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From Platforms to Price: The Impact of Condition Prediction using
Computer Vision on Real Estate Pricing Models

Abstract

This study investigates the use of images from online real estate platforms in Central European real estate

pricing models, exploring both the challenges and advantages of utilizing such data. It specifically focuses

on the impact of manually and algorithmically classifying building conditions on the accuracy of price pre-

dictions. The research demonstrates that incorporating image-based condition assessments can significantly

improve model quality in both, the manual and algorithmical condition assessment, even with limited data.

Additionally, the article identifies and addresses obstacles encountered during the study using a computer

vision classification algorithm, providing guidance for future research in real estate and computer vision to

refine pricing models further.
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1. Introduction

In numerous European countries, the opacity of real estate market data starkly contrasts with the trans-

parency found in Anglo-American markets, where multiple listing services (MLS) facilitate a comprehen-

sive database for automated valuation models. Due to the absence of such data sources, many European

models rely on data from online platforms, which, while readily available and cost-effective, often present

biases such as listing only offer prices rather than transaction prices and overly favorable property presenta-

tions. Despite these drawbacks, the inclusion of property images offers a rich, albeit underutilised, source of

information.

Existing research, as highlighted by [32], [42], and [58], acknowledges the use of images in real estate

analysis. Yet, the exploration of their impact on pricing models remains limited, particularly due to the

lack of standardisation in image quality utilised in studies, such as the uniform images from Google Street

View mentioned in [32]. This article seeks to bridge this gap by focusing on the practical application of

real estate images from online platforms, despite their inherent imperfections, to enhance the accuracy and

relevance of valuation models and price indices. Thus, our work specifically focuses on the derivation of a

building condition variable that can be integrated in a hedonic pricing model and consquently be employed

in Automated Valution Models (AVMs).

By employing Convolutional Neural Networks (CNNs) to analyze and categorize real estate images

based on shapes, colors, and brightness, this study aims to integrate this visual data into pricing models.

This approach not only acknowledges the diversity of real estate properties but also aims to improve the

predictive accuracy of pricing models. The use of CNNs in real estate valuation could significantly reduce

appraisal times and costs, offering immediate property valuations as suggested by [3].

Focusing on single-family homes, including their images, this article manually classifies the condition

of properties using a standardized scheme. The significant impact of property maintenance on value, as

investigated by [18], [56], and [9], underscores the importance of condition in valuation models. [34] further

supports this, noting that incorporating condition variables enhances price estimation accuracy. Thus, we

posit a positive impact on the pricing model’s performance, aiming to improve data quality for automated

valuation models, especially in regions heavily reliant on online platform data. This research addresses three

key aspects:

• Does the standardised condition classification provide added value in a pricing model?
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• Can computer vision replicate the condition assessment of a standardised classification?1

• Do the images contain any information such that it can explain parts of the regression residuals of the

baseline pricing model?

Our study demonstrates that incorporating condition information from images into real estate pricing

models significantly enhances their accuracy, challenging the widespread issue of inaccurate valuations

identified within the sector by [1] and [5]. Accurate valuations are vital, as highlighted by [39], because

house prices impact the quality of life for residents and influence various economic cycles. Additionally,

as [30] notes, they play a crucial role in forecasting key macroeconomic indicators, including inflation and

economic output.

We also found that CNNs are effective in classifying images for this purpose. Our analysis has identified

significant challenges inherent to this approach, providing valuable insights that could aid researchers in

refining their methodologies. The use of images from real estate platforms, coupled with established classi-

fication schemes, clearly leads to a more accurate pricing model. The results of our article and the literature

contribute to an improvement of the quality of AVM models, especially in the banking industry and the

construction of real estate price indices for evaluating economic developments.The integration of CNNs for

analyzing real estate images not only represents a methodological extension of existing valuation approaches

but also enables an objective classification of condition attributes, which is important for traditional hedonic

models by providing interpretable and standardized features.

This article includes a literature review on the use of computer vision for real estate valuation, followed

by a detailed explanation of our methodology. We then present our findings, discuss the challenges encoun-

tered, and suggest ways to navigate these in future research as well as in practice. The article concludes with

a summary of our critical discoveries and their implications for advancing the field.

2. Computer Vision and Pricing Models - A Literature Review

The hedonic pricing model, introduced by [25] and [46], stands as the benchmark in real estate pricing,

attributing specific value contributions to distinct property characteristics (see [13] for a detailed review).

This model has historically emphasised factors like neighbourhood attributes, environmental and structural

1It is not the objective to compare subjective (human) and objective (machine learning algorithm) classification accuracy.
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amenities, and social influences on property values, with a thorough discussion on variable usage and model

composition found in [48]. Despite the critical role of visual property inspection in valuation, the integration

of images into pricing models remained overlooked until the advent of machine learning and computer vision

technologies enabled effective prediction using digital real estate imagery.

CNNs, while not substituting human judgement in property valuation, provide a robust approximation of

an image’s attributes. Deep learning models, including CNNs, excel in analysing large datasets for pattern

recognition, speech processing, computer vision, language understanding [27], and enhancing recommen-

dation systems [33]. The methodology’s growing significance in research is attributed to its capacity for

extracting multiple features from data, particularly images [16].

A first broad overview of real estate and computer vision is given in [19], a more systematic approach

review of current approaches in this field is given by [49]. Early research intersecting real estate and com-

puter vision, such as the study by [29], utilize Google Street View images to evaluate neighborhood safety

perceptions, identifying greenery as a significant safety indicator. Additionally, [57] show that pictures to-

gether with deep learning improve pricing . Further, [59] demonstrated that visible greenery significantly

boosts Beijing’s property prices by up to 10%.

[42]’s innovative approach, predicting property luxury levels through CNN analysis of interior and ex-

terior images, showcased the potential of visual data to enhance valuation accuracy beyond traditional au-

tomated methods. Architectural style also influences property values significantly, as evidenced by [4] and

[2], who noted a price premium associated with iconic architecture. Moreover, building age has been ef-

fectively predicted using exterior images through machine learning [58]. Also related to visual stimuli and

property valuation [41] demonstrate that combining image and text data with traditional features enhances

the accuracy of hedonic price models, achieving up to 25% improvement using advanced machine learning

techniques. Additionally, the model’s ”black box” nature is clarified through agnostic methods, revealing

that some housing attributes exhibit nonmonotonic and nonlinear relationships with prices.

The recent study by [32] incorporated architectural styles into a hedonic model, aligning machine learn-

ing assessments with expert evaluations to identify price premiums across various styles. However, this arti-

cle shifts focus to the building condition—a factor less influenced by age and more by ongoing maintenance

and renovation efforts, providing a distinct yet subjective assessment criterion that enhances automated val-

uation methods with image integration. Notably, the images utilised in this study are sourced directly from

real estate platforms, mirroring real-world presentation rather than curated research datasets. [55] expands

the existing methodologies to specifically analyse the factors on which an ML model focuses. In this process,
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building elements such as doors, windows, etc., are classified in advance. The focus here is on architectural

style of the building and residual value of an AVM model. Unlike our area, in comparison to, for example,

[55] and [57], the emphasis is on the explicit modelling of a property’s condition derived through computer

vision and consequently its impact on the price.

The challenge in image-based real estate assessment lies in the inherent bias of presentation styles, as

every presentation format can influence valuation decisions [37]. For instance, [22] found that showcas-

ing an apartment in disarray significantly impacts valuation negatively, regardless of its structural value,

highlighting the presentation’s effect on information processing and decision-making.

3. Methodology

This article concentrates on the valuation of single-family homes, emphasising the role of a condition vari-

able derived from images on real estate platforms. This condition variable is assessed both manually by real

estate professionals, according to standardised classifications, and automatically by computer vision algo-

rithms. Our investigation extends to analysing whether the information extracted from images can reduce

the regression residuals in a pricing model, thus potentially enhancing its accuracy (see also [55]). We also

discuss the challenges associated with using computer vision for image assessment in the context of real

estate economics.

Particularly in markets with lower transparency, such as the Austrian market which this study focuses

on, the cost approach often underpins single-family house valuations [44, 36]. In general, the Austrian

market is by far less transparent. For example, property listings do not provide specific addresses, etc.,

as is common in markets like the U.S. or U.K. In the U.S. and U.K. markets, the comparison method for

single-family houses can be applied. However, in Austria, due to the limited availability and quality of

data, this is currently not possible, and thus the cost approach must be used. Building upon this foundation,

our research modifies the traditional hedonic pricing model into a hedonic pricing cost approach model,

as similarly employed in [7, 58, 21]. Notably, the conventional hedonic pricing model incorporates 30-40

variables. In contrast, our adapted cost approach model simplifies this by using fewer predefined variables,

focusing on the aggregate value of the land and the building, including its components. The valuation process

involves estimating the building’s replacement cost, considering factors like amenities and location, and then

adjusting for depreciation related to age, quality, and other factors such as construction deficiencies.

4



3.1. Variable Real Estate Condition in images

In assessing a building’s condition, images serve as a pivotal yet contentious variable in property valuation

due to its subjective nature, especially when evaluated by an appraiser. This subjectivity often casts doubt on

the reliability of the condition variable as used on real estate platforms. Despite this, the condition variable is

crucial, highlighting the necessity for careful consideration in its application to valuation. Another variable,

the year of construction, contrasts with the condition by being an objectively quantifiable factor, obtainable

from a building’s construction records, thus providing an unbiased element in our pricing model analysis.

The traditional method for assessing a building’s condition involves a physical inspection by a broker

or an appraiser, relying heavily on their expertise and experience. While this expert evaluation is generally

regarded as accurate, it is not immune to subjective biases influenced by personal opinion.

When deriving a building’s condition from images, we primarily analyse the exterior visual data. How-

ever, assessing both the exterior and interior conditions can offer a more comprehensive understanding of

the building’s overall state. The exterior facade’s condition may not fully represent the interior’s state, which

could have undergone renovations, such as updated plumbing or flooring, thus affecting the property’s valu-

ation. The exterior appearance, however, remains a critical factor in the valuation process, underscoring the

complexity of accurately assessing a property’s condition from images alone.

Hence, we have the following different variables that can be considered in a pricing model:

• objective - directly quantifiable variables: examples from the literature of such variables, which also

are predictable by a CNN, are the year of construction [58], the Heat Energy Demand [7] or architec-

tural style [32].

• ”objective” - not directly quantifiable variables which have to be assessed by an expert:

– On site inspection: As a rule, during the inspection of the object, the expert assesses the con-

dition and quality of the built structure. Then, a conclusion is drawn about the variable to be

assessed. This assessment is necessary within the framework of a market value appraisal. Only

an inspection can obtain a comprehensive classification of the property, however, this requires a

relevant effort.

– Assessment on the basis of an image: Only an image is presented and the assessment of the

condition or quality is made on the basis of the image. This can lead to a distortion, as the view

only documents parts and not the entirety of the object. The advantage, however, is that this
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assessment is simple and fast and hence well suited for automated pricing models.

Based on the structural differences that constitute the different condition classes, these structural dif-

ferences shall also be identifiable visually, which supports our hypothesis that computer vision with CNNs

should make the (objective) condition assessment via images explicit. In our article we have made the as-

sessment on the basis of an image of the exterior to see to what extent an effect on the price can be observed.

This results in the following procedure:

1. Take images with features of the real estate from the platform.

2. Classify the front image into three condition categories: bad, average and good using a predefined

classification scheme.

3. Include classification in the pricing model.

4. Train a CNN according to the three categories.

5. Include the CNN classification in the pricing model.

3.2. Used Data Set

We collected images and key housing features (such as the local average plot price in the municipality,

plot size, building size, and year of construction) for 2,500 properties listed on Austrian online real estate

platforms in 2019 (before Corona). This dataset, comprising images and detailed attributes of each property,

was refined by selecting houses with plot sizes ranging from 200 to 4,000 square meters and constructed

before 2018. After this filtering, we were left with 1,482 properties. Further narrowing our focus to those

with suitable front views of the houses resulted in a final dataset of 960 properties, summary statistics for

these properties can be found in Table 1 together with some example images for the three condition classes

in Figure 1. As mentioned in the introduction, this dataset contains the typical disadvantages found on online

real estate platforms.

The images underwent manual inspection to classify the condition of each building - good, average and

poor - to determine the impact of subjective assessment on the accuracy of our pricing model. This clas-

sification process was conducted by researchers trained in real estate valuation, following a standardised

scheme developed by the Association of Austrian Appraisers to minimise subjectivity [40] outlined in Table

2. This scheme assesses twelve different components of a building, encompassing both exterior (such as the

roof and facade) and interior elements (including doors and housing technology). Given our dataset com-

prised solely exterior images, our classification focused on visible outdoor elements: the construction, roof,
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facade, windows, and exterior doors. Sample images representing each condition category are presented for

reference.

Table 1
Descriptive Statistics of the Full Data Set for the PricingModel: The table shows descriptive statistics for the variables with the
number of observations used in the pricing model. The statistics are: minimum value, 1st quantile value, median, mean, 3rd quantile
value, maximum value and the standard deviation of the variabless price, floor size, plot size, plot price and year of construction

(Source: Authors own work).

Statistic N Min 1st Qu. Median Mean 3rd Qu. Max Std.

price 694 72,000 278,000 420,000 492,657 652,250 1,490,000 301,292
floor size 694 45.0 124.0 160.0 176.7 216.8 399.0 72.3
plot size 694 206.0 582.2 835.0 990.8 1204.0 3794.0 619.3
plot price 694 8.7 56.4 112.4 190.4 254.2 1416.3 203.6
y of const 694 1570 1962 1979 1974 1999 2017 -

Of the 960 houses 290 buildings are considered to be in a good condition (class good), 561 in average

condition (class average) and 109 buildings in bad condition (class bad). From that data set we obtained a

sub data set where we excluded all real estate where the year of construction was missing. That data set then

contains 694 houses where 233 where in condition class good, 395 in class average and 66 in class bad. This

means that for training the CNN model, we use the full dataset with 960 houses, which contains all images

for training the condition classification. For validation of the AVM model, we used the dataset containing

all variables (especially the year of construction), resulting in a smaller dataset of 694 houses as the year of

construction was missing for the excluded buildings.

Regarding the size of the data set for a hedonic model [10] state that many models in the literature for

environmental studies are applied to small sample sizes, despite having a huge data base on house transac-

tions. They name e.g. [6] where the authors investigate the evaluation of costs and benefits that come along

with land use planning and which is based on 433 observations and 206 observations. Another example

for a small sample size is [38] where they look at the valuation of national parks in urban areas with 641

observations. For additional examples see [10].

The article of [8] uses a hedonic model to estimate office rents in UK. The authors use a large number of

independent variables but the article lacks a considerable sample size with a sample of 29. The authors state

that it is a universal problem in early studies in the field. This is due to counteracting heterogeneity and, thus

focusing on a specific geographically delineated area, consequently, focusing on a very homogeneous data

set.

Another justification for a small sample size comes from the book of [45] and is delineated in [14].
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(a) Class good (b) Class average (c) Class bad

Figure 1
Examples of the three classes that were assess by experts based on a standardised scheme (Source: immobilienscout24.at).

According to [45] and his rule of thumb, the appropriate samples size in behavioural studies should be larger

than 30 and smaller than 500. More specifically, the sample should be ten times (or more) larger than the

count of variables in the model. Another rule of thumb comes from [11] where the statement is that the

sample size N should be greater than 50 + 8m where m is the number of independent variables (for testing

multiple correlations) or 104 + m for testing predictors on the individual level. Both rules are fulfilled with

our sample size. Since we use an adapted hedonic pricing cost approach model, we have fewer independent

variables because e.g. we do not explain the location in terms of one variable but map it in the variable ”plot

price”.

3.3. Hedonic Pricing Cost Approach Model

We adapted the Cost Approach to real estate valuation, transforming it into a hedonic pricing model. This

approach values a property by adding the land’s value to the building’s value, adjusting for any applica-

ble discounts. To account for geographical influences, we incorporated the average plot prices within the

municipality into our regression-based pricing model. By including the average land price, we were able

to bypass specific location variables, as these are implicitly reflected in the land price, with our analysis

focusing primarily on the attributes of the building.

Our foundational pricing model employs a semi-log multiple regression model (model 1.a), predicting

the logarithm of the price using independent variables such as plot price, plot size, floor size, and year (the

year of construction). We recognise a non-linear depreciation pattern in property values over time, hence the

inclusion of both first and second-degree polynomials for the year variable in our model.

To assess the impact of a building’s visual condition on pricing accuracy, we introduced a dummy vari-
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Table 2
Table of the three condition classes with the corresponding features: The table is based on the standards of the Association of

Austrian Appraisers [40] (Source: Authors own work).
Weight % Bad Average Good

Construction 50
Solid construction,

contemporary building
technology

good quality of materials,
contemporary technology

(thermal and sound insulation)

solid, quality materials,
close to passive house
technology, very good

building physical properties

Roof 16

ventilated roof (cold roof),
simple covering (sheet metal,

clay roof tiles),
foil sealing for flat roofs

ventilated roof (cold roof), with
vapour barrier, thermal

insulation, good covering
(tiles, plastic-bonded roofing

tiles, metal covering),
bituminous waterproofing

for flat roofs

like ”average”, but
high-quality materials, elaborate
construction, copper sheeting,

green roofs, etc.

Facades 18

rubbed plaster,
simple thermal

insulating plaster,
sheet metal sills

External thermal insulation
composite system, plastic-bonded

plaster, flashing, cladding,
stone window sills, etc.

like ”average”, but
noble materials and artistic

design, curtain wall elements
with rear ventilation,

special thermal insulation

Windows and
Exterior doors 16

Wood or plastic
standard version

Hardwood, plastic, combination
fittings, sunshade

Wood/aluminium windows,
triple insulating glazing,

sound insulation, sun
protection, roller

shutters (automatic operation),
burglar protection
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able for the condition based on (subjective) standards (Condition Standards) into our pricing model (model

1.b). Furthermore, we incorporated a dummy variable for the condition assessed by a computer vision

algorithm (Condition CNN) (Model 1.c), exploring how these visual inspections enhance the predictive ca-

pability of our model.

(a) log(Price) = f (poly(year, 2)1, poly(year, 2)2, plot size, f loor size, plot price)

(b) log(Price) = f (poly(year, 2)1, poly(year, 2)2, plot size, f loor size, plot price + Condition S tandards)

(c) log(Price) = f (poly(year, 2)1, poly(year, 2)2, plot size, f loor size, plot price + Condition CNN)

(1)

To draw conclusions on the precision of the models, we compare the adjusted R-squared of the models

and the effect size in the models with the different condition variables. The main focus in this analysis was

on the differences between our reference models from model 1.a) and the model 1.b) and the differences

between the standards assessment and the assessment of the CNN of the building condition model 1.c). It is

to note that in the three main pricing models only data that included the year of construction is considered.

3.4. CNN predictions

To train our machine learning algorithm we take the original data set including the buildings where the year

of construction is missing and cut the corresponding images in patches of size 224 x 224 pixels (size of the

input vectors of our CNN) with an overlap of 33.3%2. We included the incomplete data where the year of

construction is missing as a CNN is highly dependent on the size of the data set for training (the ground

truth) [35]. A higher number of training data increases the likelihood of learning specific features that a

certain class has in common.

Due to the variance in image sizes, our patching process generated over 40,000 image patches, a method

depicted in figure 4. Unlike standard practices in applications like facial recognition, where subjects are

positioned uniformly relative to the camera [26], our approach does not regulate for angles, distances, image

sizes, or quality. Instead, we utilised images directly from online real estate listings, aiming to create a

training and prediction environment that mirrors real-world conditions. The impact of different pixel sizes

on the number of generated patches is detailed in figure 2, illustrating a departure from the controlled image

acquisition methods used in studies such as [32], where a specific algorithm extracts standardised 640x640

2That more specifically means that adjacent patches contain 33.3% of each other. An example can be seen in figure 4.
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(a) Size: 1920 x 1440 pixels (b) Size: 1440 x 1080 pixels (c) Size: 960 x 720 pixels (d) Size: 400 x 300 pixels

Figure 2
Size comparison of different images in the data set. Ordered from largest image with regard to pixels to the smallest image. The

images are scaled down to 5.5% of their original size (Source: immobilienscout24.at).

pixel front-view images from Google Street View.

Our methodology involved a manual inspection of the image patches, excluding those that failed to

display significant features of the house (only patches displaying 50% or more of a key housing feature

were retained) or were significantly obscured by elements like vegetation. The distribution of patches per

building varied widely, ranging from 1 to 231 patches, with a median of 13 patches and an average of 22. This

variance is reflected in the distribution of patches per image, as shown in figure 3, indicating the influence of

the original image’s pixel size and the house’s relative size within the image. Following a meticulous review

for flaws and inconsistencies, we proceeded to train a CNN on the remaining approximately 12,000 image

patches to predict their designated class.

To rigorously evaluate our CNN predictions, we meticulously structured our dataset into training and test

sets. Initially, we segregated 25% of the buildings from the smallest class (bad, encompassing 109 buildings)

to form multiple test sets, averaging 28 houses per set. The remaining buildings from this class (82 in total)

set the benchmark for a balanced training set size, ensuring each building in the smallest class is represented

at least once in the test sets. This methodology allows for the creation of 20 balanced test and training set

combinations, affording us 20 distinct ”ground truths” and subsequently, 20 uniquely trained CNNs. The

distribution of buildings across these 20 sets, inclusive of unbalanced, balanced, and test configurations, is

detailed in Table 3.

In addition to these balanced sets, we crafted 20 unbalanced training sets to leverage the full breadth

of our dataset. This step facilitates the implementation of a transfer learning and fine-tuning strategy, as

recommended by [43], where the CNN—pre-trained on the extensive ImageNet dataset—undergoes further

training on our unbalanced dataset. Initially, we freeze all but the back-end layers of the network, adjusting

the model to our specific dataset while retaining the pre-trained weights. Subsequent to this initial phase,
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Figure 3
Histogram of the patch count per image for the 960 houses in the CNN ground truth (Source: Authors own work).

(a) Original image of the house (b) 224 x 224 patches of the image

Figure 4
Patched image of the house (224 x 224 pixels) with an overlap of 33.3%. The patches marked in red are considered as containing

enough building features to be used in the CNN training (Source: immobilienscout24.at).
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all layers are unfrozen, and the entire network undergoes retraining on the balanced dataset to fine-tune its

ability to discern between different image classes.

Utilising this refined model, we proceed to predict the classes of over 22,000 image patches. Given the

necessity of multiple predictions for some buildings due to oversampling, we aggregate these predictions to

assign a final condition class to each of the 960 buildings. This determination is made through majority vot-

ing among the predicted classes for all patches associated with a building, ensuring the most representative

condition class is selected for inclusion in the pricing model.

Table 3
Five exemplary ground truth of the twenty ground truths that are used in this article. The upper third depicts the count of
buildings of five test sets for the three classes, the middle third the count of the unbalanced training sets and the lower third

the count of the buildings in the balanced training sets (Source: Authors own work).
Ground Truth Composition

TEST SETS Total No IMG 1 2 3 4 5
Class 1 290 29 29 29 29 29
Class 2 561 28 28 28 28 28
Class 3 109 27 27 27 28 27

UNBALANCED TRAINING SETS Total No IMG 1 2 3 4 5
Class 1 290 261 261 261 261 261
Class 2 561 533 533 533 533 533
Class 3 109 82 82 82 81 82

BALANCED TRAINING SETS Total No IMG 1 2 3 4 5
Class 1 290 82 82 82 82 82
Class 2 561 82 82 82 82 82
Class 3 109 82 82 82 82 82

The CNNs are based on the EfficientNet0 architecture [54] which is pre-trained on ImageNet data. We

fed the images with three colour channels (RGB) into the network for training and normalised the image

arrays to a range from zero to one by dividing the pixel values by 255. The tuning of the CNNs lasted

for 50 epochs with a learning rate of 0.0001 using the ADAM optimiser function. The batch size in every

epoch was 16. We used a drop out rate of 0.5, with no image augmentation and also no early-stopping. The

experiments have been performed on a server host with Windows 10 Enterprise OS, 64 GB RAM and an

NVIDIA RTX 2080 Ti GPU.
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4. Results

4.1. Pricing Model

Table 4 presents the outcomes of five regression analyses based on our dataset, which includes buildings that

come with the year of construction (thus the dataset for the hedonic pricing models is smaller than the dataset

used to train the CNN). The baseline regression model (1) utilises readily accessible data from online real

estate platforms, specifically building area, plot size, and construction year, yet neglecting property images

to assess the often optimistically skewed and visually observable building condition. Regression model

(2) then introduces human assessments of condition based on established standards using images, which

enhances the model’s accuracy. This addition reveals expected trends and discounts across the condition

classification dummies, with the good condition class serving as the reference.

Model (3) explores the scenario where the year of construction variable is omitted. The quality of this

model dips below that of model (2) but remains superior to the baseline, suggesting that excluding con-

struction year while incorporating expert-based condition classifications marginally improves model perfor-

mance. In contrast, model (4) incorporates the condition variable as predicted by a CNN, and also surpasses

the baseline model in performance, demonstrating appropriate coefficient signs and an overall improvement

in model quality.

A comparison between models incorporating standard assessments (model (2)) and those using CNN-

based classifications (model (4)) against the baseline (model (1)) indicates that traditional assessments of

condition yield a higher model quality than those derived from computer vision algorithms. Notably, the

influence of the condition dummy variables appears to be diminished in the models reliant on CNN as-

sessments, particularly for the bad condition class. Human evaluations are prone to highlighting the stark

differences between ’average’ and ’bad,’ whereas the algorithm exhibits a finer sensitivity, detecting not only

the extremes but also a fluid progression between these categories.

The coefficients for the four key parameters in the baseline pricing model exhibit significant predictive

power in all five models, with the exception of plot size in models (3) and (5), indicating a positive influence

on property prices. Specifically, the year of construction regressor demonstrates high significance with

the anticipated positive direction in models (1), (2), and (4), underscoring its importance in the valuation.

Similarly, the plot price variable, acting as a proxy for location quality within a municipality, is significant

across all models, highlighting its relevance in price determination.

The inclusion of CNN-predicted condition variables in both the comprehensive model (4), which retains
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the year of construction, and the simplified model (5), which omits this variable, significantly impacts price

predictions. The sign of these impacts aligns with expectations, illustrating the predictive value of the

condition classifications derived from computer vision. A direct comparison between model (4), which

integrates the assessment variable, and model (1), which lacks this regressor, reveals an improvement in

the pricing model upon including the condition assessment. However, model (5) shows a decline in quality

compared to the baseline, suggesting two possible interpretations: first, that the addition of computer vision

assessments might diminish the year of construction’s predictive value due to potential confounding effects;

and second, that the assessment variable’s contribution could be considered marginal, as indicated by a lower

adjusted R-squared when substituting the year of construction with computer vision classification outcomes.

4.2. CNN Prediction Results

Table 5 contains the aggregate confusion matrix for the predictions of the 20 independent CNNs, which

also is the aggregate result of the cross validation. 62% of the true class good images are predicted into the

correct class. In contrast 58% of the class average house images get the correct prediction. In class bad 60%

are predicted into the correct class. This states that the CNN comes to similar accuracy for the three classes.

But when observing the absolute count of predictions we see that the predicted number of class average

images decreased while the count of class good and class bad images increased. One explanation can be a

mean reversion property of the CNN such that the overall predictions per class tend to be balanced or that

the delineation of classes is not clear enough. The second explanation can be further argued with the fact

that the algorithm has to learn many features that are not clearly distinct. Therefore, the network struggles to

assign some of the true features to the true class and instead finds a correlation with one of the other adjacent

classes.

The confusion matrix in table 5 shows that the class good images have much more false negatives than

in class average. Analogue, class average image predictions show much more false positives in class good

predictions. The situation is very similar when looking at the wrong predictions in class bad and class

average. This makes us conclude that the class good and class bad images cause problems due to the

fact, that the images are not clearly delineated from the class average images. That can also be seen when

comparing the precision and recall metrics for the three classes in the table 5. Once again, the possible

explanation is that the multitude of characteristics that have to be considered, hence, the probability is low

that the CNN always detects the difference in the characteristics that are delineating the classes.
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Table 5
Aggregate ConfusionMatrix of the 20 CNN training attempts. The table shows the absolute number of predictions and the
percentage of the total number of images (true class) per condition class good, average, and bad. The SUM column shows the
total number of the respective predicted class and the percentage change compared to the true number of that class. The row Sum
depicts the number of true images per class. Precision and Recall rows indicate the two evaluation classifiers for the output

quality of the model. They are frequently used when dealing with imbalanced data (Source: Authors own work).
True

Class good average bad Sum

Prediction
good 179 (61.7%) 152 (27.1%) 6 (5.5%) 337 (+16.2%)

average 87 (30.0%) 326 (58.1%) 38 (34.9%) 451 (-19.6%)
bad 24 (8.3%) 83 (14.8%) 65 (59.6%) 172 (+57.8%)
Sum 290 561 109

Precision 0.53 0.72 0.38
Recall 0.62 0.58 0.60

4.3. Qualitative Analysis

The investigation of the images that show the best fit in CNN predictions (95% of patches in a image

are predicted into the correct, expert-assessed class; examples are depicted in figure 5) suggest that the

brighter a feature of a house the more likely it is to be classified in class good. That e.g. constitutes that

the depreciation by the weather shifts colour tones of the building surfaces. It also seams apparent that

less wooden components are correlated with a better condition classification. Class average buildings (or

patches) seem to be correlated with less brightness and also less colourful building surfaces and advanced

roof deterioration. The images also contain wooden components and on average smaller windows compared

to the majority of class good images. Class bad examples mainly depict wooden constructions with rough

surfaces and generally a very used look of materials. The colour tone is in the darkest section of the three

classes and gives a less promising impression to the assessor.

Regarding wrong predictions we investigate the images where the algorithm predicted 5% or less of the

patches into the correct class. There, class good has 15 images that are wrongly predicted, in class average

we find 24 images in a wrong class and in class bad only 3 images are predicted wrong. Generally, the

example images of the CNN prediction do not show any obvious hints in a way that the algorithm learned

”wrong” features that would not correlate with the corresponding class of the images. The network learns

features for the classification irrespective of the size, form and quality of the images (also including the

brokerage firm’s logo seems not to effect a wrong prediction).

The wrong predictions (true class good gets predicted into class bad) range from images where the

majority relative voting is indefinite (e.g. figure 6 (a)) to images where the percentage of predicted patches
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(a) Class good with 8 patches (b) Class good with 3 patches (c) Class good with 9 patches

(d) Class average with 1 patch
(e) Class average with 19

patches
(f) Class average with 7

patches

(g) Class bad with 12 patches (h) Class bad with 20 patches (i) Class bad with 9 patches
Figure 5

Examples of condition class predictions where 95% or more of the patches are predicted into the correct class. the logos of the
brokerage firms were blacked out (Source: immobilienscout24.at).
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in majority assigns a wrong class. In the true class good images which are predicted in class bad wood is

a dominant component of the houses. Furthermore, rough building surfaces dominate four of the wrongly

predicted images. Observe the wrongly predicted class bad houses in figure 7 (d). Here the indecisiveness

of the network is more obvious than in the previous wrong predictions.

Regarding the class good buildings one caveat has to be mentioned: some of the images show a swim-

ming pool. This is definitely not relevant for the condition classification as the patches containing (parts of)

the pool area were excluded.

5. Regression Residuals Classification

Real estate images can convey critical information about a property, such as the quality of construction,

estimated construction year, and the building’s condition, which reflects its maintenance history. These

visual cues, discernible from property images, may encapsulate factors influencing property valuation [20].

Our research aims to explore whether these images can account for some of the variation in our baseline

pricing model’s residuals, suggesting that the images might implicitly contain aggregated data on these

variables. This is in line with the suggested approach of [55], which shows an increase in price prediction

accuracy. We posit that the images hold consolidated information, which, when classified, could elucidate

portions of the regression residuals. This investigation is conducted in two scenarios: one including the year

of construction (Model A) and the other excluding it (Model B) from the baseline regression, from which we

derive the residuals. Subsequently, we categorise these residuals into three distinct classes—low, medium,

and high—to thoroughly examine their relationship with the visual information contained in the images. The

methodology and findings of this approach are elaborated in the subsequent sections.

1. Baseline models to obtain the regression residuals:

(a) Model A: log price ∼ plot size + plot price + f loor size + year o f construction

(b) Model B: log price ∼ plot size + plot price + f loor size

2. Calculation of the residuals of the baseline models of the price (not the logarithmic price) to obtain

the percentage share of the residuals which is used to assign the buildings to three classes3.

3. Split of the relative residuals in tertiles (three classes) for the two baseline models:

• Class LOW: Houses in the lowest 33.3% tertile of relative residuals.

3This is crucial as also a small residual (a small monetary amount) can cause a significant deviation on a low-price property.
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(a) True Class: 1 Predicted
Class: 3, 42 patches, 34% C1,
21% C2, 45% C3, uncertain

class prediction.

(b) True Class: 1 Predicted
Class: 3, 19 patches, 16% C1,

19% C2, 65% C3, majority
class prediction. same

wrongly predicted image as in
first network

(c) True Class: 1 Predicted
Class: 3, 6 patches, 33% C1,

0% C2, 67% C3, majority
class prediction.

(d) True Class: 1 Predicted
Class: 3, 72 patches, 37% C1,
18% C2, 45% C3, uncertain

class prediction.

(e) True Class: 1 Predicted
Class: 3, 9 patches, 23% C1,
23% C2, 54% C3, majority

class prediction.

(f) True Class: 1 Predicted
Class: 3, 16 patches, 31% C1,
25% C2, 44% C3, uncertain

class prediction.

Figure 6
images where the CNN predicted the lowest class despite the human expert classified it into the highest class based on the standards

(Source: immobilienscout24.at).

(a) True Class: 3 Predicted
Class: 1, 36 patches, 44% C1,

8% C2, 48% C3, uncertain
class prediction.

(b) True Class: 3 Predicted
Class: 1, 80 patches, 51% C1,

32% C2, 17% C3, majority
class prediction.

(c) True Class: 3 Predicted
Class: 1, 96 patches, 55% C1,

37% C2, 8% C3, majority
class prediction.

(d) True Class: 3 Predicted
Class: 1, 18 patches, 58% C1,

1% C2, 41% C3, majority
class prediction.

(e) True Class: 3 Predicted
Class: 1, 8 patches, 30% C1,
51% C2, 19% C3, majority

class prediction.

(f) True Class: 3 Predicted
Class: 1, 25 patches, 34% C1,
27% C2, 39% C3, uncertain

class prediction.

Figure 7
images where the CNN predicted the lowest class despite the human expert classified it into the highest class based on the standards

(Source: immobilienscout24.at).
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• Class AVERAGE: Houses in the medium 33.3% tertile of relative residuals.

• Class HIGH: Houses in the highest 33.% tertile of relative residuals.

4. Training of the CNN. Here the same methodology is applied as in the main condition classification

section.

5. If the CNN is learning specific patterns in the pictures, the predicted classes are included into the

baseline regression to test their effect on the coefficient of determination.

Subsequently, we employed the same CNN used for condition classification to categorise three different

classes of residuals, utilising five-fold cross validation to ensure each building received a prediction. How-

ever, the training process and subsequent predictions indicated that the network struggled to identify specific

patterns within the images that correlate with the residual classes. The highest accuracy achieved among

the five models was only 38.0% (as detailed in figure 8.a), essentially mirroring the success rate of random

chance, which would be approximately 33.3%. This suggests that the model’s predictive capability was not

meaningfully better than guessing.

Furthermore, when we removed the year of construction from the baseline regression analysis, the CNN’s

accuracy slightly improved in the context of five-fold cross-validation, reaching an average peak of 45% in

the most accurate model. However, this improvement still falls short of demonstrating substantial preci-

sion (refer to figure 8.b). It appears that the CNN may have adapted to recognise aspects of the residuals

attributable to the exclusion of the construction year variable, rather than identifying broader, more mean-

ingful patterns within the data.

In contrast to [55] who are focusing on especially architectural style, and who find a positive impact

on pricing accuracy when incorporating a CNN predicted residuals variable, we find that when including

the age variable in the determination of the regression residuals, our CNN is not picking up any detectable

pattern related to the residuals. When neglecting the age variable in the residuals determination, our CNN

model is detecting a relationship between residuals and the images, thus we see further research opportunities

regarding the use of regression residuals coming from AVMs.

The main caveat of our investigation of the residuals is that we used a classification algorithm instead of

a CNN that outputs a regression and, therefore, outputs continuous variables instead of classes. Furthermore,

the patching of images might significantly influence predictability of the images. Still, we believe that the

pictures contain information that can positively impact the accuracy of a hedonic pricing model but we leave

a deeper investigation open for future research.
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(a) CNN training on the regression residuals including the year of
construction.

(b) CNN training on the regression residuals excluding the year of
construction.

Figure 8
Comparison of the development of the two model accuracies over the training epochs of the best two models in the five-fold cross

validation (Source: Authors own work).

6. Obstructions of Computer Vision in Real Estate Valuation

We’ve identified numerous challenges that warrant careful consideration in both future research and practical

applications. Those challenges are based on our own experiences and solutions from this project and other

related projects. Thus, the ensuing section is intended to function as a guide, highlighting critical areas for

focus when integrating computer vision technologies into real estate valuation processes.

6.1. Images

The selection of ground truth data and images is pivotal for effective classification by computer vision algo-

rithms. A substantial dataset is essential for training and testing a CNN, as emphasised by [35]. Furthermore,

achieving balance across classes within the dataset is highly recommended to enhance model performance

[15]. For datasets with a limited number of images, creating patches from original images presents a viable

solution to augment the dataset [53]. In our approach, images were segmented into multiple patches based

on the CNN’s input pixel dimensions. This technique inherently shifts the CNN’s attention to finer details

within the images, such as windows, doors, and roofing materials, mirroring the human eye’s foveal vision

focus on specific areas [37].

The process of image patching also necessitated decisions regarding the dimensions of each patch and the

degree of overlap between patches. These choices significantly affect the dataset’s size and the granularity
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of features captured, with greater overlap leading to redundancy of features across patches. A considerable

portion of the patched dataset included areas not directly relevant to property valuation, such as surrounding

land or extraneous nearby elements. Thus, we faced a decision on whether to exclude certain patches from

the training dataset or to adopt a more comprehensive approach by including entire images.

Image capture parameters pose additional challenges, including the optimal distance, angle, and envi-

ronmental conditions for photographing properties. While utilising readily available online platform images

offers a pragmatic approach, adhering to standardised parameters, such as specific angles or weather con-

ditions, could potentially enhance consistency and realism. This can be achieved by sourcing images from

platforms like Google Street View, which allows for some standardisation, as suggested by [32]. However,

this method requires access to up-to-date property addresses and assumes that the built environment has not

significantly changed, limitations inherent to relying on such platforms for current imagery.

6.2. Classification

When training a CNN on classification tasks, determining the number of classes and establishing a precise

classification scheme is essential. For instance, in predicting a property’s condition, one can either adopt

predefined criteria for class distinctions or devise custom classes. If custom classes are defined, it’s critical

to ensure they are distinctly separable to avoid ambiguities or overlaps, necessitating a well-defined standard

for class differentiation.

A significant challenge in using images for training is the subjective nature of human classification. Even

experienced real estate appraisers may have divergent opinions on the same image, introducing an element

of bias. To mitigate this, the consensus among a substantial group of appraisers or evaluators is vital to affirm

the classifications’ relative objectivity.

The issue of class distribution poses another challenge; data sourced from public platforms often exhibit

uneven class representation. Such imbalance can hinder a CNN’s training effectiveness, as equal frequency

across classes is preferable for optimal model performance [15]. Oversampling, or augmenting the dataset by

replicating images from underrepresented classes, is a strategy to address this [28]. However, this method

introduces its own set of problems, notably the repetition of images, which could bias the model. Image

augmentation techniques, such as applying random transformations to the training images, can help diminish

these concerns by diversifying the visual data, thereby reducing the impact of repeated images.

An alternative strategy for managing imbalanced datasets involves adapting the training methodology of

the CNN. Initially, leveraging a network pre-trained on a comprehensive dataset, such as ImageNet, where
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only the back-end layers are adjusted, allows for initial learning from the unbalanced dataset. Subsequently,

fine-tuning the entire network on a balanced dataset ensures that the model adjusts to the nuanced features

across all classes [43]. This two-step process, incorporating both pre-training and fine-tuning, enhances the

model’s ability to generalise across diverse data, offering a sophisticated solution to the challenges posed by

imbalanced datasets.

6.3. Neural Network

The choice of network architecture significantly influences the accuracy of CNN classifications, with various

architectures like ResNet [12], AlexNet [24], GoogLeNet [51], VGG16, VGG19 [47], and EfficientNet [54]

offering diverse capabilities. EfficientNet, for instance, features eight scalable network types (EfficientNet0-

7) tailored for different image sizes, such as EfficientNet7, which is optimised for 600 x 600 pixel images,

potentially enhancing the detail and information captured. This nuanced approach to handling image sizes

within specific architectures, and its implications on predictive accuracy in real estate economics, remains

an explorable area.

The architecture’s depth, or the number of trainable layers within the CNN, can also affect prediction

outcomes. Tailoring a custom architecture to adjust the layer count could further refine performance [17].

Equally crucial is the choice of optimiser, which adjusts the neural network’s weights to minimise losses

and solve optimisation problems [50]. Popular options include SGD (Stochastic Gradient Descent) and the

ADAM optimiser, each requiring different hyper parameter settings.

Selecting the optimal hyper parameters (like learning rate, training epochs, and batch size) often involves

manual adjustment through trial and error, a time-intensive process. Tools such as Early Stopping can

automate the determination of ideal training epochs. For more complex hyper parameter tuning, Auto Tuning

packages offer a systematic approach by testing a range of parameter combinations and selecting the optimal

model configuration [31].

Finally, when working with limited datasets, choosing the appropriate size for training and testing sets

is crucial. Cross-validation is particularly effective for small datasets, providing a comprehensive predic-

tion across all data points. However, this method is time-consuming, especially when identifying the best

training parameters. An alternative approach, involving distinct training, validation, and test sets, offers a

streamlined methodology suitable for proof-of-concept studies or initial parameter determination in CNNs,

especially with larger datasets. This method allows for efficient evaluation and parameter tuning, supporting

preliminary research efforts.
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7. Implications and Future Directions for AVMs

Building on the main objective of this article, we see significant potential for further research and practical

applications. The ability to extract information, particularly the structural condition, from real estate images

opens new avenues for improving AVMs. These additional data sources enable AVMs to be trained and

optimized with greater precision, which is especially beneficial for banks, institutional real estate investors

but also public institutions [52]. Banks and institutional real estate funds are often required to conduct

continuous revaluations of their real estate portfolios due to regulatory requirements while public institutions

need valuations to calculate tax burden. By utilizing automated image analyses, the condition of properties

can be assessed efficiently and in a standardized manner, saving both time and resources.

Moreover, the standardized classification of property condition offers the opportunity to establish uni-

form evaluation frameworks. This is particularly relevant for existing AVM models, which are frequently

used as a basis for valuations in real estate apps due to their advanced algorithms and straight-forward acces-

sible data can offer more precise, timely, and cost-effective property valuations[23]. Automating the assess-

ment of condition variables could enable laypeople to conduct more objective property valuations without

having to evaluate subjective or complex variables themselves. Users would only need to provide clearly de-

fined, objectively measurable parameters such as size, year of construction, or location. This reduces room

for interpretation and minimizes potential errors in valuation processes.

Additionally, in traditional valuation methods such as the Cost Approach or the Comparison Method,

the objectivity enabled by computer-assisted image analysis supports a reliable foundation and facilitates

objective comparisons between properties. This approach also provides economic and commercial benefits

by accelerating valuation processes and reducing costs.

From a societal perspective, this research contributes to greater transparency in the real estate market

by establishing a comprehensible and consistent basis for property valuations. This could positively influ-

ence public attitudes toward real estate valuation, strengthen trust in valuation processes[23]. In education,

these methods could serve as practical examples of how modern technologies can be applied in real estate

valuation, bridging the gap between theory and practice.

In summary, the findings of this article make an important contribution to the advancement of data-

driven valuation models, provide concrete approaches to improving efficiency in practice, and promote the

standardization and objectivity of valuation methods, with far-reaching implications for research, practice,

and society.
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8. Conclusion

This study examines the impact of building condition classifications derived from images on a straightfor-

ward real estate pricing model, with all data sourced from online real estate platforms. Utilising a three-class

condition classification system provided by the Association of Austrian Appraisers, real estate professionals

classify buildings according to this standardised framework, aiming to mitigate the subjectivity inherent in

such evaluations, despite the unavoidable influence of personal biases. Our objective is not to dissect the

perceptions of these experts but to assess how these classifications affect a simple hedonic pricing model

tailored for real estate valuation, specifically employing the cost approach.

Additionally, we explore whether a CNN leveraging computer vision can accurately reflect these expert-

derived condition classifications and, by extension, serve effectively within a pricing model to automate the

assessment of single-family homes.

Our findings indicate that human-based condition classifications significantly enhance the pricing model

for 694 properties on the Austrian market, as evidenced by data from an online real estate platform. Incor-

porating condition assessments from the CNN yields an improved adjusted R-squared for the model, though

not to the same extent as the expert-based classifications. This suggests a refinement in automated valua-

tion models through the application of computer vision, albeit with a noted decline in model accuracy when

excluding the year of construction.

Employing images from 960 buildings, we trained a CNN to predict the three condition classes, achiev-

ing an overall accuracy of approximately 60%. This indicates the CNN’s capability to identify features

correlative with the condition classes, despite the challenges highlighted throughout our study.

We also delved into whether building images could account for variations in regression residuals from

our baseline pricing model. By categorizing residuals into three classes from high to low and employing

five-fold cross-validation, we found that the CNN failed to detect any features directly associated with the

regression residuals. Still, exploring the impact of building condition assessment using computer vision to

account for regression residuals in simple pricing models, especially when leveraging data from online real

estate platforms, presents an intriguing avenue for future research.

In conclusion, this article demonstrates that building condition classification plays a crucial role in the

precision of automated valuation models and that computational methods like CNNs hold potential for en-

hancing real estate evaluations using both data and visual content from online platforms. We implemented

our methods in a small market like Austria, with its limited quantity and quality of data. Therefore, we see
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even greater potential in other countries. Furthermore, it underscores the various challenges and considera-

tions inherent in adopting a data-driven approach with computer vision for real estate assessment.
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[49] Starzyńska-Grześ, M. B., Roussel, R., Jacoby, S. and Asadipour, A. [2023], ‘Computer vision-based

analysis of buildings and built environments: A systematic review of current approaches’, ACM Com-

puting Surveys 55(13s), 1–25.

[50] Suresh, G., Gnanaprakash, V. and Santhiya, R. [2019], Performance analysis of different cnn architec-

ture with different optimisers for plant disease classification, in ‘2019 5th International Conference on

Advanced Computing & Communication Systems (ICACCS)’, IEEE, pp. 916–921.

[51] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and

Rabinovich, A. [2015], Going deeper with convolutions, in ‘Proceedings of the IEEE conference on

computer vision and pattern recognition’, pp. 1–9.

[52] Tajani, F., Morano, P. and Ntalianis, K. [2018], ‘Automated valuation models for real estate portfolios:

A method for the value updates of the property assets’, Journal of Property Investment & Finance

36(4), 324–347.

[53] Takahashi, R., Matsubara, T. and Uehara, K. [2019], ‘Data augmentation using random image crop-

ping and patching for deep cnns’, IEEE Transactions on Circuits and Systems for Video Technology

30(9), 2917–2931.

[54] Tan, M. and Le, Q. [2019], Efficientnet: Rethinking model scaling for convolutional neural networks,

in ‘International conference on machine learning’, PMLR, pp. 6105–6114.

[55] Wan, W. X. and Lindenthal, T. [2023], ‘Testing machine learning systems in real estate’, Real estate

economics 51(3), 754–778.

32



[56] Wilhelmsson, M. [2008], ‘House price depreciation rates and level of maintenance’, Journal of Hous-

ing Economics 17(1), 88–101.

URL: https://linkinghub.elsevier.com/retrieve/pii/S1051137707000435

[57] You, Q., Pang, R., Cao, L. and Luo, J. [2017], ‘Image-based appraisal of real estate properties’, IEEE

transactions on multimedia 19(12), 2751–2759.

[58] Zeppelzauer, M., Despotovic, M., Sakeena, M., Koch, D. and Döller, M. [2018], ‘Automatic predic-
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