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From Platforms to Price: The Impact of Condition Prediction using
Computer Vision on Real Estate Pricing Models

Abstract

This study investigates the use of images from online real estate platforms in Central European real estate
pricing models, exploring both the challenges and advantages of utilizing such data. It specifically focuses
on the impact of manually and algorithmically classifying building conditions on the accuracy of price pre-
dictions. The research demonstrates that incorporating image-based condition assessments can significantly
improve model quality in both, the manual and algorithmical condition assessment, even with limited data.
Additionally, the article identifies and addresses obstacles encountered during the study using a computer
vision classification algorithm, providing guidance for future research in real estate and computer vision to
refine pricing models further.
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1. Introduction

In numerous European countries, the opacity of real estate market data starkly contrasts with the trans-
parency found in Anglo-American markets, where multiple listing services (MLS) facilitate a comprehen-
sive database for automated valuation models. Due to the absence of such data sources, many European
models rely on data from online platforms, which, while readily available and cost-effective, often present
biases such as listing only offer prices rather than transaction prices and overly favorable property presenta-
tions. Despite these drawbacks, the inclusion of property images offers a rich, albeit underutilised, source of
information.

Existing research, as highlighted by [32]], [42], and [58]], acknowledges the use of images in real estate
analysis. Yet, the exploration of their impact on pricing models remains limited, particularly due to the
lack of standardisation in image quality utilised in studies, such as the uniform images from Google Street
View mentioned in [32]]. This article seeks to bridge this gap by focusing on the practical application of
real estate images from online platforms, despite their inherent imperfections, to enhance the accuracy and
relevance of valuation models and price indices. Thus, our work specifically focuses on the derivation of a
building condition variable that can be integrated in a hedonic pricing model and consquently be employed
in Automated Valution Models (AVMs).

By employing Convolutional Neural Networks (CNNs) to analyze and categorize real estate images
based on shapes, colors, and brightness, this study aims to integrate this visual data into pricing models.
This approach not only acknowledges the diversity of real estate properties but also aims to improve the
predictive accuracy of pricing models. The use of CNNss in real estate valuation could significantly reduce
appraisal times and costs, offering immediate property valuations as suggested by [3]].

Focusing on single-family homes, including their images, this article manually classifies the condition
of properties using a standardized scheme. The significant impact of property maintenance on value, as
investigated by [18]], [56], and [9]], underscores the importance of condition in valuation models. [34] further
supports this, noting that incorporating condition variables enhances price estimation accuracy. Thus, we
posit a positive impact on the pricing model’s performance, aiming to improve data quality for automated
valuation models, especially in regions heavily reliant on online platform data. This research addresses three

key aspects:

o Does the standardised condition classification provide added value in a pricing model?



e Can computer vision replicate the condition assessment of a standardised classiﬁcationﬂ

o Do the images contain any information such that it can explain parts of the regression residuals of the

baseline pricing model?

Our study demonstrates that incorporating condition information from images into real estate pricing
models significantly enhances their accuracy, challenging the widespread issue of inaccurate valuations
identified within the sector by [1]] and [5)]. Accurate valuations are vital, as highlighted by [39]], because
house prices impact the quality of life for residents and influence various economic cycles. Additionally,
as [30] notes, they play a crucial role in forecasting key macroeconomic indicators, including inflation and
economic output.

We also found that CNNs are effective in classifying images for this purpose. Our analysis has identified
significant challenges inherent to this approach, providing valuable insights that could aid researchers in
refining their methodologies. The use of images from real estate platforms, coupled with established classi-
fication schemes, clearly leads to a more accurate pricing model. The results of our article and the literature
contribute to an improvement of the quality of AVM models, especially in the banking industry and the
construction of real estate price indices for evaluating economic developments.The integration of CNNs for
analyzing real estate images not only represents a methodological extension of existing valuation approaches
but also enables an objective classification of condition attributes, which is important for traditional hedonic
models by providing interpretable and standardized features.

This article includes a literature review on the use of computer vision for real estate valuation, followed
by a detailed explanation of our methodology. We then present our findings, discuss the challenges encoun-
tered, and suggest ways to navigate these in future research as well as in practice. The article concludes with

a summary of our critical discoveries and their implications for advancing the field.

2. Computer Vision and Pricing Models - A Literature Review

The hedonic pricing model, introduced by [25] and [46], stands as the benchmark in real estate pricing,
attributing specific value contributions to distinct property characteristics (see [[13] for a detailed review).

This model has historically emphasised factors like neighbourhood attributes, environmental and structural

!t is not the objective to compare subjective (human) and objective (machine learning algorithm) classification accuracy.



amenities, and social influences on property values, with a thorough discussion on variable usage and model
composition found in [48]. Despite the critical role of visual property inspection in valuation, the integration
of images into pricing models remained overlooked until the advent of machine learning and computer vision
technologies enabled effective prediction using digital real estate imagery.

CNNs, while not substituting human judgement in property valuation, provide a robust approximation of
an image’s attributes. Deep learning models, including CNNSs, excel in analysing large datasets for pattern
recognition, speech processing, computer vision, language understanding [27]], and enhancing recommen-
dation systems [33]]. The methodology’s growing significance in research is attributed to its capacity for
extracting multiple features from data, particularly images [16].

A first broad overview of real estate and computer vision is given in [[19], a more systematic approach
review of current approaches in this field is given by [49]. Early research intersecting real estate and com-
puter vision, such as the study by [29]], utilize Google Street View images to evaluate neighborhood safety
perceptions, identifying greenery as a significant safety indicator. Additionally, [S7] show that pictures to-
gether with deep learning improve pricing . Further, [S9] demonstrated that visible greenery significantly
boosts Beijing’s property prices by up to 10%.

[42]’s innovative approach, predicting property luxury levels through CNN analysis of interior and ex-
terior images, showcased the potential of visual data to enhance valuation accuracy beyond traditional au-
tomated methods. Architectural style also influences property values significantly, as evidenced by [4] and
[2], who noted a price premium associated with iconic architecture. Moreover, building age has been ef-
fectively predicted using exterior images through machine learning [58]]. Also related to visual stimuli and
property valuation [41] demonstrate that combining image and text data with traditional features enhances
the accuracy of hedonic price models, achieving up to 25% improvement using advanced machine learning
techniques. Additionally, the model’s “black box™ nature is clarified through agnostic methods, revealing
that some housing attributes exhibit nonmonotonic and nonlinear relationships with prices.

The recent study by [32] incorporated architectural styles into a hedonic model, aligning machine learn-
ing assessments with expert evaluations to identify price premiums across various styles. However, this arti-
cle shifts focus to the building condition—a factor less influenced by age and more by ongoing maintenance
and renovation efforts, providing a distinct yet subjective assessment criterion that enhances automated val-
uation methods with image integration. Notably, the images utilised in this study are sourced directly from
real estate platforms, mirroring real-world presentation rather than curated research datasets. [53]] expands

the existing methodologies to specifically analyse the factors on which an ML model focuses. In this process,



building elements such as doors, windows, etc., are classified in advance. The focus here is on architectural
style of the building and residual value of an AVM model. Unlike our area, in comparison to, for example,
[33]] and [57]], the emphasis is on the explicit modelling of a property’s condition derived through computer
vision and consequently its impact on the price.

The challenge in image-based real estate assessment lies in the inherent bias of presentation styles, as
every presentation format can influence valuation decisions [37]. For instance, [22] found that showcas-
ing an apartment in disarray significantly impacts valuation negatively, regardless of its structural value,

highlighting the presentation’s effect on information processing and decision-making.

3. Methodology

This article concentrates on the valuation of single-family homes, emphasising the role of a condition vari-
able derived from images on real estate platforms. This condition variable is assessed both manually by real
estate professionals, according to standardised classifications, and automatically by computer vision algo-
rithms. Our investigation extends to analysing whether the information extracted from images can reduce
the regression residuals in a pricing model, thus potentially enhancing its accuracy (see also [33]). We also
discuss the challenges associated with using computer vision for image assessment in the context of real
estate economics.

Particularly in markets with lower transparency, such as the Austrian market which this study focuses
on, the cost approach often underpins single-family house valuations [44] 36]. In general, the Austrian
market is by far less transparent. For example, property listings do not provide specific addresses, etc.,
as is common in markets like the U.S. or U.K. In the U.S. and U.K. markets, the comparison method for
single-family houses can be applied. However, in Austria, due to the limited availability and quality of
data, this is currently not possible, and thus the cost approach must be used. Building upon this foundation,
our research modifies the traditional hedonic pricing model into a hedonic pricing cost approach model,
as similarly employed in 21]. Notably, the conventional hedonic pricing model incorporates 30-40
variables. In contrast, our adapted cost approach model simplifies this by using fewer predefined variables,
focusing on the aggregate value of the land and the building, including its components. The valuation process
involves estimating the building’s replacement cost, considering factors like amenities and location, and then

adjusting for depreciation related to age, quality, and other factors such as construction deficiencies.



3.1. Variable Real Estate Condition in images

In assessing a building’s condition, images serve as a pivotal yet contentious variable in property valuation
due to its subjective nature, especially when evaluated by an appraiser. This subjectivity often casts doubt on
the reliability of the condition variable as used on real estate platforms. Despite this, the condition variable is
crucial, highlighting the necessity for careful consideration in its application to valuation. Another variable,
the year of construction, contrasts with the condition by being an objectively quantifiable factor, obtainable
from a building’s construction records, thus providing an unbiased element in our pricing model analysis.

The traditional method for assessing a building’s condition involves a physical inspection by a broker
or an appraiser, relying heavily on their expertise and experience. While this expert evaluation is generally
regarded as accurate, it is not immune to subjective biases influenced by personal opinion.

When deriving a building’s condition from images, we primarily analyse the exterior visual data. How-
ever, assessing both the exterior and interior conditions can offer a more comprehensive understanding of
the building’s overall state. The exterior facade’s condition may not fully represent the interior’s state, which
could have undergone renovations, such as updated plumbing or flooring, thus affecting the property’s valu-
ation. The exterior appearance, however, remains a critical factor in the valuation process, underscoring the
complexity of accurately assessing a property’s condition from images alone.

Hence, we have the following different variables that can be considered in a pricing model:

e objective - directly quantifiable variables: examples from the literature of such variables, which also
are predictable by a CNN, are the year of construction [58], the Heat Energy Demand [7]] or architec-
tural style [32].

e “objective” - not directly quantifiable variables which have to be assessed by an expert:

— On site inspection: As a rule, during the inspection of the object, the expert assesses the con-
dition and quality of the built structure. Then, a conclusion is drawn about the variable to be
assessed. This assessment is necessary within the framework of a market value appraisal. Only
an inspection can obtain a comprehensive classification of the property, however, this requires a

relevant effort.

— Assessment on the basis of an image: Only an image is presented and the assessment of the
condition or quality is made on the basis of the image. This can lead to a distortion, as the view

only documents parts and not the entirety of the object. The advantage, however, is that this



assessment is simple and fast and hence well suited for automated pricing models.

Based on the structural differences that constitute the different condition classes, these structural dif-
ferences shall also be identifiable visually, which supports our hypothesis that computer vision with CNNs
should make the (objective) condition assessment via images explicit. In our article we have made the as-
sessment on the basis of an image of the exterior to see to what extent an effect on the price can be observed.

This results in the following procedure:

1. Take images with features of the real estate from the platform.

2. Classify the front image into three condition categories: bad, average and good using a predefined
classification scheme.

3. Include classification in the pricing model.

4. Train a CNN according to the three categories.

5. Include the CNN classification in the pricing model.

3.2. Used Data Set

We collected images and key housing features (such as the local average plot price in the municipality,
plot size, building size, and year of construction) for 2,500 properties listed on Austrian online real estate
platforms in 2019 (before Corona). This dataset, comprising images and detailed attributes of each property,
was refined by selecting houses with plot sizes ranging from 200 to 4,000 square meters and constructed
before 2018. After this filtering, we were left with 1,482 properties. Further narrowing our focus to those
with suitable front views of the houses resulted in a final dataset of 960 properties, summary statistics for
these properties can be found in Table ] together with some example images for the three condition classes
in Figure[T} As mentioned in the introduction, this dataset contains the typical disadvantages found on online
real estate platforms.

The images underwent manual inspection to classify the condition of each building - good, average and
poor - to determine the impact of subjective assessment on the accuracy of our pricing model. This clas-
sification process was conducted by researchers trained in real estate valuation, following a standardised
scheme developed by the Association of Austrian Appraisers to minimise subjectivity [40] outlined in Table
[2] This scheme assesses twelve different components of a building, encompassing both exterior (such as the
roof and facade) and interior elements (including doors and housing technology). Given our dataset com-

prised solely exterior images, our classification focused on visible outdoor elements: the construction, roof,



facade, windows, and exterior doors. Sample images representing each condition category are presented for
reference.

Table 1
DEscrIPTIVE STATISTICS OF THE FULL DATA SET FOR THE PRICING MODEL: THE TABLE SHOWS DESCRIPTIVE STATISTICS FOR THE VARIABLES WITH THE
NUMBER OF OBSERVATIONS USED IN THE PRICING MODEL. THE STATISTICS ARE: MINIMUM VALUE, |ST QUANTILE VALUE, MEDIAN, MEAN, 3RD QUANTILE
VALUE, MAXIMUM VALUE AND THE STANDARD DEVIATION OF THE VARIABLESS PRICE, FLOOR SIZE, PLOT SIZE, PLOT PRICE AND YEAR OF CONSTRUCTION
(SOURCE: AUTHORS OWN WORK).

Statistic N Min 1st Qu. Median Mean 3rd Qu. Max Std.
price 694 72,000 278,000 420,000 492,657 652,250 1,490,000 301,292
floor_size 694 45.0 124.0 160.0 176.7 216.8 399.0 72.3
plot_size 694 206.0 582.2 835.0 990.8 1204.0 3794.0 619.3
plot_price 694 8.7 56.4 112.4 190.4 254.2 1416.3 203.6
y_of_const 694 1570 1962 1979 1974 1999 2017 -

Of the 960 houses 290 buildings are considered to be in a good condition (class good), 561 in average
condition (class average) and 109 buildings in bad condition (class bad). From that data set we obtained a
sub data set where we excluded all real estate where the year of construction was missing. That data set then
contains 694 houses where 233 where in condition class good, 395 in class average and 66 in class bad. This
means that for training the CNN model, we use the full dataset with 960 houses, which contains all images
for training the condition classification. For validation of the AVM model, we used the dataset containing
all variables (especially the year of construction), resulting in a smaller dataset of 694 houses as the year of
construction was missing for the excluded buildings.

Regarding the size of the data set for a hedonic model [[10] state that many models in the literature for
environmental studies are applied to small sample sizes, despite having a huge data base on house transac-
tions. They name e.g. [6] where the authors investigate the evaluation of costs and benefits that come along
with land use planning and which is based on 433 observations and 206 observations. Another example
for a small sample size is [38] where they look at the valuation of national parks in urban areas with 641
observations. For additional examples see [[10]].

The article of [8] uses a hedonic model to estimate office rents in UK. The authors use a large number of
independent variables but the article lacks a considerable sample size with a sample of 29. The authors state
that it is a universal problem in early studies in the field. This is due to counteracting heterogeneity and, thus
focusing on a specific geographically delineated area, consequently, focusing on a very homogeneous data
set.

Another justification for a small sample size comes from the book of [45] and is delineated in [14].



(a) Class good (b) Class average (c) Class bad

Figure 1
Examples of the three classes that were assess by experts based on a standardised scheme (Source: immobilienscout24.at).

According to [43] and his rule of thumb, the appropriate samples size in behavioural studies should be larger
than 30 and smaller than 500. More specifically, the sample should be ten times (or more) larger than the
count of variables in the model. Another rule of thumb comes from [11] where the statement is that the
sample size N should be greater than 50 + 8m where m is the number of independent variables (for testing
multiple correlations) or 104 + m for testing predictors on the individual level. Both rules are fulfilled with
our sample size. Since we use an adapted hedonic pricing cost approach model, we have fewer independent
variables because e.g. we do not explain the location in terms of one variable but map it in the variable “plot

price”.

3.3. Hedonic Pricing Cost Approach Model

We adapted the Cost Approach to real estate valuation, transforming it into a hedonic pricing model. This
approach values a property by adding the land’s value to the building’s value, adjusting for any applica-
ble discounts. To account for geographical influences, we incorporated the average plot prices within the
municipality into our regression-based pricing model. By including the average land price, we were able
to bypass specific location variables, as these are implicitly reflected in the land price, with our analysis
focusing primarily on the attributes of the building.

Our foundational pricing model employs a semi-log multiple regression model (model [T}a), predicting
the logarithm of the price using independent variables such as plot_price, plot_size, floor_size, and year (the
year of construction). We recognise a non-linear depreciation pattern in property values over time, hence the
inclusion of both first and second-degree polynomials for the year variable in our model.

To assess the impact of a building’s visual condition on pricing accuracy, we introduced a dummy vari-



Table 2

TABLE OF THE THREE CONDITION CLASSES WITH THE CORRESPONDING FEATURES: THE TABLE IS BASED ON THE STANDARDS OF THE ASSOCIATION OF
AusTRIAN APPRAISERS [40] (SOURCE: AUTHORS OWN WORK).

Weight

Construction

Roof

Facades

Windows and
Exterior doors

%

50

16

Bad

Solid construction,
contemporary building
technology

ventilated roof (cold roof),
simple covering (sheet metal,
clay roof tiles),
foil sealing for flat roofs

rubbed plaster,

simple thermal
insulating plaster,

sheet metal sills

Wood or plastic
standard version

Average

good quality of materials,
contemporary technology
(thermal and sound insulation)

ventilated roof (cold roof), with
vapour barrier, thermal
insulation, good covering
(tiles, plastic-bonded roofing
tiles, metal covering),
bituminous waterproofing
for flat roofs

External thermal insulation
composite system, plastic-bonded
plaster, flashing, cladding,
stone window sills, etc.

Hardwood, plastic, combination
fittings, sunshade

Good

solid, quality materials,

close to passive house

technology, very good
building physical properties

like "average”, but
high-quality materials, elaborate
construction, copper sheeting,
green roofs, etc.

like ’average”, but
noble materials and artistic
design, curtain wall elements
with rear ventilation,
special thermal insulation

Wood/aluminium windows,
triple insulating glazing,
sound insulation, sun
protection, roller
shutters (automatic operation),
burglar protection



able for the condition based on (subjective) standards (Condition_Standards) into our pricing model (model
[[Jb). Furthermore, we incorporated a dummy variable for the condition assessed by a computer vision
algorithm (Condition_.CNN) (Model [T]c), exploring how these visual inspections enhance the predictive ca-

pability of our model.

(a) log(Price) = f(poly(year,?2)1, poly(year,2)2, plot_size, floor_size, plot_price)
(b) log(Price) = f(poly(year,2)1, poly(year,2)2, plot_size, floor_size, plot_price + Condition_S tandards) (1)

(c) log(Price) = f(poly(year,2)1, poly(year,2)2, plot_size, floor_size, plot_price + Condition_.CNN)

To draw conclusions on the precision of the models, we compare the adjusted R-squared of the models
and the effect size in the models with the different condition variables. The main focus in this analysis was
on the differences between our reference models from model [T}a) and the model [T}b) and the differences
between the standards assessment and the assessment of the CNN of the building condition model[T}c). It is

to note that in the three main pricing models only data that included the year of construction is considered.

3.4. CNN predictions

To train our machine learning algorithm we take the original data set including the buildings where the year
of construction is missing and cut the corresponding images in patches of size 224 x 224 pixels (size of the
input vectors of our CNN) with an overlap of 33.3‘7& We included the incomplete data where the year of
construction is missing as a CNN is highly dependent on the size of the data set for training (the ground
truth) [35]. A higher number of training data increases the likelihood of learning specific features that a
certain class has in common.

Due to the variance in image sizes, our patching process generated over 40,000 image patches, a method
depicted in figure i} Unlike standard practices in applications like facial recognition, where subjects are
positioned uniformly relative to the camera [26]], our approach does not regulate for angles, distances, image
sizes, or quality. Instead, we utilised images directly from online real estate listings, aiming to create a
training and prediction environment that mirrors real-world conditions. The impact of different pixel sizes
on the number of generated patches is detailed in figure 2] illustrating a departure from the controlled image

acquisition methods used in studies such as [32]], where a specific algorithm extracts standardised 640x640

2That more specifically means that adjacent patches contain 33.3% of each other. An example can be seen in ﬁgureE]
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(a) Size: 1920 x 1440 pixels (b) Size: 1440 x 1080 pixels (c) Size: 960 x 720 pixels (d) Size: 400 x 300 pixels

- £ <y

Figure 2
Size comparison of different images in the data set. Ordered from largest image with regard to pixels to the smallest image. The
images are scaled down to 5.5% of their original size (Source: immobilienscout24.at).

pixel front-view images from Google Street View.

Our methodology involved a manual inspection of the image patches, excluding those that failed to
display significant features of the house (only patches displaying 50% or more of a key housing feature
were retained) or were significantly obscured by elements like vegetation. The distribution of patches per
building varied widely, ranging from 1 to 231 patches, with a median of 13 patches and an average of 22. This
variance is reflected in the distribution of patches per image, as shown in figure[3] indicating the influence of
the original image’s pixel size and the house’s relative size within the image. Following a meticulous review
for flaws and inconsistencies, we proceeded to train a CNN on the remaining approximately 12,000 image
patches to predict their designated class.

To rigorously evaluate our CNN predictions, we meticulously structured our dataset into training and test
sets. Initially, we segregated 25% of the buildings from the smallest class (bad, encompassing 109 buildings)
to form multiple test sets, averaging 28 houses per set. The remaining buildings from this class (82 in total)
set the benchmark for a balanced training set size, ensuring each building in the smallest class is represented
at least once in the test sets. This methodology allows for the creation of 20 balanced test and training set
combinations, affording us 20 distinct ”ground truths” and subsequently, 20 uniquely trained CNNs. The
distribution of buildings across these 20 sets, inclusive of unbalanced, balanced, and test configurations, is
detailed in Table[3

In addition to these balanced sets, we crafted 20 unbalanced training sets to leverage the full breadth
of our dataset. This step facilitates the implementation of a transfer learning and fine-tuning strategy, as
recommended by [43], where the CNN—pre-trained on the extensive ImageNet dataset—undergoes further
training on our unbalanced dataset. Initially, we freeze all but the back-end layers of the network, adjusting

the model to our specific dataset while retaining the pre-trained weights. Subsequent to this initial phase,
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Distribution of Patches per Building
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Figure 3
Histogram of the patch count per image for the 960 houses in the CNN ground truth (Source: Authors own work).

(a) Original image of the house (b) 224 x 224 patches of the image

Figure 4
Patched image of the house (224 x 224 pixels) with an overlap of 33.3%. The patches marked in red are considered as containing
enough building features to be used in the CNN training (Source: immobilienscout24.at).
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all layers are unfrozen, and the entire network undergoes retraining on the balanced dataset to fine-tune its
ability to discern between different image classes.

Utilising this refined model, we proceed to predict the classes of over 22,000 image patches. Given the
necessity of multiple predictions for some buildings due to oversampling, we aggregate these predictions to
assign a final condition class to each of the 960 buildings. This determination is made through majority vot-
ing among the predicted classes for all patches associated with a building, ensuring the most representative

condition class is selected for inclusion in the pricing model.

Table 3
FIVE EXEMPLARY GROUND TRUTH OF THE TWENTY GROUND TRUTHS THAT ARE USED IN THIS ARTICLE. THE UPPER THIRD DEPICTS THE COUNT OF
BUILDINGS OF FIVE TEST SETS FOR THE THREE CLASSES, THE MIDDLE THIRD THE COUNT OF THE UNBALANCED TRAINING SETS AND THE LOWER THIRD
THE COUNT OF THE BUILDINGS IN THE BALANCED TRAINING SETS (SOURCE: AUTHORS OWN WORK).

Ground Truth Composition
TEST SETS Total No IMG | 1 2 3 4 5
Class 1 290 29 | 29 | 29 | 29 | 29
Class 2 561 28 | 28 | 28 | 28 | 28
Class 3 109 27 | 27 | 27 | 28 | 27
UNBALANCED TRAINING SETS | Total No IMG 1 2 3 4 5
Class 1 290 261 | 261 | 261 | 261 | 261
Class 2 561 533 | 533 | 533 | 533 | 533
Class 3 109 82 | 82 | 82 | 81 | 82
BALANCED TRAINING SETS Total No IMG 1 2 3 4 5
Class 1 290 82 | 82 | 82 | 82 | 82
Class 2 561 82 | 82 | 82 | 82 | 82
Class 3 109 82 | 82 | 82 | 82 | 82

The CNNs are based on the EfficientNetO architecture [54] which is pre-trained on ImageNet data. We
fed the images with three colour channels (RGB) into the network for training and normalised the image
arrays to a range from zero to one by dividing the pixel values by 255. The tuning of the CNNs lasted
for 50 epochs with a learning rate of 0.0001 using the ADAM optimiser function. The batch size in every
epoch was 16. We used a drop out rate of 0.5, with no image augmentation and also no early-stopping. The
experiments have been performed on a server host with Windows 10 Enterprise OS, 64 GB RAM and an
NVIDIA RTX 2080 Ti GPU.

13



4. Results

4.1. Pricing Model

Table[d] presents the outcomes of five regression analyses based on our dataset, which includes buildings that
come with the year of construction (thus the dataset for the hedonic pricing models is smaller than the dataset
used to train the CNN). The baseline regression model (1) utilises readily accessible data from online real
estate platforms, specifically building area, plot size, and construction year, yet neglecting property images
to assess the often optimistically skewed and visually observable building condition. Regression model
(2) then introduces human assessments of condition based on established standards using images, which
enhances the model’s accuracy. This addition reveals expected trends and discounts across the condition
classification dummies, with the good condition class serving as the reference.

Model (3) explores the scenario where the year of construction variable is omitted. The quality of this
model dips below that of model (2) but remains superior to the baseline, suggesting that excluding con-
struction year while incorporating expert-based condition classifications marginally improves model perfor-
mance. In contrast, model (4) incorporates the condition variable as predicted by a CNN, and also surpasses
the baseline model in performance, demonstrating appropriate coefficient signs and an overall improvement
in model quality.

A comparison between models incorporating standard assessments (model (2)) and those using CNN-
based classifications (model (4)) against the baseline (model (1)) indicates that traditional assessments of
condition yield a higher model quality than those derived from computer vision algorithms. Notably, the
influence of the condition dummy variables appears to be diminished in the models reliant on CNN as-
sessments, particularly for the bad condition class. Human evaluations are prone to highlighting the stark
differences between ’average’ and ’bad,” whereas the algorithm exhibits a finer sensitivity, detecting not only
the extremes but also a fluid progression between these categories.

The coefficients for the four key parameters in the baseline pricing model exhibit significant predictive
power in all five models, with the exception of plot size in models (3) and (5), indicating a positive influence
on property prices. Specifically, the year_of-construction regressor demonstrates high significance with
the anticipated positive direction in models (1), (2), and (4), underscoring its importance in the valuation.
Similarly, the plot price variable, acting as a proxy for location quality within a municipality, is significant
across all models, highlighting its relevance in price determination.

The inclusion of CNN-predicted condition variables in both the comprehensive model (4), which retains
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the year of construction, and the simplified model (5), which omits this variable, significantly impacts price
predictions. The sign of these impacts aligns with expectations, illustrating the predictive value of the
condition classifications derived from computer vision. A direct comparison between model (4), which
integrates the assessment variable, and model (1), which lacks this regressor, reveals an improvement in
the pricing model upon including the condition assessment. However, model (5) shows a decline in quality
compared to the baseline, suggesting two possible interpretations: first, that the addition of computer vision
assessments might diminish the year of construction’s predictive value due to potential confounding effects;
and second, that the assessment variable’s contribution could be considered marginal, as indicated by a lower

adjusted R-squared when substituting the year of construction with computer vision classification outcomes.

4.2. CNN Prediction Results

Table [5] contains the aggregate confusion matrix for the predictions of the 20 independent CNNs, which
also is the aggregate result of the cross validation. 62% of the true class good images are predicted into the
correct class. In contrast 58% of the class average house images get the correct prediction. In class bad 60%
are predicted into the correct class. This states that the CNN comes to similar accuracy for the three classes.
But when observing the absolute count of predictions we see that the predicted number of class average
images decreased while the count of class good and class bad images increased. One explanation can be a
mean reversion property of the CNN such that the overall predictions per class tend to be balanced or that
the delineation of classes is not clear enough. The second explanation can be further argued with the fact
that the algorithm has to learn many features that are not clearly distinct. Therefore, the network struggles to
assign some of the true features to the true class and instead finds a correlation with one of the other adjacent
classes.

The confusion matrix in table [5] shows that the class good images have much more false negatives than
in class average. Analogue, class average image predictions show much more false positives in class good
predictions. The situation is very similar when looking at the wrong predictions in class bad and class
average. This makes us conclude that the class good and class bad images cause problems due to the
fact, that the images are not clearly delineated from the class average images. That can also be seen when
comparing the precision and recall metrics for the three classes in the table 5] Once again, the possible
explanation is that the multitude of characteristics that have to be considered, hence, the probability is low

that the CNN always detects the difference in the characteristics that are delineating the classes.
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Table 5
AGGREGATE CONFUSION MATRIX OF THE 20 CNN TRAINING ATTEMPTS. THE TABLE SHOWS THE ABSOLUTE NUMBER OF PREDICTIONS AND THE
PERCENTAGE OF THE TOTAL NUMBER OF IMAGES (TRUE CLASS) PER CONDITION CLASS good, average, AND bad. THE SUM COLUMN SHOWS THE
TOTAL NUMBER OF THE RESPECTIVE PREDICTED CLASS AND THE PERCENTAGE CHANGE COMPARED TO THE TRUE NUMBER OF THAT CLASS. THE ROW SuM
DEPICTS THE NUMBER OF TRUE IMAGES PER CLASS. PRECISION AND RECALL ROWS INDICATE THE TWO EVALUATION CLASSIFIERS FOR THE OUTPUT
QUALITY OF THE MODEL. THEY ARE FREQUENTLY USED WHEN DEALING WITH IMBALANCED DATA (SOURCE: AUTHORS OWN WORK).

True
Class good average bad Sum
good 179 (61.7%) | 152 (27.1%) | 6(5.5%) | 337 (+16.2%)
Prediction | average | 87 (30.0%) | 326 (58.1%) | 38 (34.9%) | 451 (-19.6%)
bad 24 (8.3%) 83 (14.8%) | 65 (59.6%) | 172 (+57.8%)
Sum 290 561 109
Precision 0.53 0.72 0.38
Recall 0.62 0.58 0.60

4.3. Qualitative Analysis

The investigation of the images that show the best fit in CNN predictions (95% of patches in a image
are predicted into the correct, expert-assessed class; examples are depicted in figure [5) suggest that the
brighter a feature of a house the more likely it is to be classified in class good. That e.g. constitutes that
the depreciation by the weather shifts colour tones of the building surfaces. It also seams apparent that
less wooden components are correlated with a better condition classification. Class average buildings (or
patches) seem to be correlated with less brightness and also less colourful building surfaces and advanced
roof deterioration. The images also contain wooden components and on average smaller windows compared
to the majority of class good images. Class bad examples mainly depict wooden constructions with rough
surfaces and generally a very used look of materials. The colour tone is in the darkest section of the three
classes and gives a less promising impression to the assessor.

Regarding wrong predictions we investigate the images where the algorithm predicted 5% or less of the
patches into the correct class. There, class good has 15 images that are wrongly predicted, in class average
we find 24 images in a wrong class and in class bad only 3 images are predicted wrong. Generally, the
example images of the CNN prediction do not show any obvious hints in a way that the algorithm learned
“wrong” features that would not correlate with the corresponding class of the images. The network learns
features for the classification irrespective of the size, form and quality of the images (also including the
brokerage firm’s logo seems not to effect a wrong prediction).

The wrong predictions (true class good gets predicted into class bad) range from images where the

majority relative voting is indefinite (e.g. figure[6](a)) to images where the percentage of predicted patches
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(b) Class good with 3 patches (c) Class good with 9 patches

(e) Class average with 19 (f) Class average with 7
(d) Class average with 1 patch patches patches

(g) Class bad with 12 patches (h) Class bad with 20 patches (i) Class bad with 9 patches
Figure 5
Examples of condition class predictions where 95% or more of the patches are predicted into the correct class. the logos of the
brokerage firms were blacked out (Source: immobilienscout24.at).
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in majority assigns a wrong class. In the true class good images which are predicted in class bad wood is
a dominant component of the houses. Furthermore, rough building surfaces dominate four of the wrongly
predicted images. Observe the wrongly predicted class bad houses in figure [/|(d). Here the indecisiveness
of the network is more obvious than in the previous wrong predictions.

Regarding the class good buildings one caveat has to be mentioned: some of the images show a swim-
ming pool. This is definitely not relevant for the condition classification as the patches containing (parts of)

the pool area were excluded.

5. Regression Residuals Classification

Real estate images can convey critical information about a property, such as the quality of construction,
estimated construction year, and the building’s condition, which reflects its maintenance history. These
visual cues, discernible from property images, may encapsulate factors influencing property valuation [20].
Our research aims to explore whether these images can account for some of the variation in our baseline
pricing model’s residuals, suggesting that the images might implicitly contain aggregated data on these
variables. This is in line with the suggested approach of [55]], which shows an increase in price prediction
accuracy. We posit that the images hold consolidated information, which, when classified, could elucidate
portions of the regression residuals. This investigation is conducted in two scenarios: one including the year
of construction (Model A) and the other excluding it (Model B) from the baseline regression, from which we
derive the residuals. Subsequently, we categorise these residuals into three distinct classes—low, medium,
and high—to thoroughly examine their relationship with the visual information contained in the images. The

methodology and findings of this approach are elaborated in the subsequent sections.

1. Baseline models to obtain the regression residuals:
(a) Model A: log_price ~ plot_size + plot_price + floor_size + year_of _construction
(b) Model B: log_price ~ plot_size + plot_price + floor_size
2. Calculation of the residuals of the baseline models of the price (not the logarithmic price) to obtain
the percentage share of the residuals which is used to assign the buildings to three classesﬂ

3. Split of the relative residuals in tertiles (three classes) for the two baseline models:

e Class LOW: Houses in the lowest 33.3% tertile of relative residuals.

3This is crucial as also a small residual (a small monetary amount) can cause a significant deviation on a low-price property.
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(a) True Class: 1 Predicted
Class: 3, 42 patches, 34% Cl1,
21% C2, 45% C3, uncertain
class prediction.

(d) True Class: 1 Predicted
Class: 3, 72 patches, 37% C1,
18% C2, 45% C3, uncertain
class prediction.

(b) True Class: 1 Predicted
Class: 3, 19 patches, 16% Cl1,
19% C2, 65% C3, majority
class prediction. same
wrongly predicted image as in
first network

(e) True Class: 1 Predicted

Class: 3, 9 patches, 23% C1,

23% C2, 54% C3, majority
class prediction.

Figure 6

(c) True Class: 1 Predicted
Class: 3, 6 patches, 33% Cl1,
0% C2, 67% C3, majority
class prediction.

(f) True Class: 1 Predicted
Class: 3, 16 patches, 31% C1,
25% C2, 44% C3, uncertain
class prediction.

images where the CNN predicted the lowest class despite the human expert classified it into the highest class based on the standards

(a) True Class: 3 Predicted
Class: 1, 36 patches, 44% C1,
8% C2, 48% C3, uncertain
class prediction.

(d) True Class: 3 Predicted
Class: 1, 18 patches, 58% C1,
1% C2, 41% C3, majority
class prediction.

(Source: immobilienscout24.at).

(b) True Class: 3 Predicted
Class: 1, 80 patches, 51% C1,
32% C2, 17% C3, majority
class prediction.

(e) True Class: 3 Predicted

Class: 1, 8 patches, 30% C1,

51% C2, 19% C3, majority
class prediction.

Figure 7

% S
p S

(c) True Class: 3 Predicted
Class: 1, 96 patches, 55% C1,
37% C2, 8% C3, majority
class prediction.

(f) True Class: 3 Predicted
Class: 1, 25 patches, 34% C1,
27% C2, 39% C3, uncertain
class prediction.

images where the CNN predicted the lowest class despite the human expert classified it into the highest class based on the standards

(Source: immobilienscout24.at).
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e Class AVERAGE: Houses in the medium 33.3% tertile of relative residuals.
e Class HIGH: Houses in the highest 33.% tertile of relative residuals.

4. Training of the CNN. Here the same methodology is applied as in the main condition classification
section.
5. If the CNN is learning specific patterns in the pictures, the predicted classes are included into the

baseline regression to test their effect on the coefficient of determination.

Subsequently, we employed the same CNN used for condition classification to categorise three different
classes of residuals, utilising five-fold cross validation to ensure each building received a prediction. How-
ever, the training process and subsequent predictions indicated that the network struggled to identify specific
patterns within the images that correlate with the residual classes. The highest accuracy achieved among
the five models was only 38.0% (as detailed in figure[8]a), essentially mirroring the success rate of random
chance, which would be approximately 33.3%. This suggests that the model’s predictive capability was not
meaningfully better than guessing.

Furthermore, when we removed the year of construction from the baseline regression analysis, the CNN’s
accuracy slightly improved in the context of five-fold cross-validation, reaching an average peak of 45% in
the most accurate model. However, this improvement still falls short of demonstrating substantial preci-
sion (refer to figure [8b). It appears that the CNN may have adapted to recognise aspects of the residuals
attributable to the exclusion of the construction year variable, rather than identifying broader, more mean-
ingful patterns within the data.

In contrast to [55]] who are focusing on especially architectural style, and who find a positive impact
on pricing accuracy when incorporating a CNN predicted residuals variable, we find that when including
the age variable in the determination of the regression residuals, our CNN is not picking up any detectable
pattern related to the residuals. When neglecting the age variable in the residuals determination, our CNN
model is detecting a relationship between residuals and the images, thus we see further research opportunities
regarding the use of regression residuals coming from AVMs.

The main caveat of our investigation of the residuals is that we used a classification algorithm instead of
a CNN that outputs a regression and, therefore, outputs continuous variables instead of classes. Furthermore,
the patching of images might significantly influence predictability of the images. Still, we believe that the
pictures contain information that can positively impact the accuracy of a hedonic pricing model but we leave

a deeper investigation open for future research.
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(a) CNN training on the regression residuals including the year of (b) CNN training on the regression residuals excluding the year of
construction. construction.
Figure 8

Comparison of the development of the two model accuracies over the training epochs of the best two models in the five-fold cross
validation (Source: Authors own work).

6. Obstructions of Computer Vision in Real Estate Valuation

We’ve identified numerous challenges that warrant careful consideration in both future research and practical
applications. Those challenges are based on our own experiences and solutions from this project and other
related projects. Thus, the ensuing section is intended to function as a guide, highlighting critical areas for

focus when integrating computer vision technologies into real estate valuation processes.

6.1. Images

The selection of ground truth data and images is pivotal for effective classification by computer vision algo-
rithms. A substantial dataset is essential for training and testing a CNN, as emphasised by [35]. Furthermore,
achieving balance across classes within the dataset is highly recommended to enhance model performance
[[15]. For datasets with a limited number of images, creating patches from original images presents a viable
solution to augment the dataset [S3]. In our approach, images were segmented into multiple patches based
on the CNN’s input pixel dimensions. This technique inherently shifts the CNN’s attention to finer details
within the images, such as windows, doors, and roofing materials, mirroring the human eye’s foveal vision
focus on specific areas [37].

The process of image patching also necessitated decisions regarding the dimensions of each patch and the

degree of overlap between patches. These choices significantly affect the dataset’s size and the granularity
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of features captured, with greater overlap leading to redundancy of features across patches. A considerable
portion of the patched dataset included areas not directly relevant to property valuation, such as surrounding
land or extraneous nearby elements. Thus, we faced a decision on whether to exclude certain patches from
the training dataset or to adopt a more comprehensive approach by including entire images.

Image capture parameters pose additional challenges, including the optimal distance, angle, and envi-
ronmental conditions for photographing properties. While utilising readily available online platform images
offers a pragmatic approach, adhering to standardised parameters, such as specific angles or weather con-
ditions, could potentially enhance consistency and realism. This can be achieved by sourcing images from
platforms like Google Street View, which allows for some standardisation, as suggested by [32]]. However,
this method requires access to up-to-date property addresses and assumes that the built environment has not

significantly changed, limitations inherent to relying on such platforms for current imagery.

6.2. Classification

When training a CNN on classification tasks, determining the number of classes and establishing a precise
classification scheme is essential. For instance, in predicting a property’s condition, one can either adopt
predefined criteria for class distinctions or devise custom classes. If custom classes are defined, it’s critical
to ensure they are distinctly separable to avoid ambiguities or overlaps, necessitating a well-defined standard
for class differentiation.

A significant challenge in using images for training is the subjective nature of human classification. Even
experienced real estate appraisers may have divergent opinions on the same image, introducing an element
of bias. To mitigate this, the consensus among a substantial group of appraisers or evaluators is vital to affirm
the classifications’ relative objectivity.

The issue of class distribution poses another challenge; data sourced from public platforms often exhibit
uneven class representation. Such imbalance can hinder a CNN’s training effectiveness, as equal frequency
across classes is preferable for optimal model performance [[15]]. Oversampling, or augmenting the dataset by
replicating images from underrepresented classes, is a strategy to address this [28]. However, this method
introduces its own set of problems, notably the repetition of images, which could bias the model. Image
augmentation techniques, such as applying random transformations to the training images, can help diminish
these concerns by diversifying the visual data, thereby reducing the impact of repeated images.

An alternative strategy for managing imbalanced datasets involves adapting the training methodology of

the CNN. Initially, leveraging a network pre-trained on a comprehensive dataset, such as ImageNet, where
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only the back-end layers are adjusted, allows for initial learning from the unbalanced dataset. Subsequently,
fine-tuning the entire network on a balanced dataset ensures that the model adjusts to the nuanced features
across all classes [43]]. This two-step process, incorporating both pre-training and fine-tuning, enhances the
model’s ability to generalise across diverse data, offering a sophisticated solution to the challenges posed by

imbalanced datasets.

6.3. Neural Network

The choice of network architecture significantly influences the accuracy of CNN classifications, with various
architectures like ResNet [12], AlexNet [24]], GoogLeNet [51], VGG16, VGG19 [47]], and EfficientNet [54]
offering diverse capabilities. EfficientNet, for instance, features eight scalable network types (EfficientNetO-
7) tailored for different image sizes, such as EfficientNet7, which is optimised for 600 x 600 pixel images,
potentially enhancing the detail and information captured. This nuanced approach to handling image sizes
within specific architectures, and its implications on predictive accuracy in real estate economics, remains
an explorable area.

The architecture’s depth, or the number of trainable layers within the CNN, can also affect prediction
outcomes. Tailoring a custom architecture to adjust the layer count could further refine performance [17].
Equally crucial is the choice of optimiser, which adjusts the neural network’s weights to minimise losses
and solve optimisation problems [50]. Popular options include SGD (Stochastic Gradient Descent) and the
ADAM optimiser, each requiring different hyper parameter settings.

Selecting the optimal hyper parameters (like learning rate, training epochs, and batch size) often involves
manual adjustment through trial and error, a time-intensive process. Tools such as Early Stopping can
automate the determination of ideal training epochs. For more complex hyper parameter tuning, Auto Tuning
packages offer a systematic approach by testing a range of parameter combinations and selecting the optimal
model configuration [31]].

Finally, when working with limited datasets, choosing the appropriate size for training and testing sets
is crucial. Cross-validation is particularly effective for small datasets, providing a comprehensive predic-
tion across all data points. However, this method is time-consuming, especially when identifying the best
training parameters. An alternative approach, involving distinct training, validation, and test sets, offers a
streamlined methodology suitable for proof-of-concept studies or initial parameter determination in CNNgs,
especially with larger datasets. This method allows for efficient evaluation and parameter tuning, supporting

preliminary research efforts.
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7. Implications and Future Directions for AVMs

Building on the main objective of this article, we see significant potential for further research and practical
applications. The ability to extract information, particularly the structural condition, from real estate images
opens new avenues for improving AVMs. These additional data sources enable AVMs to be trained and
optimized with greater precision, which is especially beneficial for banks, institutional real estate investors
but also public institutions [52]]. Banks and institutional real estate funds are often required to conduct
continuous revaluations of their real estate portfolios due to regulatory requirements while public institutions
need valuations to calculate tax burden. By utilizing automated image analyses, the condition of properties
can be assessed efficiently and in a standardized manner, saving both time and resources.

Moreover, the standardized classification of property condition offers the opportunity to establish uni-
form evaluation frameworks. This is particularly relevant for existing AVM models, which are frequently
used as a basis for valuations in real estate apps due to their advanced algorithms and straight-forward acces-
sible data can offer more precise, timely, and cost-effective property valuations[23]]. Automating the assess-
ment of condition variables could enable laypeople to conduct more objective property valuations without
having to evaluate subjective or complex variables themselves. Users would only need to provide clearly de-
fined, objectively measurable parameters such as size, year of construction, or location. This reduces room
for interpretation and minimizes potential errors in valuation processes.

Additionally, in traditional valuation methods such as the Cost Approach or the Comparison Method,
the objectivity enabled by computer-assisted image analysis supports a reliable foundation and facilitates
objective comparisons between properties. This approach also provides economic and commercial benefits
by accelerating valuation processes and reducing costs.

From a societal perspective, this research contributes to greater transparency in the real estate market
by establishing a comprehensible and consistent basis for property valuations. This could positively influ-
ence public attitudes toward real estate valuation, strengthen trust in valuation processes[23]]. In education,
these methods could serve as practical examples of how modern technologies can be applied in real estate
valuation, bridging the gap between theory and practice.

In summary, the findings of this article make an important contribution to the advancement of data-
driven valuation models, provide concrete approaches to improving efficiency in practice, and promote the
standardization and objectivity of valuation methods, with far-reaching implications for research, practice,

and society.
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8. Conclusion

This study examines the impact of building condition classifications derived from images on a straightfor-
ward real estate pricing model, with all data sourced from online real estate platforms. Utilising a three-class
condition classification system provided by the Association of Austrian Appraisers, real estate professionals
classify buildings according to this standardised framework, aiming to mitigate the subjectivity inherent in
such evaluations, despite the unavoidable influence of personal biases. Our objective is not to dissect the
perceptions of these experts but to assess how these classifications affect a simple hedonic pricing model
tailored for real estate valuation, specifically employing the cost approach.

Additionally, we explore whether a CNN leveraging computer vision can accurately reflect these expert-
derived condition classifications and, by extension, serve effectively within a pricing model to automate the
assessment of single-family homes.

Our findings indicate that human-based condition classifications significantly enhance the pricing model
for 694 properties on the Austrian market, as evidenced by data from an online real estate platform. Incor-
porating condition assessments from the CNN yields an improved adjusted R-squared for the model, though
not to the same extent as the expert-based classifications. This suggests a refinement in automated valua-
tion models through the application of computer vision, albeit with a noted decline in model accuracy when
excluding the year of construction.

Employing images from 960 buildings, we trained a CNN to predict the three condition classes, achiev-
ing an overall accuracy of approximately 60%. This indicates the CNN’s capability to identify features
correlative with the condition classes, despite the challenges highlighted throughout our study.

We also delved into whether building images could account for variations in regression residuals from
our baseline pricing model. By categorizing residuals into three classes from high to low and employing
five-fold cross-validation, we found that the CNN failed to detect any features directly associated with the
regression residuals. Still, exploring the impact of building condition assessment using computer vision to
account for regression residuals in simple pricing models, especially when leveraging data from online real
estate platforms, presents an intriguing avenue for future research.

In conclusion, this article demonstrates that building condition classification plays a crucial role in the
precision of automated valuation models and that computational methods like CNNs hold potential for en-
hancing real estate evaluations using both data and visual content from online platforms. We implemented

our methods in a small market like Austria, with its limited quantity and quality of data. Therefore, we see
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even greater potential in other countries. Furthermore, it underscores the various challenges and considera-

tions inherent in adopting a data-driven approach with computer vision for real estate assessment.
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