correlated with the strength of the El Nino‐like warming pattern. The results provide additional impetus to
improve confidence in this pattern of response simulated by models. The dependence of feedback on the
feature highlights the important coupling between clouds and ocean in this region.

3. Observations should be used to characterize the complex mixing of cloud types in Pacific circulation regimes
in order to establish the controls on regime‐dependent CRE, which models can then use as a basis for
improvement. Whilst we have used observations to approximately constrain the feedback estimate, this
approach cannot correct biases that will occur in the models in response to incorrect radiative effects. Present‐
day observations are well suited to provide a detailed baseline of cloud types and relationship to CRE and
circulation regime, on the monthly and sub‐monthly timescales. Model development on the basis of such
observational analysis is required in order to improve confidence in the ability of coupled models to simulate
cloud feedbacks in the equatorial Pacific.

4. Targeted assessment of confidence in two outlier estimates would either allow for reduction of the model
spread, or elucidate potential extreme cloud feedbacks that researchers should look to understand. Our
constrained total feedback for the Pacific region highlighted two outlier model estimates that are strongly
negative. Detailed investigation of these models is warranted to determine confidence in these feedback es-
timates. If estimates are regarded as unrealistic, the model spread can be further constrained. On the other
hand, if these are deemed to be robust estimates, they provide a tool to explore consequences of potentially
extreme Pacific cloud feedback.

The above pathways for reducing model spread can improve confidence in our estimates of cloud feedback.
However, they have been established through our analysis of spread in model feedbacks and therefore do not
represent true uncertainty in the feedback estimate. Aerosol and cloud microphysics are particularly poorly
captured physical components in climate models and have been highlighted as knowledge gaps by several recent
tropical cloud feedback papers (Gasparini et al., 2023; McKim et al., 2024; Natchiar et al., 2024; Raghuraman
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et al., 2024; Sokol et al., 2024). As such, it is also key that future research draws on the cloud measurements by
various aircraft and satellite campaigns (e.g., Finney et al., 2024; PERCUSION, 2024; Stevens et al., 2021; Wehr
et al., 2023) to understand interaction between aerosol, cloud microphysics, and radiative effect in various cir-
culation regimes.
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