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ABSTRACT

It is assumed “Non-volatile” tastes like sucrose do not activate retro nasal pathways. Recent studies find that
sucrose when aerosolized, can reach the retro nasal olfactory region and be perceived. The neural mechanisms by
which the human brain interprets sucrose via retro nasal pathways is unknown.

We examined neural activity to sucrose with a nose clip on (blocking retro nasal) and nose clip off, in healthy
adults (N = 34, mean 25 yrs.). We examined the whole brain and ROIs involved in taste, smell, attention, reward
and multi-modal integration; insula, postcentral gyrus, amygdala, olfactory cortex, subgenual and pregenual
anterior cingulate, nucleus accumbens and OFC. We also examined correlations with subjective ratings of
pleasantness and mouth fullness.

The nose clip on vs off reduced the subjective experience of mouth fullness. Neural activity to sucrose was
reduced with the nose clip on in the primary taste, olfactory, attention and reward ROIs and in the rolandic
operculum, lingual gyrus and precuneus in the whole brain analyses. The olfactory and prefrontal cortex ROIs

tracked subjective mouth fullness, but this was not apparent with the nose clip on.

Blocking retro nasal sensation reduces subjective and neural responses to sucrose taste. Retro nasal sensations
could play a role in “pure” taste perception. Developing more satisfying low-sugar foods could be achieved by
enhancing the perception of sweetness through aroma modulation.

Introduction

Volatile odour molecules released from food or drink in the mouth
travel up the back of the throat into the nasal cavity and activate the
olfactory receptors via retro nasal pathways (Stevens and Cain, 1986,
Voirol and Daget, 1986, Buettner, Beer et al. 2001). Sweetness percep-
tion begins in the oral cavity, where taste receptor cells are dedicated to
sweet-sensing interact with sugars, artificial sweeteners, and other
sweet-tasting chemicals (Juen, Lu et al. 2025). Sucrose is considered
non-volatile and therefore not recognised by the retro nasal pathways
(Roper and Chaudhari, 2017).

Yet disabling retro nasal sensation through reversed nasal airflow
significantly impaired participants’ ability to identify sucrose, although
most were still able to perceive its sweetness (Mozell, Smith et al. 1969).
Similarly studies have reported that blocking retro nasal sensation with
a nose clip increases detection and recognition thresholds (Murphy and
Cain, 1980), reduces identification accuracy (Masaoka, Satoh et al.
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2010), and diminishes the perceived sweetness intensity of sucrose so-
lutions (Mojet, Heidema et al. 2003, Mu, Vissers et al. 2024, Yang, Kim
et al. 2024). A nose clip can effect taste and olfactory senses but not
other senses such as vision or touch, suggesting an important olfactory
component even with “non-volatile” tastes (Yang, Kim et al. 2024).

The observed differences in sucrose sweetness perception in young
people vs old diminishes when youth are wearing a nose clip, suggesting
retro nasal sensations account for the differences (Mojet, Koster et al.
2005). Nasal blockage via sinusitis can also significantly reduce sucrose
detection (Tsuji, Tanaka et al. 2018). Hence everyday colds could affect
taste perception via retro nasal blockade (James, Palte et al. 2022) and
viruses such as COVID19 could also impact taste perception via retro
nasal dysfunction. As this can have serious psychological implications
(Javed, [jaz et al. 2022) it is imperative to understand the contribution of
retro nasal pathways to taste processing.

Given sucrose is considered non-volatile some suggest it is impurities
in taste solutions rather than the tastants themselves that is being
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recognised by retro nasal processing (Mojet, Koster et al. 2005). Others
refute this as they observed that the taste purity grade (e.g., reagent
grade, non-reagent grade, and food grade) did not influence olfactory
discrimination, both in mice (Zukerman, Touzani et al. 2009) and
humans (Chen, 2013).

One explanation for reduced perception with nasal blockage could be
that non-volatile compounds such as sucrose taste do indeed activate the
retro nasal pathways. Our recent study using high speed cameras found
that an orally-ingested sucrose solution could be transferred to the nasal
cavity in the form of aerosol particles (He, Chen et al. 2023). This
plausibly explains how retro nasal sensation is involved in the oral
consumption of non-volatile sucrose, affecting its identification, in-
tensity perception and threshold detection. As sucrose sweetness in-
tensity was reduced when the volunteers’ noses were clipped, this also
indicates the involvement of retro nasal sensation during its drinking
(He, Chen et al. 2023). These findings were extended with our findings
that retro nasal sensation can contribute to the discrimination between
tastes such as sucrose and sucralose and to the perception of sweeteners
(He, Chen et al. 2024).

While these findings clearly highlight the involvement of retro nasal
sensation in the perception of sucrose, the underlying neural mecha-
nisms underpinning the involvement of the retro nasal pathway vs the
ortho nasal pathway in sucrose taste perception is unknown.

Taste processing begins on the tongue and taste receptors. Next in-
formation is transmitted via sensory afferent fibres to brain areas
involved in taste perception (Lee and Owyang, 2019). Functional mag-
netic resonance imaging (fMRI) reveals that taste activates the anterior
insula/frontal operculum, the primary taste cortex, the orbitofrontal
cortex (OFC) (possibly secondary taste cortex) and the anterior cingulate
(ACQ) (Rolls, 2019). Further, taste intensity correlates with activity in
the insula whereas pleasantness correlates with prefrontal regions such
as the OFC and ACC (Rolls, 2019).

Retro nasal processing allows molecules to reach the olfactory
epithelium in the nasal cavity, where they bind to olfactory receptors.
The receptors send electrical signals via the olfactory nerve to the ol-
factory bulb, located at the base of the brain. From here the signal is
relayed to higher brain areas such as the piriform cortex, the primary
area for odour perception. In humans, the piriform cortex is correlated
with the intensity of odours but not their pleasantness (Rolls, 2019).
Signals from the olfactory bulb also project to the OFC where odour and
other visual and sensory information are combined to contribute to
stimuli identification and evaluation (Rolls, 2015, Rolls, 2019). How-
ever, if non-volatile taste compounds such as sucrose are also perceived
through retro nasal pathways, it raises the question of whether the
blockade of retro nasal sensation would reduce or slow down the inte-
gration of neural responses to sucrose.

Sucrose is known for its sweetness but also for mouth fullness (Lavin,
French et al. 2002) and nasal occlusion can diminish the perception of
fullness (Baraniuk, 2011, Yeomans and Boakes, 2016) however neural
activity underpinning sucrose pleasantness and fullness during nasal
occlusion remains unexplored.

Therefore, the aim of this study was to examine the brains response
to sucrose with and without a nose clip to block retro nasal processing.
We examined whole brain activity and regions of interest in taste, ol-
factory and multi modal areas. We also examined the correlation be-
tween brain activity and subjective ratings of pleasantness and mouth
fullness to see if this was impacted by retro nasal processing.

Materials and methods
Participants

Thirty-four healthy right-handed adults were recruited between 18
and 45 years old with healthy weights (BMI) or waist-to-height ratio

(WTH). Participants were excluded if they had any current/previous
psychiatric history using the Structured Clinical Interview for DSM-IV
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Axis I Disorder Schedule, or if they took psychoactive medication or
an eating disorder (measured with Eating Attitude Test > 20), food al-
lergies, diabetes, smoking, or any contraindications to fMRI scanning.
We also recorded the frequency, liking and craving for sugary and
sweetened foods (Rolls and McCabe, 2007) e.g., “How frequently do you
eat sugary foods?” with answers of either; a few times per month; 1-2
times per week; 3-4 times per week; or more than 5 times per week and
“How frequently do you eat/drink foods with sweeteners?”, with an-
swers of either; Never; Rarely; Sometimes; Often; Usually or Always. The
Craving and Liking for sugary foods were scored as 1 for low and 10 for
high craving on a Likert scale. All procedures comply with the ethical
standards of the Helsinki Declaration of 1975, revised in 2013 and
approval was obtained from the University of Reading Ethics committee,
ethics ref: 2023-130-CM, all participants provided written informed
consent.

Pre-test 1 (Triangle test or Taste perception test)

Participants were entered into the study if they could distinguish 2 %
sucrose from a control using a standard taste perception test (see sup-
plementary doc).

Pre-test 2 (Candy smell test retro nasal)

We used the candy smell test to check participants retro nasal ol-
factory performance (Renner, Mueller et al. 2009) (see supplemental
doc).

Pre-test (Smell test ortho nasal)

To check participants ortho nasal olfactory performance and to
exclude anosmia we used the coffee smell test (Humphries and Singh,
2018) (see supplemental doc).

Stimuli for the scan

The sucrose was >99.7 % pure with less than 0.04 % inverted sugar
(i.e. fructose and glucose) and less than 0.06 % loss during drying, and
sourced from Wiener Zucker, Feinkristallzucker, Austria and the sweet
concentration of sucrose was 6 % (Wee, Tan et al. 2018). Sucrose was
diluted and delivered in distilled water (6 g in 100 mL). A tasteless
control solution (containing the main ionic components of saliva, 25
mM KCI + 2.5 mM NaHCO3) was used as a rinse condition on each trial.

Nose clips

Soft plastic foam nose clips were used to block retro nasal smell (size
approx. 2.7 x1.6 in.) Frienda Ltd., China). The pleasantness, pain and
comfort of the nose clips was piloted before the study, on 8 subjects. All
participants rated the nose clip on a scale ranging between —4 and 4 for
pleasure, pain and comfort, once at baseline and again after wearing the
nose-clip for 4 min (the length of time they would be wearing the nose
clip in each condition in the scanner).

To examine the effects of the nose clip on subjective ratings we used a
repeated measures ANOVA with ratings (3 levels, pleasantess, pain and
comfort) as one within subject factor and condition (2 levels, timel and
time2) as a second within subject factor. We found no main effect of

Table 1
Subjective ratings made before and after wearing nose clip.
Baseline After 4 min
Mean (SD) Mean (SD)
Pleas Pain Comfort Pleas Pain Comfort
-0.16 -0.76 —0.26 —0.21 —0.42 -0.78
(1.09) (1.90) (1.51) (1.41) (1.81) (1.69)
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ratings (F=0.16 (2,14) p = 0.85) or time (F=0.1 (1,7) p = 0.75) and no
ratings * time interaction (F=2 (2,14) p = 0.17) (Table 1).

Study design

The fMRI scans took place at the Centre of Integrative Neuroscience
and Neurodynamics at the University of Reading. If scanned in the
morning participants fasted overnight, if scanned in the afternoon they
fasted for 3 h (no food, only water) before the scan. 10 participants had a
morning scan, and 24 participants had an afternoon scan. 60-90 min
before scanning all the participants were given a standardized meal
similar to previous studies (a banana, a cup of orange juice, 2 crackers,
~261 total calories) with the instruction to “eat until feeling comfort-
ably full, without overeating” similar to our previous study (Thomas,
Higgs et al. 2015). We asked participants to rate their hunger and mood,
before the scan, on a visual analogue scale from 0 being not at all to 10
indicating the most ever felt. Subjects were screened for potential
pregnancy and metal in their body before being placed in the fMRI
scanner.

Taste delivery

Tastes were delivered to the subject via separate long (~3 m) thin
Teflon tubes with a mouthpiece (~ 1 cm in diameter) at one end, that
was held by the subject comfortably between the centre of the lips. At
the other end of the tubes were connected to separate reservoirs via
syringes and one-way Syringe Activated Dual Check Valves (Model
14044-5, World Precision Instruments, Inc) which allowed any stimulus
to be delivered manually by the researcher at exactly the right time
indicated by the programme (Murray, Brouwer et al. 2014) thus
avoiding the delays and technical issues experienced when using com-
puterised syringe drivers.

fMRI task

At the beginning of a trial, a white cross at the centre of the screen
appeared for 2 s indicating the start. Then, sucrose was delivered in a
0.5 mL aliquot to the subject’s mouth, the green cross was presented at
the same time on the visual display for 5 s. The instruction given to the
subject was to move the tongue once as soon as a stimulus was delivered
in order to distribute the solution round the mouth to activate receptors,
and then to keep still until a red cross was shown, when the subject could
swallow. Swallowing was 2 s, then the subject was asked to rate the
‘pleasantness’ (+2 to —2) to measure hedonic value, and asked to rate the
mouth fullness (richness) of the taste in their mouth (0 to +4) to measure
the sensory intensity of sucrose, on a visual analogue scale by moving a
bar to the appropriate point on the scale using a button box, ratings
similar to those used in previous taste/fmri studies (Rolls, 2019). Each
rating period was 5 s long. After the last rating on each trial 0.5 mL of the
tasteless control solution was administered in the same way as the su-
crose stimulus at the same time as a green cross was presented on the
visual display for 5 s. The control tasteless rinse was used as the com-
parison condition to allow somatosensory effects produced by liquid in
the mouth, and the single tongue movement made to distribute the
liquid throughout the mouth, to be subtracted in analysis (O'Doherty,
Rolls et al. 2001, De Araujo et al. 2003). The control taste was not
subjectively rated. Then, a grey cross was presented for a duration be-
tween 0.8 s and 2 s (jittered) to indicate the end of the trial. Then the
screen was black for 2 s before a new trial started. Each trial lasted
~30 sec. Using a block design there were 7 trials of sucrose and control
condition with the nose clip off. Then the scanner was stopped
~7-10 min, and the participant had a break before the nose clip was
placed on the nose. During the break participants were told to let go of
the taste tubes and just relax and they could close their eyes. Although
we have shown previously no habituation effects in the subjective
pleasantness and mouth fullness of sucrose after 10 presentations over
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the course of a 30 min task (please add a to this ref) we also introduced a
break between the blocks in this study to avoid habituation effects and
time to introduce the nose clip. After the break we ran another localiser
scan followed by 7 trials of sucrose taste and control condition with nose
clip on. The whole task took ~30 min, including stopping and starting
the scanner.

fMRI data acquisition

Blood oxygenation level dependent (BOLD) functional MRI images
were acquired using a three-Tesla Siemens scanner (Siemens AG,
Erlangen, Germany) with a 32-channel head coil. During the task,
around 1500 volumes were obtained for each participant, using a
multiband sequence with GRAPPA and an acceleration factor of 6. Other
sequence parameters included a repetition time (TR) of 700 ms, an echo
time (TE) of 30 ms, and a flip angle (FA) of 90°. The field of view (FOV)
covered the whole brain with a voxel resolution of 2.4 x 2.4 x 2.4 mm®.
Moreover, structural T1-weighted images were acquired utilizing a
magnetization prepared rapid acquisition gradient echo sequence (TR =
2020 ms, TE = 3.02 ms, FA = 9°) with a FOV covering the whole brain
and a voxel resolution of 1 x 1x1 mm?.

fMRI data analysis

The imaging data were analysed using SPM12 and pre-processed
with realignment, coregistration, segmentation, normalization to the
MNI coordinate system (Montreal Neurological Institute; Collins et al.,
1994) and smoothed with a 6 mm full width at half maximum isotropic
Gaussian kernel. The time series at each voxel was low-pass filtered with
a haemodynamic response kernel and non-sphericity was estimated and
corrected for, with a high-pass filter cut-off period of 128 s.

In the single-event design, a general linear model was then applied to
the time course of activation in which stimulus onsets were modelled as
single impulse response functions and then convolved with the canoni-
cal hemodynamic response function. Linear contrasts were defined to
test specific effects. Time derivatives were included in the basis func-
tions set. Following smoothness estimation, linear contrasts of param-
eter estimates were defined to test the specific effects of each condition
with each individual dataset. Voxel values for each contrast resulted in a
statistical parametric map of the corresponding t statistic (transformed
into the unit normal distribution (SPM z)). Movement parameters and
were added as additional regressors.

At the second level, we report the main effects of sucrose with nose
clip off vs the corresponding control tasteless conditions with nose clip
off (supplemental data), and sucrose with nose clip on vs sucrose with
nose clip off, thresholded at p < 0.05 corrected (familywise-error (FWE)
and p values cluster corrected at both p < 0.05 False Discovery Rate
(FDR) and p < 0.05 FWE. We also added gender, hunger level and scan
time as covariates of no interest.

We then examined regions of interest (ROI) spheres (10 mm) for the
anterior insula (primary taste cortex, [-32, 16, 2]) posterior insula [-38,
-2, -12] and postcentral gyrus [60, —16, 24] using WFU pickatlas,
identified in the meta-analysis on sweet tastes in humans (Roberts,
Giesbrecht et al. 2020). We examined the olfactory regions; the piriform
cortex, olfactory cortex and the orbitofrontal cortex using aal atlas
anatomical masks in WFU pickatlas. Given our interest in retro nasal
effects (Small et al., 2005) and attention to odors (Veldhuizen and Small,
2011) we also created a sphere (10 mm) in the pgACC [3, 42, -9] (Small
et al., 2005) and examined anatomical masks of the mOFC (Small et al.,
2005) and sgACC (BA25) (Veldhuizen and Small, 2011) using aal atlas in
WFU pickatlas. Finally, as we are interested in the retro nasal contri-
bution to the rewarding effects of taste we examined the nucleus
accumbens (Berridge, 2009) and amygdala (Gottfried et al. 2003) using
(IBASPM71 atlas) and aal atlas anatomical masks, respectively, in WFU
pickatlas. Data were extracted using the SPM ROI analysis Matlab code
and MarsBar and analysed with paired-sample t tests in excel. We also



H.-k. Ko et al.

examined correlations between the ROI data and the subjective ratings.

We also examined if the nose clip effected the time to peak activity.
We calculated the time to maximum peak activity within the first 10 s
after the onset of sucrose delivery from the time course data, using the
max function in Matlab.

Results
Demographic data for fMRI study

34 participants took part with a mean age of 25 yrs. See Table 2 for
demographics.

Pre-test results of sensitivity to 2 % sucrose

Twenty-one participants passed the pre-test with 6 out of 6 trials
correct the first time. Ten participants passed the pre-test with 5 out of 6
trials correct the first time and three participants got 6 of the 6 trials
correct on their second attempt, so were also included in the study.

Pre-test candy smell test

With the nose clip off participants identified the flavours with
average accuracy of 84 % (+ 14). For nose clip on accuracy dropped to
31 % (+ 20) similar to previous studies (Renner, Mueller et al. 2009).

Pre-test (Smell test ortho nasal)

All participants identified the coffee compared to no coffee and rated
the coffee as above average intensity and higher (6.70 + 1.78) than the
empty cup intensity (1.17 + 1.90), (t(22) = 12.04, p < 0.001). The in-
tensity of the coffee smell was higher with the nose clip off (6.70 + 1.78)
than with the clip on (0.26 + 0.59), (t(22) = 16.7, p < 0.001).

fMRI scan day
Subjective hunger and mood

Participants had relatively high mood and low hunger levels before
the scan (Table 3).

Pleasantness and fullness ratings

To check for habituation effects we examined the ratings at the
beginning and the end of block 1 i.e., trial 1 vs trial 7 in the nose clip off
condition. Using paired samples t-test we found no differences in
pleasantness t(32) = 0.65, p = 0.51, or mouth fullness t(31) = 1.88,
p = 0.07 indicating no habituation to sucrose taste across trials and
between the blocks.

To examine the effects of the nose clip on subjective ratings we used a
repeated measures ANOVA with ratings (2 levels, pleasantness, mouth
fullness) as one within subject factor and condition (2 levels, nose clip
on, nose clip off) as a second within subject factor. We found a main
effect of ratings (F=27.5 (1,33) p < 0.001) and a main effect of condition

Table 2
Demographics.
All (n = 34) Mean score (SD)

Age, years 25.71 (8.25)
Gender, female/male: n 24/10
Body mass index 22.00 (2.68)
Eating Attitudes Test 3.09 (3.20)
Craving for sugary foods 5.11 (1.99)
Liking for sugary foods 5.85 (1.98)
Freq eating sugary foods 3.44 (2.09)
Freq eating/drinking foods with sweeteners 3.97 (2.11)
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Table 3
Visual Analogue Scale of Mood and Appetitie.

Mean score (+ SD)

How hungry do you feel right now? 4.35 + 2.30

How full do you feel right now? 4.05 + 2.11
Alertness 6.08 + 2.40
Disgust 0.91 +1.23
Drowsiness 3.05 £ 2.66
Anxiety 1.79 £1.55
Happiness 6.11 +1.93
Nausea 0.70 = 0.97
Sadness 0.55 + 1.05
Withdrawn 1.08 £1.76
Faint 1.08 +£1.84

Rate between 0 and 10, where 0 = Not at all, 10 = Most ever felt

(F=6.6 (1,33) p = 0.015) but no ratings * condition interaction (F=0.39
(1,33) p = 0.54) (Fig. 1). Follow up paired sample t-tests showed that
mouth fullness was rated higher for nose clip off than nose clip on t
(33) =2.5,p=0.017.

ROI analysis

We found greater neural activity in the sucrose nose clip off vs on in
the left (Fig. 2) and right postcentral gyrus, right anterior (Fig. 3) and
right posterior insula, the olfactory cortex (Figure S1), piriform cortex,
sgACC (Figure S2) right NAcc (Figure S3) activity survived when con-
trolling for multiple comparisons (Table 4).

Temporal effects

We examined the time to peak activity after the sucrose taste in the
nose clip on vs off conditions. Using repeated measures ANOVA with
ROIs as one within subject factor and condition (nose clip on/off) as a
second within subject factor. We found a main effect of ROI (F=12.6
(1,8) p < 0.001) but no main effect of condition and no ROI * condition
interaction (Figure S4).

Parametric modulation

We found positive correlations between ROIs and mouth fullness
ratings in olfactory cortex (rho = 0.44, p = 0.01) (Fig. 4), the sgACC
(rho = 0.34, p = 0.046), the pgACC (rho = 0.37, p = 0.03) and the
mOFC (rho = 0.36, p = 0.036) for nose clip off, but these did not survive
correction for multiple comparisons. No correlations between ratings
and ROI data were found for the nose clip on.

Exploratory whole brain analyses

Main effects of taste stimuli

The sucrose vs the control activated regions such as the primary taste
cortex (insula), primary somatosensory cortex (postcentral gyrus), and
the precentral gyrus and caudate (Table S1). There were no significant
activations for the opposite contrast, control vs sucrose.

Nose clip off vs on

When examining the whole brain results (Table S3) we found
reduced activity for the contrast sucrose nose clip off vs on in regions
such as the rolandic operculum, precuneus and post central gyrus, these
results were apparent only when using a p = 0.001 uncorrected
threshold. There were no regions activated under the opposite contrast,
at any threshold. There was reduced precuneus activity for the contrast
tasteless control clip off vs on, but only at p=0.001 uncorrected
threshold. There were no regions activated under the opposite contrast,
at any threshold.
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Discussion

This is the first study to examine the subjective and neural effects of
retro nasal occlusion with a nose clip while tasting sucrose. We provide
novel evidence of reduced subjective mouth fullness consistent with
previous behavioural findings of reduced sucrose sweetness with retro
nasal occlusion (Mu, Vissers et al. 2024, Yang, Kim et al. 2024). We also
provide first evidence that the postcentral gyrus, part of the somato-
sensory cortex was reduced with the nose clip on. Decreased postcentral
gyrus activity could reflect an ‘objective’ decreased sensing of sweetness
from sucrose as the postcentral gyrus has been found previously acti-
vated by sweet tastes (Yeung and Wong, 2020) and is part of the so-
matosensory cortex (Small, 2012) and is modulated by sweet taste
intensity (van Meer et al. 2023). We have also previously found greater
postcentral gyrus activity to sucrose vs. sucralose (please add a to this
ref) and vs. stevia (Ko et al., 2025b) and greater postcentral gyrus ac-
tivity with the addition of flavour modifiers to sweeteners (Ko et al.,
2025b; please add a to this ref). The implications therefore are that
modulation of the postcentral gyrus could make foods more sucrose like
and this could be via retronasal pathway contributions.
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We also found reduced anterior and posterior insula (Dalenberg,
Hoogeveen et al. 2015, Roberts, Giesbrecht et al. 2020) olfactory cortex
and piriform cortex activity reduced to sucrose with a nose clip on.

Further, neural activity tracked subjective mouth fullness but only
with the nose clip off, not on. Taken together, our results imply that retro
nasal pathways contributor to the perceptual processing of “non-vola-
tile” substances (He, Chen et al. 2023, He, Chen et al. 2024).

The secondary olfactory areas (OFC) were less impacted by retro
nasal occlusion perhaps because this multimodal region is much less
dependent on signals coming purely from one modality (Rolls, 2019)
and therefore are still activated by the taste in the mouth even with the
nose clip on. This fits with previous work where a nose clip affected taste
and aroma processing but no other auditory or visual senses (Yang, Kim
et al. 2024).

Retro nasal occlusion reduced sgACC neural activity, this could
reflect the participants difficulty attending to the tastes in order to rate
them (Sabri, Radnovich et al. 2005, Veldhuizen and Small, 2011) and is
consistent with our finding that the sgACC, olfactory cortex and neigh-
bouring pgACC and mOFC ROIs tracked mouth fullness but only when
the nose clip was off. Prefrontal cortex multi-modal regions show greater
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Table 4
Sucrose Nose clip off vs. Nose clip on.
ROI tvalue  p value cohens D
mOFC 1.96 0.03 0.34
pgACC 1.11 0.14 0.19
sgACC 3.08 0.002* 0.53
Olfactory 3.89 0.0002 0.67
Piriform 3.04 0.002* 0.52
Left Right
tvalue  p value cohensD  tvalue pvalue  cohensD
Postcentral 3.54 0.0006 0.61 3.1 0.002 0.53
gyrus
Anterior Insula 2.6 0.007 0.45 2.88 0.003 0.49
Posterior Insula 1.2 0.12 0.21 2.93 0.003 0.50
NAcc 2.07 0.02 0.38 2.93 0.003 0.52
Amygdala 1.98 0.03 0.34 2.68 0.005 0.46
OFC 2.09 0.02 0.36 1.36 0.09 0.23

* Survives correction for multiple comparisons, (0.05/17 ROIs, p = 0.003)
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activation to tastes when combined with savory odours than to the sum
of the activations by the taste and olfactory components presented
separately (McCabe and Rolls, 2007, Rolls, 2019). This could suggest
that the nose clip reduces the integration of taste and olfactory com-
ponents making it more difficult to perceive sucrose.

When examining the effects of retro nasal occlusion we also found
reduced activity in the NAcc, a hub related to feeding, homeostatic and
hedonic circuits, that facilitates behaviour via its downstream pro-
jections (Marinescu and Labouesse, 2024). The ventral striatum is at the
crossroads of olfactory and reward pathways and receives direct pro-
jections from the primary olfactory cortex (Ubeda-Banon, Novejarque
et al. 2007) and the dopaminergic midbrain (Ikemoto, 2007) and is
greatly involved in odour-guided eating behaviour (Murata, 2020).
Hence reduced activity in this region supports the idea that potential
retro nasal olfactory signals from the sucrose taste are being occluded.

Examining the exploratory whole brain results we found that the
retro nasal occlusion reduced neural activity to sucrose taste in the
rolandic operculum (RO) and precuneus. The rolandic operculum plays
a central role in flavour percept formation (Small, Voss et al. 2004) and
neural taste and smell signals are integrated here (Suen, Yeung et al.
2021).The operculum, is a large structure with three lobes and a com-
plex array of functions including sensory, motor, autonomic and
cognitive processing. In humans, these are extended with the addition of
language (Maliia, Donos et al. 2018). Studies mapping the function of
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the RO, using direct electrical stimulation, find it involved in oropha-
ryngeal responses with the most widespread and common mapping it to
the pharynx-larynx or the tongue (Maliia, Donos et al. 2018). Further
when stimulated participants report experiencing taste, making the RO a
likely candidate for the primary gustatory cortex (Maliia, Donos et al.
2018). Connections between the RO and the insula support its role in
feeding behaviour while connections with the frontal operculum, pre-
motor area, fusiform gyrus and post central gyrus support its role in
speech production (Maliia, Donos et al. 2018). Due to such connections,
some suggest a link between flavour perception and language develop-
ment, citing gustation-language connectivity and chimpanzees’ vocal
food communications (Schel, Townsend et al. 2013, Kalan, Mundry et al.
2015).

Finally, we also found reduced precuneus activity to sucrose taste
with the nose clip on. The precuneus is primarily involved in complex
cognitive functions like episodic memory retrieval, self-processing,
visuo-spatial imagery, and imagining future events, essentially acting
as a hub for integrating personal experiences and constructing mental
scenarios; it is considered a core part of the brain’s "default mode
network" which is active during resting states and internal thought
processes (Cavanna and Trimble, 2006). Therefore, reduced activity in
this region to sucrose (and to the control) with the nasal occlusion could
reflect a difficulty in determining the percept of the stimulus and a need
to recruit taste memories.

Taken together, we provide neuroscientific evidence that retro nasal
sensations are playing a role in sucrose perception. Knowing this could
help explain how olfactory impairments (e.g., aging, illness, or COVID-
19) impact appetite and altered eating behaviours. Further research
could examine how retro-nasal occlusion effects other sweet tastes such
as non-nutrient sweeteners like stevia. As they may not be detected via
retro nasal pathways to the same degree which could have meaningful
implications for low-sugar food creation.

Further, our previous work (Ko et al., 2025b; please add a to this ref)
found that flavour modifiers combined with sweeteners could activate
regions like the postcentral gyrus i.e. make a non-nutrient sweetener
more like sucrose. As the current findings show that blocking retro nasal
pathways reduces activity in regions like the post central gyrus, it is
possible that non-nutrient sweetened foods could be made more
acceptable i.e. more sugar-like, via retro nasal pathway aroma modu-
lation. Thus, this study also contributes to a broader understanding of
how retro nasal pathway activation could help manufacturers create
sugar-free or low sugar foods with improved taste. This could support
public health goals without compromising enjoyment. Understanding
neural responses to sucrose and the contribution of retro nasal pathways
therefore not only provides novel scientific evidence for the role of retro
nasal pathways in non-volatile substances but also offers a roadmap for
enhancing the hedonic and health aspects of sweetened foods.
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