
The Golfo Dulce yellow sea snake 
(Elapidae: Hydrophis platurus xanthos) 
from morphological and molecular 
perspectives 
Article 

Accepted Version 

Bessesen, B. ORCID: https://orcid.org/0000-0003-0272-3889, 
González Suárez, M. ORCID: https://orcid.org/0000-0001-‐
5069-8900, Saborío-R, G., Myers, E. A., Buzás, B., Géczy, C., 
Rasmussen, A. R., Sanders, K. L., Ruane, S. and Nankivell, J. 
H. (2025) The Golfo Dulce yellow sea snake (Elapidae: 
Hydrophis platurus xanthos) from morphological and molecular
perspectives. Zoological Journal of the Linnean Society, 205 
(2). zlaf131. ISSN 1096-3642 doi: 10.1093/zoolinnean/zlaf131 
Available at https://centaur.reading.ac.uk/125373/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1093/zoolinnean/zlaf131 

Publisher: Oxford Academic 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


1 
 

The Golfo Dulce yellow sea snake (Elapidae: Hydrophis platurus xanthos) from 1 

morphological vs molecular perspectives 2 

 3 

Brooke Bessesen1,2,*, Manuela González‐Suárez1, Guido Saborío-Rodríguez2, Edward A. 4 

Myers3, Balázs Buzás4, Csaba Géczy5, Arne R. Rasmussen6, Kate L. Sanders7, Sara Ruane8,†, 5 

James H. Nankivell7,† 6 

 7 

1Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, 8 

Reading, United Kingdom 9 

2Osa Conservation, Puerto Jiménez, Puntarenas, Costa Rica 10 

3Department of Herpetology, California Academy of Sciences, San Francisco, California, 11 

USA 12 

4 Wildlife Consultant, 62 Petőfi St., 8318 Lesencetomaj, Hungary 13 

5Zoo and Aquarium Public Institution, Al Ain, United Arab Emirates 14 

6The Royal Danish Academy Institute of Conservation, Copenhagen, Denmark 15 

7School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, 16 

Australia  17 

8Life Sciences Section, Negaunee Integrative Research Center, Field Museum of Natural 18 

History, Chicago, Illinois, USA 19 

 20 

*Corresponding author. Ecology and Evolutionary Biology, School of Biological Sciences, 21 

University of Reading, Whiteknights Campus, Reading RG6 6EX, UK. Phone: US +1 480-22 

661-2666. Email: brooke.bessesen@gmail.com  23 

 24 

†Shared last authorship 25 



2 
 

 26 

ABSTRACT 27 

The yellow sea snake Hydrophis platurus xanthos is found only in Costa Rica’s south-Pacific 28 

embayment of Golfo Dulce, confined to a <215-m deep inner basin. This endemic population 29 

is geographically separated from the pelagic sea snake H. platurus platurus by >20 km and 30 

has distinctive morphological characters suggesting potential phylogenetic divergence. Our 31 

study confirms morphological diagnosability of the Golfo Dulce population using coloration 32 

(predominantly yellow versus dorsally black) and consistently small body size (<60 cm in 33 

total length). Several significant differences in cephalic and caudal scale counts are also 34 

documented. Seven preserved yellow specimens collected outside Golfo Dulce in the 1970s 35 

are morphologically consistent H. p. xanthos suggesting they originated from inside the gulf. 36 

Despite this, when we use reduced representation sequencing to examine single-nucleotide 37 

polymorphisms, targeted squamate conserved loci, and mined mitochondrial DNA, our 38 

molecular analyses provide no evidence that H. p. xanthos and H. p. platurus are separately 39 

evolving lineages. Indeed, we find near-complete lack of structure both within and between 40 

these populations. The absence of genetic differentiation, which suggests regular gene flow 41 

despite contrary morphological and biogeographic factors, creates an intriguing paradox. 42 

Recent separation and/or high selection pressure may be in effect.  43 

 44 

Keywords: Central America; Costa Rica; DArTseq; marine reptile; mtDNA; morphology; 45 

phylogeography; SqCL; xanthic coloration 46 

 47 

INTRODUCTION 48 

The Golfo Dulce yellow sea snake Hydrophis platurus xanthos Bessesen & Galbreath 2017 49 

(hereafter the yellow sea snake) has been described as a subspecies of the widely distributed 50 
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pelagic sea snake H. platurus (Fig 1A; hereafter the pelagic sea snake). We use recognized 51 

trinomials for the purpose of comparing these morphologically distinct geographical 52 

populations but note that some authors here do not recognize subspecies as a valid taxonomic 53 

rank (see Burbrink et al. 2022). The yellow sea snake inhabits the narrow inlet of Golfo 54 

Dulce on the south-Pacific side of Costa Rica (Solórzano 2011, Bessesen 2012; Fig. 1B). 55 

Golfo Dulce is considered a ‘tropical fjord’ because its mesopelagic inner basin has limited 56 

exchange with the coastal masses (Wolff et al. 1996), and the yellow sea snake is confined to 57 

that inner basin (Bessesen 2012, 2015, 2022, Solórzano & Sasa 2024, Lillywhite 2025) where 58 

a calm, estuarian circulation pattern prevails (Svendsen et al. 2006). Inhabiting a single area 59 

of occupancy <260 km2 (Bessesen et al. 2023; Fig. 1C), this endemic population is estimated 60 

at <30,000 individuals (Bessesen et al. 2022). Importantly, it is geographically separated from 61 

the pelagic sea snake population by a greater than 20-km spatial gap (Bessesen 2012, 2022) 62 

characterized by shallow waters (≤30 m) and a complicated current structure (Svendsen et al. 63 

2006, Morales‐Ramírez et al. 2015).  64 

Habitat partitioning suggests allopatric distribution, and the yellow sea snake is 65 

distinct in both appearance and ecology (Lillywhite et al. 2015, Bessesen & Galbreath 2017, 66 

Bessesen & Gonzalez-Suarez 2022, Bessesen et al. 2023). In addition to its xanthic coloration 67 

(predominantly yellow, lacking a solid black dorsum), a significant reduction in body size has 68 

been documented; notably, no yellow sea snake was found to reach the sexually mature 69 

length of the pelagic sea snake (Bessesen & Galbreath 2017) reported as ≥60 cm (Kropach 70 

1975, Vallarino & Weldon 1996). Environmental conditions may have contributed to these 71 

phenotypic changes, as water temperatures in Golfo Dulce are 2–4 °C higher than in the open 72 

ocean (Rincon‐Alejos & Ballestero‐Sakson 2015, Bessesen et al. 2023). Pale integument has 73 

been proposed to help the yellow sea snake reduce overheating at the water surface 74 

(Solórzano 2011, Bessesen 2012), and smaller body size would allow the serpent to shed heat 75 
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more readily (Bessesen & Galbreath 2017). Lighter coloring, however, could also lead to 76 

photosensitivity. The yellow sea snake evinces a nocturnal diel pattern, which is in direct 77 

contrast to the diurnal pattern of the pelagic sea snake (Bessesen & González-Suárez 2022). 78 

Feeding at night seems to require a higher tolerance for evening wave activity, and while the 79 

pelagic sea snake actively avoids rough waters (Rubinoff et al. 1986, Cook & Brischoux 80 

2014), the yellow sea snake is commonly found in turbulent conditions (Beaufort wind force 81 

3–4), assuming a unique sinusoidal ambush posture that appears to have a stabilizing effect in 82 

the waves (Bessesen & Galbreath 2017). It also shows no association with drift lines 83 

(Lillywhite et al. 2015, Bessesen 2022), which are commonly used by pelagic sea snakes for 84 

transport, feeding, and possibly reproduction (Kropach 1973, 1975). Visual cues are thought 85 

to play a role in drift line detection among pelagic sea snakes (Brischoux & Lillywhite 2011). 86 

Hence, the yellow sea snake’s disassociation with drift lines may relate to its nocturnal 87 

feeding strategy as visibility is naturally inhibited at night (Bessesen 2022).  88 

Given the conspicuous differences in morphology and ecology between the yellow 89 

and pelagic sea snakes, we considered the possibility that they could be separate species 90 

(Mayr 1942, De Queiroz 2007). The present paper addresses this by examining evidence of 91 

divergence through morphological and molecular approaches. First, we examined both live 92 

and vouchered museum specimens to compare morphology. We further sought to determine 93 

the geographic origin of yellow sea snakes recorded off the coast of Central America. Voris et 94 

al. (1970) and Kropach (1971) were the first to report yellow sea snakes; the latter found 3% 95 

of the snakes collected outside the mouth of Golfo Dulce to be yellow. Additional researchers 96 

documented yellow sea snakes in the Pacific waters off Central America, though frequencies 97 

dropped precipitously the farther from Golfo Dulce they worked. For example, in northern 98 

Costa Rica, Tu (1976) collected 3077 sea snakes and found only four (0.1%) yellows, while 99 

farther to the south Kropach (1971) spotted one yellow snake among the tens of thousands of 100 
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pelagic sea snakes recorded in Panama Bay. When the Golfo Dulce population was identified, 101 

it was hypothesized that yellow specimens seen in the open Pacific (hereafter ‘1970s 102 

specimens’) may have been swept out from the embayment (Bessesen 2015). 103 

We also undertook comparative molecular analyses of contemporary specimens using 104 

nuclear and mitochondrial DNA (mtDNA) to test for structure between populations. Within 105 

the rapidly radiating Hydrophis clade, low variability of molecular markers can make gene 106 

trees challenging to resolve (Lukoschek & Keogh 2006, Rasmussen 2011, Sanders et al. 107 

2013), but when examining allele frequencies across spatial gradients, a pattern of isolation-108 

by-distance is often expected to emerge, whereby genetic similarity decreases as spatial 109 

distance increases (Wright 1943). Given our study species’ enormous east-west range from 110 

the east coast of Africa to the west coast of the Americas (Hecht et al. 1974, Lillywhite et al. 111 

2018), we anticipated finding shallow geographical variation across its oceanic distribution 112 

but with more genetic changes attributed to the Golfo Dulce endemic, H. p. xanthos, possibly 113 

supporting a species designation.  114 

 115 

METHODS & MATERIALS 116 

Morphological analyses 117 

From 2017 to 2024, we conducted physical examinations of 124 yellow sea snakes from the 118 

inner basin of Golfo Dulce, including 93 free-ranging individuals briefly captured by net 119 

from a boat, and 31 preserved specimens at the Zoological Museum of University of Costa 120 

Rica (UCR 20612, 20614–16, 20618–19, 20648–49, 20677, 20691, 20817–18, 20836–37, 121 

20840, 21575, 21577, 21881, 21883, 21886, 21889, 21970, 21975–76, 21978, and six yet-122 

uncatalogued specimens). Following Bessesen and Galbreath (2017), we recorded 123 

measurements of weight (WT), girth (circumference at thickest point), total length (TL; using 124 

the string technique), tail length (against a measuring stick) and paddle height (using 125 
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calipers). We removed six particularly small (<38 cm TL) specimens from analyses of 126 

weight, girth, length and tail dimensions to avoid possible age-related statistical bias. Because 127 

formalin and ethanol are known to cause dehydration in preserved squamate specimens 128 

(Vervust et al. 2009), we focused only on live weights for analysis. For cephalic scale counts 129 

(preoculars, postoculars, anterior temporals, supralabials, and infralabials), we followed 130 

Smith (1926). We counted ventral scales (atlas-axis to cloaca, excluding vent shield) and 131 

subcaudal scales (vent to tip) per Dowling (1951). Following Rasmussen et al. (2014), scale 132 

rows (not including ventral scales) were counted ≤4 times around the neck (narrowest point), 133 

around the midbody (thickest point), and vertically across the flattened mid-paddle 134 

(unilaterally). On live snakes, scales were counted using high-resolution photography and 135 

employing a system of red marks arranged on the skin in situ. 136 

For comparison, we examined a total of 229 pelagic sea snakes from outside Golfo 137 

Dulce. Of those, 25 were live snakes captured and released following measurements of 138 

weight and TL. The remaining pelagic specimens came from institutional collections, 139 

including the Field Museum of Natural History (FMNH 9774–75, 16736, 16923–26, 41590, 140 

69768, 79982–85, 97693, 105089, 140155, 140157, 142966, 154857, 154862, 154864–65, 141 

154869, 154872–73, 154886–87, 163200, 163213, 165284, 171579–87, 171589–602, 142 

171604–09, 171611–12, 171614–27, 171629–41, 171643–49, 171651–64, 171666–73, 143 

171675–87, 171689–704, 213669); Australian Museum (AMS 314, 1604, 3154, 3187, 3291, 144 

3791, 3828, 4164, 4283, 6750, 7032, 8944, 8979, 9270, 9316, 10502, 13139, 13766, 13811, 145 

15028, 16862, 19101, 44530, 45813, 92314, 107164, 178108, 178305, 188315–20, 202225–146 

30,  202301, 202878, and one uncatalogued specimen); University of Colorado Museum of 147 

Natural History (UCM 58903–58907, 58909); Natural History Museum of Denmark (ZMK 148 

R66143); Arizona State University Natural History Collections (ASUHEC 2617, 29264); and 149 

two uncatalogued specimens preserved at Osa Conservation’s Piro Research Station in Costa 150 
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Rica. A majority of pelagic specimens (n=135) were collected in Costa Rica; of those, 67% 151 

(n=90) were found near the mouth of Golfo Dulce, making them proximate neighbors to H. p. 152 

xanthos. As with the yellow sea snakes, specimens <38 cm TL (n=39) were removed from 153 

size-related analyses.  154 

Finally, we examined seven 1970s specimens, all exhibiting xanthic coloration, from 155 

FMNH (171603), UCM (58900-58902, 58907), American Museum of Natural History 156 

(AMNH 106682), and United States National Museum of Natural History (USNM 192279). 157 

On a few of the 1970s specimens (n=4) and pelagic sea snakes (n=4) we examined 158 

rib/vertebrae counts and heart placement using radiographic techniques (Rasmussen 1989).  159 

All excepting one 1970s specimen had a metal pin marking the location of the heart, which 160 

allowed counts from atlas-to-heart to determine heart placement along the vertebral column; 161 

we also counted caudal vertebrae. 162 

Descriptive statistics were generated in R version 4.2.1 (R Core Team 2022). We 163 

compared continuous variables between populations using Welch Two Sample t-tests (t.test 164 

function in base R), and frequencies of categorical variables (i.e., having one or more 165 

supralabials in contact with the ocular orbit) using Pearson's Chi‐squared tests (chisq.test 166 

function in base R) with a Yates’ continuity correction. To control the increased familywise 167 

error rate caused by multiple comparisons we applied a False Discovery Rate (FDR) 168 

correction (Benjamini & Hochberg 1995, Pike 2011).  169 

 170 

Molecular analyses 171 

In 2023, we collected tissue samples (tail biopsies) from 50 yellow sea snakes and 25 pelagic 172 

sea snakes briefly captured from adjacent populations in the inner basin and immediately 173 

outside Golfo Dulce, respectively. Collection of yellow sea snakes was limited to the densest 174 

34-km2 portion of their range, while pelagic sea snake collection occurred within 79 km2; 175 
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there was a spatial gap of 33 km between collection areas. Samples were stored in 95% 176 

ethanol. We extracted DNA following the DNeasy Blood and Tissue Kit (Qiagen) protocol 177 

and quantified the extracts using a Quantus fluorometer to obtain >500 ng of DNA at 178 

concentrations of 50 ng/ml. Samples were concentrated using a Centrivap DNA concentrator, 179 

if required, and checked for quality using gel electrophoresis. The DNA extractions for each 180 

of the two sequencing processes described below were done separately but with identical 181 

protocols. 182 

For Diversity Arrays Technology sequencing (DArTseq), we aggregated genetic 183 

samples for 27 yellow and 21 pelagic sea snakes from Costa Rica with 15 additional pelagic 184 

specimens obtained at various locations across the Indo-West Pacific (IWP, which ranges 185 

from Sri Lanka to the East Coast of Australia) and the United Arab Emirates (UAE; see 186 

Supplementary Material, Table S1). The samples were sent to Diversity Arrays Technology 187 

Pty Ltd (Canberra, Australia) where SNP genotyping was conducted using a proprietary 188 

genome complexity reduction pipeline with a pair of restriction enzymes (PstI and HpaII; 189 

Kilian et al. 2012, Georges et al. 2018). After initial digestion/ligation reactions and 190 

amplification, samples were sequenced on an Illumina HiSeq 2500. A third of samples were 191 

sequenced a second time for use as technical replicates. We obtained raw demultiplexed reads 192 

from DArTseq, which we checked for quality using FastQC (Andrews 2010), then filtered out 193 

adaptors and quality trimmed the reads using BBduk (Bushnell 2014). We filtered out 194 

potential microbial and human contamination using Kraken2 (Lu et al. 2022). We then 195 

assembled loci and called SNPs using iPYRAD v.0.9.85 (Eaton & Overcast 2020) run on the 196 

University of Adelaide Phoenix HPC. Filtered and demultiplexed reads were assembled de 197 

novo, setting the cluster threshold to 0.90, mindepth (statistical and majority rule) to 5 and 198 

maxdepth to 10000. We retained 1 SNP per RAD locus to reduce the effects of linkage, using 199 

the --thin command in vcftools (Danecek et al. 2011). 200 
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We used two datasets for SNP population genetic analyses: Dataset 1 included 54 201 

samples from across the full range of the study species H. platurus with no missing loci (n = 202 

498), while Dataset 2 included 43 samples from the adjacent Costa Rican populations with 203 

614 unlinked loci. We generated Principal Component Analysis (PCA) plots using the SNP 204 

data for each grouping separately. Using the Hierfstat package (Goudet 2005) in R, we 205 

estimated observed (Ho) and expected (He) heterozygosity and F-statistics (FIS: inbreeding 206 

coefficient; FST: the proportion of differentiation due to genetic structure).  207 

For target sequence capture, samples for 15 yellow and nine pelagic sea snakes from 208 

Costa Rica (Table S1) underwent library preparation for sequence capture at Daicel Arbor 209 

Biosciences (Ann Arbor, MI, USA). Samples were optimized for capture using the SqCL v2 210 

probe set (Singhal et al. 2017), which targets ultra conserved elements (UCE; Faircloth et al. 211 

2012), Anchored Hybrid Enrichment (AHE; Lemmon et al. 2012), and other traditional 212 

squamate loci (Singhal et al. 2017). Sequencing was conducted on an Illumina Hi-Seq 213 

platform. For outgroups, we downloaded raw SqCL sequences from the National Center for 214 

Biological Information (NCBI) Sequence Read Archive (dataset: Hills & Singhal 2023) via 215 

the SRA toolkit v. 3.1.0: Hydrophis kingii (SRR23022445), Hydrophis macdowelli 216 

(SRR23022444), Aipysurus duboisii (SRR23022465), Emydocephalus annulatus 217 

(SRR230224499) and Laticauda colubrina (SRR23022443). After raw reads were cleaned 218 

using illumiprocessor (Faircloth 2013) and trimmed with trimmomatic (Bolger et al. 2014), 219 

contigs were assembled using SPades (Prjibelski et al. 2020) with default parameters. We 220 

then matched our contigs to the SqCL v2 probe set (Singhal et al. 2017) and aligned them 221 

using MAFFT v. 1.5.0 (Katoh et al. 2002). We processed all the data in PHYLUCE v. 1.7.3 222 

(Faircloth 2016) run on the Field Museum Grainger Bioinformatics Center Phoebe HPC. A 223 

concatenated file with the data matrix at 95% completeness was used to estimate a gene tree 224 

in IQ-TREE v.2 (Minh et al. 2020). The pipeline was then rerun with only Costa Rica’s 225 
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adjacent populations to make a species-specific network in SplitsTree4 v. 4.19.2 (Huson & 226 

Bryant 2006).  227 

To mine mtDNA, we used Geneious Prime v.2024.0.3 (https://www.geneious.com) 228 

with default settings. We imported raw paired (forward and reverse) fastq target-capture reads 229 

and trimmed those reads using BBduk v. 38.84 (Bushnell 2014). We then imported our raw 230 

trimmed DArTseq reads, including technical replicates. From the National Center for 231 

Biological Information (NCBI) GenBank database, we downloaded a complete mitogenome 232 

for H. platurus (MK775530 from S. Korea, 18,101 bp; Kim et al. 2020), and setting it as the 233 

reference genome in the Map to Reference tool in Geneious, we independently mapped each 234 

sample. For any snake that was sequenced for both DArTseq and target capture and/or had 235 

replicate DArTseq sequences, we aligned those and generated an individual consensus 236 

sequence (with the ‘Highest Quality’ setting). Four mapped sequences were removed from 237 

further analysis due to insufficient data, resulting in a final mtDNA dataset of 33 yellow and 238 

20 pelagic sea snakes (Table S1). Using MAFFT in the Multiple Align tool (default settings), 239 

the mapped sequences were then aligned with the reference genome, as well as several other 240 

complete sea snake mitochondrial genomes downloaded from NCBI GenBank to serve as 241 

outgroups: H. curtus (MT712129; Zhang & Yan 2020), H. melanocephalus (MK775532; Yi 242 

et al. 2020), H. ornatus (NC_066233; Xiaokaiti et al. 2022), Aipysurus eydouxii 243 

(NC_062614; NCBI Genome Project), Emydocephalus ijimae (MK775531, Yi et al. 2019) 244 

and Laticauda colubrina (NC_036054; NCBI Genome Project). A gene tree was generated 245 

using RAxML v. 8 (Stamatakis 2014; default settings) and rooted with Laticauda colubrina 246 

(Fig. 5).  247 

 248 

RESULTS 249 

Morphology 250 
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All 124 yellow sea snakes from the inner basin of Golfo Dulce are predominantly yellow. 251 

Signs of melanin are not entirely absent though, as most have one or more tiny black dots or 252 

specks located on the body or head, often near the supraocular and/or parietal scales (Fig. 253 

2A). Only seventeen (14%) have marks >1 cm on the body, including some with narrow 254 

dorsal dashes (Fig. 2B) and one with a thin mottled stripe. None has a solid black dorsum or 255 

black bands across the tail paddle. Irises are consistently light in color, usually pale grey 256 

green (Fig. 2C). Descriptive measurements of the yellow sea snake (Table 1) are recorded as 257 

live WT: 22–90 g (mean=45.5); girth: 4–6.5 cm (mean=5.2); TL: 39–59.3 cm (mean=49.5), 258 

SVL as TL minus tail: 34.25–53.3 cm (mean=44.1); tail length: 4.25–7 cm (mean=5.5); and 259 

paddle height: 0.8–1.4 cm (mean=0.98). Cephalic scales (Fig. 2E–F) are represented by two 260 

nasal shields (touching; no internasals); two prefrontals (no loreals); one frontal; two 261 

parietals; unilaterally, preoculars: 0–2 (mode=1); postoculars 1–3 (mode=2); anterior 262 

temporals: 2–3 (rarely 4); supralabials: 7–10 (mode=8); infralabials: 10–13 (mode=11, with 263 

the first five larger in size); and two anterior sublinguals (separated by small scales). In 73% 264 

of specimens, a supralabial (usually the fourth, occasionally the fifth, and rarely both) 265 

touched the ocular orbit. For body scales, we counted around the neck: 36–47 (mean=42.7); 266 

around the midbody: 45–59 (mean=52.1); vertical paddle: 11–13 (mode=12); ventrals: 245–267 

383 (mean=314.4); and subcaudals: 38–53 (mean=45.1). 268 

The pale integument and light iris of the yellow sea snake contrasts with the solid 269 

black dorsum and dark eye of the pelagic sea snake (Fig 2D). Yellow sea snakes also 270 

consistently lack the black spots or bands on the lateral tail paddle that are seen in pelagic sea 271 

snakes. Even taking a conservative approach for multiple comparison tests by applying an 272 

FDR correction, several morphological characters significantly differ between the two groups 273 

(Table 1). Overall, yellow sea snakes are smaller than pelagic sea snakes, as demonstrated by 274 

reductions in live weight, TL, tail length, and paddle height. Paddle aspect ratio (as tail 275 
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height/length) indicates the tail of the yellow sea snake is narrower, and we also find fewer 276 

paddle scale row counts. Cephalic scalation shows additional significant differences: yellow 277 

sea snakes are less likely than pelagic sea snakes to have one preocular scale rather than two 278 

and exhibit a higher frequency of labial-to-orbit contact (Fig. 2E).  279 

Comparisons between contemporary yellow sea snakes and the 1970s specimens 280 

captured off-shore show near-perfect alignment (Table 1). After FDR-correction, the only 281 

character out of sync is girth. All the 1970s specimens are within the recorded size range for 282 

the yellow sea snake, and an even higher percentage (86%) show at least one labial scale in 283 

contact with an eye.  284 

We did not obtain rib counts for any yellow sea snakes; however, radiographs of four 285 

1970s specimens and four pelagic sea snakes allowed counts of body ribs (1970s =146–152, 286 

pelagic=139–155), caudal vertebrae (1970s =32–34, pelagic=29–33) total counts (body-287 

caudal; 1970s=180–185, pelagic=168–185), and atlas-to-heart counts (1970s =44–47, 288 

pelagic=39–47). Although minimum counts are consistently lower in the pelagic specimens, 289 

larger sample sizes are needed to clarify whether genuine variations in rib/vertebrae counts 290 

can be linked with color. Half (n=2) of our radiographed pelagic sea snakes were gravid, 291 

which may have influenced heart position. One (ZMK R66143) carried six embryotic 292 

offspring. The other (FMNH 165213) shows two fetuses no longer in well-formed embryonic 293 

sacs with one positioned more elongate, head pointed toward the caudal end of the mother’s 294 

body suggesting it may have been moving through the oviduct; if so, it is possible that 295 

additional neonates were released prior to capture or conservation. 296 

 297 

Genetics 298 

Despite the morphological differences reported above, our molecular analyses do not support 299 

the hypothesis of separate species. For both DArTseq Dataset 1 (samples from across the full 300 
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range of the study species) and Dataset 2 (adjacent populations in Costa Rica), PCAs fail to 301 

show clustering between geographic regions or between the yellow and pelagic populations 302 

(Fig. 3A-B). Regional groups show similar patterns of within-population variation (Ho, He, 303 

FIS; Tables 2–3), and FST (genetic variation within an individual relative to its subpopulation) 304 

is close to zero across the species range (Table 4) and within the adjacent Costa Rican 305 

populations (-0.0006459).  306 

When examining the SqCL sequence data, we find no evidence of genetic structure 307 

between the adjacent but geographically separated yellow and pelagic sea snakes (Fig. 3C–308 

D); SplitsTree generates a starburst pattern of near-equal distance between all specimens. Our 309 

analysis of the mined mtDNA returns similar results (Fig. 3E). We note that the amount of 310 

mtDNA mapped from our DArTseq and SqCL sequences to the H. platurus reference 311 

mitogenome was limited based on visual inspection and the Geneious statistics comparing the 312 

sequences within our final alignment (Pairwise Identity=13.7%; Identical Sites=4.4%). 313 

 314 

DISCUSSION 315 

We compared morphological and molecular markers of the yellow sea snake (Hydrophis 316 

platurus xanthos) residing inside Golfo Dulce against the pelagic sea snake (H. p. platurus) 317 

ranging across the Indo-Pacific Ocean. Comparative morphology illuminated multiple 318 

differences between populations: not only does the yellow sea snake exhibit xanthic 319 

coloration with light irises and a reduction in all body size measurements, including live 320 

weight, it shows statistically significant shifts in tail morphology (paddle shape as aspect ratio 321 

and paddle scale count), preocular count, and frequency of labial scales touching an eye. 322 

Despite these morphological differences, comparative molecular analyses using SNPs, target-323 

capture loci, and mined mtDNA did not reveal genetic differentiation between populations. 324 
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On the simplest level, our results suggest intense selection for certain morphological features 325 

inside Golfo Dulce and/or an evolutionary split too recent to identify.  326 

 327 

A morphological perspective 328 

Bessesen and Galbreath (2017) and Solórzano and Sasa (2024) suggest elevated sea surface 329 

temperatures in Golfo Dulce may promote lighter coloration and smaller body size in yellow 330 

sea snakes relative to pelagic sea snakes. As a species, H. platurus is known to be 331 

polymorphic. Smith (1926) published seven color forms, all versions of dark above and light 332 

below (see Supplementary Material, Fig. S1). In and near the Persian Gulf, some specimens 333 

appear whitish yellow with a light brown dorsum and pale paddle markings (iNaturalist 2024, 334 

J. Crowe-Riddell, pers. comm.). However, unlike the mixed phenotypes seen elsewhere, the 335 

yellow sea snakes have 100% conformity in xanthic coloration. They are also consistently 336 

smaller across various measurements: girth, TL, tail length, and paddle height. Because such 337 

traits are linked by allometry, we consider them to represent a unified shift in body size. Our 338 

expanded dataset only slightly increases the yellow sea snake’s max length to 59.3 cm (from 339 

59 cm: Bessesen & Galbreath 2017), and still no specimens reach the reported minimum 340 

length for a gravid pelagic sea snake (≥60 cm; Kropach 1975, Vallarino & Weldon 1996). 341 

While individual snake weights can vary due to age, prey consumption, sexual dimorphism, 342 

breeding condition, health, and ecology (Feldman & Meiri 2013), the yellow sea snake 343 

weighs on averages 40% less than the pelagic sea snake. The difference in tail shape is also of 344 

interest. Not only is the tail of the yellow sea snake naturally smaller, but the aspect ratio of 345 

height/length suggests it is narrower and has fewer scale rows. Perhaps bound to the 346 

relatively calm subsurface waters of the inner basin, the snakes in Golfo Dulce do not require 347 

as much paddle power as those diving the open ocean. Furthermore, the yellow sea snakes are 348 

significantly more likely than their pelagic counterparts to have one prefrontal scale versus 349 
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two. Tu (1976) mentioned a trait shared among four yellow specimens collected off Costa 350 

Rica: at least one supralabial in contact with the ocular orbit. We found nearly three-quarters 351 

of yellow sea snakes exhibited that trait compared with approximately 50% of pelagic sea 352 

snakes. Scale count variability and clinal changes between geographical areas are common in 353 

squamates (Dohm & Garland 1993), and it is unknown whether the prefrontal and labial-to-354 

orbit traits have been increasing through selection due to reduced space on a smaller animal, 355 

or whether they are simply phenotypic variance derived through genetic drift. Either way 356 

these characters may be moving toward fixation in the yellow population. 357 

When considering the establishment of the yellow population, it is noteworthy that the 358 

inner basin of Golfo Dulce may have been fully cut off from the Pacific Ocean during some 359 

period of its geological history (T. Garner pers. comm.). Published geological models indicate 360 

that during the late Pleistocene the Osa region was submerged apart from three small islands 361 

(the highest peaks of the modern day Osa Peninsula; Gardner et al. 2013). Any pelagic sea 362 

snakes in the region at that time could have navigated around the islands and used waters 363 

adjacent to their coasts. By 125 kya, the Osa landmass was being uplifted by subduction, 364 

forming an unbroken peninsula (Gardner et al. 2013) and potentially capturing a group of 365 

pelagic sea snakes within the boundaries of Golfo Dulce. During the last glacial maximum, 366 

nominal eustatic curves suggest sea levels dropped <130 m (Lambeck et al. 2014). Seeing as 367 

present-day Golfo Dulce has a sill at 60 m depth and outer basin generally less than 30 m 368 

deep (the shallow zone that today separates the yellow from the pelagic sea snake; Bessesen 369 

2022) it is conceivable that low sea levels isolated the deep inner basin of Golfo Dulce for 370 

tens of thousands of years (T. Gardner, pers. comm.). The enclosed basin, essentially a 371 

brackish lake, would have offered a considerably different habitat than the adjacent Pacific, 372 

with the potential to accelerate differentiation. An alternative hypothesis provides for a 373 
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weather event or anomalous wave having swept tens to thousands of pelagic sea snakes into 374 

the inner basin. 375 

Owing to the bathymetry of Golfo Dulce and its fiord-like characteristics (Svendsen et 376 

al. 2006), the potential for frequent contact between Costa Rica’s adjacent yellow and pelagic 377 

sea snake populations is low. They appear separated by a >20-km spatial gap centered over 378 

shallow waters (mostly 10–30 m deep; Bessesen 2022) with a complicated current structure 379 

(Svendsen et al. 2006, Morales-Ramírez et al. 2015). Among nearly 900 recorded 380 

observations of Golfo Dulce yellow sea snakes over a 15-year period, only one occurred in 381 

that shallow zone (Bessesen 2015). That these snakes are weak swimmers that spend their 382 

time diving and floating without active horizontal movements (Kropach 1973, Graham et al. 383 

1987, Rubinoff et al. 1988) further reduces the likelihood of crossing such a sizable space. 384 

We know yellow sea snakes are sometimes swept out of the embayment (Bessesen 2015, 385 

2022), and pelagic sea snakes may occasionally wash in (Bessesen & Galbreath 2017, 386 

Solórzano & Sasa 2024). However, the latter do not appear to survive long term as evinced 387 

by an absence of typical black-and-yellow individuals in the inner basin (Solórzano 2011, 388 

Bessesen 2015, Lillywhite et al 2015, Bessesen 2022) coinciding with reported effects of 389 

elevated thermal conditions. Surface temperatures in Golfo Dulce reach at least 32.5 °C 390 

(Rincon‐Alejos & Ballestero‐Sakson 2015, Bessesen et al. 2023). In lab experiments, every 391 

pelagic sea snake held in water heated to 32 °C stayed at the bottom of the tank (Graham et 392 

al. 1971), and in waters ≥33 °C, none survived longer than two days (Dunson & Ehlert 1971). 393 

Solórzano and Sasa (2024) published a photo of an interbreeding event in the inner basin of 394 

Golfo Dulce, but because the coupling is reported to be a male yellow sea snake and female 395 

pelagic, reproductive success is unlikely given the improbable odds that she could withstand 396 

the environment to parturition. Successful interbreeding within the distribution area of the 397 

yellow sea snake where thermal conditions and other hydrological characteristics appear 398 
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unsuitable to ‘outsiders’ (Bessesen 2022, Bessesen et al. 2023) likely requires a male pelagic 399 

sea snake carried in on a rogue wave or current to mate with a female yellow sea snake 400 

adapted to survive there for her 6- to 8-month gestation period (Savage 2002). 401 

Our morphological data provided evidence that the 1970s specimens captured off 402 

Central America were likely to have originated from inside Golfo Dulce, as they aligned 403 

closely with the yellow sea snake. This finding is further supported by mapping the collection 404 

sites of Kropach (1971), Bolaños et al. (1974) and Tu (1976) and comparing the percentage 405 

of yellow snake encounters from their studies which show higher percentages nearer the 406 

embayment. One of the 1970s specimens was found >500 km from Golfo Dulce in the Gulf 407 

of Panama (Kropach 1971) but no yellow sea snakes have been reported beyond Central 408 

America. The survival rate of yellow sea snakes that transition to open ocean, where waters 409 

are colder and contain higher salt content is unknown. Though our sample size was small, a 410 

reduction in average girth among our 1970s specimens may suggest weight loss (McCue et 411 

al. 2012), possibly due to reduced feeding in an unfamiliar environment. 412 

 413 

A molecular perspective 414 

Population structure has been studied in sea snakes (Lukoschek & Shine 2012, Sheehy et al. 415 

2012, Bech et al. 2016, Nitschke et al. 2018, Ludington & Sanders 2021). Notably, the 416 

Aipysurus-Emydocephalus clade showed defined geographical genetic patterns, including 417 

intraspecific splits, while the Hydrophis clade showed weak population differentiation, 418 

suggesting that rapid distribution and speciation may have reduced phylogenetic signal across 419 

their range (Nitschke et al. 2018). The DArTseq methods used in our study have nevertheless 420 

detected population structure in more than a dozen other Hydrophis species, even over small 421 

geographic distances (JH, pers. comm.). So, it is curious that we failed to find any clear 422 

structure across the near-global pelagic sea snake. The species reportedly diverged 5–7 mya, 423 
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spreading across oceans from its Indo-Australian origins (Lee et al. 2016). While it seems to 424 

have reached the Americas after the formation of the Isthmus of Panama obstructed access to 425 

the Atlantic Ocean (Lillywhite et al. 2018), as recently as 2.8 mya (O’Dea et al. 2016), a 426 

much more recent arrival would help explain the low genetic variation between eastern and 427 

western sides of the Pacific, with some level of continued gene flow across oceans. 428 

Population structure can be reduced or lacking in marine fauna that live a pelagic lifestyle 429 

(Pfaller et al. 2018) and/or form exceedingly large and far-ranging populations (Palumbi 430 

1994, Anderson et al. 2020). Still, panmixia across oceans should be interpreted with caution, 431 

as samples rarely cover the full range of the taxa, making subtle genetic differentiation 432 

challenging to detect, especially within recently diverging populations (Grosberg & 433 

Cunningham 2001). Yellowfin tuna (Thunnus albacares), once thought to be globally 434 

panmictic, showed discrete populations once migratory patterns were factored in (Pecoraro et 435 

al. 2018). Increased sampling of the pelagic sea snake from across its expansive range will be 436 

needed to gain a clearer understanding of its global population structure.  437 

In accord with a mitochondrial-based phylogeography study by Sheehy et al. (2012), 438 

we found limited evidence of differentiation between the yellow and pelagic populations. We 439 

did not capture mtDNA directly from tissue samples but instead mined it from raw nuclear 440 

sequences (e.g., Stobie et al. 2018). While our resulting mtDNA sequences were incomplete, 441 

results derived from those data were mirrored by more robust SNP and SqCL data. Limited 442 

within-population structure across the narrow range of the yellow sea snake could be 443 

expected due to the small collection area. However, because reduced gene flow is often 444 

associated with geographic barriers (Gruber et al. 2013), and there is a sizeable shallow zone 445 

separating the yellow and pelagic sea snake populations (Bessesen 2022), the dearth of 446 

structure between those groups was unexpected. If the yellow sea snake population formed 447 

through vicariance due to tectonic subduction coinciding with the last glacial stand, 448 
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promoting divergence (see A Morphological Perspective), perhaps when sea levels rose, 449 

allowing for sporadic interbreeding events, a recombination of genes removed evidence of an 450 

earlier, more complete separation, though even with admixture and recombination we would 451 

expect some sign of population structure. If the population formed by some number of 452 

individuals more recently washed in, founder effect should have produced a genetic signature 453 

of rapid population growth typically following a range expansion.  454 

Uncovering no evidence of genetic divergence in the geographically isolated and 455 

morphologically and ecologically distinct yellow sea snake creates a paradox. Though 456 

undetected in our analyses, a modest number of nuclear genes related to color, size, tail shape 457 

and/or scalation may have changed (Dohm & Garland 1993, Karsenty & Wagner 2002, 458 

Aubret 2015, Ullate-Agote et al. 2020). While a snake’s color can be determined by a single 459 

gene mutation (Ullate-Agote et al. 2020), body size is more complex, generally driven by 460 

multiple genes as well as gene regulators and phenotypic plasticity associated with feeding 461 

and/or environmental factors (Karsenty & Wagner 2002, Aubret 2015). The anatomy and 462 

physiology of the yellow sea snake could be further influenced by feeding at night (Bessesen 463 

& González-Suárez) and inhabiting waters with elevated temperatures, lower salinity and 464 

limited dissolved oxygen compared with the open Pacific Ocean (Bessesen et al. 2023). 465 

Epigenetic gene regulation is known to influence body plan diversification in reptiles 466 

(Martín-del-Campo et al. 2019), and snakes are well known for their phenotypic plasticity 467 

(Aubret et al. 2004). The New Caledonia sea krait (Laticauda saintgironsi) presents clinal 468 

phenotypic variation across known colonies with differing habitats but with no apparent 469 

genetic variation (Bech et al. 2016). Similarly, Shine et al. (2012) found considerable 470 

phenotypic differences between two colonies of turtle-headed sea snakes (Emydocephalus 471 

annulatus) inhabiting adjacent bays. Forsman (2015) argues that irreversible developmental 472 

plasticity should be considered within the framework of quantitative genetics as it is 473 
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fundamentally similar to gene expression and includes genetic components. Having 474 

demonstrated developmental plasticity in sea snakes, Bonnett et al. (2021) made the point 475 

that genetic homogeneity between spatially defined phenotypes does not negate the 476 

possibility of speciation but rather supports the idea of plasticity as a mechanism to facilitate 477 

speciation through the establishment of distinct, environmentally influenced subpopulations. 478 

 479 

CONCLUSIONS 480 

To better elucidate the genetic underpinnings of differences seen between the yellow and 481 

pelagic sea snakes, whole-genomic based work may prove useful (Nater et al. 2015, Streicher 482 

& Ruane 2018; Card et al. 2023), as well as the examination of particular genes for which 483 

selection may be strong in Golfo Dulce. In addition to explaining the morphological changes 484 

reported here, future research has potential to offer insight into the genetic and/or epigenetic 485 

mechanisms of: thermal tolerance (the yellow sea snake inhabits waters that may exceed the 486 

reported thermal maximum for the pelagic sea snake); visual acuity (nocturnality in the 487 

yellow sea snake may have led to improved night-vision or reduced reliance on vision); 488 

osmoregulation (the yellow sea snake inhabits low-saline waters which could reduce its 489 

ability to shield or excrete salts from the body); and/or blood-oxygen carrying capacity (the 490 

yellow sea snake inhabits waters with reduced dissolved oxygen).  491 

Our study raises important questions about the complexities of the evolutionary 492 

process. From a morphological perspective the yellow sea snake is distinct, with 493 

unambiguous xanthic coloration and multiple changes to body size, weight, tail shape and 494 

scalation. Those changes also coincide with considerable ecological shifts (SM Table 3), 495 

including sequestration due to a geographical barrier (Bessesen 2012, 2022, Solórzano & 496 

Sasa 2024, Lillywhite 2025), divergent habitat suitability metrics (Bessesen et al. 2023), and 497 

adaptive behaviors, such as its disassociation with drift lines (Lillywhite et al. 2015, Bessesen 498 
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2022), nocturnal activity cycle (Bessesen & González-Suárez 2022 and unusual feeding 499 

behavior (Bessesen & Galbreath 2017). Such findings suggest the yellow sea snake is on a 500 

unique trajectory, and yet our genetic work offers no clear sign of evolutionary divergence. 501 

Genetic relationships among sea snakes may be difficult to resolve, especially for rapidly 502 

radiating hydrophiids, which present inadequate molecular resolution (Lukoschek & Keogh 503 

2006, Rasmussen et al. 2011, Sanders et al. 2013), and to complicate matters, snakes exhibit 504 

high levels of developmental plasticity that may not always or entirely be linked to genetics 505 

(Burbrink et al. 2020). Still, fine-scale structure within a single snake species can usually be 506 

detected across relatively short distances even without morphological differentiation 507 

(Marshall et al. 2009, Pernetta et al. 2011, Meister et al. 2012). The complete lack of 508 

population structure between our two study populations is both unexpected and difficult to 509 

reconcile. We have done our best to consider potential causes and leave it to our readers and 510 

future researchers to interpret the implications of this work. Perhaps the yellow sea snake was 511 

once fully isolated but has been hybridizing with pelagic sea snake since the end of the last 512 

glacial maxima. Perhaps it became more recently isolated and is in the early stages of 513 

speciation, its evolutionary trail yet undefined.  514 
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TABLES 839 

 840 

Table 1. Morphological characters for Hydrophis platurus xanthos and test results of comparisons with the 1970s specimens (yellow 841 

sea snakes collected from the Eastern Tropical Pacific Ocean) and H. p. platurus; results of the False Discovery Rate correction 842 

(Benjamini & Hochberg 1995, Pike 2010) presented as FDR-adjusted p-values (q-values). Xanthic coloration=predominantly yellow, 843 

lacking a solid black dorsum; *=0.04995; additional sources of morphological data for H. p. platurus can be found in Supplementary 844 

Material (Table S2). 845 

      COMPARED WITH 

  H. p. xanthos 1970s specimens H. p. platurus 

Character 

# 

specimens mean+/-sd # mean +/-sd 

t-

value 

p-

value 

q-

value # mean +/-sd t-value p-value q-value 

Live weight (g) 91 45.3+/-13.1 NA NA NA NA NA 24 75.7+/-29.7 -4.9 <0.001 <0.001 

Girth (cm) 51 5.2+/-0.8 5 4.1+/-0.4 5.2 0.001 0.021 87 8.7+/-2.5 -12.5 <0.001 <0.001 

Snout-Vent length 117 44.1+/-3.9 5 41.9+/-7.2 0.7 0.547 0.744 107 62.2+/-17.2 -10.7 <0.001 <0.001 

Total length (TL, cm) 118 49.5+/-4.3 5 46.8+/-7.9 0.8 0.476 0.744 188 63.8+/-17.1 -10.9 <0.001 <0.001 

Tail length (cm) 117 5.4+/-0.6 5 4.9+/-0.8 1.4 0.169 0.608 107 7.2+/-1.8 -9.8 <0.001 <0.001 

Tail/TL ratio 117 0.11+/-0.01 5 0.10+/-0.01 0.8 0.296 0.707 107 0.11+/-0.09 -0.4 0.701 0.791 

Paddle height (cm) 62 0.98+/-0.1 5 0.92+/-0.1 1.2 0.300 0.707 109 1.6+/-1.8 -12.4 <0.001 <0.001 
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Paddle aspect ratio 62 0.18+/-0.02 5 0.19+/-0.05 -0.6 0.579 0.744 106 0.23+/-0.19 -2.9 0.004 0.008 

Preoculars 49 1.0+/-0.1 6 1.0+/-0.0 0.6 0.569 0.744 97 1.2+/-0.4 -3.9 <0.001 <0.001 

Postoculars 48 1.9+/-0.3 6 2+/-0.0 -1.5 0.128 0.608 96 1.9+/-0.3 -0.4 0.712 0.791 

Anterior temporals 50 2.6+/-0.5 6 2.9+/-0.5 -1.7 0.142 0.608 78 2.6+/-0.4 -0.8 0.418 0.597 

Supralabials 49 8.4+/-0.6 6 8.3+/-0.8 0.2 0.858 0.858 94 8.4+/-1.4 -0.3 0.769 0.809 

Infralabials 48 11.0+/-0.6 6 10.8+/-0.5 1.1 0.314 0.707 97 11.0+/-0.7 -0.5 0.605 0.756 

Neck scale rows 43 42.7+/-3.0 7 38.4+/-2.9 3.6 0.007 0.061 38 42.4+/-3.1 -0.7 0.479 0.639 

Midbody scale rows 42 52.1+/-3.3 7 51.1+/-5.1 0.5 0.634 0.761 36 54.0+/-4.6 -2.0 0.053 0.082 

Paddle scales 17 12.4+/-0.5 7 12.1+/-0.7 0.7 0.483 0.744 76 13.4+/-1.0 -6.2 <0.001 <0.001 

Ventrals 27 314.4+/-29.2 7 310.4+/-40 0.2 0.813 0.858 27 314.6+/-57.6 -0.0 0.988 0.988 

Subcaudals 26 45.1+/-3.4 7 46.7+/-5.3 -0.8 0.475 0.744 67 46.8+/-4.2 -2.0 0.050* 0.082 

                          

Xanthic coloration 124 100% 7 100% NA NA NA 229 0% χ2=348.6 < 0.001 < 0.001 

Labial touches orbit 57 73% 7 86% χ2=0.5 0.675 0.858 194 51% χ2=5.5 0.004 0.008 

 

                      

 
846 
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Table 2. Population genetic metrics (Ho=heterozygosity; He=expected heterozygosity; 847 

FIS=inbreeding coefficient) for samples (number in parentheses) with no missing loci from 848 

across the full range of the species, including H. p. platurus from Costa Rica (CR), Indo-West 849 

Pacific (IWP), United Arab Emirates (UAE), and H. p. xanthos (xanthos) from inside Golfo 850 

Dulce. 851 

Population Ho He FIS 

CR (18) 0.0497 0.0582 0.0835 

IWP (8) 0.059 0.0624 0.035 

UAE (7) 0.0476 0.0567 0.0875 

xanthos (21)  0.0517 0.0574 0.0636 

 852 

 853 

Table 3. Population genetic metrics (Ho=heterozygosity; He=expected heterozygosity; 854 

FIS=inbreeding coefficient) for samples from the Costa Rican population of H. p. platurus 855 

(CR) and H. p. xanthos (xanthos) from inside Golfo Dulce. 856 

Population Ho He FIS 

CR (20)  0.0614 0.0736 0.062 

xanthos (23)  0.0621 0.0688 0.0979 

 857 

 858 

Table 4. The F-statistic FST (allele variation within relative to between subpopulations) for 859 

samples with no missing loci from across the full range of the species, including H. p. 860 

platurus from Costa Rica (CR), Indo-West Pacific (IWP), United Arab Emirates (UAE), and 861 

H. p. xanthos (xanthos) from inside Golfo Dulce. 862 
 

CR IWP UAE 

IWP 0.006698 
  

UAE 0.010871 0.004178 
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xanthos 0.000715 0.012546 0.011157 

 863 

 864 

FIGURES 865 

 866 

 867 

Figure 1. Distribution of the study species: A, Hydrophis platurus platurus ranging across the 868 

Indo-Pacific Ocean (grey; based on Brischoux et al. 2016); B, H. p. xanthos inside Golfo 869 

Dulce in south-Pacific Costa Rica (yellow shading; based on Bessesen et al. 2024); C, a 870 

spatial gap between the two populations is marked by shallow waters with a complicated 871 

current structure. 872 
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 873 

 874 

Figure 2. A-B, Diagnosable xanthic coloration of Hydrophis platurus xanthos (predominantly 875 

yellow with a few black dots; more rarely with dashed dorsal lines or thin strip) and (C) light 876 

iris, as compared with (D) typical coloration of H. p. platurus with solid black dorsum and 877 

lateral tail markings; illustrated cephalic scalation of H. p. xanthos: E, lateral view (note lack 878 

of subocular scale creates labial-to-orbit contact); and F) dorsal view. Photos and 879 

illustrations: B. Bessesen 880 

 881 

 882 

 883 
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 884 

 885 

Figure 3. Genetic analyses comparing Hydrophis platurus xanthos and H. p. platurus: A, 886 

Principal Component Analysis (PCA) for single-nucleotide polymorphism (SNP) samples 887 
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from across the full range of the species (no missing loci) divided as H. p. platurus from 888 

Costa Rica, Indo-West Pacific (IWP), United Arab Emirates (UAE) and H. p. xanthos (Golfo 889 

Dulce); B, PCA of Costa Rican SNP samples; C, IQ-Tree of SqCL sequences, including 890 

outgroups (shaded in blue), at a 95% matrix; D, SplitsTree network of SqCL sequences from 891 

Costa Rican samples of H. p. xanthos (n=15), H. p. platurus (n=9) at a 95% matrix; and E) 892 

RAxML tree of mapped mitogenomes of H. p. xanthos (n=33) and H. p. platurus (n=20), plus 893 

the reference H. platurus and outgroups (shaded in blue894 
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SUPPLEMENTARY MATERIAL 895 

 896 

Table S1. Samples used for genetic analysis by taxa (L.=Laticauda; A.=Aipysurus; 897 

E.=Emydocephalus; H.=Hydrophis), denoting their use (x) in the three analyses (SNPs = 898 

single nucleotide polymorphisms; SqCL = squamate conserved loci; and mitogenome = 899 

mtDNA ); for mined mtDNA we include the method of sequencing used for the derivative 900 

source (rad = DArTseq; radx2=w technical replicate; tar=target capture). 901 

Taxon Location Source studyID SNPs SqCL mtDNA mined as 

L. colubrina Not reported SRA SRR23022443   x     

L. colubrina Not reported GenBank NC_036054     x   

A. duboisii Not reported SRA SRR23022465   x     

A. eydouxii Not reported GenBank NC_062614     x   

E. annulatus  Not reported SRA SRR23022449   x     

E. ijimae Okinawa, Japan GenBank MK775531     x   

H. curtus Hainan Province, China GenBank MT712129     x   

H. kingii  Not reported SRA SRR23022445   x     

H. macdowelli  Not reported SRA SRR23022444   x     

H. 

melanocephalus 

Okinawa, Japan GenBank MK775532     x   

H. ornatus Not reported GenBank NC_066233     x   

H. platurus Sri Lanka KLS KLS0095 x       

H. platurus Gulf of Carpentaria, AU  KLS KLS0786 x       

H. platurus Gulf of Carpentaria, AU  KLS KLS0787 x       

H. platurus Gulf of Carpentaria, AU  KLS KLS0788 x       

H. platurus Gulf of Carpentaria, AU  KLS KLS0789 x       

H. platurus Gulf of Carpentaria, AU  KLS KLS0790 x       

H. platurus Gulf of Carpentaria, AU  MAGNT MAGNT R36633 x       

H. platurus Floreat Beach, W AU WAM/ABCT WAM R101240 x       
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H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE368 x       

H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE618 x       

H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE621 x       

H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE633 x       

H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE634 x       

H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE647 x       

H. platurus Gulf of Oman, UAE UAE/Balazs ss_UAE652 x       

H. platurus South Korea GenBank MK775530     x reference 

H. p. platurus Costa Rica GenBank YB2301 x x x radtar 

H. p. platurus Costa Rica GenBank YB2302 x x x radtar 

H. p. platurus Costa Rica GenBank YB2303   x x tar 

H. p. platurus Costa Rica GenBank YB2304 x   x radx2 

H. p. platurus Costa Rica GenBank YB2305 x   x rad 

H. p. platurus Costa Rica GenBank YB2306 x   x rad 

H. p. platurus Costa Rica GenBank YB2307 x   x rad 

H. p. platurus Costa Rica GenBank YB2308 x   x rad 

H. p. platurus Costa Rica GenBank YB2309 x   x rad 

H. p. platurus Costa Rica GenBank YB2310 x   removed rad 

H. p. platurus Costa Rica GenBank YB2312 x x x radtar 

H. p. platurus Costa Rica GenBank YB2313 x   removed rad 

H. p. platurus Costa Rica GenBank YB2314 x   x rad 

H. p. platurus Costa Rica GenBank YB2316 x x x radtar 

H. p. platurus Costa Rica GenBank YB2317 x   x rad 

H. p. platurus Costa Rica GenBank YB2318 x   x rad 

H. p. platurus Costa Rica GenBank YB2319 x   x rad 

H. p. platurus Costa Rica GenBank YB2320 x x x radtar 

H. p. platurus Costa Rica GenBank YB2321 x x x radtar 

H. p. platurus Costa Rica GenBank YB2322 x   x radtar 

H. p. platurus Costa Rica GenBank YB2323 x x x radtar 
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H. p. platurus Costa Rica GenBank YB2324 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2301 x x x radtar 

H. p. xanthos Golfo Dulce GenBank X2302 x   x radx2 

H. p. xanthos Golfo Dulce GenBank X2304   x x tar 

H. p. xanthos Golfo Dulce GenBank X2305 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2306 x x x radtar 

H. p. xanthos Golfo Dulce GenBank X2307 x   x radx2 

H. p. xanthos Golfo Dulce GenBank X2309 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2310 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2311 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2313 x   x radx2 

H. p. xanthos Golfo Dulce GenBank X2314 x x x radtar 

H. p. xanthos Golfo Dulce GenBank X2315 x x x radtar 

H. p. xanthos Golfo Dulce GenBank X2316 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2317   x x tar 

H. p. xanthos Golfo Dulce GenBank X2318 x   x radx2 

H. p. xanthos Golfo Dulce GenBank X2319 x   removed rad 

H. p. xanthos Golfo Dulce GenBank X2320 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2321   x x tar 

H. p. xanthos Golfo Dulce GenBank X2322 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2323 x x x radtar 

H. p. xanthos Golfo Dulce GenBank X2324 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2325   x x tar 

H. p. xanthos Golfo Dulce GenBank X2326 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2327 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2328 x   x radx2 

H. p. xanthos Golfo Dulce GenBank X2329 x   removed rad 

H. p. xanthos Golfo Dulce GenBank X2330 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2332 x x x radtar 
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H. p. xanthos Golfo Dulce GenBank X2333 x x x radx2tar 

H. p. xanthos Golfo Dulce GenBank X2336   x x tar 

H. p. xanthos Golfo Dulce GenBank X2339   x x tar 

H. p. xanthos Golfo Dulce GenBank X2340   x x tar 

H. p. xanthos Golfo Dulce GenBank X2348   x x tar 

H. p. xanthos Golfo Dulce GenBank X2349 x   x rad 

H. p. xanthos Golfo Dulce GenBank X2350 x   x rad 

902 
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Table S2. Additional sources of morphological data for the pelagic sea snake Hydrophis platurus (snout-vent length=SNV); reference 903 

list below. 904 

Character   Reported results (study reference) 

Live weight (g) 
 

≤150 (Graham et al. 1971) ≤195 (Rubinoff et al. 

1986) 

≤110.5 (Kim et al. 

2020) 

≤154 (Buzas et al. 2018) 

Girth (cm) 
 

-- -- -- -- 

SVL (cm) 
 

≤61.8 (Kim et al. 2020) -- -- -- 

Total length (TL, 

cm) 

 
~88 female (Smith 1926) ≤74 (Graham et al. 

1971) 

≤79 (Tu 1976) ≤113 Pickwell & Culotta 

(1980) 

Tail length (cm) 
 

8–9 (Smith 1926) ≤8.2 (Tu 1976) ≤8.1 (Kim et al. 2020) -- 

Tail/TL ratio 
 

~0.112 (Cook & Brischoux 

2014) 

-- -- -- 

Paddle height 

(cm) 

 
-- -- -- -- 
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Paddle aspect 

ratio 

 
-- -- -- -- 

Preoculars 
 

1–2 (Smith 1926) 1–2 (Kropach 1973) 1 (Kim et al. 2020) -- 

Postoculars 
 

2–3 (Smith 1926) 2–4 (Kropach 1973) 2 (Kim et al. 2020) -- 

Anterior 

temporals 

 
2–3 (Smith 1926) 2–4 (Kropach 1973) 2–3 (Kim et al. 2020) -- 

Supralabials 
 

7–8 (Smith 1926) 6–10 (Kropach 1973) 7–9 (Kim et al. 2020) -- 

Infralabials 
 

10–11 (Smith 1926) 9–14 (Kropach 1973) 10–11 (Kim et al. 

2020) 

-- 

Neck scale rows 
 

36–54 (Tu 1976) 41–54 (Kim et al. 2020) -- -- 

Midbody scale 

rows 

 
49–67 (Smith 1926) 44–61 (Tu 1976) 53–65 (Kim et al. 

2020) 

49–67 (Buzas et al. 2018) 

Paddle scales 
 

-- -- -- -- 

Ventrals 
 

264–406 (Smith 1926) 274–382 (Voris 1975) 266–289 (Kim et al. 

2020) 

264–440 (Buzas et al. 

2018) 
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Subcaudals 
 

39–62 (Tu 1976) 42 (Kim et al. 2020) 
 

-- 

Xanthic 

coloration 

 
3% (Kropach 1971) 0.1% (Bolaños et al. 

1974) 

0.1% (Tu 1976) -- 

Labial touches 

orbit 

 
40% (Minton 1966 49% (Kropach 1973) 17% (Tu 1976) -- 

 905 
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History Group 26: 4–31. 908 
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Table S3. Differences in conservation status and ecological factors between Hydrophis 

platurus xanthos and H. p. platurus; reference list below. 

  H. p. xanthos H. p. platurus 

IUCN Red List conservation status Endangered (EN)1 Least Concern (LC)2 

Global abundance ~30,0003,4 >1,000,0005,6 

Range Golfo Dulce, inner basin3,7 Indo-Pacific Oceans8 

Extent of occurrence (km2) <3001,3,7  >2,500,0006  

Suitable depth (m) >1003,7 ≥105 

Average SST (°C) 303,7 26-289,10,11 

Average salinity (ppt) <313,7 3512 

Average DO (mg/ L) 6.53,7 7.0-8.013 

Feeding posture sinusoidal14 elongate5 

Diel pattern nocturnal9,15 Diurnal16,17 

Drift line use no3,9 yes5,9 

Wave tolerance <1.2 m3,14 <0.1 m5,9,16 

 

TABLE S3 REFERENCES 
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2Guinea M, Lukoschek V, Cogger H, Rasmussen A, Murphy J, Lane A, Sanders K, Lobo A, 

Gatus J, Limpus C, Milton D, Courtney T, Read M, Fletcher E, Marsh D, White M‐D, 
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Figure S1. Specimens held at the Natural History Museum, London, demonstrate Smith´s 

(1926) seven color variations. Photo: G. Brovad, modified by M. Scharff.  

 

 


