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Abstract

Accurate forecasting of the ocean is crucial for numerous applications, including enhancing

numerical weather prediction through coupled ocean-atmosphere systems. Upcoming

satellite missions will provide measurements of ocean surface currents from space, offering

the potential for significant improvements in forecasting accuracy. Data assimilation is the

technique that integrates observations with numerical models to produce ocean forecasts.

Existing ocean data assimilation systems rely on assumptions about velocity fields that

are sufficient in the absence of ocean current observations. However, the future availability

of satellite current measurements necessitates a reassessment of these assumptions and

advances in the treatment of velocity fields within the existing systems.

In this thesis, we propose a modification to NEMOVAR, the variational data

assimilation system used by the NEMO (Nucleus for European Modelling of the Ocean)

model, introducing alternative velocity variables to those currently used. The proposed

variables are ageostrophic streamfunction and velocity potential. We design and test

a novel transformation to these variables within both a simplified shallow water model

and an idealised configuration of the NEMO model. This transformation is analysed

both mathematically and numerically in the shallow water model. In implementing this

transformation, we conduct an in-depth exploration of the boundary conditions associated

with these new variables and investigate a numerical artifact in the solution.

The transformation is further examined in the NEMO configuration, with a focus

on integrating these variables into the NEMOVAR assimilation system. Assimilation

experiments are performed to evaluate the impact of this new variable formulation on the

assimilation of future ocean surface current observations. Results demonstrate that the

proposed approach improves the accuracy of the analysis produced by the assimilation of

such measurements.

This thesis provides a comprehensive assessment of the theoretical and practical

implications of adopting these alternative velocity variables and establishes a strong

foundation for their future application within NEMOVAR.
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OSSEs Observing system simulation experiments

QCM Quick covs method
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RMS Root mean square

RMSE Root mean square error

ROMS Regional Ocean Modelling System

SAM Système d’Assimilation Mercator

SEEK Singular evolutive extended Kalman filter

SISL Semi-implicit semi-Lagrangian scheme

SKIM Sea surface Kinematics Multiscale monitoring

SLA Sea level anomaly

SSH Sea surface height

SST Sea surface temperature

SVD Singular value decomposition

SWEs Shallow water equations

TSCV Total surface current velocities
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Chapter 1

Introduction

Ocean forecasts play a vital role in a wide range of applications, including coastal

management (Drévillon et al., 2008), the understanding of marine animal species (Dickey,

2003) and numerical weather prediction (NWP) (Lea et al., 2015; de Rosnay et al., 2022).

The accuracy of these forecasts relies heavily on the data assimilation process, which

combines observational data with numerical ocean models, weighted by their uncertainties,

to give optimal initial conditions (Kalnay, 2003). Variational data assimilation is

commonly used in ocean applications (Anderson et al., 1996) and treats the data

assimilation problem using a least-squares approach, where a cost function is minimised

to estimate the most likely ocean state. Within variational data assimilation the model

variables are often transformed into alternative variables to simplify the assumptions

associated with the data assimilation problem. In this thesis we look at an alternative

transformation to be used in variational ocean data assimilation in preparation for future

ocean current measurements.

In this work, we are particularly interested in the treatment of ocean currents.

Accurate forecasts of ocean currents are critical for marine safety and offshore operations

(Waters et al., 2024b). However, there is a limited availability of surface current velocity

measurements on a global scale. Some observations are available near coastlines, primarily

from high frequency (HF) radar systems. These ocean currents derived from HF radar

allow some coastal data assimilation systems to assimilate HF radar currents (Hoteit

et al., 2009; Ngodock et al., 2015). Near-surface currents can also be derived from the

changing positions of surface drifters, (Helber et al., 2023; Smith et al., 2023), but these
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measurements are sparse compared to the scales of variability in ocean currents. Globally,

this limited availability of ocean current measurements means they are generally not

assimilated operationally (Waters et al., 2024a). The ocean currents are instead estimated

through their balance relationships with other ocean variables which are observed.

Recently proposed satellite missions, such as Harmony, the next European Space

Agency (ESA) Earth Explorer 10 mission (Stoffelen, 2022), aim to accurately measure

ocean surface current velocities from space, presenting an opportunity to assimilate

velocity current data. To fully leverage these potential future measurements, it is

imperative that we improve current ocean data assimilation systems to effectively integrate

these observations. Idealised experiments in Waters et al. (2024b) demonstrate the

potential impact of satellite surface current data, showing significant improvements in

the quality of ocean analyses and forecasts. The aim of this work is to further improve

the assimilation of such data.

To solve the variational data assimilation we often perform a transformation from the

model variables to control variables, that we assume to be uncorrelated. This is known as

the control variable transform (CVT) (Lorenc et al., 2000; Parrish and Derber, 1992). In

this thesis, we focus on the velocity control variables used in NEMOVAR. NEMOVAR is

a variational data assimilation software used with the ‘Nucleus for European Modelling of

the Ocean’ (NEMO) model. It is used operationally at the UK Met Office (Barbosa Aguiar

et al., 2024) and the European Centre for Medium-Range Weather Forecasts (ECMWF)

(Balmaseda et al., 2013).

Due to the limited observations of horizontal velocities in the ocean, the velocity

variables selected in the control space currently have no impact on the assimilation

of observed variables (e.g. temperature, salinity and sea surface height (SSH), Lea

et al. (2014)). The velocities are updated based on balance relationships with observed

variables. When actively assimilating these future surface current measurements, the

transformed velocity variables will have a much greater impact on the assimilation, as the

velocity control variables will directly update the velocities. In NEMOVAR, the control

variable transform involves using the inverse of a balance operator to decompose state

variables into balanced and unbalanced components. The transformed velocity variables

are the ageostrophic components of the horizontal velocity vector (Weaver et al., 2005).

However, since the ageostrophic velocities are components of the same vector, we expect
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them to be highly correlated, which undermines the assumption of uncorrelated variables.

Therefore, we seek alternative velocity control variables to be used in variational ocean

data assimilation.

Commonly in atmospheric data assimilation the velocities are split into their

non-divergent (streamfunction) and irrotational (velocity potential) components, using

Helmholtz Theorem. The velocity control variables are then based on these components.

The uncorrelated assumption is more suitable for these control variables than the velocities

themselves (Daley, 1993). The application of the atmospheric methods for the velocity

CVT is challenging in the ocean due to the presence of coastlines. These introduce

complications when solving elliptic equations, as they require handling complex boundary

conditions. The transformation from the velocities to their non-divergent and irrotational

parts has been discussed in previous studies such as Lynch (1989) and Watterson (2001).

They propose various boundary conditions to impose on streamfunction and velocity

potential. Li et al. (2006) notably address the difficulty in specifying explicit boundary

conditions to streamfunction at coastal boundaries. They suggest a method that involves

adjusting the discretised location of the streamfunction on the computational grid to avoid

specifying explicit boundary conditions.

Beyond the issue of boundary conditions, a CVT based on Helmholtz decomposition

may help reduce spurious vertical motions produced by ocean data assimilation. Such

motions are a known issue in ocean models (Ford and Barciela, 2017). By separating the

velocity field into non-divergent and irrotational components, the decomposition has the

potential to better control these vertical motions introduced by data assimilation.

In this work, we demonstrate using ageostrophic streamfunction and velocity potential

as velocity control variables in the ocean, by adopting the method proposed by Li et al.

(2006). This thesis investigates how we implement these alternative control variables in

NEMOVAR and whether they have the potential to improve the analyses produced. We

aim to answer the following research questions:

1. What numerical challenges and implications arise from the discrete

transformation of the velocities to their irrotational and non-divergent

parts?

• We implement the transformation to ageostrophic streamfunction and velocity
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potential within an idealised shallow water model framework.

• We identify two distinct approaches for discretising this transformation and

provide a detailed analysis of their implications on the boundary conditions,

an aspect that has been largely overlooked in previous studies.

• We uncover a previously unreported issue of grid-scale noise arising from the

transformation. We assess its impact on the data assimilation performance and

discuss methods to mitigate it.

2. How can the discretisation of this transformation be extended from an

idealised framework to application within a realistic ocean model?

• We implement the transformed velocity variables within an operational

variational data assimilation system (NEMOVAR) and integrate them into

a complex multivariate balance operator.

• We conduct a detailed sensitivity analysis of key transformation parameters,

providing guidance on their optimal settings and assessing their influence on

the transformation.

• We discover that the grid-scale noise identified in the idealised model also

emerges in this more complex, realistic setting. We offer practical solutions

and implementation strategies to address this issue in operational contexts.

3. What are the implications of using these alternative velocity variables in

variational data assimilation, and how do these variables respond to the

assimilation of velocity observations?

• We carry out the inaugural assimilation experiments using the transformed

velocity variables within NEMOVAR, using idealised ocean current

observations.

• We compare the performance of the transformed variables against the current

operational CVT and demonstrate their potential to improve the quality of the

resulting analysis.

• We perform a novel investigation into the influence of these variables on vertical

velocity fields, offering new insights into their role.
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These research questions lead us to three key results:

1. We design a novel control variable transformation using alternative velocity

variables for use in NEMOVAR.

2. We discover new implications of implementing this transformation that emerge

from a detailed mathematical analysis.

3. We demonstrate the potential for improving the assimilation of future ocean

current measurements using the new control variable transformation.

1.1 Outline

This thesis is structured as follows.

Chapter 2 will introduce some of the key mathematical concepts that are essential

to this work. We begin with Helmholtz theorem which underpins the variable

transformations used throughout the thesis. We then present the general matrix inversion

problem, highlighting issues that lead to ill-posed problems. This leads onto the discussion

of regularisation, which can be used to deal with ill-posed problems. Following this, we

explore other important mathematical tools, including filtering, Fourier transforms, the

Laplacian operator and error metrics — all of which play an important role in this work.

Chapter 3 will introduce ocean data assimilation. This starts with a brief overview

of key oceanographic concepts, including geostrophic balance. We then explain the

importance of ocean forecasts and introduce data assimilation. Among the various

data assimilation techniques available, this work focuses on variational data assimilation,

particularly the incremental formulation. We represent the error statistics using control

variable transformations, which we introduce. We then specify the current control

variables that are used in atmospheric and ocean data assimilation, providing a discussion

of the current limitations of the velocity control variables in ocean data assimilation.

Finally, we present the alternative control variable transform that we propose to improve

ocean variational data assimilation.

Chapter 4 introduces the shallow water equations, which are used as a simplified

model to investigate the proposed velocity control variables. We describe the model

equations and detail their discretisation using a semi-implicit semi-Lagrangian scheme.
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We then outline the process of applying the proposed control variable transformation

within the shallow water model, highlighting the complexities introduced by boundary

conditions. During the computation of the alternative velocity control variables, we

encounter a numerical issue, known as the checkerboard pattern. This chapter presents

the issue both analytically and numerically using the shallow water model. We propose

a potential solution to this numerical issue — while acknowledging its own limitations.

Chapter 5 extends the investigation of chapter 4 to NEMO. Here, we implement

these alternative velocity control variables in NEMOVAR and evaluate the transformation

using a configuration of the NEMO model known as the GYRE configuration. We firstly

introduce the NEMO model, the NEMOVAR data assimilation system, and the GYRE

configuration. Next, we describe the implementation of the control variables within the

NEMOVAR balance operator. We investigate the sensitivity of this transformation to

various parameters and identify the settings that are most suitable for this study. The

transformation to the alternative velocity control variables is then performed, and we

demonstrate that the checkerboard issue observed in chapter 4 also arises in NEMOVAR.

This is shown numerically using the GYRE configuration. Finally, we discuss the proposed

solution to this issue and evaluate its sensitivity and limitations.

Chapter 6 builds on the work of chapter 5 and uses the GYRE configuration to

perform idealised assimilation experiments in NEMOVAR with the proposed velocity

control variables. We describe the experiment aims and set-up, detailing the observations,

background, nature run, control and assimilation experiments. We also discuss the

methods of comparison used to evaluate the analyses produced by the experiments. We

perform assimilation experiments with the previous and alternative control variables, these

include single observation experiments. The aim is to demonstrate that the alternative

control variables have the potential to improve the analysis. We evaluate the effect of

the proposed control variables on the magnitudes of the vertical velocities, which is a

potential benefit of these new variables. Additionally, we investigate the sensitivity of the

analysis results to the choice of error standard deviations.

Chapter 7 contains the main conclusions of this work. We summarise the key findings

for the analytical and numerical experiments performed using the shallow water model

and GYRE configuration. From these we draw conclusions regarding the appropriateness

of the alternative velocity control variables proposed for NEMOVAR. Finally, we offer
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suggestions on further work to be done to progress the implementation of these variables

operationally.

We now introduce the mathematical concepts integral to this thesis.
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Chapter 2

Mathematical background

In this chapter, we introduce the key mathematical concepts that underpin the methods

and analyses presented throughout this work. This chapter aims to equip the reader with

the foundational tools necessary to fully engage with the mathematical framework of the

project.

2.1 Helmholtz theorem

A core principle used throughout this work is the decomposition of a vector field into its

rotational (non-divergent) and divergent (irrotational) components, a result formalised

by the Helmholtz Theorem. The Helmholtz decomposition was introduced by Helmholtz

(1858). This foundational theorem in fluid dynamics is particularly valuable, as it enables

the simplification of vector fields by isolating properties such as incompressibility and

vorticity (Bhatia et al., 2012). Beyond fluid dynamics, Helmholtz theorem finds wide-

ranging applications in fields including astrophysics, robotics, computer graphics, and

imaging (Bhatia et al., 2012). Here, we present the generic Helmholtz Theorem for a field

and then specify how this can be applied to a velocity field.

Theorem 2.1.1 (Helmholtz Theorem) (Denaro, 2003) Any smooth vector field f :

R3 → R3 can be expressed as the sum of the gradient of a scalar potential, D, and the

curl of a vector potential, −→
R ,

f = ∇D + ∇ ×
−→
R (2.1)

where ∇D is irrotational (∇ × ∇D = 0) and ∇ ×
−→
R is non-divergent (∇ · ∇ ×

−→
R = 0).
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2.1.1 Uniqueness and boundary conditions

It is important to consider whether Helmholtz Theorem can be applied uniquely to a

particular field. In domains where the decomposition is not unique, a component of

the flow exists that is both non-divergent and irrotational, this is called the harmonic

component (Bhatia et al., 2012; Schoder et al., 2020).

The uniqueness of the Helmholtz decomposition was proven in unbounded domains

by Blumenthal (1905) when a vanishing condition at infinity is imposed. This states that

the field vanishes at infinity and as such the irrotational, non-divergent and harmonic

component must also do the same. Blumenthal (1905) shows that the only harmonic

component to vanish at infinity is the zero function. This follows from the maximum

principle. As such the decomposition is unique.

In a bounded domain, a non-zero harmonic function may be present. However, certain

boundary conditions can enforce a unique decomposition. Bhatia et al. (2012) provide

an in-depth analysis of the uniqueness of Helmholtz Theorem. In particular they state

that a unique decomposition can be obtained if either of these boundary conditions are

satisfied:

• the irrotational component is normal to the boundary, i.e. ∇D × −→n = 0;

• the non-divergent component is parallel to the boundary, i.e. ∇ ×
−→
R · −→n = 0;

where −→n is the outward normal to the boundary. These boundary conditions can be

simplified and uniqueness is also satisfied if there is no flow on the boundary. This

theorem can be extended to a velocity field. Therefore, uniqueness would require zero

velocity at the boundary.

Theorem 2.1.2 (Helmholtz Theorem for a horizontal velocity field)

The horizontal velocity field, v ≡ (u, v) - where u is the zonal velocity and v is the

meridional velocity - can be decomposed into rotational and divergent parts,

v = vψ + vχ (2.2)

where

vψ = [k × ∇ψ]h, vχ = [∇χ]h. (2.3)

27



Here ψ is the streamfunction, χ is the velocity potential and k is the unit vector in the

vertical. As ∇ is a 3D gradient operator, we take the horizontal components of each of

these terms, denoted by h.

This is equivalent to,

u = −∂ψ

∂y
+ ∂χ

∂x
(2.4)

and

v = ∂ψ

∂x
+ ∂χ

∂y
(2.5)

where (x, y) is the 2D spatial coordinate. From Helmholtz Theorem we can deduce the

Poisson equations for divergence, D, and vorticity, ξ,

D = ∂u

∂x
+ ∂v

∂y
= ∇2

hχ, (2.6)

ξ = ∂v

∂x
− ∂u

∂y
= ∇2

hψ. (2.7)

In this work, we apply the Helmholtz decomposition to partition the oceanic

velocity field into its irrotational and non-divergent components. We further examine

the conditions under which this decomposition is unique within the ocean domains

considered.

2.2 The matrix problem

Throughout this work, we encounter discrete linear systems that arise in the form of

matrix equations. Consider the generic matrix problem,

Ax = b (2.8)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm. The direct problem of computing b from x is

usually well-defined. However, the inverse problem, solving (2.8) for x given b, requires

more careful consideration. If A is a square matrix, i.e. m = n, a unique solution to the

inverse problem exists if and only if,

• A is non-singular,

• the determinant of A is non-zero, i.e. det(A) ̸= 0, A is invertible,
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• A is full rank, i.e. rank(A) = n,

• the kernel of A = 0,

• A has linearly independent rows and columns.

These statements are all equivalent. If m ̸= n, we can redefine the matrix problem, (2.8),

as a least squares problem (Golub et al., 1999),

min
x

∥Ax − b∥2. (2.9)

Direct problems are typically well-posed whereas inverse problems are often ill-posed

(Groetsch, 1993), whereby small changes in b will lead to large changes in the solution,

x. Hansen (1997) discusses different methods used to deal with ill-posed problems and

in this work we use regularisation. This replaces an ill-posed linear system with a nearby

system that is less sensitive to perturbations. In the next section we discuss Tikhonov’s

regularisation.

2.2.1 Tikhonov’s regularisation

Regularisation methods are used to deal with non-unique or underdetermined problems.

Tikhonov (1963) and Phillips (1962) independently introduced Tikhonov’s regularisation,

which involves adding a term to the linear system (2.9) to give

min
x

{
∥Ax − b∥2

2 + µ∥x∥2
2

}
(2.10)

where µ is a positive and finite regularisation parameter (Hanke and Hansen, 1993). This

parameter controls the weight of the regularisation term relative to the residual norm

(Hansen, 1997), determining how sensitive the regularised solution is to the error in b

(Calvetti and Reichel, 2003). If µ is chosen too small, the regularised equation remains

too close to the original ill-posed problem, retaining its instability. Conversely, if µ is

too large, the solution becomes overly smooth and may no longer accurately reflect the

original problem. Determining an optimal regularisation parameter is a challenging task

(Groetsch, 1993, 1984).

There are multiple methods discussed in the literature to determine the value of the

regularisation parameter and this determination is problem dependent. A particular
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method, called the L-curve, is concluded as the most robust method according to Hansen

(1997). The L-curve involves plotting the logarithm of the regularised solution against the

logarithm of the residual norm for multiple values of µ. The result is an L-shaped curve,

where the vertex represents the optimal regularisation parameter, which is a compromise

between the perturbation and regularisation error. While this thesis does not make use

of this method, sensitivity tests are applied instead. The method is recommended for

consideration in future studies.

2.2.2 Numerical minimisation algorithms

As discussed, we look to minimise linear systems such as (2.10). This requires numerical

minimisation algorithms. One particular algorithm is known as the conjugate gradient

(CG) method.

The CG method is a well-known algorithm for solving symmetric, positive definite

systems of linear equations in the form of (2.8) and for minimising unconstrained non-

linear functions, combining simplicity with computational efficiency (Nocedal and Wright,

2006; Nazareth, 2009; Shewchuk et al., 1994). The CG method improves upon the steepest

descent approach by generating conjugate directions, leading to faster convergence. It

is especially effective for large, sparse systems where direct methods like Cholesky

decomposition are impractical due to memory constraints, making it a popular and

practical approach in computational linear algebra and non-linear optimisation (Nazareth,

2009; Shewchuk et al., 1994).

In this work, we use the CG method to minimize the linear systems that arise. This

choice is motivated by the large, sparse linear systems typical in data assimilation, for

which CG offers both efficiency and scalability compared to alternative methods.

2.3 Shapiro filter

Numerical solutions to non-linear systems in meteorological and oceanic applications are

often prone to the spurious growth of short-wavelength components, which necessitates

the use of smoothing or filtering techniques to maintain stability and accuracy (Phillips,

1959; Shapiro, 1970).
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Spatial filters are widely employed in computational physics to smooth data fields and

control numerical noise (Falissard, 2017). In particular, low-pass filters are commonly

used in applications such as weather forecasting and computational fluid dynamics

to selectively damp high-frequency components while preserving physically relevant

structures (Falissard, 2015, 2017). Shapiro filters are standard in various high-resolution

models across geophysical and engineering disciplines (Falissard, 2013, 2017), these are

high-order explicit filters capable of removing spurious grid-scale oscillations without

affecting the large-scale features of the solution (Shapiro, 1970, 1971, 1975).

Shapiro filters operate as linear low-pass filters that target and eliminate 2∆-scale

waves—oscillations that span two grid intervals—while minimising the damping of long-

wavelength components (Shapiro, 1975; Falissard, 2013). They are constructed with

2n-order accuracy and a (2n + 1)-point stencil and they ensure strong attenuation

of high-frequency noise while maintaining numerical fidelity (Falissard, 2013, 2015).

Although widely adopted in interior domains, their application near boundaries remains

more challenging, and a few adaptations have been proposed to address this limitation

(Falissard, 2015).

This work uses the 2D second-order Shapiro filter. Let us consider a 2-dimensional

field, X ∈ Rn×p. The output Y ∈ Rn×p, of applying the 2D second-order Shapiro filter is

as follows (Shapiro, 1970):

Yi,j = 1
16(4Xi,j+2(Xi−1,j+Xi+1,j+Xi,j−1+Xi,j+1)+Xi+1,j+1+Xi+1,j−1+Xi−1,j+1+Xi−1,j−1),

(2.11)

∀(i, j) ∈ [1, n] × [1, p]. The relevant boundary conditions must be applied to Xi,j for

i = 0, n+ 1 and j = 0, p+ 1. Here, we formulate the Shapiro filter using finite differences

on a rectilinear grid, for reasons that will be discussed later in this work.

The Shapiro filter is applied to address a key numerical artifact revealed in this work,

which we discuss in chapters 4 and 5. In these chapters, we also describe how boundary

conditions are enforced when applying the Shapiro filter.

2.4 Fast-Fourier transform

The Fourier transform is a mathematical tool we exploit during this work. It is a type

of integral transform, in which any waveform can be re-written as the sum of sinusoidal

31



functions. The Fourier transform of an integrable function f : R → C is defined as

F{f(t)} = f̂(k) =
∫ ∞

−∞
e−2πiktf(t)dt (2.12)

and the inverse, if it exists, is defined as

F−1{f̂(k)} = f(t) =
∫ ∞

−∞
e2πiktf̂(k)dk. (2.13)

The discrete Fourier transform (DFT) of a function fj, where j = 0, .., N , is given by

Fn =
N−1∑
j=0

fje
−2πinj/N (2.14)

where k is the wavenumber. The inverse discrete Fourier transform is given by

fj =
N−1∑
n=0

Fne
2πinj/N . (2.15)

Given a 2D array with N1 rows and N2 columns and entries fj,k we define the 2D DFT as

Fm,n =
N2−1∑
k=0

e−2πikn/N2

(N1−1∑
j=0

e−2πijm/N1fj,k

)
. (2.16)

This is found by taking the DFT of each row and then column of the original matrix.

The Fast-Fourier transform (FFT) is a highly efficient algorithm for computing the

DFT, reducing computational complexity from O(N2) to O(N logN) by exploiting the

iterative structure of DFT coefficients (Cooley and Tukey, 1965; Cochran et al., 1967;

Cooley et al., 1969). In addition to significantly lowering computation time, the FFT

also minimises round-off errors. A detailed historical account of the FFT is provided by

Cooley et al. (1967). Later in this work, we use the FFT to analyse field signals suspected

of containing numerical artifacts.

2.5 Laplacian with Neumann boundary conditions

We now introduce the Laplacian matrix with certain boundary conditions. We previously

discussed the Poisson equations that can be derived from the Helmholtz decomposition in

section 2.1. In this work we discuss solving these equations numerically for streamfunction

and velocity potential. This involves solving Poisson equations with Neumann boundary

conditions. Consider a 1D Laplacian operator,

∇2ψ = ∂2ψ

∂x2 . (2.17)
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The discrete Laplacian matrix, with Neumann boundary conditions, is

1
(∆x)2



−1 1 0 . . . . . 0 0

1 −2 1 0 . . . . 0 0

0 1 −2 1 0 . . . 0 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

0 0 . . . 0 1 −2 1 0

0 0 . . . 0 0 1 −2 1

0 0 . . . . . 0 1 −1


where ∆x is the grid-spacing. Now, consider a 2D Laplacian operator,

∇2ψ = ∂2ψ

∂x2 + ∂2ψ

∂y2 . (2.18)

The discrete Laplacian matrix, with Neumann boundary conditions, is


−((∆x)−2 + (∆y)−2) (∆x)−2 0 . 0 (∆y)−2 0 . . 0

(∆x)−2 −((∆x)−2 + 2(∆y)−2) (∆x)−2 0 . 0 (∆y)−2 0 . 0

0 . 0 (∆y)−2 0 . 0 (∆x)−2 −((∆x)−2 + 2(∆y)−2) (∆x)−2

0 . . 0 (∆y)−2 0 . 0 (∆x)−2 −((∆x)−2 + (∆y)−2)

 . (2.19)

It is evident that both matrices are tridiagonal and symmetric. They are also singular,

as they have non-empty null spaces, spanned by the vector (1, ...., 1)T. These matrices

include both negative and zero value eigenvalues. To solve these Laplacian equations

with Neumann boundary conditions, it is necessary to reformulate the problem into

an equivalent form involving a modified matrix with positive eigenvalues, ensuring the

existence of a unique and stable solution.

2.6 Error metrics

In the final chapters of this thesis we use various error metrics. In chapter 5 these are

used to assess reconstruction errors and in chapter 6 these are used to assess the analyses

produced by various assimilation experiments. Here we define these metrics.

Suppose we have an analysis generated by an experiment, xa, and some form of truth,

xt. A method that can be used to assess the error is the root mean square error (RMSE).
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The RMSE is given by,

RMSE =
√√√√ 1
n

n∑
k=1

(xak − xtk)2 (2.20)

where k indicates the sampling over time or space. The RMSE is the square root of

the mean squared error (MSE). The MSE can be decomposed into variance and bias

components, so the RMSE reflects both the random (variance) and systematic (bias)

aspects of the analysis error. However, unlike the MSE, the RMSE retains the units of

the analysis variable being more easily interpretable as a typical error magnitude (Wilks,

2011). When the analysis is perfect the RMSE is zero. The larger the RMSE the worse

the accuracy of the analysis.

An assessment of the mean can be demonstrated using the mean absolute error (MAE),

defined as follows

MAE = 1
n

n∑
k=1

|xak − xtk|. (2.21)

The MAE is the arithmetic average of the absolute values of the differences between the

members of each pair of analysis and truth. The MAE is zero if the analysis is perfect

and increases as the discrepancies between the pair become larger (Wilks, 2011).

RMSE is commonly used as the standard statistical tool when evaluating model

performance in meteorological and climate science (Chai and Draxler, 2014). However

MAE is also a useful tool and Williamson et al. (1992) discusses the advantages of using

MAE over RMSE. In contrast, Chai and Draxler (2014) highlight the benefit of using

RMSE in certain circumstances. Hodson (2022) notes that statistically neither metric is

inherently better, this is dependent on the distribution of the errors.

The final metric is the standard deviation of the error, which reveals how the variability

of the truth has been captured in the analysis. This is given by,

σ =
√∑n

k=1 |ϵk − ϵ̄|2
n

(2.22)

where ϵk = xak − xtk and ϵ̄ = 1
n

∑n
k=1 ϵk is the mean error.

2.7 Summary

In this chapter, we have presented the fundamental mathematical tools that will be utilised

in the subsequent chapters. In the next chapter, we introduce ocean data assimilation,
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outlining the specific methodologies and providing context for the work presented in this

thesis.
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Chapter 3

Ocean data assimilation and the

control variable transform

This chapter introduces ocean data assimilation (DA) and the variable transformations

within DA. The goal is to provide the background and motivation necessary for the

chapters and work that follow.

We first introduce fundamental ocean concepts before delving into data assimilation

techniques. We present the concept of variational data assimilation, in particular,

three-dimensional variational data assimilation (3D VAR). We describe the incremental

formulation of 3D VAR, and introduce 3D VAR first guess at appropriate time (FGAT).

These variational methods are commonly used in the ocean and will be the main focus

of this work. We then establish the control variable transform (CVT), a variable

transformation commonly used within the incremental formulation of variational data

assimilation to deal with the complexity of the background error covariance matrix. We

demonstrate the process of the CVT within incremental 3D VAR. We finally discuss the

use of the CVT in both the atmosphere and ocean operationally, providing context for

the interest in defining new velocity control variables in the ocean. We outline the control

variables we propose to be used in the ocean and a numerical approach for implementing

them.
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3.1 Ocean concepts

The oceans, spanning approximately 71% of the Earth’s surface (Lalli and Parsons, 1997;

Stewart, 2008), represent a vast and crucial component of our planet. The ocean plays

a critical role in global systems. Given its vastness, it is essential that we accurately

understand the processes occurring within it and make reliable forecasts about its future

state.

Ocean data assimilation is key to enhancing the accuracy of ocean model forecasts

and reanalysis, bringing them closer to real-world conditions. Ocean forecasts are

important for a variety of applications, such as monitoring water quality (Novellino

et al., 2024); coastal management (Drévillon et al., 2008); mitigating storm damage and

flooding of coastal areas (Kourafalou et al., 2015); Navy operations (Burnett et al., 2014);

understanding and prediction of marine animal species and ship navigation (Dickey, 2003).

In particular, the forecasts of ocean currents are essential for marine safety and offshore

operations (Waters et al., 2024b). By advancing the current ocean data assimilation

systems, we have the capability to improve numerical weather predictions and future

climate forecasts (Sluka et al., 2016; Zhang et al., 2020). The ocean and atmosphere

drive each other (Stewart, 2008) and coupled ocean-atmosphere systems are now run

operationally (Guiavarc’h et al., 2019).

Ocean data assimilation is reliant on observations of ocean variables. Commonly,

observations of sea surface temperature (SST), sea surface height (SSH), temperature

and salinity, are assimilated in operational systems (Lea et al., 2014). These observations

consist of satellite SST; in situ SST data from drifting buoys, ships and moored buoys;

temperature and salinity profile data from various sources such as Argo floats (Atkinson

et al., 2014); and sea level anomaly (SLA) data from satellite altimetry.

However, there is limited availability of surface current velocity measurements globally.

In situ measurements of ocean currents are available around some coastlines from high-

frequency (HF) radars. These ocean currents derived from HF radar allow some coastal

data assimilation systems to assimilate HF radar currents (Hoteit et al., 2009; Ngodock

et al., 2015). Near-surface currents can also be derived from the changing positions

of surface drifters. Helber et al. (2023) and Smith et al. (2023) describe their two-

step method for assimilating ocean drifter measurements, but these measurements are
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sparse compared to the scales of variability in ocean currents. Additionally, the open

ocean ADCPs (Acoustic Doppler Current Profilers) provide some isolated measurements

of ocean currents. Isern-Fontanet et al. (2017) provide an extensive review of ocean

surface current measurements and what is assimilated. Globally, this limited availability

of ocean current measurements means they are generally not assimilated operationally

(Waters et al., 2024a). The corrections to the ocean currents are estimated through their

balance relationships with other ocean variables which are observed. This lack of velocity

observations leads to them being poorly constrained in ocean data assimilation.

This gap highlights the need for improvements in the treatment of surface currents

within ocean data assimilation frameworks. Several recently proposed satellite missions

aim to address this limitation by measuring ocean surface current velocities from space.

These include Harmony, the next European Space Agency (ESA) Earth Explorer 10

mission (Stoffelen, 2022); SKIM, a previous ESA Earth explorer 9 candidate (Ardhuin

et al., 2019); SEASTAR, a previous ESA Earth Explorer 11 candidate (Gommenginger

et al., 2019) and the NASA Earth System Explorers Mission concept ‘Ocean Dynamics

and Surface Exchange with the Atmosphere’ (ODYSEA, 2023). These satellites employ

different measurement techniques: some infer ocean surface currents using Doppler-based

methods, others use radar. The Harmony mission is set to launch in 2029 and uses

synthetic aperture radar. To fully leverage these potential future measurements, it is

imperative that we improve current ocean data assimilation systems to effectively integrate

these observations. Idealised experiments have shown the potential impact of satellite

surface current data with Waters et al. (2024b) having shown large improvements in the

quality of ocean analyses and forecasts. The aim of this work is to further improve

methods for assimilating such data. This thesis develops an assimilation approach, which

is necessary for determining how to best extract information from these proposed satellites.

Efficiently utilising future ocean current measurements hinges on leveraging the

balance relationships present in the oceans. Some fundamental relationships are described

in detail by Weaver et al. (2005). Given our focus on surface currents, the geostrophic

balance relationship is of primary interest.
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3.1.1 Geostrophic balance

The horizontal momentum equations are derived from the continuity equations and

Newtons 2nd law. They can be used to describe the motion of a 2D stratified, rotating,

incompressible fluid with uniform density, as follows

Dv
Dt

+ fk × v + 1
ρ0

∇p = F (3.1)

where t is time, x =(x,y) is the 2D spatial coordinate, v(x, t) = (u, v) is the horizontal

velocity vector, p is pressure and k is the unit vector in the vertical. Any additional

forcing is represented by F, ρ0 is the uniform density and f = 2Ω sinφ is the Coriolis

parameter where Ω is the Earth’s rotation rate and φ is latitude (Gill, 2016). The Earth’s

rotation produces the Coriolis force (Stewart, 2008). The smallness of the Rossby number

is a measure of the significance of rotation for a particular phenomenon, and as such is a

key measure of the importance of the Coriolis force (Friedlander and Serre, 2002). The

Rossby number is given by

R = U

fL
(3.2)

where L is the characteristic length scale of the motion and U is the horizontal velocity

scale characteristic of the motion. Large-scale flows are defined as those with sufficiently

large L and as such a small Rossby number. These flows experience a strong Coriolis

force (Pedlosky, 2013).

Geostrophic balance is the approximation of most large-scale flows in the ocean at

mid-latitudes where the Coriolis force balances the horizontal pressure gradient. We can

derive the geostrophic balance equations from the momentum equations (Stewart, 2008),

us = − 1
fρ0

∂p

∂y
and vs = 1

fρ0

∂p

∂x
. (3.3)

Near the surface of the ocean, the shallow pressure is related hydrostatically to the

elevation of the sea surface, η, by p = gρ0η, where g is gravitational acceleration (Stewart,

2008). Therefore the near-surface geostrophic flow can be calculated from sea surface

height as

us = − g

f

∂η

∂y
and vs = g

f

∂η

∂x
. (3.4)

Having presented some key concepts of oceanography, we now discuss data assimilation

more generally.
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3.2 Variational data assimilation

Data assimilation (DA) combines observations and a background estimate (from a

numerical model), weighted by their uncertainties, to give optimal initial conditions

for a numerical forecast (Kalnay, 2003). DA is used in various fields such as ocean

modelling (Anderson et al., 1996) and numerical weather prediction (Lorenc, 1986). It is

a particularly innovative and useful process as it takes into consideration our knowledge

of the errors of the observed data and numerical model.

Variational data assimilation formulates the data assimilation problem as a least

squares problem, which involves minimising a cost function. This cost function combines

the observed and model (background) data, weighted by their uncertainties (Lorenc, 1986;

Talagrand and Courtier, 1987). These uncertainties are represented as error covariance

matrices. In variational DA we assume that the background and observation uncertainties

can be described by Gaussian distributions. Gaussian distributions are given by their

mean and covariance only. Therefore, we represent the errors in the background and

observations through their covariances. A benefit of variational data assimilation is its

adaptability to various observations. Observed data comes from many sources, satellites,

for example, and these observations can be indirectly related to the quantities we are

trying to forecast. Additionally, observations may not be at the same locations as our

model grid points. Variational DA is equipped to adapt to these situations through the

non-linear observation operator, which maps the model state to the observations to enable

an appropriate comparison.

In variational data assimilation, numerical minimisation methods are used to

iteratively minimise cost functions (Lorenc, 1986). The minimiser of the cost function is

known as the analysis, xa. There are two main branches of variational data assimilation:

three-dimensional variational assimilation (3D VAR) and four-dimensional variational

assimilation (4D VAR). 3D VAR assimilates observations at a given time, as shown in

figure 3.1a. Observations are only distributed in space. Whereas 4D VAR allows for

observations to be distributed in time. As seen in figure 3.1b, observations are compared

to the evolving model state, which is fully determined by the initial conditions. Thus, the

method focuses on estimating the initial state that leads the model to best fit observations

throughout the assimilation window.
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(a) 3D VAR (b) 4D VAR

Figure 3.1: Variational data assimilation schemes.

We focus our attention on 3D VAR. The cost function, J (x) (with x ∈ Rn), to

be minimised in 3D VAR is formulated as a non-linear least squares problem, where

information from the observations and background are combined. This gives,

J (x) = 1
2(x − xb)TB−1(x − xb) + 1

2(y − h(x))TR−1(y − h(x)) (3.5)

where xb ∈ Rn is the background state, B ∈ Rn×n is the background error covariance

matrix, y ∈ Rp is a vector of observations, h : Rn → Rp is the (potentially) non-linear

observation operator, and R ∈ Rp×p is the observation error covariance matrix. We now

explain each of these terms.

The background state, sometimes referred to as the a priori estimate, describes an

estimate of our current state before information from the latest observations is accounted

for. This is often generated from a previous run of an assimilation cycle. In variational

data assimilation the background distribution is assumed to be a Gaussian distribution

with mean xb and error covariance B. B specifies the covariance of the background

forecast errors, and largely determines how information is spread from observed variable

locations to unobserved points in space and also other unobserved variables (Bannister

et al., 2008). The observation operator maps the state vector to observation space. This

enables a comparison between the model and observations. Finally, the likelihood function

is assumed to be a Gaussian with mean y and error covariance R.
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We need to minimise (3.5) in order to find the analysis, xa. This usually involves

using a gradient descent algorithm such as the conjugate gradient method (see section

2.2.2). These algorithms require the gradient of the cost function at each iteration of the

minimisation. The gradient is given by

∇J (x) = B−1(x − xb) − HTR−1(y − h(x)), (3.6)

which requires the adjoint operator HT ∈ Rp×n. The tangent linear operator, H, is the

observation operator linearised about the current state (Waller et al., 2017). We now

introduce the incremental formulation of variational data assimilation.

3.2.1 Incremental 3D VAR

In practice, the minimisation of non-linear functions in variational data assimilation can

be computationally expensive, especially in 4D VAR due to the need to integrate a non-

linear model and an adjoint repeatedly (Lawless et al., 2005). To reduce computational

cost, an incremental approach was proposed (Courtier et al., 1994) whereby we solve the

DA problem in terms of increments to the background. Here, the cost function with non-

linear constraints (3.5) is replaced by a series of linear least-squares cost functions with

linear constraints (Courtier et al., 1994; Lawless et al., 2005). These cost functions are

quadratic and can be minimised iteratively.

We define x(k) to be the kth estimate of the solution of (3.5). The next estimate will

be

x(k+1) = x(k) + δx (3.7)

where δx ∈ Rn is the increment and a solution of the following linearised cost function

(Lawless et al., 2005),

J (δx) = 1
2

(
δx− (xb−x(k))

)T
B−1

(
δx− (xb−x(k))

)
+ 1

2

(
Hδx−d(k)

)T
R−1

(
Hδx−d(k)

)
(3.8)

where d(k) = y − h(x(k)) is the residual vector, called the innovation vector when k = 0

(Kang et al., 2014). The gradient is given by

∇J (δ(x)) = B−1
(
δx − (xb − x(k))

)
+ HTR−1

(
Hδx − d(k)

)
. (3.9)
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The minimisation of (3.8) is known as the inner loop. This step is located within the outer

loop, where we update the previous estimate, using (3.7) (Lawless, 2013). The process of

implementing incremental 3D VAR, as described in Lawless et al. (2005), is as follows,

1. For the first iteration, k = 0, we choose the initial guess to be the background state,

x(0) = xb.

2. For k = 0, 1, ... we calculate the residual vector, d(k) = y − h(x(k)).

3. Minimise the quadratic cost function (3.8) for perturbation δx. The initial guess

will be δx = 0.

4. Update the estimate, x(k+1) = x(k) + δx.

5. Repeat steps 2 - 4 until desired convergence criterion is satisfied.

Here, step 3 is considered the inner loop and steps 2,4 and 5 the outer loop.

Incremental variational data assimilation significantly reduces the computational cost of

the minimisation in variational data assimilation as the inner loop can be performed at

a lower resolution to the outer loop and a simpler observation operator is used (Courtier

et al., 1994).

3.2.2 Incremental 3D FGAT

3D VAR is a suitable data assimilation method for dynamical systems where the change

is slow over the assimilation window. It is common for operational centres to compromise

between 4D VAR and 3D VAR by using 3D FGAT (first guess at appropriate time). 3D

FGAT differs from the 3D VAR we introduced in section 3.2.1 as it is a simplification

of 4D VAR; the time dependency is retained in the residual vector but the increments

are assumed constant in time (Lee et al., 2004; Weaver et al., 2003; Lorenc and Rawlins,

2005). This reduces the computational cost associated with 4D VAR. 3D FGAT is used in

some operational ocean DA systems which we discuss in section 3.4.2. Using incremental

3D FGAT, we now consider observations over a time window t = [0, J ]. The incremental

3D FGAT cost function is given by,

J (δx0) = 1
2

(
δx0−(xb0−x(k)

0 )
)T

B−1
(
δx0−(xb0−x(k)

0 )
)

+1
2

J∑
j=0

(
Hjδx0−d(k)

j

)T
R−1
j

(
Hjδx0−d(k)

j

)
(3.10)
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where d(k)
j = yj − hj(xj) and xj is calculated from x0 by evolving the non-linear model.

The gradient is given by

∇J (δ(x0)) = B−1
(
δx0 − (xb0 − x(k)

0 )
)

+
J∑
j=0

HT
j R−1

j

(
Hjδx0 − d(k)

j

)
. (3.11)

3.3 Control variable transform

The background error covariance matrix, B, is a particularly important component of

variational data assimilation, but can be difficult to represent. In practice, we are unable

to explicitly formulate B as a matrix due to its size. For example, a state vector can

be of length n = 109 as in the 1/12 degree global ocean NEMO model used at the Met

Office. As B is of size n × n, it is extremely large. To fully represent and manipulate

a matrix of this size is not feasible. Furthermore, finding the inverse of a matrix of this

size is impossible. A method used to avoid the need to calculate the inverse of B is the

control variable transform.

The control variable transform (CVT) is a well known concept in data assimilation and

was first introduced by Parrish and Derber (1992). It is commonly used in variational data

assimilation systems across the world. In the CVT, the assimilation is performed with a

set of variables, called the control variables, that differ from the original model variables

(Lorenc et al., 2000; Parrish and Derber, 1992). After the analysis is found in this new

control space, it is transformed back to the original model space. The control variables

are chosen such that their errors can be considered to be approximately uncorrelated,

thereby simplifying the structure of B in the control space.

The control variable transform is frequently used within the incremental formulation

of variational data assimilation (Lorenc et al., 2000), where we solve the data assimilation

problem in terms of increments to the background, as described in section 3.2.1. We

define a control variable δz̆ such that there is a transformation U to the model variables.

This is known as the U-transform:

δx = Uδz̆. (3.12)

The T-transform is the inverse, and allows a transformation from model to control space:

δz̆ = T δx. (3.13)
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Now the inner loop minimisation of the incremental 3D VAR cost function (3.8) is re-

written in terms of the control variables, δz̆,

J (δz̆) = 1
2

(
δz̆ − δz̆(k)

b

)T
UTB−1U

(
δz̆ − δz̆(k)

b

)
+ 1

2

(
HUδz̆ − d(k)

)T
R−1

(
HUδz̆ − d(k)

)
(3.14)

where δz̆(k)
b = T (xb−x(k)). As stated previously, the control variables, δz̆, are chosen such

that their errors can be assumed to be approximately uncorrelated. As such, in the case

where U is a square matrix, the background error covariance matrix of the control variables

is the identity matrix by definition. The U-transform replaces the calculations involving

the background error covariance matrix. As a result of this transform, we implicitly have

B = UUT. The cost function in control space no longer contains the original background

error covariance matrix and the calculation of B−1 is no longer necessary. This statement

is also valid when U is a rectangular matrix due to the minimisation procedure which

constrains δz̆ − δz̆(k)
b to the subspace spanned by UT (Ménétrier and Auligné, 2015).

Therefore, we can effectively re-write (3.14) as,

J (δz̆) = 1
2

(
δz̆ − δz̆(k)

b

)T(
δz̆ − δz̆(k)

b

)
+ 1

2

(
HUδz̆ − d(k)

)T
R−1

(
HUδz̆ − d(k)

)
. (3.15)

In fact, both the U- and T-transforms contain two transformations within them.

The first transforms between physical variables (parameter transform) and the second

transforms spatially (spatial transform),

U = UpUs and T = TsTp.

This gives B = UpUsUT
s UT

p . In the T-transform, the parameter transform removes the

correlations between variables and the spatial transform removes the spatial correlations.

The work in this thesis will be solely concerned with the parameter transform and we

do not go into detail regarding the spatial transform. Hereafter we use U to denote the

parameter transform.

3.3.1 Implementing the CVT within incremental 3D VAR

The following steps are performed to implement the CVT within incremental 3D VAR

(detailed in section 3.2.1),
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1. For the first iteration of the outer loop, k = 0, define the initial guess to be the

background state,

x(0) = xb.

2. Calculate the residual vector,

d(k) = y − h(x(k)).

3. We transform the background increment using the T-transform for iteration k,

δz̆(k)
b = T (k)(δx(k)

b ) = T (k)(x(k) − xb),

which is not necessary for the first iteration since δz̆(k)
b = 0.

4. Find the value of δz̆ that minimises

J (δz̆) = 1
2

(
δz̆ − δz̆(k)

b

)T(
δz̆ − δz̆(k)

b

)
+ 1

2

(
HUδz̆ − d(k)

)T
R−1

(
HUδz̆ − d(k)

)
.

5. Transform the solution using the U-transform for iteration k:

δx = U (k)δz̆.

6. Update the current guess:

x(k+1) = x(k) + δx.

7. Repeat the outer loop (steps 2 - 6) until desired convergence is reached.

The T-transform, used in step 3, can be avoided altogether if both the U- and T-

transforms remain static (Katz, 2007). In this case the background increment calculated

in step 3 becomes

δz̆(k+1)
b = δz̆(k)

b − δz̆(k). (3.16)

Although we have shown that the T-transform is not directly used to calculate the analysis,

the transformation is necessary for computing covariances of the control variables, which

are used as the background error statistics for the assimilation (Katz et al., 2011).
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3.4 Operational data assimilation systems

In this section we discuss some of the data assimilation systems used operationally, both

in the atmosphere and ocean. We emphasise the use of the control variable transform in

these systems. This will lead to the discussion of the alternative velocity control variables

that we propose for the ocean.

Commonly, the CVT in the ocean is based on physically-based balance relationships

derived from the equations governing the ocean circulation (Derber and Bouttier, 1999;

Weaver et al., 2005). Some state variables are split into their balanced and unbalanced

components, and the control variables are chosen from these. In particular, geostrophic

balance is used to find the balanced components of the velocities, as described in section

3.1.1. However, we firstly discuss atmospheric data assimilation.

3.4.1 Atmospheric data assimilation

Before exploring ocean data assimilation, we first briefly discuss atmospheric data

assimilation. A variety of data assimilation methods are used in atmospheric data

assimilation. An in-depth review of these different methods is given by Bannister (2017).

Variational data assimilation is commonly used and, in particular, the velocity control

variables used in the atmosphere are commonly based on Helmholtz Theorem. Recall

from section 2.1 that Helmholtz Theorem decomposes the horizontal velocities into their

irrotational (divergence) and non-divergent (vorticity) parts. It is often assumed in the

atmosphere that the rotational component of the flow is fully balanced, and that this

balance is entirely represented by the vorticity (Parrish and Derber, 1992; Katz et al.,

2011). In the Met Office atmospheric DA system it is assumed that streamfunction is

totally balanced, as streamfunction is the rotational component of the velocity, given

by the Poisson equation for vorticity (2.7). The Met Office control variables are

streamfunction, velocity potential and unbalanced pressure (Bannister, 2008; Lorenc et al.,

2000; Lorenc, 2003) where the balanced component of pressure is related to streamfunction

(vorticity) through the linear balance equation. Similarly, ECMWF assumes vorticity to

be totally balanced and uses vorticity, unbalanced divergence, unbalanced temperature

and surface pressure as their control variables (Derber and Bouttier, 1999). This has

recently been updated to also include humidity (Semane and Bonavita, 2025).
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Cullen (2003) and Katz et al. (2011) describe the benefit of using a CVT based on

potential vorticity rather than vorticity in the atmosphere. This allows for vorticity to

have both balanced and unbalanced components. However, this requires the solution of

a complex 3D elliptic problem, and as such vorticity is more commonly used.

We propose using a CVT based on Helmholtz Theorem in the ocean, but with differing

assumptions for the totally balanced variable, which we describe in section 3.5. Oceanic

data assimilation is quite different from atmospheric data assimilation for a number of

reasons:

• The presence of coastal boundaries.

• The temporal and spatial scales differ in the ocean.

• The observations in the ocean are more sparse than in the atmosphere, particularly

in the subsurface ocean.

For these reasons, the way data assimilation schemes are set up and applied in the ocean

can differ from their use in the atmosphere, as we will now discuss.

3.4.2 Oceanic data assimilation

There are various data assimilation schemes used in ocean data assimilation. In this

section, we describe some of the notable schemes used for both global ocean and regional

ocean applications, with a summary provided in table 3.1. As this table does not include

all ocean DA systems, a more thorough overview of operational ocean data assimilation

schemes is provided in Martin et al. (2024). This section then focuses on how the current

variational schemes in particular can be improved for assimilating future ocean current

measurements.

Global ocean data assimilation systems use a variety of sequential and variational

algorithms. Regional ocean models face different difficulties to the global ocean. The first

and most distinct is due to the presence of open boundaries that define a regional ocean.

Regional oceans are driven by more local features and are usually run at a much higher

resolution than global models (Edwards et al., 2015). For example, the Met Office global

ocean model runs at both 1/4° and 1/12° resolution (Mignac et al., 2025) whereas
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DA System
Developing/operating

institutions
References DA Method Domain

NEMOVAR (Nucleus

for European Modelling

of the Ocean Variational

DA system)

Met Office, ECMWF

(European Centre for

Medium-range Weather

Forecasts), CERFACS, INRIA

Weaver et al. (2005), Waters

et al. (2015), Zuo et al. (2019)

4D VAR, hybrid schemes. Operationally uses 3D FGAT with control

variables temperature, unbalanced salinity, unbalanced SSH and

unbalanced velocities.

Global and

regional

SAM2 (Système

d’Assimilation

Mercator)

Mercator, ECCC

(Environment and Climate

Change Canada)

Lellouche et al. (2013), Pham

et al. (1998), Lellouche et al.

(2018), Smith et al. (2016)

SEEK-FGAT (singular evolutive extended Kalman filter).

Background error covariances modelled by an ensemble of multivariate

3D anomalies from a multi-year hindcast simulation. 3D VAR scheme

provides correction for slowly evolving large-scale biases in

temperature and salinity.

Global and

regional

EnKF-C The Bluelink Partnership Brassington et al. (2023) Deterministic ensemble Kalman Filter. Global

NCODA 3D VAR

(Navy Coupled Ocean

Data Assimilation)

FNMOC (Fleet Numerical

Meteorology and

Oceanography Center),

NAVOCEANO (Naval

Oceanographic Office)

Smith et al. (2017), Cummings

et al. (2010), Cummings and

Smedstad (2013)

3D VAR Global

MOVE (Multivariate

Ocean Variational

Estimation)

JMA (Japan Meteorological

Agency)

Usui et al. (2015), Hirose et al.

(2019), Fujii et al. (2023)

MOVE/MRI.COM-G3 is a global scheme is composed of two schemes

of differing resoultion. MOVE-4DVAR is regional and uses 4D VAR

with control variables composed of amplitudes for the vertical coupled

temperature-salinity EOF modes

Global and

western north

pacific region

ROMS3DVAR

(Regional Ocean

Modeling System 3D

VAR)

JPL (Jet Propulsion

Laboratory)
Li et al. (2015)

Multiscale 3D VAR with control variables temperature, unbalanced

salinity, non-steric height and unbalanced velocities streamfunction

and velocity potential.

California

coastal region

ROMS 4D-Var
University of California, Santa

Cruz

Moore et al. (2011), Moore

et al. (2023)

4D VAR with control variables temperature, unbalanced salinity,

unbalanced SSH and unbalanced velocities.
Regional

OceanVar2 CMCC

Dobricic and Pinardi (2008),

Storto et al. (2016), Coppini

et al. (2023)

3D VAR with background errors split into horizontal and vertical

mode. Horizontal covariances are taken as Gaussian functions, vertical

covariances are represented by EOFs (Empirical Orthogonal

Functions).

Global and

Mediter-

ranean sea

Table 3.1: Ocean data assimilation systems from around the globe. Details of which institutions develop/run these, which DA scheme is used and the domain.
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their regional shelf seas model runs at 7km and 1.5km resolution (Tonani et al., 2019).

Regional data assimilation schemes are often more sophisticated, partly because the

smaller domain sizes make the use of advanced methods more computationally feasible.

Additionally, regional models must represent more complex processes, such as tides, which

play a significantly greater role in shallow coastal waters. Here we discuss the schemes

used in both global and regional domains.

Although variational methods are common in the ocean, Kalman filters are used by

some. The Système d’Assimilation (SAM2) of Mercator and Environment and Climate

Change Canada (ECCC), use SEEK-FGAT. This is a reduced-order Kalman filter based

on the singular evolutive extended Kalman filter (SEEK) formulation with a fixed basis.

The background error covariances are modelled by an ensemble of multivariate three-

dimensional anomalies derived from a multi-year hindcast simulation and a 3D VAR

scheme provides a correction for the slowly evolving large-scale biases in temperature and

salinity (Lellouche et al., 2013; Pham et al., 1998; Lellouche et al., 2018; Smith et al.,

2016) both globally and regionally. The Bluelink Partnership, part of the Australian

government, uses a deterministic ensemble Kalman filter in their global DA system

(Brassington et al., 2023).

Both 3D and 4D VAR are regularly used in regional ocean data assimilation systems.

For the Mediterranean sea, Dobricic and Pinardi (2008) proposed a 3D VAR scheme that

aims to reduce the complexity of the background error covariance matrix and allow for

regional variability and complex coastlines. Unlike the conventional transformations to

control space in meteorological applications (as described in section 3.3), in Dobricic and

Pinardi (2008) the covariances are split into their horizontal and vertical modes where

the horizontal covariances are assumed Gaussian and vertical covariances are represented

by multivariate Empirical orthogonal functions (EOFs). This was extended for use in the

global domain by Storto et al. (2016).

Globally, Fleet Numerical Meteorology and Oceanography Centre (FNMOC) and the

Naval Oceanographic Office (NAVOCEANO) have a DA system called NCODA 3D VAR,

that uses a 3D VAR scheme (Cummings et al., 2010; Cummings and Smedstad, 2013). A

4D VAR scheme, MOVE-4DVAR, is used for the Western North Pacific region at Japan

Meteorological Agency (JMA). The scheme estimates temperature and salinity fields

above 1500m using a multivariate variational method with vertically coupled temperature
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salinity (T-S). EOFs model the decomposition of the background error covariance matrix

and the control variables are composed of amplitudes for the vertical coupled T-S EOF

modes (Usui et al., 2015; Hirose et al., 2019). JMA also run a global DA scheme called

MOVE/MRI.COM-G3. Observations are directly assimilated into MOVE-G3A through

a 4DVAR method, and the temperature and salinity analysis fields are downscaled into

MOVE-G3F through incremental analysis updates (Fujii et al., 2023).

Moreover, an operational variational regional ocean data assimilation scheme, used in

various regions such as the California coast, based on 4D VAR has been developed by

Moore et al. (2023). The control variables are taken as temperature and the unbalanced

components of salinity, SSH and the horizontal velocities. This is largely based on the

balance operator used NEMOVAR (Weaver et al., 2005), which we describe in section

3.4.3. The spatial correlations are modelled using an explicit diffusion operator as detailed

in Weaver and Courtier (2001).

Li et al. (2008a) and Li et al. (2008b) describe the implementation of ROMS3DVAR,

another variational regional ocean data assimilation scheme used in the California coastal

region by the Jet Propulsion Laboratory (JPL) at the California Institute of Technology.

The control variables used in ROMS3DVAR are temperature (T ), salinity (S), non-steric

height (η′), and unbalanced streamfunction (ψU) and velocity potential χU . The balance

relationships used to find these control variables are based on two dynamical constraints;

hydrostatic and geostrophic balance. Using hydrostatic balance, η can be split into steric

and nonsteric components. Steric height is the component of height which occurs when

fluctuations in density do not change the total mass of the water column (Li et al., 2008a).

Unlike larger scale models, the nonsteric part is considered non-negligible for coastal data

assimilation. Geostrophic balance is applied to both steric and nonsteric height to find

the geostrophic velocity. Li et al. (2008a) note that streamfunction and velocity potential

can be considered more suitable control variables than the velocity components in data

assimilation. As such the ageostrophic (unbalanced) velocities are transformed to the

ageostrophic ψ and χ. Li et al. (2008a) organise the control variables into three groups η′;

ψU and χU ; T and S. The errors within these groups are assumed uncorrelated. As such,

their incremental 3D VAR cost function is broken into three parts, with three separate

background error covariance matrices and observation error covariance matrices. The

main focus of their work is treating the spatial correlations. Li et al. (2008a) propose
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using a Kronecker product to define the correlation matrices. This has the capability of

expressing the anisotropic and inhomogeneous features of coastal oceans and guarantees

positive definiteness. A multi-scale data assimilation framework was then introduced to

ROMS3DVAR by Li et al. (2015).

In this thesis we are particularly interested in NEMOVAR, a variational data

assimilation software for the Nucleus for European Modelling of the Ocean (NEMO)

model, used both in global and regional domains. NEMOVAR is used operationally at

the UK Met Office (Waters et al., 2015) and European Centre for Medium-Range Weather

Forecasts (ECMWF) (Mogensen and Balmaseda, 2012; Balmaseda et al., 2013; Zuo et al.,

2019). NEMOVAR supports multiple DA schemes, including both variational and hybrid

approaches, but uses 3D FGAT operationally. In the next section, we provide further

details on the configuration of the NEMOVAR system used in this work. Other variables,

such as sea-ice concentration, could also be included, but these are not considered here.

3.4.3 NEMOVAR

In NEMOVAR the background error covariance matrix, B, can be written as

B = KΣCΣKT (3.17)

where C is the univariate correlation matrix, C = C1/2C1/2T , Σ is the diagonal matrix

containing the standard deviations and K is the balance operator. We can compare 3.17

to B = UpUsUT
s UT

p in section 3.3, where U = UpUs. Here, K takes the role of Up and

Us = ΣC1/2. As discussed previously, for the rest of this work, when we refer to the

U-transform we will solely be concerned with the parameter transform, which is dictated

by the balance operator, K.

In section 3.3 the U operator acts on δz̆, i.e. δx = Uδz̆ = KΣC1/2δz̆. Since we are

concerned only with K, it will be convenient to redefine what we mean by a control variable

from now on, and so we define δz = ΣC1/2δz̆. Hence, the relationship between model

variables, δx and δz is δx = Kδz. The univariate correlations are defined using a diffusion

operator (Weaver et al., 2016), which can easily account for coastlines, keeping increments

confined to specific basins. As discussed previously, for the rest of this work, when we

refer to the U-transform we will solely be concerned with the parameter transform, which

is dictated by the balance operator, K.
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In NEMO, the state vector increment contains the following physical variables:

potential temperature δT , salinity δS, sea surface height (SSH) δη and the components

of the horizontal velocity vector δv = (δu, δv)T to give x = (δT, δS, δη, δv)T. The control

vector contains the unbalanced components of the state variables, denoted ·U , apart from

potential temperature which is taken in its totality. The control space in NEMOVAR is

δz = (δT, δSU , δηU , δvU)T. We denote the balanced components as ·B.

As mentioned above, in NEMOVAR, a balance operator, K, is used to describe the

balance relationship between variables (Weaver et al., 2005) and transform from control

to state space. The inverse of the balance operator is designed to decorrelate the model

variables. A linearised version of the balance operator, K, is used in the incremental

formulation. This balance operator can be summarised by the following sequence of

equations,

δT = δT,

δS = KST δT + δSU := δSB + δSU ,

δη = Kηρδρ+ δηU := δηB + δηU ,

δv = Kvpδp+ δvU := δvB + δvU ,

(3.18)

where

δρ = KρT δT + KρSδS,

δp = Kpρδρ+ Kpηδη,

are diagnostic quantities corresponding to density, ρ, and pressure, p. The transformation

from the variable(s) n to m are represented by Kmn. These are the balance relationships

(Weaver et al., 2005) and they are contained within the balance operator K.

The balance operator determines the cross-variable covariances which make up the

multivariate component of the background error covariance matrix. To find the control

variables we remove the balanced component using the inverse of the balance operator,

53



K−1. This is simply obtained by performing the inverse of (3.18):

δT = δT,

δSU = δS − δSB,

δηU = δη − δηB,

δvU = δv − δvB.

This inverse sequence of balance relations leaves temperature unaltered but removes the

parts of salinity that could be related to temperature, the parts of SSH that could be

related to temperature and salinity, and the parts of velocity that could be related to

temperature, salinity and SSH (Weaver et al., 2005).

The balance relationships are discussed in detail in Weaver et al. (2005). Temperature

is taken in totality and, as described, all the balance relations stem from there. Balanced

salinity increments are determined from the vertical derivatives of the temperature and

salinity background state. Balanced density is found by linearising the equation of state

around a reference state. SSH is computed diagnostically as a function of temperature

and salinity using the dynamic height relation (Weaver et al., 2005). In this work, we are

mainly concerned with the treatment of the velocity variables in both global and regional

domains, but specifically in NEMOVAR. The balance relation, Kv,p(δp), is geostrophic

balance (3.3) and so the balanced velocities are given by their geostrophic components.

Geostrophic balance breaks down near the equator where the Coriolis force approaches

zero. A separate method described in Weaver et al. (2005) is used to deal with this area,

whereby the zonal velocity is taken to be in second order geostrophic balance and the

meridional velocity is reduced to zero at the equator.

The ageostrophic velocities are used as control variables in NEMOVAR. Whilst these

are currently suitable velocity control variables, the velocity components are highly

correlated and the assumption that their error covariances are uncorrelated is incorrect.

As such, alternative control variables are highly desirable in preparation for future surface

current measurements to be assimilated. Addressing this need is a central focus of this

thesis. In this work, we propose new velocity control variables for NEMOVAR and discuss

their implementation and potential implications.

Building on the previous discussion of data assimilation schemes and control variables

used in both global and regional ocean applications, we now introduce the proposed
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velocity control variables for use in NEMOVAR. These are inspired by approaches

commonly used in atmospheric data assimilation and bear some similarities to those in Li

et al. (2008a), but differ overall due to the distinct framework and methodology employed

in NEMOVAR.

3.5 Proposed control variables

In the NEMOVAR ocean DA system, the ageostrophic velocities are used as the velocity

control variables. This assumes errors in the ageostrophic velocities are uncorrelated,

so that an ocean-current observation updates each velocity component independently.

However, the velocity components are intricately dependent on each other, as they are

coupled through the momentum equations, the incompressibility constraint, and advective

transport. Independent updates therefore fail to capture this mutual influence. To

improve the assimilation of ocean-current measurements, we seek alternative velocity

control variables that allow the components to update each other. We propose the

use of new control variables in NEMOVAR, namely a CVT that is based on Helmholtz

Theorem, which will allow for the ageostrophic velocity components to be correlated. The

use of streamfunction and velocity potential as control variables has been used in other

variational data assimilation schemes both in the atmosphere and ocean, as described

in sections 3.4.1 and 3.4.2. As we are proposing an alternative approach to the velocity

variables in NEMOVAR, the totally balanced variable is taken as temperature, and not

vorticity (or potential vorticity) as done in the atmosphere (Katz et al., 2011).

It is often stated that control variables based on streamfunction and velocity potential

are more appropriate than the velocity vector components since the assumption that they

are uncorrelated is more suitable (Daley, 1993, Section 5.2). Daley (1993) assumes there

is no correlation between the velocity potential and streamfunction. The justification

for this comes from the observational work of Hollingsworth and Lönnberg (1986), who

conducted experiments to compute the cross-correlations between streamfunction and

velocity potential errors. Their results indicate that these cross-correlation terms are

small in the background error forecast, suggesting a weak correlation. Panchev (1971)

discusses this from a more theoretical perspective. This assumption is discussed briefly in

appendix A. However, this work does not focus on testing the uncorrelated assumption.
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An additional benefit of using velocity control variables derived from the Helmholtz

theorem is that they give better control over horizontal divergence, and as such the

vertical motions. The coupling of physical and ocean biogeochemical data assimilation

systems is hindered due to the extremely high sensitivity of ocean biogeochemistry to

spurious vertical velocities (Park et al., 2018). These arise due to imbalances induced

during the physical ocean data assimilation where the analysis increments produced are

not exact solutions to the equations of the model (Pilo et al., 2018). Physical ocean

data assimilation has been widely found to spuriously increase the vertical mixing and

vertical velocities, degrading the biogeochemical model simulations (Ford and Barciela,

2017). Park et al. (2018) state that even small spurious vertical transports across the

ocean can have disastrous impacts on the biogeochemical states. By utilising velocity

control variables based on their non-divergent and irrotational components, we gain direct

control over the divergence of the velocity analysis increment. Consequently, through the

continuity equation, this allows us to effectively constrain vertical motions.

Furthermore, according to Li et al. (2008b) the auto-error covariances of velocity

potential and streamfunction are expected to be more isotropic and homogeneous than

the velocity covariances. We do not investigate this statement as it is beyond the scope

of this work.

As stated, we propose using a CVT in NEMOVAR based on Helmholtz Theorem.

Specifically, we suggest using ageostrophic streamfunction and velocity potential as the

velocity control variables. These are used in a regional ocean DA system by Li et al.

(2008a,b), discussed in section 3.4.2. We now discuss a difficulty in using these alternative

control variables.

3.5.1 Treatment of boundary conditions

In order to use alternative velocity control variables based on Helmholtz Theorem in

NEMOVAR, we must transform from the ageostrophic velocities to their irrotational

and non-divergent parts - velocity potential and streamfunction. There is a difficulty in

performing this transformation due to the need to explicitly specify boundary conditions

for streamfunction in an ocean domain. This issue is caused by the discretisation of the

model variables on the Arakawa C-grid (Arakawa and Lamb, 1977). The Arakawa C-grid
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is used in the NEMO model (Madec et al., 2023) and commonly in ocean modelling. The

traditional Arakawa C-grid used in Lynch (1989) and Watterson (2001), and shown in

figure 3.2a, places the discretised streamfunction, ψ, in the corners of the grid.

(a) Arakawa C-grid as seen in Lynch (1989) and Watterson

(2001) whereby streamfunction is located in the corner of

each grid cell.

(b) Alternative Arakawa C-grid presented by Li et al. (2006)

whereby streamfunction is located in the centre of the grid

cell.

Figure 3.2: Configurations of the Arakawa C-grid for the placement of streamfunction, ψ. The green

shaded region represents land.

The placement of streamfunction in the corner of the grid implies that explicit

boundary conditions must be imposed on streamfunction. However, specifying a value

for the streamfunction at the boundary is challenging, as its exact value at the boundary

is not known. The choice of boundary conditions for streamfunction has been discussed

in many studies. Lynch (1989) tested 8 different combinations of boundary conditions

on a limited domain using Sangster’s method for the partitioning problem (Sangster,

1960). However, when reconstructing the velocity from the computed streamfunction and

velocity potential, the reconstruction error was poor (Li et al., 2006).

Alternatively, De Verdière and Ollitrault (2016) observe that the physical boundary

condition of zero normal velocity on the solid boundaries can be imposed by forcing the

streamfunction to be constant there. They use the velocity to calculate the vorticity

and, with that, calculate the streamfunction by solving the Poisson equation (2.7). They

note that in a simply connected domain, such as the North Atlantic and Pacific oceans,
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streamfunction can be set to zero arbitrarily on the boundary. However, particularly

in the southern hemisphere, the large islands mean that the value of streamfunction

is undetermined. Webb (1996) highlights that island boundary conditions require

integration around each island’s perimeter. Similarly, Han and Huang (2020) and

Watterson (2001) impose constant streamfunction along solid boundaries in limited

domains. Yet, as discussed by Li et al. (2006), enforcing constant streamfunction at

the boundary implies non-divergent flow, which in turn assumes geostrophic balance—a

condition not valid at coastlines. These considerations further underscore the need to

avoid prescribing explicit boundary conditions for the streamfunction.

As the value of streamfunction can not be constant along the boundary, neither can the

ageostrophic component. To circumvent having to specify explicit boundary conditions

Li et al. (2006) proposed a solution - they moved streamfunction to the centre of the

grid, as shown in figure 3.2b. We propose using this configuration of the Arakawa C-

grid, presented by Li et al. (2006), to implement alternative velocity control variables

in NEMOVAR - ageostrophic streamfunction and velocity potential. In this work we

investigate implications of these control variables that have not been discussed before.

The following chapters will answer the questions proposed in chapter 1 that are yet to be

discussed in the literature.

3.6 Summary

In this chapter we introduced ocean data assimilation, with a focus on the variational

data assimilation schemes used in the ocean. Variational DA formulates the data

assimilation problem as a cost function to be minimised. This cost function combines

the background and observations, weighted by their uncertainties, which are represented

by error covariance matrices. By minimising the cost function, we determine the analysis.

Variational data assimilation uses numerical minimisation techniques to iteratively

minimise this cost function. We then presented the incremental formulation of variational

data assimilation, where we solve the problem in terms of increments to the background,

involving an inner and outer loop. This provides flexibility in reducing the computational

cost of variational data assimilation as the inner loop can be run at a lower resolution to the

outer loop. We then described the control variable transform, a transformation to control
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space from model space where the control variables are considered less correlated than the

model variables. These transformations are used within the incremental formulation of the

data assimilation problem, and so we detailed the process of performing the CVT. Finally,

we identified the CVTs currently used in both the atmosphere and ocean, specifically

looking at the treatment of the velocity variables. We exposed the issues with the current

velocity control variables and proposed new control variables for NEMOVAR. We now

present results of investigating this new CVT using a shallow water model.
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Chapter 4

Alternative velocity control variables

using the shallow water equations

In this chapter we identify and examine a numerical issue with implementing ageostrophic

streamfunction and velocity potential as velocity control variables. In particular, using

a shallow-water model we focus on the numerical implication of transforming to these

variables based on the discretisation proposed by Li et al. (2006).

We first introduce the shallow water equations (SWEs). These are partial differential

equations that describe the flow of an incompressible fluid and are commonly used as

a simplified model to examine ocean dynamics. We describe the discretisation of the

shallow water model using a semi-implicit semi-Lagrangian scheme. We then detail how

the CVT using the SWEs can be formulated to include the alternative velocity variables,

ageostrophic streamfunction and ageostrophic velocity potential. We explain the discrete

process of transforming to these variables from the ageostrophic velocities and the issues

surrounding the boundary conditions. We conclude this section with a discussion of

a numerical artefact discovered when performing this transformation - a checkerboard

pattern.

4.1 Shallow water model

The ocean is a fluid that can be described to a good approximation by the primitive

equations. Lions et al. (1992) describes how the primitive equations are fundamental
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equations of the ocean. However, we consider an approximation simpler than the primitive

equations. The SWEs can be obtained by integrating the primitive equations over a fluid

layer depth and linearising about a basic state at rest. They describe a shallow layer of

fluid and are very useful for modelling geophysical fluid dynamics (Pedlosky, 2013; Ghil

and Malanotte-Rizzoli, 1991).

Figure 4.1: Schematic illustration of the 2D shallow water model.

In this study, we use a 2D shallow water model on a β-plane in mid-latitudes, based

on the model of Stommel (1948). The model simulates the wind-driven circulation in

a closed ocean basin, including a western boundary current. The model describes the

horizontal flow of an incompressible fluid with a free surface and solid lower boundary.

The vertical pressure gradient is assumed to be in hydrostatic balance. The Stommel

model is described by the SWEs with the addition of linear drag and wind stress;

Dη

Dt
+H

∂u
∂x

+ ∂v

∂y

 = 0, (4.1)

Du

Dt
− (f0 + βy)v = −g ∂η

∂x
− γu+ τx

ρ0H
, (4.2)

Dv

Dt
+ (f0 + βy)u = −g∂η

∂y
− γv + τy

ρ0H
, (4.3)

where
D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
(4.4)
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and η is the surface elevation, (x, y) is the 2D spatial coordinate and H is the ocean

depth which is taken to be constant (see figure 4.1). We have (u, v), the horizontal

velocity vector, g is the gravitational acceleration, γ is a linear drag coefficient and ρ0 is

a uniform density. The approximation to the Coriolis parameter for a β-plane, is given

by f0 + βy. Here, f0 = 2Ω sin θ0 and β0 = 2Ω
a

cosφ0 where Ω is the angular speed of the

Earth, θ0 is a reference latitude and a is the radius of the Earth. The SWEs are defined

on the closed domain [0, Lx] × [0, Ly] with the following boundary conditions. On the

eastern and western boundary we have

u(0, y, t) = u(Lx, y, t) = ∂v

∂x
(0, y, t) = ∂v

∂x
(Lx, y, t) = 0, y ∈ [0, Ly] ∀ t.

On the northern and southern boundary we have

v(x, 0, t) = v(x, Ly, t) = ∂u

∂y
(x, 0, t) = ∂u

∂y
(x, Ly, t) = 0, x ∈ [0, Lx] ∀ t.

The wind stress, τττ , acts on the surface and is defined by (4.5), where the seasonality of

the wind forcing is based loosely on Lévy et al. (2010):

τττ =

τx
τy

 = τn

− cos
(

2πy
Lx

)
0

 with τn = τi − τs cos
(t− tmax)π
tmin − tmax

, (4.5)

where τi is the mean wind intensity , τs is the seasonal oscillation intensity, t is the current

time in hours from initial time, tmax is the number of hours to reach the end of a chosen

period of time and tmin is the number of hours to the reach the mid-point of the chosen

period (half of tmax).

4.1.1 Discretisation

Throughout this work, we use finite differences on a rectilinear grid, consistent with the

discretisation available in NEMO/NEMOVAR and the grids they employ. We discretise

the SWEs presented above using a semi-implicit semi-Lagrangian scheme (SISL). Two

alternative schemes were considered but deemed not appropriate. The first was the

Forward-Backward scheme (Matsuno, 1966; Beckers and Deleersnijder, 1993). This

Eulerian scheme enforced a severe restriction on the time step, due to the propagation

of inertia gravity waves and the Courant-Friedrichs-Lewy (CFL) criterion. To be able

to increase the time step, we then implemented a semi-implicit Euler scheme. However,
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this approach does not fully address instabilities arising from the advection terms, which

are discretised using centred differences. In order to allow the solution of the SWEs

to be unconditionally numerically stable, we use a semi-implicit semi-Lagrangian scheme.

The SISL removes the stability constraint imposed by rapid gravity wave propagation and

eliminates the non-linear instability caused by the non-linear advection terms that appear

in the Eulerian framework (Durran, 2013). The SISL scheme has less stringent stability

conditions on the time step and more accurate space discretisation (Kalnay, 2003).

Figure 4.2: Arakawa C-grid.

Furthermore, as discussed in section 3.5.1, we use the Arakawa C-grid (Arakawa and

Lamb, 1977), which staggers the variables such that velocity components, u and v, are at

the mid-points on the eastern and northern boundaries of the grid cell, respectively, and

elevation is at the centre of the grid cell, as shown in figure 4.2. The discrete boundary

conditions follow Madec et al. (2023) whereby we enforce the physical boundary condition

of zero normal velocity at the boundary. The tangential velocities are chosen to have

zero normal gradient at the boundary, consistent with the tangential boundary condition

adopted in the configuration of NEMO used in chapters 5 and 6. The tangential boundary

conditions are discussed in section 5.1.2. The flow is initialised at rest with zero elevation.
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Semi-implicit semi-Lagrangian Scheme

In this section, we describe how we implement the SISL scheme. The velocity divergence

(∇·v) and pressure gradient (∇η) are terms essential to gravity wave propagation (Durran,

2013). Therefore, these are the terms of the SWEs we treat implicitly. We treat the rest

of the terms explicitly at departure points. Firstly, we consider the equation for surface

elevation (4.1) and discretise the derivatives. We indicate the arrival and departure points

with the subscripts a and d, respectively:

ηn+1
a − ηnd

∆t +H

α0

[
∂u

∂x
+ ∂v

∂y

]n+1

a
+ (1 − α0)

[
∂u

∂x
+ ∂v

∂y

]n
d

 = 0

where superscripts indicate the time-level. The coefficient α0 is a time-weighting

parameter that lies in the interval [0.5, 1] (Lawless et al., 2003), which is multiplied to

the velocity divergence. The departure points are interpolated to the arrival points using

cubic interpolation. We then rearrange the above to have arrival points on the left hand

side and known departure points on the right hand side:

ηn+1
a +H∆tα0

[
∂u

∂x
+ ∂v

∂y

]n+1

a
= ηnd −H∆t(1 − α0)

[
∂u

∂x
+ ∂v

∂y

]n
d
. (4.6)

If we discretise (4.6) at a specific point on the grid, we have

ηn+1
ai,j

+H∆tα0

[(un+1
a

i+ 1
2 ,j

− un+1
a

i− 1
2 ,j

∆x

)
+

(vn+1
a

i,j+ 1
2

− vn+1
a

i,j− 1
2

∆y

)]
= En

i,j

where E

En = ηnd −H∆t(1 − α0)
[
∂u

∂x
+ ∂v

∂y

]n
d
.

Similar to the elevation, we discretise the momentum equations for the velocities, (4.2)

and (4.3), by introducing weighting parameters α1 and α2. We apply these to the pressure

gradient terms:

un+1
a + g∆tα1

[
∂η

∂x

]n+1

a
= und + ∆t(f0 + βy)vnd − ∆tγund + τx

ρH
− g∆t(1 − α1)

[
∂η

∂x

]n
d

(4.7)

and

vn+1
a + g∆tα2

[
∂η

∂y

]n+1

a
= vnd − ∆t(f0 + βy)und − ∆tγvnd − g∆t(1 − α2)

[
∂η

∂y

]n
d
. (4.8)

Recall from (4.5) that τy = 0. If we specify (4.7) and (4.8) at specific points on the grid

we have,

un+1
a

i− 1
2 ,j

+ g∆tα1
ηn+1
ai,j

− ηn+1
ai−1,j

∆x = Zn
i− 1

2 ,j
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where Z is the right hand side of (4.7):

Zn = und + ∆t(f0 + βy)vnd − ∆tγund + τx
ρH

− g∆t(1 − α1)
[
∂η

∂x

]n
d

and

vn+1
a

i,j− 1
2

+ g∆tα2
ηn+1
ai,j

− ηn+1
a,j−1

∆y = Mn
i,j− 1

2

where M is the right hand side of (4.8):

Mn = vnd − ∆t(f0 + βy)und − ∆tγvnd − g∆t(1 − α2)
[
∂η

∂y

]n
d
.

In order to solve this system of equations, we substitute the arrival points for the

velocities into (4.6) to have an equation that only involves η implicit terms. This gives a

final equation for the elevation,

(1 + 2C1 + 2C2)ηn+1
ai,j

− C1(ηn+1
ai+1j

+ ηn+1
ai−1,j

) − C2(ηn+1
ai,j+1

+ ηn+1
ai,j−1

) = Rn
i,j (4.9)

where

C1 = H(∆t)2gα0α1

(∆x)2 , C2 = H(∆t)2gα0α2

(∆y)2

and

Rn
i,j = En

i,j − H∆tα0

∆x

(
Zn
i+ 1

2 ,j
− Zn

i− 1
2 ,j

)
− H∆tα0

∆y

(
Mn

i,j+ 1
2

−Mn
i,j− 1

2

)
.

Equation (4.9) is in the form Ax = b, as discussed in section 2.2, where the left hand side

of (4.9) is the matrix-vector product Ax and b = R. We solve this using the conjugate

gradient (CG) method (see section 2.2.2).

We now describe how to implement ageostrophic streamfunction and ageostrophic

velocity potential as velocity control variables in the shallow water model.

4.2 CVT using the shallow water equations

The chosen velocity control variables are ageostrophic streamfunction, δψU and

ageostrophic velocity potential, δχU . Here, the subscript U refers to the unbalanced

(ageostrophic) part of the variable. We now describe the process of performing both the

U-Transform and T-transform outlined in section 3.3, using the shallow water model.
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4.2.1 U - Transform

To perform the U-transform, (3.12), to find the velocity model variables from the control

variables,

δx = Uδz

where

δz =

δψU
δχU

 and δx =

δu
δv

 ,

we apply the following steps:

1. Calculate δuU and δvU from δψU and δχU using the Helmholtz equations:

δuU = −∂δψU
∂y

+ ∂δχU
∂x

, (4.10)

δvU = ∂δψU
∂x

+ ∂δχU
∂y

. (4.11)

2. Compute the balanced velocity increments, δuB and δvB, using the geostrophic

balance relation,

δuB = − g

f

∂δη

∂y
and δvB = g

f

∂δη

∂x
. (4.12)

3. Compute the full velocity increments, δu and δv, from

δu = δuB + δuU and δv = δvB + δvU .

4.2.2 T - Transform

The T-transform is required to transform from the horizontal velocities to ageostrophic

streamfunction and ageostrophic velocity potential. Although the T-transform is not

directly used in (3.14) to calculate the analysis, the transformation is necessary for

computing background error covariances of the control variables (Katz et al., 2011). The

T-transform is given by

δz = T δx

where δz and δx are as defined in the U-transform. We formulate this transformation as

follows,

1. Compute the balanced velocity increments, δuB and δvB, from δη using geostrophic

balance (4.12).
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2. Compute the ageostrophic velocity increments using,

δuU = δu− δuB and δvU = δv − δvB.

3. Compute the ageostrophic streamfunction, δψU , and ageostrophic velocity potential,

δχU , from δuU and δvU by inverting the Helmholtz relations, (4.10) and (4.11).

As discussed in section 2.1, in a bounded domain, the Helmholtz decomposition is not

necessarily unique as a non-zero harmonic function may be present. The harmonic

component is zero if flow on the boundary is zero and the domain is simply connected

(Bhatia et al., 2012). As described in section 4.1, our shallow water domain is a closed

basin with zero normal velocity at the boundary but the tangential velocity is non-

zero. Therefore, the Helmholtz decomposition of the velocities into their irrotational

and non-divergent parts is not unique in this domain. We now describe how to perform

this decomposition to ageostrophic velocity potential and ageostrophic streamfunction

numerically and how to resolve the non-uniqueness of the decomposition.

4.2.3 The discrete transformation to streamfunction and

velocity potential

In order to solve (4.10) and (4.11) to find ageostrophic streamfunction and velocity

potential in the T-transform, we discretise the Helmholtz equations to form a linear

system involving the horizontal velocities and their rotational and divergent parts (Li

et al., 2006),

Aδz = δvU (4.13)

where

δz =

δψU
δχU

 , δvU =

δuU
δvU

 , A =

−∆y ∆x

∆x ∆y


with ∆x and ∆y representing the discretisation of ∂

∂x
and ∂

∂y
, respectively. For our

application, A is not usually a square matrix because δz and δvU are not required to

be the same length. We discuss this further later in this section. Therefore, the linear

system given by (4.13) may not be solved directly to find δz. Instead, we find the least

squares solution in the 2-norm by minimising the following cost function with respect to
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δz (Li et al., 2006):

J (δz) = 1
2(δvU − Aδz)T(δvU − Aδz). (4.14)

An alternative approach to solving the above is detailed in appendix C.2, whereby we

separate the calculation of δψU and δχU , by solving the Poisson equations for divergence,

(2.6), and vorticity, (2.7). In appendix D, we use Lagrangian multipliers to demonstrate

how from Helmholtz theorem we can derive the Poisson equations for the continuous

equations, putting the Li et al. (2006) approach in a continuous setting. The Lagrangian

approach also reveals the boundary conditions we impose on the velocity, which we discuss

below. In the discrete case we also derive similar equations, showing there are two

approaches to solving this linear system. The first is obtained by minimising (4.14)

with respect to δz. The second involves the discretised Poisson equations, (2.6) and (2.7).

Both these approaches are illustrated in appendix C. These approaches are equivalent

and we use the former approach in this chapter.

In section 3.5.1, we discussed the placement of streamfunction on the Arakawa C-

grid. In this work we adopt the arrangement proposed by Li et al. (2006), whereby

streamfunction is located at the centre of grid cell, as shown in figure 3.2b. However, this

grid arrangement confirms that A is not a square matrix. There is also the issue of the

non-uniqueness of the Helmholtz decomposition. Li et al. (2006) suggest using Tikhonov’s

regularisation to overcome these problems. Tikhonov’s regularisation method, discussed

in section 2.2.1, involves adding a regularisation term to a cost function. Therefore, we

add a regularisation term to (4.14) to give

Jµ(δz) = 1
2(δvU − Aδz)T(δvU − Aδz) + 1

2µδz
Tδz (4.15)

where µ is the positive regularisation parameter and Jµ(δz) is called Tikhonov’s

functional. Due to the regularisation term the cost function Jµ(δz) has a unique minimum.

4.2.4 Boundary conditions for streamfunction

The method proposed by Li et al. (2006) is designed to avoid specifying explicit boundary

conditions for streamfunction. By placing streamfunction at the centre of the grid

cell, it is no longer necessary to impose a value of streamfunction at the boundary.

Here, we demonstrate that boundary conditions still exist and how these appear in the
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discretisation. Li et al. (2006) mention that the solution to the Helmholtz equation relates

to Neumann boundary conditions, but do not discuss how these conditions emerge from

the discretisation. Here, we provide a detailed explanation of these boundary conditions.

Recall from section 4.2.3, the discretised Helmholtz decomposition is given by,

δuU = −∆yδψU + ∆xδχU (4.16)

and

δvU = ∆xδψU + ∆yδχU . (4.17)

The discrete derivatives are defined in (4.13). The centred derivatives of velocity potential

are located at the correct velocity points; however this is not the case for the centred

derivatives of streamfunction. We need to calculate ∆yδψU and ∆xδψU at u and v points

respectively. Their locations are shown on the Arakawa C-grid in figure 3.2. However,

using a centred difference representation of the derivatives, these are not naturally located

at these points. Instead, ∆yδψU is at a v-point and ∆xδψU at a u-point. Positioning

the derivatives at the necessary velocity points requires averaging them. There are two

possible approaches to achieve this,

Approach A:

1. Calculate ∆yδψU at the v-point by calculating the y-derivative of δψU using centred

differencing.

2. Average these values to the u-points.

3. Calculate ∆xδψU at the u-point by calculating the x-derivative of δψU using centred

differencing.

4. Average these values to the v-points.

Approach B:

1. Average δψU to the corner of the grid cells; δψ̄U represents the averaged values of

δψU at the corner point (see figure 4.3).

2. Find the value of ∆yδψU at the u-point by calculating the y-derivative of δψ̄U using

centred differencing.
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3. Find the value of ∆xδψU at the v-point by calculating the x-derivative of δψ̄U using

centred differencing.

Figure 4.3: Arakawa C-grid with the averaged values of streamfunction located at the corner of the

grid cell.

Away from the boundaries, on a uniform grid, these two approaches are identical. We

also find these approaches lead to an issue of grid-scale noise we call the checkerboard

pattern. This will be discussed in detail in section 4.3.2. Near the boundaries, these

approaches should also be equivalent but care must be taken in the treatment of the

streamfunction at the boundary.

Suppose we want to calculate ui− 1
2 ,j−1 using (4.16). Assume this point is near the

south boundary as shown in figure 4.4. We have,

δuU
i− 1

2 ,j−1
= −[∆yδψU ]i− 1

2 ,j−1 + [∆xδχU ]i− 1
2 ,j−1︸ ︷︷ ︸

= 1
∆x

(δχUi,j−1 −δχUi−1,j−1 )

(4.18)

Below we present both approaches to calculating the streamfunction derivative.

Approach A

For Approach A, we must first calculate ∆yδψU at the surrounding v-points. We have

two points located away from the boundary which we have the following expressions for:

• [∆yδψU ]i,j− 1
2

= 1
∆y (δψUi,j

− δψUi,j−1) and

• [∆yδψU ]i−1,j− 1
2

= 1
∆y (δψUi−1,j

− δψUi−1,j−1).
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Figure 4.4: The same grid as figure 3.2 with the land extended into the domain. The blue circle

highlights point ui− 1
2 ,j−1 which we calculate using the discrete Helmholtz equations in this section.

However, the remaining two derivatives are located on the southern boundary,

[∆yδψU ]i,j− 3
2

and [∆yδψU ]i−1,j− 3
2
, and so we must impose a boundary condition on the

normal derivatives of streamfunction. By setting them equal to zero we have Neumann

boundary conditions. Therefore, when we average these derivatives to the u-point we

have,

[∆yδψU ]i− 1
2 ,j−1 = 1

4

[∆yδψU ]i,j− 1
2

+ [∆yδψU ]i−1,j− 1
2

+ [∆yδψU ]i,j− 3
2

+ [∆yδψU ]i−1,j− 3
2


= 1

4∆y

(δψUi,j
− δψUi,j−1) + (δψUi−1,j

− δψUi−1,j−1) + 0 + 0


= 1
4∆y

δψUi,j
− δψUi,j−1 + δψUi−1,j

− δψUi−1,j−1

.
Approach B

For Approach B, we first average δψU to the corners of the grid cells. The first corner,

which is located away from the boundary, can be easily expressed. However, the second

corner lies near the boundary and is more challenging to define:

• δψ̄U
i− 1

2 ,j− 1
2

= 1
4

(
δψUi,j

+ δψUi−1,j
+ δψUi,j−1 + δψUi−1,j−1

)
and

• δψ̄U
i− 1

2 ,j− 3
2
.

71



Specifying a value of δψ̄U
i− 1

2 ,j− 3
2

would be an explicit boundary condition which we aim

to avoid due to the reasons discussed and because the method in Li et al. (2006) is

specifically designed to circumvent this. Instead, we extrapolate the information from the

nearby ocean points, assuming streamfunction is zero at land points. This is equivalent to

having streamfunction with zero gradient across the boundary, i.e. Neumann boundary

conditions. This gives,

δψ̄U
i− 1

2 ,j− 3
2

= 1
2

(
δψUi−1,j−1 + δψUi,j−1

)
. (4.19)

Therefore, the derivative becomes,

[∆yδψU ]i− 1
2 ,j−1 = 1

∆y

(
δψ̄U

i− 1
2 ,j− 1

2
− δψ̄U

i− 1
2 ,j− 3

2

)

= 1
∆y

1
4

(
δψUi,j

+ δψUi−1,j
+ δψUi,j−1 + δψUi−1,j−1

)
− 1

2

(
δψUi−1,j−1 + δψUi,j−1

)
= 1

4∆y

δψUi,j
− δψUi,j−1 + δψUi−1,j

− δψUi−1,j−1

.
In conclusion, Approach A and B are equivalent at the boundaries when we

impose Neumann boundary conditions to streamfunction; i.e. the normal derivatives

of streamfunction are zero at the boundary. Therefore, although this method avoids the

need for explicit boundary conditions, implicit boundary conditions exist.

Having presented the theory behind the transformation to the alternative velocity

control variables, in the next section we implement this numerically using the SWEs and

discuss a computational issue that arises.

4.3 Numerical implication

In this section, we discuss the numerical implementation of the CVT proposed and outline

a numerical problem we have discovered - a checkerboard pattern. To illustrate the

transformation numerically we use the SWEs, described in section 4.1.

4.3.1 Method

We run the discretised model using the SWEs, presented in section 4.1, with a model

time step ∆t = 1800s. We chose a domain of size Lx, Ly = 106m with grid spacing
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Parameter Symbol Value

Coriolis parameter f0 10−4s−1

β-coefficent β 10−11m−1s−1

Gravitational acceleration g 10ms−1

Linear drag coefficient γ 10−6s−1

Constant density ρ0 1000kgm−3

Resting depth H 1000m

Mean wind intensity τi 0.02kgm−1s−2

Seasonal wind intensity τs 0.01kgm−1s−2

Wind stress max τmax 720hrs (30 days)

Wind stress min τmin 360hrs (15 days)

Table 4.1: Physical parameter values for the SWEs.

∆x = ∆y = 104m, similar to Stommel (1948). The values of the model parameters

chosen for the SWEs are detailed in table 4.1. To allow the development of dynamical

instabilities in the shallow water model, the linear drag coefficient is set to a small value

compared to the magnitude of the velocities. While linear drag acts to dampen velocity

and suppress instabilities, applying only weak drag allows instability to emerge. We choose

a wind intensity that varies with a period of one month. The time weighting parameters

in the semi-Lagrangian scheme are chosen to be 0.6. This enables us to be close to second

order accuracy while still ensuring stability (Lawless et al., 2003). We run the discrete

model for 331 days, with the fields at the final time step shown in figure 4.5. We can see

the model has spun-up with a cyclonic/anticyclonic pair of eddies in the west side of the

domain.

In variational data assimilation, the Helmholtz relation is applied to assimilation

increments, δψ and δχ, in the CVT. Therefore, as a proxy for an assimilation increment,

we calculate the difference between the velocities over one day and transform to

streamfunction and velocity potential increments using the process described in section

4.2.2. We add an additional component to step 2 of this process, whereby we apply

the Shapiro filter to the ageostrophic velocity increments (see section 2.3 for the filter

definition) to remove any noise caused by the geostrophic balance calculation, appendix
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Figure 4.5: Output from running the discretised shallow water model for 331 days. The left is elevation

(m) and the right is speed (ms−1) with velocity vectors superimposed.

B discusses why the filter is necessary here. Moreover, we minimise (4.14) iteratively

using the CG method. Appendix E details the tests performed to ensure the adjoint and

gradient implemented are correct. For the CG method, we chose the following convergence

criterion:

∥∇Jµ(δzk)∥2 < 10−5∥∇Jµ(δz0)∥2, (4.20)

where k is an iteration of the CG method and δz0 contains the initial guess for δψ and

δχ, which we set to be zero. We choose the regularisation parameter as µ = 10−12m−2.

A series of sensitivity experiments show that this value allows for efficient convergence

whilst still providing an accurate solution. However, more sophisticated techniques, such

as the L-curve, may be used and are described in Hansen (1997).

After minimising (4.15) for δψU and δχU (fields shown in figure 4.6) we reconstruct

the ageostrophic velocity increments using (4.10) and (4.11). We now discuss a grid-scale

noise issue associated with this decomposition.

4.3.2 Checkerboard pattern

Figure 4.7 presents the velocity reconstruction errors, which are relatively small

in magnitude compared to the velocities themselves. This demonstrates that the

transformation presented in section 4.2 is successful. However, there is the presence

of grid-scale noise which we now discuss.
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Figure 4.6: The ageostrophic streamfunction and velocity potential increments, calculated using the

SWEs. These are calculated using Helmholtz equations, from the ageostrophic velocity increments. On

the left we have the streamfunction increment and on the right the velocity potential increment (m2s−1).

A computational mode is a solution or pattern caused by a discretisation that does

not appear in the continuous solution. In this section we demonstrate a computational

mode that arises during the computation of streamfunction derivatives. It is caused by

a loss of information due to averaging. For example, at δuU
i+ 1

2 ,j
(using the grid shown in

figure 3.2b, this point is away from the boundary) we have,

δuU
i+ 1

2 ,j
= −

(
∆yδψU

)
i+ 1

2 ,j
+

(
∆xδχU

)
i+ 1

2 ,j
. (4.21)

When calculating ∆yδψU through either approach A or B described in section 4.2.4, this

gives
(

∆yδψU

)
i+ 1

2 ,j
= 1

4∆y

(
δψU i,j+1 − δψU i,j−1 + δψU i+1,j+1 − δψU i+1,j−1

)
. (4.22)

We obtain a similar result for ∆xδψU at vi,j+ 1
2
. The resulting derivatives do not use any

information from the adjacent values of streamfunction, i.e. points (i, j) and (i + 1, j).

We can clearly see this numerical artefact using the SWEs. The checkerboard pattern is

apparent in the reconstructed velocities, as seen in figure 4.7. Figure 5 in Li et al. (2006)

shows the same problem, although it was not discussed in that article.

This issue of grid-scale noise is discussed throughout literature due to various

discretisation choices. For example, the unstaggered Arakawa-A grid can cause horizontal

uncoupling due to calculating over distances twice the grid space length (Kalnay, 2003;
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Figure 4.7: The difference between the original ageostrophic velocity increments, calculated using the

SWEs, and the reconstructed ageostrophic velocity increments. These are reconstructed using Helmholtz

equations, from the ageostrophic streamfunction and velocity potential increments. On the left we have

the zonal velocity increment error and on the right the meridional velocity increment error (ms−1).

Skamarock and Klemp, 2008). The Arakawa-C grid requires spatial averaging for the

Coriolis terms which also causes this computational mode (Marshall et al., 1997; Weller

et al., 2012).

The checkerboard pattern caused by streamfunction is particularly problematic when

estimating background error covariances for this variable in data assimilation applications.

Typically, this would involve computing error samples of ψ (and χ) by minimising

(4.15) given error samples of u and v (e.g., from ensembles). Some background error

correlation models, such as those based on a diffusion operator, require an estimate of

the correlation aspect tensor, which can be obtained using an approach that requires

numerically approximating the first-order directional derivatives of the error field (Weaver

et al., 2021; Chrust et al., 2024). Such an estimate would be severely contaminated by

grid-scale noise. We now demonstrate how the checkerboard pattern can appear in the

statistics of the control variables.

4.3.3 Spatial correlations

As discussed in the previous section, we need to calculate statistics of the control variables

as part of the CVT to provide the background error covariances for assimilation. Here

we calculate the spatial correlations of the ageostrophic streamfunction increments field

to highlight the presence of the checkerboard pattern.
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To examine the spatial correlations of the ageostrophic streamfunction increments, we

pick one particular point in the domain, and then calculate the correlation of each grid

point with that chosen point using the ‘quick covs method’ (Polavarapu et al., 2005) as

follows:

1. Run the shallow water model described in section 4.1 for 200 days after spinning

the model up for 200 days.

2. Calculate the day-to-day model differences as a proxy for the background error, δη,

δu and δv.

3. Calculate the current velocity control variables, δuU and δvU , using geostrophic

balance (4.12), for each daily difference field and then calculate the new velocity

control variables, δψU and δχU , using the T-transform, for each daily increment.

4. Calculate the correlation between the error at the chosen point in the domain and

the error in each other grid point for the streamfunction field.

Figure 4.8: Locations of the points chosen for the dominant signal analysis performed using the shallow

water model. The underlying fields are generated from running the discretised shallow water model for

331 days.

The Met Office FOAM system currently utilises operational forecasts with a 24-

hour interval (Blockley et al., 2014). We adopt this interval length in our correlation

experiment. To assess whether this interval is suitable for our shallow water model, we

investigate the sensitivity of the model to the daily forecast interval by evaluating whether

there is a dominant signal present in the forecasts. Our objective is to ensure that the

computed statistics reflect the characteristics of the forecast errors rather than those of

the model’s inherent variability. A similar approach is adopted by (Katz et al., 2011),
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who identify and remove the diurnal cycle to prevent it from dominating the statistical

analysis.

We do so by generating a forecast and plotting the values of the variables at fixed points

in space against time, these fixed points are shown in figure 4.8. For each variable, we

select different points across the domain with varying levels of activity, ensuring a diverse

sampling of locations. We perform this analysis for elevation and the velocities. In figure

4.9 we show the values of the zonal velocity at these points for a range of time frames. The

absence of periodic waves, oscillations, or repeating patterns suggests that there are no

signals present in u that would dominate the statistics. Elevation and meridional velocity

show very similar result with no dominant signals. As such, the choice of a daily time

interval is deemed appropriate for this work.

(a) First 100 days (b) First 400 days

(c) 200 to 300 days (d) 300 to 330 days

Figure 4.9: Zonal velocity values at fixed spatial points (with coloured lines matching the dots in second

panel of figure 4.8) are plotted against time for different intervals.
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Using the daily model differences as a proxy for the errors, we calculate the proposed

velocity control variables, δψU and δχU , using the process described in section 4.2.2, for

each daily error field. Finally, we calculate the correlation between the chosen point in

the domain and each other grid point for the ageostrophic streamfunction error field.

In figure 4.10a we show the resulting correlation field generated by the method

described, where our chosen point was (400km, 400km). This plot shows that the

spatial correlations of streamfunction for this particular point exhibit the checkerboard

pattern. We see the large-scale correlation fields with the grid-scale noise present. This

demonstrates that the checkerboard pattern in the streamfunction field is being carried

through to the statistics calculated of it. As discussed previously this would have a

direct impact on the assimilation if such estimates of the errors were used to specify the

background error covariances. To mitigate this issue, we apply a Shapiro filter.

Figure 4.10: Spatial correlation of point (400km, 400km) of the ageostrophic streamfunction increments.

(a) No filtering . (b) Shapiro filter is applied to ageostrophic streamfunction increments as a post-

processing.

4.3.4 The Shapiro filter

One way to mitigate this checkerboard issue is to apply a filter. A potential filter is the

Shapiro filter, described in section 2.3. An approach to using the Shapiro filter would be

to apply the filter within the Helmholtz transformation. However this is unable to remove

the checkerboard pattern. We demonstrate this by applying the filter to streamfunction

directly within the Helmholtz transformation. This involves averaging streamfunction
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values to the corner of the grid cells and then calculating the necessary derivatives, this

follows Approach B in section 4.2.4. We can apply the Shapiro filter to the averaged

values of streamfunction at the corner of the grid cells. If we aim to calculate ∆yδψU at

δuU
i+ 1

2 ,j
as in section, 4.2.4 we have:(

∆yδψU

)
i+ 1

2 ,j
= 1

∆y (δψ̄U
i+ 1

2 ,j+ 1
2

− δψ̄U
i+ 1

2 ,j− 1
2
) (4.23)

where the averaged values of streamfunction are located at the corner of the grid cells

(figure 4.3). We apply the Shapiro filter to these corner points to give
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As discussed, the streamfunction values have been averaged from the centre of the grid

cell to the corner, for example

δψ̄U
i+ 1

2 ,j+ 1
2

= 1
4(δψUi,j+1 + δψUi+1,j+1 + δψUi,j

+ δψUi+1,j
). (4.25)

By substituting the un-averaged values of streamfunction, as given by (4.25), into (4.24)

we get
(

∆yδψU

)
i+ 1

2 ,j
= 1

64∆y

6
(
δψUi,j+1 − δψUi,j−1 + δψUi+1,j+1 − δψUi+1,j−1

)
+

3
(
δψUi,j+2−δψUi,j−2+δψUi+1,j−2−δψUi+1,j−1

)
+2

(
δψUi−1,j+1−δψUi−1,j−1+δψUi+2,j+1−δψUi+2,j−1

)

+
(
δψUi−1,j+2 − δψUi−1,j−2 + δψUi+2,j+2 − δψUi+2,j−2

). (4.26)
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The resulting derivative still does not incorporate information from adjacent

streamfunction values, δψUi,j
and δψUi+1,j

, and as such, the checkerboard pattern has

not been eliminated. Hence, we consider an alternative approach in which we apply

one iteration of the Shapiro filter to δψU after the transformation from the ageostrophic

velocity increments. The full workflow of transforming to the alternative velocity control

variables and applying the Shapiro filter to the ageostrophic streamfunction is illustrated

in figure 4.11 and discussed in appendix C. We apply Neumann boundary conditions to

streamfunction when applying the Shapiro filter.

Figure 4.11: Workflow to finding the ageostrophic streamfunction and velocity potential increments

with the Shapiro filter after the transformation. From the model output we find the daily increments,

then use geostrophic balance to find the ageostrophic velocity increments and apply the Shapiro filter. We

then find the the ageostrophic streamfunction and velocity potential increments through the inverse of

the Helmholtz decomposition. We then again apply the Shapiro filter to the ageostrophic streamfunction

increment.

The errors in the reconstructed velocities, when we apply the Shapiro filter to

the ageostrophic streamfunction increment as a post-process, no longer display the
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Figure 4.12: The difference between the original ageostrophic velocity increments, calculated using the

SWEs, and the reconstructed ageostrophic velocity increments. These are reconstructed using Helmholtz

equations, from the ageostrophic streamfunction and velocity potential increments where the Shapiro

filter has been applied to streamfunction. On the left we have the zonal velocity increment error and on

the right the meridional velocity increment error (ms−1).

checkerboard pattern and neither do the resulting spatial correlations (figure 4.10b). The

Shapiro filter also has little effect on the magnitude of the spatial correlations, with an

average absolute magnitude of 0.269 with no filter and 0.275 after the filter has been

applied. However, the magnitudes of the reconstruction errors, as seen in figure 4.12,

increase significantly compared to the original errors shown in figure 4.7. This is to be

expected as we are altering the streamfunction field before reconstructing the velocities.

However, it is a significantly large increase that requires further investigation, which we

conduct in the section 5.4.1.

4.4 Summary and conclusions

In this chapter we have detailed a new CVT using the SWEs, discussed the implications

of this CVT on the boundary conditions of the control variables and discovered a major

numerical issue with this transformation from the ageostrophic velocities to ageostrophic

streamfunction and velocity potential. We provide both analytical and numerical

discussions for all.

Initially, we set-up the shallow water model and discretised it using a semi-implicit

Semi-Lagrangian scheme. We then detailed the transformation from the velocities to the
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proposed velocity variables, using this shallow water model. A method proposed in the

literature, to transform velocities into their irrotational and non-divergent components,

eliminates the need for imposing explicit boundary conditions on the streamfunction.

However, we first demonstrate that implicit boundary conditions are still present for

streamfunction. Furthermore, we have shown theoretically and then numerically using the

SWEs on a β-plane, that there is a numerical artefact arising from this transformation.

The calculation of streamfunction derivatives within the Helmholtz equations results in a

checkerboard pattern, stemming from a loss of information during the decomposition.

When performing the T-transform, from the ageostrophic velocities to ageostrophic

streamfunction and ageostrophic velocity potential, we have proposed applying the

Shapiro filter to the ageostrophic streamfunction increment after the transformation

as a practical remedy. We investigated a consequence of the checkerboard pattern

on the spatial correlations of streamfunction. These clearly showed the presence of

the checkerboard pattern, illustrating how the grid-noise could pollute any statistics

calculated.

In appendix A, we present preliminary work on calculating cross-correlations between

the velocity control variables, providing a brief examination of the uncorrelated

assumption used in the CVT for the proposed control variables, geostrophic

streamfunction and the velocity potential. The appendix highlights the presence of a

checkerboard pattern in the cross-correlation fields, similar to that observed in the auto-

correlation fields. Our findings also indicate that the proposed variables are in fact more

strongly cross-correlated than the ageostrophic velocity components. Possible contributors

to these correlations are the use of Tikhonov’s regularisation in the modified Helmholtz

transformation or the choice of method to calculate these correlations. Despite of this

and our discovery of a numerical issue with this transformation to alterative velocity

variables, the overall potential benefits discussed in section 3.5 are still worth pursuing

in NEMOVAR. We do not pursue the correlation analysis further in this work. However,

a more detailed study is needed to draw definitive conclusions about the correlations

between these variables, which would be extremely valuable to employing these variables

in NEMOVAR.

In the next chapter we implement these alternative velocity variables in the balance

operator used in NEMOVAR and demonstrate the transformation using a configuration
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of NEMO. We identify the numerical issue discovered here and provide a more extensive

investigation into the solution.
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Chapter 5

Alternative velocity control variables

in NEMOVAR

In this chapter, we integrate the proposed velocity control variables — ageostrophic

streamfunction and velocity potential — into the NEMOVAR balance operator. We

assess the performance of the transformation in a realistic data assimilation system by

testing the implementation using the GYRE configuration of NEMO.

Firstly, we introduce the GYRE configuration, and the configuration set up. We then

describe how the balance operator currently used in NEMOVAR can be updated to use

ageostrophic streamfunction and velocity potential as the velocity control variables. The

process of transforming from the velocities to their non-divergent and irrotational parts

differs from that used in the simpler shallow water domain, and here we detail these

differences. Next, we demonstrate the transformation from the velocity increments to

streamfunction and velocity potential numerically using the GYRE configuration. This

involves sensitivity experiments to determine certain parameter settings. Finally, we

discuss a numerical implication of this transformation that appeared using the shallow

water model and a potential solution. This chapter extends the work from chapter 4 to

the NEMOVAR data assimilation code for application with NEMO.
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5.1 Nucleus for European Modelling of the Ocean

Nucleus for European Modelling of the Ocean (NEMO) is a framework for ocean modelling

(Madec et al., 2023). In this and the following chapter we use NEMO 4.0.4. NEMOVAR

(Mogensen et al., 2009) is the variational data assimilation software for the NEMO model

introduced in section 3.4.3. It is used operationally at the UK Met Office (Waters et al.,

2015; Mignac et al., 2025) and ECMWF (Balmaseda et al., 2013; Chrust et al., 2024).

In this chapter, we update the current balance operator used in NEMOVAR to include

alternative velocity control variables. In order to demonstrate the transformation from

the velocities to their non-divergent and irrotational parts, we use model output generated

by the so-called GYRE configuration of NEMO.

5.1.1 Coordinate system in NEMO

All configurations in NEMO use a deformed curvilinear coordinate system on a sphere.

As described in Madec et al. (2023) and shown in figure 5.1, NEMO has a set of

orthogonal curvilinear coordinates (i, j, k). The geographical coordinate system given

by (λ, φ, z) describes the longitude, λ(i, j), latitude, φ(i, j) and depth below reference sea

level, z(k), respectively. Spherical coordinate systems create a singularity at the North

Pole, which causes challenges in ocean models. To mitigate this, NEMO modifies the

coordinate system to place the singularity over land. In the ORCA family of grids used

by NEMO global configurations, a tripolar grid is employed whereby the two northern

hemisphere poles are placed over land while the south pole remains over land in Antarctica.

The transformation of the coordinate system over the pole introduces scaling functions

into the model equations. These are described in section 1.3.1 of Madec et al. (2023).

Throughout this section we will present the equations in spherical coordinates, without

this transformation.

5.1.2 GYRE configuration

The GYRE configuration of the NEMO ocean model uses the primitive and mass

continuity equations to simulate the seasonal cycle of a double-GYRE box model (Lévy

et al., 2010). We have the following variables: v = (vh, w), the velocity vector, where
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Figure 5.1: The geographical coordinate system (λ, φ, z) and the curvilinear coordinate system (i, j, k)

used in NEMO. Figure 1.2 from Madec et al. (2023).

vh = (u, v) is the horizontal velocity vector and w is the vertical velocity, T , temperature;

S, salinity and ρ is the in-situ density given by ρ = ρ(T, S, p) where p is the pressure.

The primitive equations in NEMO are defined as follows,
[
Dvh
Dt

]
h

= −fk × vh − 1
ρ0

∇hp+Dv + F v, (5.1)

∂T

∂t
= −∇ · (Tv) +DT + FT, (5.2)

∂S

∂t
= −∇ · (Sv) +DS + F S, (5.3)

where [
D

Dt

]
h

≡ ∂

∂t
+ u

acosφ
∂

∂λ
+ v

a

∂

∂φ
(5.4)

and t is time; ρ0 is the reference density; f = 2Ω ·k is the Coriolis acceleration (where Ω is

the Earth’s angular velocity vector); Dv, DT, DS are the parametrisations of small-scale

physics; F v, FT, F S are surface forcing terms and a is the radius of the earth. Additional

assumptions are made when formulating these equations. These are described in section

1.1.1 of Madec et al. (2023). The GYRE configuration uses a free surface formulation

described in section 1.2.2 of Madec et al. (2023). This introduces an additional model

variable: sea surface height (SSH), η, which describes the shape of the air-sea interface.

NEMO is discretised on an Arakawa C-grid, similar to the shallow water model

presented in section 4.1. The centre of each grid cell is referred to as the T-point, and the

corner as the f-point, as seen in figure 5.2.
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Configuration set-up

The primitive equations for the GYRE configuration are solved in an idealised 3D domain

and are forced by an analytical function of seasonal forcing. The configuration allows the

investigation of the spontaneous generation of a large number of interacting transient

mesoscale eddies. The domain is a closed rectangular basin on the β-plane, bounded by

vertical walls and a flat bottom. The GYRE configuration is used to represent an idealised

north Atlantic basin, eventually developing a western boundary current reminiscent of the

Gulf Stream.

The circulation is forced by wind and buoyancy fluxes which vary seasonally in a

sinusoidal manner (with winter and summer extrema). The wind stress is zonal. The

model is initiated from rest with vertical profiles of temperature and salinity, which vary

with depth but are horizontally uniform, across the whole domain. The model takes a few

years to spin up, the procedure we use to spin up the model is described in section 5.3.1.

The model simulates sea surface height (elevation), horizontal and vertical velocities,

salinity and temperature on a 3D grid. The GYRE configuration has 31 vertical levels with

the first layers located at 5m, 15m, 26m, 36m, 48m, 60m, and 75m depth. The horizontal

resolution can be set to any value between 1o to 1/54o.

We must prescribe boundary conditions to both the normal and tangential velocities.

There is zero flow across the boundary, i.e. the velocity normal to the boundary is

zero. This is a physical boundary condition at coastlines. There are several options for

the tangential boundary conditions in NEMO. These are described fully in Madec et al.

(2023) and illustrated in figure 5.3,

(a) Free-slip: normal derivative of the tangential velocity is zero at the boundary;

(b) No-slip: tangential velocity is zero at the boundary;

(c) Partial free-slip: the tangential velocity is smaller than the offshore velocity;

(d) Strong no-slip: no-slip but with higher friction.

The GYRE configuration uses free-slip conditions at all boundaries. This is commonly

used in the global ocean. However, Guiavarc’h et al. (2025) describe the use of partial

slip boundary conditions in the Southern Ocean in the Met Office global configurations.
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Figure 5.2: The horizontal grid used in the

NEMO model. Figure 3.3 from Madec et al.

(2023).

Figure 5.3: Lateral boundary conditions, (a)

free-slip, (b) no-slip, (c) partial free-slip (d)

strong no-slip. Figure 7.2 from Madec et al.

(2023).

In the following section we describe how to implement the alternative velocity control

variables in the NEMOVAR balance operator.

5.2 Variable transformations

As described in section 3.4.2, at present the ageostrophic velocities are used as the velocity

control variables in NEMOVAR and we hypothesise that these are highly correlated. In

this section, we describe how to implement the alternative velocity control variables,

ageostrophic streamfunction and velocity potential increments, in NEMOVAR.

5.2.1 Balance operator

We propose a modification to the linearised balance operator (3.18) used in NEMOVAR.

The balance operator, K, is used to describe the balance relationship between variables

and the inverse is designed to decorrelate the variables (Weaver et al., 2005). We use the

same balance operator given by (3.18) but add an additional transformation to the final
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equation - splitting the ageostrophic horizontal velocities into to their non-divergent and

irrotational parts given by streamfunction and velocity potential. This gives

δT = δT,

δS = KST δT + δSU := δSB + δSU ,

δη = Kηρδρ+ δηU := δηB + δηU ,

δvh = Kvpδp+ δvhU
:= δvhB

+ δvhU
= δvhB

+ δvψU
+ δvχU

(5.5)

where δρ and δp are as described in section 3.4.3, the horizontal components of the

velocities are denoted by h, and δvψU
and δvχU

are the non-divergent and irrotational

components of the velocity increments, respectively. The ageostrophic velocity increments

are decomposed using the Helmholtz decomposition, which we introduced in section 2.1.

The Helmholtz equations are as such:

δu = −1
a

∂δψ

∂φ
+ 1
a cosφ

∂δχ

∂λ
and δv = 1

a cosφ
∂δψ

∂λ
+ 1
a

∂δχ

∂φ
. (5.6)

For simplicity, we formulate the Helmholtz equations (5.6) in spherical coordinates. As

discussed in section 5.1.1, NEMO uses a curvilinear coordinate system (i, j, k) which can

be transformed to from the spherical coordinates (λ, φ, z). This transformation is detailed

in section 1.3.1 of Madec et al. (2023).

The new control vector is given by δz = (δT, δSU , δηU , δψU , δχU)T. The inverse of the

balance operator, K−1, is used to compute δz from δx:

δT = δT,

δSU = δS − δSB,

δηU = δη − δηB,

δψU = Hψ(δvh − δvhB
),

δχU = Hχ(δvh − δvhB
)

where Hψ and Hχ represent the inverse Helmholtz decomposition operators, which

reconstruct the velocity field from its rotational and divergent components. These should

not be confused with the observation operators: the non-linear operator h or its linearised

form H, which instead map model states to the observation space. The inverse Helmholtz

decomposition, solving for streamfunction and velocity potential from the horizontal
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velocities, is a part of the T-transform and is essential for computing statistics of the

control variables. However, the T-transform is not required during the assimilation

process itself. Instead, the forward transformation, which derives horizontal velocities

from the streamfunction and velocity potential, is used as part of the U-transform, which

is employed during the data assimilation procedure. While this forward transformation

is straightforward to apply, performing the inverse is considerably more complex. In the

following section, we describe the formulation of this inverse in NEMOVAR. The rest of

this chapter is focused on the inverse transformation, we test the forward transformation

in chapter 6.

5.2.2 The discrete transformation to streamfunction and

velocity potential

We aim to solve the Helmholtz equations (5.6) discretised as follows,

δuU = − 1
sφ

∆φδψU + 1
sλ

∆λχ and δvU = 1
sλ

∆λψ + 1
sφ

∆φχ (5.7)

to find the ageostrophic streamfunction and velocity potential increments, where we have

the scale factors sλ = a cosφ, sφ = a and ∆λ and ∆φ are the discretisation of ∂
∂λ

and ∂
∂φ

.

For the shallow water model, we used the conjugate gradient (CG) method (see section

2.2.2) to minimise a cost function (4.14). In NEMOVAR we form a similar cost function.

The NEMO model uses a non-uniform grid for its configurations, including the GYRE

configuration. The use of a non-uniform grid requires weighting for each area element.

This is implemented using WV , which is a diagonal matrix of area elements at the velocity

points. We formulate the following cost function,

J (Φ) = 1
2(δvhU

− AΦ)TWV (δvhU
− AΦ) (5.8)

where

ΦΦΦ =

δψU
δχU

 and δvhU
=

δuU
δvU


and here

A =

− 1
sφ

∆φ
1
sλ

∆λ

1
sλ

∆λ
1
sφ

∆φ

 . (5.9)
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Setting the gradient of the cost function (5.8),

∇J (Φ) = −ATWV (δvhU
− AΦ), (5.10)

to zero gives the following expression for Φ

ATWV AΦ = ATWV δvhU
(5.11)

which we solve using the CG method. Similar to the shallow water model in section

4.1, the GYRE configuration is a bounded simply connected domain and the horizontal

velocity vector is non-zero on the boundary. Therefore, the Helmholtz decomposition and

the solution to (5.11) is not unique.

Non-uniqueness of Helmholtz Theorem

In the shallow water model, we apply Tikhonov’s regularisation to address the non-

uniqueness of the Helmholtz decomposition (see section 4.2.3). For NEMOVAR, we also

use Tikhonov’s regularisation. The inclusion of regularisation updates (5.11) to give

(ATWV A + µWT )Φ = ATWV δvU (5.12)

where WT is a diagonal matrix of area elements at T-points, and µ is a regularisation

parameter defined as

µ = µ̂ · max(diag(G)) (5.13)

where µ̂ is a non-dimensional parameter and

G = W−1
T ATWV A. (5.14)

This is chosen as such to tune the relative magnitude of two terms with a non-dimensional

coefficient. This particular choice of parameter removes the area weighting, thereby

ensuring equal weighting across all grid cells. As a result, only a single regularisation

parameter is required for the entire domain. The strength of the regularisation is

controlled by µ̂.

Once again we implement the method proposed by Li et al. (2006), whereby

streamfunction is located at the centre of the grid cell (see figure 3.2b). As discussed in

section 4.2.4, there are two approaches to calculating the streamfunction derivatives. In
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NEMOVAR we implement approach B (described in section 4.2.4), whereby we average the

streamfunction derivatives to the corners of the grid cells before calculating the derivatives.

A note about implementing this approach is presented in appendix F. We now discuss

implementing this transformation to the alternative control variables.

5.3 Performing the discrete transformation

In this section we implement and test the discrete transformation from the horizontal

velocities to their non-divergent and irrotational parts, in the context of NEMOVAR. To

accomplish this, we first run the GYRE configuration to generate model increment fields.

From these fields, we perform the inverse of the Helmholtz transformation to compute the

non-divergent and irrotational components of the velocity increments. We then test this

transformation by reconstructing the velocities and analysing the reconstruction errors.

5.3.1 Method

We run the GYRE configuration presented in section 5.1.2. The GYRE configuration is

initialised from rest; therefore, to obtain model fields with significant and realistic ocean

structures, the model must be spun up for some time. Since running high-resolution

models is computationally expensive, we begin with a low-resolution setup and gradually

increase the resolution. We generate the model output by performing the following steps,

also illustrated in figure 5.4.

1. Run the GYRE configuration at a 1o resolution (GYRE1) for 1000 years, starting

from rest.

2. Run the GYRE configuration at a 1/12o resolution (GYRE12) for 10 years starting

from an interpolated file at the end of the 1000 year GYRE1 run.

3. Run the GYRE configuration at a 1/36o resolution (GYRE36) for 1 month starting

from an interpolated file at the end of the 10 year GYRE12 run.

The highest resolution run allows small scale structures to form. However, we

interpolate the file at the end of the 1 month GYRE36 run back to the GYRE12
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configuration to be consistent with chapter 6 where we perform data assimilation

experiments using the GYRE12 configuration.

Figure 5.4: Process to generate the one day increment from the GYRE configuration used in the

transformation experiments in this chapter.

We run the GYRE configuration for one day at the 1/12o resolution and take the

difference between this day and the previous day. This generates a 1 day difference in the

model variables which we use as a proxy for an assimilation increment for demonstration

purposes here. The horizontal velocity increments at the surface that are produced using

this procedure are shown in figure 5.5. In the following sections we decompose the

velocity increments into their non-divergent and irrotational components, rather than

the ageostrophic components, as done in chapter 4. We then reconstruct the velocities to

investigate the errors associated with the transformation.

Figure 5.5: Surface horizontal velocity increments from running the GYRE configuration for 1010 years

and 1 month. The zonal velocity increment is on the left and the meridional velocity increment on the

right (ms−1).
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To transform the horizontal velocity increments to streamfunction and velocity

potential increments we solve (5.12) using the CG method by performing a 2D

minimisation at each vertical level. For the CG method, the maximum number of

iterations is set to 10,000. These inverse experiments we perform are inexpensive to

execute given the scale of the GYRE configuration domain. Setting a high maximum

number of iterations allows us to observe convergence clearly, though in practice,

convergence was achieved well before reaching this maximum. It is also worth noting

that no preconditioning was applied in this setup; with an appropriate preconditioner,

the number of required iterations would likely decrease significantly. Furthermore, we

define the convergence criterion based on the residual reduction relative to its initial

value, which must be less than a specified tolerance.

In order to perform the inverse transformation we must first answer the following

questions

• What value to use as the regularisation parameter, µ̂?

• What value to use as the convergence (accuracy) tolerance?

5.3.2 Transformation experiments

In this section, we conduct experiments to choose the value of the convergence tolerance

and regularisation parameter for our GYRE configuration set-up and show the sensitivity

of the transformation to a variety of settings. We experiment with four values for both the

convergence tolerance and regularisation parameter. For each experiment we transform

from the horizontal velocity increments, generated using the method described in section

5.3.1, to streamfunction and velocity potential. We then reconstruct the velocities from

these fields using the Helmholtz equations (5.7). For each experiment, we calculate the

root mean square (RMS) of the zonal and meridional velocity error, defined by (2.20). The

experiment results are shown in table 5.1. The entries include the number of iterations

the CG method took to converge and the RMSE of the surface velocities. The table

confirms some expected results: as the regularisation parameter and convergence tolerance

decrease, the number of iterations required for convergence increases, but the RMSE of

the velocities becomes smaller.
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Experiment

number

Convergence

tolerance

Regularisation

parameter (µ̂)

RMSE zonal

velocity

RMSE

meridional

velocity

Iterations

1 10−3 10−3 0.0048567 0.0043384 111

2 10−3 10−4 0.0011231 0.000991 225

3 10−3 10−5 0.0004596 0.0003853 354

4 10−3 10−6 0.0004176 0.0003455 377

5 10−4 10−3 0.004849 0.0043435 161

6 10−4 10−4 0.0011162 0.0009634 371

7 10−4 10−5 0.0004094 0.0002951 827

8 10−4 10−6 0.0002719 0.0002023 1519

9 10−5 10−3 0.0048491 0.0043423 212

10 10−5 10−4 0.0011158 0.0009631 530

11 10−5 10−5 0.0004017 0.0002997 1255

12 10−5 10−6 0.0002615 0.0001945 3246

13 10−6 10−3 0.0048492 0.0043423 262

14 10−6 10−4 0.0011159 0.000963 688

15 10−6 10−5 0.0004018 0.0002994 1751

16 10−6 10−6 0.0002613 0.0001943 4754

Table 5.1: Convergence and regularisation parameter experiments for the GYRE configuration. The

RMSE values are for the surface velocities and the number of iterations are for the convergence of the

minimisation at the surface. The highlighted row is our chosen settings for the final experiment.

To visually examine and understand the results from table 5.1, we plot the RMSE

values for the three smallest regularisation parameters at the surface in figure 5.6. We

exclude experiments 1, 5, 9 and 13, with µ̂ = 10−3, as their RMSE values are significantly

larger than the smaller regularisation parameters. When comparing the RMSE values of

the velocities to the magnitude of the original velocity increments, a value of µ̂ = 10−3

results in approximately a 5% error. However, reducing µ̂ to ≤ 10−4 decreases the error

to 1% or even less. It is evident from figure 5.6 that tightening the convergence tolerance

has progressively less impact, with further reductions yielding diminishing returns. In

particular, the difference between 10−6 and 10−5 is almost negligible, suggesting that
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Figure 5.6: RMSE of the reconstructed horizontal velocity at the surface for various regularisation

parameters and convergence tolerance values. The left is the zonal velocity and the right the meridional

velocity. The blue line (convergence tolerance = 10−6) is masked by the orange line.

beyond a certain point, a stricter tolerance offers little to no practical benefit. Figure 5.7

shows the RMSE values averaged across all vertical levels. We see that the RMSE at the

surface is representative of the mean values across the depths. We conclude from figures

5.6 and 5.7, that reducing the convergence tolerance below 10−5 is unnecessary.

Consider the results from table 5.1 where the tolerance is equal to 10−5. Figure

5.8a shows the norm of the residual in (5.12) (the left hand side minus the right hand

side) at the surface, as the iterations proceed. The rate as which the residual falls

is inversely related to the computational time taken to converge to the solution. We

see that the number of iterations before convergence increases drastically the smaller

the regularisation parameter. To illustrate the impact of reducing this parameter to a

more extreme value and demonstrate the negative effect on convergence we add a new

experiment with µ̂ = 10−7, which does not feature in table 5.1. Figure 5.8b shows the

number of iterations for each regularisation parameter value at each vertical level. We

see that the number of iterations to converge is reasonably consistent through the vertical

levels, except for this additional regularisation parameter of 10−7, which sees a sharp rise

in iterations with depth. This suggests that vectorising the computation — computing

the transformations for all levels simultaneously — could be a viable strategy to reduce

97



Figure 5.7: Average RMSE of the reconstructed horizontal velocity across all depths for various

regularisation parameters and convergence tolerance values. The left is the zonal velocity and the right

the meridional velocity. The blue line (convergence tolerance = 10−6) is masked by the orange line.

(a) The norm of the residual (b) Number of iterations for all depths

Figure 5.8: The norm of the residual at the surface and the number of iterations to convergence across

all depths with an accuracy tolerance of 10−5 and various values of regularisation parameter.

communication steps and improve efficiency.

From these results, we choose to set the accuracy tolerance and regularisation

parameter, µ̂, to both be 10−5. This convergence value is chosen as such since smaller

values beyond this threshold give minimal improvement and result in significantly more

iterations to converge. We conclude that µ̂ = 10−5 is also an appropriate value for our

particular system from the above analysis. Future work would look to use a more precise
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method of deciding this regularisation parameter. There are multiple methods discussed

in literature to determine an optimal value of Tikhonov’s regularisation parameter. A

particular method, called the L-curve, as discussed in section 2.2.1, is concluded as the

most robust method according to Hansen (1997).

Figures 5.9a and 5.9b show the streamfunction and velocity potential increments

obtained after performing the inverse Helmholtz decomposition with these parameters

(experiment 11 in table 5.1). The errors in the velocities after reconstruction are given in

figures 5.9c and 5.9d. We see that the error is relatively small compared to the magnitude

of the velocity increments, approximately 1% of increment fields (seen in figure 5.5). In

figures 5.9c and 5.9d a checkerboard pattern is apparent. This is caused by the averaging

involved in calculating streamfunction derivatives, as discussed in section 4.3.2. We discuss

this issue further in section 5.4.

5.3.3 Summary

In this section we performed the transformation from the velocity increments to

their irrotational and non-divergent parts, velocity potential and streamfunction. We

performed experiments to test the sensitivity of the transformation to the regularisation

parameter and convergence tolerance. Our results showed that reducing the tolerance and

regularisation parameter below a certain threshold has little impact on solution sensitivity

but causes a substantial increase in the number of iterations required for convergence.

We propose the following parameter settings when performing the transformation from

velocity increments to their non-divergent and irrotational parts, using the GYRE

configuration:

Accuracy tolerance 10−5

µ̂ 10−5

In the next section we perform the transformation using these settings and discuss the

checkerboard pattern. As with this section, we do not use the full balance operator

discussed in section 5.2.1. Notably, the checkerboard pattern would still arise when

the transformation is applied in the full balance operator, to the ageostrophic velocity

increments.
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(a) Streamfunction increment (m2s−1). (b) Velocity potential increment (m2s−1).

(c) Zonal velocity reconstruction error (ms−1). (d) Meridional velocity reconstruction error (ms−1).

Figure 5.9: Top row: The resulting surface streamfunction and velocity potential increments from

performing the inverse Helmholtz decomposition with accuracy tolerance of 10−5 and µ̂ = 10−5

(experiment 11 in table 5.1). Bottom row: The errors obtained when reconstructing the horizontal

velocities.

5.4 Checkerboard pattern

In this section, we examine the checkerboard pattern that emerges when the horizontal

velocities are decomposed into their non-divergent and irrotational components. We

then assess the sensitivity of this transformation to a proposed solution involving the

application of a Shapiro filter, and discuss additional issues that arise from this approach.

We introduced the checkerboard pattern in section 4.3.2, when performing the inverse

of the Helmholtz decomposition to find streamfunction and velocity potential, using the

SWEs. As discussed in section 4.3.2, the checkerboard pattern introduces noise into the
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control variable fields, which can distort calculated statistics. This leads to an inaccurate

background error covariance matrix and poses challenges when estimating length scales.

In the previous section, we performed the transformation from the horizontal velocities

to streamfunction and velocity potential using the GYRE configuration of NEMO. From

an initial visual inspection of the streamfunction field in figure 5.9a, the checkerboard

pattern is not obvious; however it is clearly visible in figures 5.9c and 5.9d, the velocity

reconstruction errors at the surface. The checkerboard computational mode differs on

a non-uniform grid from that produced using the SWEs on a uniform grid. Recall,

the checkerboard pattern occurs when information from adjacent streamfunction points

is lost when calculating the streamfunction derivatives. On a uniform grid, adjacent

streamfunction values are completely eliminated. However, on a non-uniform grid, such

as the one used in NEMO, information from nearby points is still removed, but not

entirely.

Figure 5.10: The horizontal lines we perform the Fast-Fourier transform on in order to detect the

checkerboard pattern.

To demonstrate the presence of the checkerboard pattern, we use a Fast-Fourier
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transform (FFT) (see section 2.4). We take multiple horizontal slices of the streamfunction

field, shown in figure 5.10. For each line we calculate the discrete Fourier transform (DFT)

sample frequencies using the FFT, as seen in the left column of figure 5.11. In appendix G,

we discuss the impact of applying the FFT to a non-periodic wave. This non-periodicity

introduces distortions in the high-frequency components. To address this issue, we adopt

a mirroring approach: the original lines are extended by appending their mirror image,

effectively doubling their length. As a result, the FFT produces wavenumbers that are

twice as dense as those obtained from the original (non-mirrored) data. However, only the

even wavenumbers correspond directly to the wavenumbers of the standard FFT without

mirroring, and it is these values that we present in this and the following section.

We also apply this Fourier analysis to the meridional velocity reconstruction error field,

as seen in the right column of figure 5.11. In these figures we show the spectra calculated

from the Fourier analysis at the surface, given by the red line. The analysis is repeated at

all vertical levels and the blue line shows the averaged amplitude across the levels. The

grey shaded region provides the range of values. The amplitude shows a distinct peak at

the lowest frequencies (low wavenumbers) as expected, indicating a wave the size of the

domain across all sample lines. Line 4, which intersects an area of intensified dynamical

activity (e.g., oceanic eddies), displays elevated spectral energy at these low frequencies

— an expected result given the enhanced variability and multiscale structures present.

For all sampled lines, we observe a small but distinct high-frequency (high wavenumber)

peak in streamfunction, corresponding to a wavelength of two grid lengths — the shortest

wavelength resolvable on the grid. This is characteristic of a checkerboard pattern, which

is even more prominently visible in the meridional wind reconstruction error.

Having confirmed the existence of the checkerboard pattern, we adopt the same

approach as in section 4.3.4, applying the Shapiro filter (see section 2.3) to attempt

to remove the associated noise.

5.4.1 The Shapiro filter

We apply the second order Shapiro filter to the streamfunction output produced by

experiment 11 at each depth; the surface field before filtering is shown in Figure 5.9a.

The filtering is performed as a post-processing step, with the justification detailed in
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Figure 5.11: The spectrums generated from applying the FFT to the lines shown in 5.10, the top row

for line 1 and the bottom row for line 4. Streamfunction (left) and meridional velocity reconstruction

error (right). No filter is applied to the streamfunction field. The red line is the spectrum at the surface,

blue is the amplitude averaged across the 31 vertical levels and the grey shaded region is the range of

values across the depths.
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section 4.3.4. We begin by applying a single iteration of the Shapiro filter and assessing

its effect on the checkerboard pattern through the Fourier transform. First, we transform

the velocity increments to streamfunction and velocity potential, as per experiment 11.

Next, we apply the Shapiro filter to the streamfunction field. Finally, we reconstruct

the velocities using the filtered streamfunction field along with the original velocity

potential field. The FFT is then applied to the horizontal lines shown in figure 5.10 for

both streamfunction and the meridional velocity reconstruction error using the process

described previously.

Figure 5.12 shows that the pronounced peaks at high frequencies, which we saw

in figure 5.11, have been removed by applying one iteration of the Shapiro filter to

streamfunction. This is the case for both the streamfunction and the meridional velocity

error fields. However, the structure of the meridional velocity error signal has become more

uniform, suggesting that the Shapiro filter has eliminated dominant spatial patterns even

at large scales. As a result, the remaining signal appears increasingly noise-dominated.

Since this is an error field, the presence of a noisy pattern is considered acceptable as

we expect no particular signal. We also observe slight alterations in the low frequencies,

which are discussed in more detail later in the section.

Figure 5.12 suggests that a single iteration of the Shapiro filter is sufficient to remove

the checkerboard pattern. To verify this, we repeat the previous experiment, increasing

the number of filter iterations to five. As shown in figure 5.13, the streamfunction

spectrum remains essentially unchanged, indicating that further iterations are unnecessary

as the FFT shows no additional removal of the checkerboard pattern. The meridional

velocity error spectrum again remains fairly uniform. Therefore, we conclude that only

one iteration of the Shapiro filter is necessary when performing this transformation using

the GYRE configuration.

In figure 5.14a we show the streamfunction field after applying the single iteration of

the Shapiro filter and figures 5.14b and 5.14c are the errors in the reconstructed velocities,

all at the surface. The reconstruction errors appear significantly larger than those observed

without the filter (see figures 5.9c and 5.9d). In figure 5.15 we have a vertical cross-section

of streamfunction and the velocity errors along line 4 in figure 5.10. From these we clearly

see that the magnitudes are larger at the surface and in the areas of high eddy activity.

Similar to the experiments detailed in table 5.1 we calculate the RMSE of the

104



Figure 5.12: As figure 5.11 with the addition of one iteration of the Shapiro filter applied to the

streamfunction field.
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Figure 5.13: As figure 5.11 with the addition of five iterations of the Shapiro filter applied to the

streamfunction field.
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(a) Streamfunction increment (m2s−1).

(b) Zonal velocity reconstruction error (ms−1). (c) Meridional velocity reconstruction error (ms−1).

Figure 5.14: (a) The resulting surface streamfunction increment from performing the inverse Helmholtz

decomposition with accuracy tolerance of 10−5, µ̂ = 10−5 and applying one iteration of the Shapiro filter

as a post-process. (b) and (c) The reconstructed surface velocity errors.

Experiment

number

Convergence

tolerance

Regularisation

parameter (µ̂)

RMSE zonal

velocity

RMSE

meridional

velocity

Shapiro filter

iterations

17 10−5 10−5 0.0102558 0.0094623 1

18 10−5 10−5 0.0227913 0.0211791 5

Table 5.2: Shapiro filter experiments for the GYRE configuration. The RMSE values are for the surface

velocities and the number of iterations are for Shapiro filter applied to the streamfunction increment.

reconstructed velocities, as shown in table 5.2. The RMSE of the zonal and meridional

reconstructed velocities are 0.0103 and 0.0094ms−1, respectively for one iteration of the

Shapiro filter. Both these values are larger than all the RMSE values given in table 5.1.
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(a) Streamfunction increment (m2s−1).

(b) Zonal velocity reconstruction error (ms−1). (c) Meridional velocity reconstruction error (ms−1).

Figure 5.15: Vertical profiles taken along line 4 in figure 5.10. (a) The resulting streamfunction

increment from performing the inverse Helmholtz decomposition with accuracy tolerance of 10−5,

µ̂ = 10−5 and applying 1 iteration of the Shapiro filter as a post-process. (b) and (c) The reconstructed

surface velocity errors.

Comparing these RMSE to the magnitude of the original velocity increments (seen in

figure 5.5) gives approximately a 10% error. Figure 5.16 shows the RMSE at all the

depths for the experiments in table 5.1 (excluding µ̂ = 10−3) and experiment 17 from

table 5.2. The majority of the lines are hidden beneath line 15, and none beneath line

17. We observe that at all depths, applying the Shapiro filter to streamfunction results in

higher RMSEs in the reconstructed velocities compared to all experiments with varying

tolerance and regularisation values — rendering the process of tuning these parameters

almost redundant.

A larger reconstruction error compared with the original transformation without the
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Figure 5.16: RMSE of the reconstructed velocities at all the depths for the experiments in table 5.1

(excluding µ̂ = 10−3) and experiment 17 from table 5.2.

filter is expected. The application of the Shapiro filter is supposed to remove small-scale,

high-frequency features from the streamfunction field. By eliminating this information,

we reduce the accuracy of streamfunction in representing the true field. Consequently,

the reconstruction is based on a distorted version of the streamfunction, leading to larger

errors. We can see in figures 5.14b and 5.14c that these errors are particularly large at the

boundaries. The Shapiro filter, like most spatial filters, works by smoothing the signal

based on neighbouring values. Near the boundaries, the filter has fewer neighbouring

points to consider, which can result in less accurate filtering near the edges. This effect

can lead to larger discrepancies in the reconstructed fields at the boundaries. However,

while some increase in error is expected with the use of the Shapiro filter, the fact that it

has increased the reconstruction error by more than an order of magnitude and the error

is far worse than all the sensitivity experiments is an unacceptably poor outcome. We

now investigate whether this specific filter choice is responsible for the large errors.

Filter test

As discussed, applying the Shapiro filter to streamfunction dramatically increases errors

in the horizontal velocity reconstruction. To determine whether these errors are

unacceptably large due to the suppression of low-frequency components — rather than
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the high frequencies, which we expect to cause some error but not to this extent — we

perform the following test using the FFT:

1. Apply the 2D FFT to the streamfunction field produced by experiment 11.

2. Set the highest frequencies of the FFT spectra to zero (wavenumbers 170 : 176 in

the x-direction and 110 : 116 in the y-direction).

3. Reconstruct the streamfunction field by reversing the 2D FFT.

4. Apply Helmholtz equations (5.7) to reconstruct the velocities and calculate the

reconstruction errors.

Figure 5.17: 2D FFT spectrums of streamfunction at the surface. Left: The 2D FFT of the

streamfunction field shown in figure 5.9a produced by experiment 11. Middle: The 2D FFT of the

streamfunction field with the Shapiro filter applied, experiment 17. Right: The 2D FFT of the

streamfunction field produced by experiment 11 with the highest frequencies set to zero.

Here we do not use the mirroring process discussed for the 1D FFT in section 5.4

but simply apply the 2D FFT to the whole domain. The 2D FFT spectrums are shown

in figure 5.17 and the reconstruction errors can be seen in figure 5.18. We observe that

the reconstruction errors are half the size of those produced using the Shapiro filter,

as shown in Figures 5.14b and 5.14c, except near the boundaries. This suggests that

while the second order Shapiro filter is a low-pass filter that should primarily affect the

smallest wavelengths, as discussed in section 2.3, it appears to negatively impact the larger

wavelengths, leading to significant reconstruction errors. However, the high-frequency

filter we have applied in this test has removed some of the checkerboard pattern but

not in its entirety, as we see this pattern near the north-west and south-east boundaries
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in figure 5.18a and towards the eastern and western boundaries in figure 5.18b. This

test demonstrates that the velocity reconstruction error is highly sensitive to the choice

of filter. It highlights the need for a filter that more effectively targets high-frequency

components and improves boundary treatment — potentially through the use of a higher-

order Shapiro filter.

Figure 5.18: Surface velocity reconstruction errors using a FFT. The velocities are reconstructed from

the streamfunction field with the highest wavenumbers set to zero. The left is the zonal velocity error

and the right is the meridional velocity error (ms−1).

5.5 Summary and conclusions

In this chapter we have described how the NEMOVAR balance operator can be updated

to use ageostrophic streamfunction and velocity potential as the velocity control variables

instead of the ageostrophic velocities, which are currently used. To demonstrate the

additional transformation added to the balance operator, we used the GYRE configuration

of NEMO.

Firstly, we introduced the GYRE configuration and the discretisation used in the

NEMO model. Next, we detailed how to revise the NEMOVAR balance operator by

incorporating an additional transformation that transforms the ageostrophic velocity

increments into ageostrophic streamfunction and velocity potential increments — the

inverse of the Helmholtz decomposition. We then formulated this inverse transformation
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using NEMOVAR notation, accounting for NEMO’s spherical coordinates on a non-

uniform grid. This naturally led to a discussion of the non-uniqueness of this

decomposition and using Tikhonov’s regularisation, as previously applied in the shallow

water framework outlined in section 4.2.3.

Furthermore, we performed the transformation of velocity increments into their non-

divergent and irrotational components. Importantly, rather than applying the full

balance operator discussed in section 5.2.1, we focused solely on decomposing the velocity

increments into their irrotational and non-divergent parts. This section aimed to illustrate

the transformation and assess its sensitivity to specific choices, as these are independent

of the transformation’s input. This approach can later be extended to the ageostrophic

components when incorporating the full balance operator.

To implement this transformation, we must address the non-uniqueness of the

Helmholtz decomposition and establish appropriate convergence tolerance. We conducted

multiple experiments, initially testing different values for both the convergence tolerance

and the regularisation parameter. From these experiments, we determined that a

tolerance of 10−5 is appropriate. Below this threshold, the magnitude of reconstructed

velocity errors became significantly less sensitive, whereas the number of iterations

required for convergence increased substantially. Finally, we established that µ =

10−5 · max(diag(W−1
T ATWV A)) is a suitable regularisation parameter for this study.

After confirming the parameter settings, we analysed the streamfunction output from

this transformation. Visually, it is unclear whether the checkerboard pattern observed in

the shallow water domain is present here. However, it is clearly visible in the velocity

reconstruction errors. To verify this numerically, we applied a Fourier transform, which

revealed the presence of grid-scale waves — indicative of the checkerboard pattern in both

the streamfunction and in the reconstructed velocities. To mitigate this issue, we applied

the second order Shapiro filter to the streamfunction used to reconstruct the velocities

and found that a single iteration is sufficient to eliminate the grid-scale noise. However,

this comes at the cost of significantly increasing the error in the reconstructed velocities.

Diagnostics revealed that a filter specifically targeting the highest frequencies would be

more effective.

In conclusion, we have extended the work presented in chapter 4 by demonstrating

how the newly proposed velocity control variables can be implemented in the balance
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operator of NEMOVAR. These variables have not previously been used with this operator

and represent a novel development within NEMOVAR. We showed through detailed tests

the sensitivity of the transformation (to these new variables) to the associated parameters

and identified the emergence of checkerboard patterns - results which should be addressed

when applying these control variables operationally.

In chapters 4 and 5 we have investigated the inverse transformation - decomposing the

velocities into their non-divergent and irrotational components. This transformation is

part of the T-transform and is necessary for computing statistics of the control variables.

However, the T-transform is not required during the assimilation process. In the next

chapter, we investigate the U-transform, by conducting assimilation experiments using

the proposed control variables in NEMOVAR.
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Chapter 6

Assimilation experiments in

NEMOVAR

In this final chapter we perform assimilation experiments in NEMO and NEMOVAR

using the proposed velocity control variables, ageostrophic streamfunction and velocity

potential. In chapter 5 we discussed the process of transforming to the newly proposed

control variables from the velocity increments as part of the T-transform in NEMOVAR

(this is the inverse of the Helmholtz transformation). We also presented the challenges

faced when performing this transformation, and the measures that must be taken to

combat these. Here, we test the forward transformation. We run assimilation experiments

to determine whether these new control variables have the potential to improve the

analysis produced compared to the current control variables, the ageostrophic velocities.

To do so we use the idealised GYRE configuration of NEMO and the NEMOVAR

assimilation system.

Firstly, we discuss in detail the aims and design of these idealised twin assimilation

experiments. We then describe the model behaviour and the generation of a high-

resolution model run that we consider to be the ‘true’ state of the ocean. Next, we discuss

the observations and background used in the data assimilation experiments. Initially, we

conduct experiments with single observations to analyse the increments produced by our

new control variables. We then present the results of the assimilation experiments using

the full set of observations. We conclude that the proposed control variables demonstrate

the ability to improve the assimilation of velocity observations. More fine tuning of error
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covariance parameters should lead to further improvements in performance.

6.1 Experiment overview

In this chapter, we perform cycling twin experiments to assess the impact of assimilating

velocity observations using the new NEMOVAR balance operator, which incorporates

the proposed velocity control variables (described in section 5.2.1). These are observing

system simulation experiments (OSSEs; Masutani et al. (2010)), which are designed to

evaluate the potential impact of an observing system using synthetic data. Specifically,

we test the assimilation of velocity observations using the proposed control variables. We

generate a high-resolution nature run that we consider to be our ‘truth’. Outputs from

this nature run are used to generate idealised observations with artificial noise included,

which are then used in multiple assimilation experiments at lower resolution. The ability

of the assimilation to recover the ‘true’ state of the ocean is assessed by comparing the

outputs of the assimilation runs to the nature run. We also generate a model free-run

which is at a lower resolution to the nature run, matching that used in the assimilation

experiments. The purpose of this lower-resolution free-run is to demonstrate the impact of

not using data assimilation and observations. We use the GYRE configuration of NEMO

as our model, which is described in section 5.1.

6.1.1 Spin-up procedure

The nature run in these twin experiments is a high-resolution free-running model which we

consider to be the ‘true’ state of the ocean for the purposes of these idealised experiments.

The free-run is a low-resolution free-running model. As illustrated in figure 6.1, we perform

the following steps to spin-up the GYRE configuration:

1. Run the GYRE configuration at a 1o resolution (GYRE1) for 1000 years, starting

from rest.

2. Run the GYRE configuration at a 1/12o resolution (GYRE12) for 10 years starting

from an interpolated file at the end of the 1000 year GYRE1 run.

3. Run the GYRE configuration at a 1/12o resolution (GYRE12_DA) for a further

year starting from the end of the 10 year GYRE12 run.
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4. Run the GYRE configuration at a 1/36o resolution (GYRE36) for 1 year starting

from an interpolated file at the end of the 10 year GYRE12 run.

Using this spin up we generate the nature run, free-run and initial conditions for the

assimilation experiments:

1. Run the GYRE configuration at a 1/36o resolution (GYRE36_NR) for 1 year

starting the end of the 1 year GYRE36 run. This is taken as the nature run.

We use the nature-run to generate the synthetic observations used in this these

experiments, see section 6.3.1.

2. Run the GYRE configuration at a 1/12o resolution (GYRE12_FR) for 1 year

starting the end of the 1 year GYRE12_DA run. This is taken as the free-run.

3. The assimilation runs start from the end of the GYRE12_DA spin up.

Figure 6.1: Process of spinning up the GYRE configuration for the nature run, assimilation experiments

and free-run of the model, including the resolution of the model.

6.1.2 Experiment details

In table 6.1 we list the assimilation experiments to be performed in this chapter. The

details of each experiment will be discussed in the following sections.

6.1.3 Experiment aims

These experiments aim to address the third research question of this thesis, described

in chapter 1. This question examines the implications of using the proposed velocity
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Experiment

Velocity

control

variables

Observations

Background

error standard

deviations

Duration

Free-run - - - 1 year

Control 1 - Standard σu, σv = 0.2ms−1 1 year

Control 2 δuU , δvU
Standard and

velocity
σu, σv = 0.2ms−1 1 year

New CVs 1 δψU , δχU
Standard and

velocity

σχ, σψ =

103m2s−1
1 year

New CVs 2 δψU , δχU
Standard and

velocity

σχ = 0m2s−1,

σψ = 103m2s−1
1 year

New CVs 3 -

sensitivity
δψU , δχU

Standard and

velocity

σχ = 0m2s−1,

σψ = 104m2s−1
1 month

New CVs 4 -

sensitivity
δψU , δχU

Standard and

velocity

σχ = 0m2s−1,

σψ = 102m2s−1
1 month

New CVs 5 -

sensitivity
δψU , δχU

Standard and

velocity

σχ = 0m2s−1,

σψ = 101m2s−1
1 month

Table 6.1: Description of the assimilation experiment settings.

control variables in NEMOVAR and their response to assimilating future ocean current

measurements. The main aims of these experiments are:

1. To demonstrate the use of the proposed control variables in NEMOVAR.

2. To show that the proposed control variables are able to improve the assimilation of

velocity data in NEMOVAR.

3. To evaluate the sensitivity of the assimilation to choices in the prescribed error

covariance statistics of the proposed control variables.

4. To assess the impact of the assimilation of surface velocity data on the model’s

vertical velocities using the current and proposed control variables.

Previous studies, Li et al. (2008a,b) and Li et al. (2015), also perform assimilation

experiments in a regional domain using these proposed control variables, ageostrophic

117



streamfunction and velocity potential. However our experiments differ from these in

multiple ways,

• We are using the NEMOVAR balance operator which uses the diffusion operator to

model the spatial correlations in the background errors rather than the Kronecker

product, which is used by Li et al. (2008a).

• Our experiments are focused on the effect of the proposed control variables and

comparing these to the previous control variables used in NEMOVAR - the

ageostrophic velocities. Previous studies have used these control variables but not

investigated the impact compared to other velocity control variables.

• We use idealised satellite velocity observations in our experiments. Li et al. (2008b)

conduct both single-observation and multi-observation assimilation experiments. In

the latter they do not assimilate any velocity observations; the velocity analysis

increment arises solely from the imposed geostrophic balance. Li et al. (2015)

perform OSSEs that include velocity data, but the observations are obtained from

HF radar measurements, which are limited to coastal regions, whereas we use

satellite-derived velocity observations that provide coverage across the open ocean.

6.2 Model behaviour

In this section we compare the fields generated by the nature run to a free-run of the

model. By comparing these two fields in this section we illustrate some of the differences

expected in the assimilation experiments due to the lower resolution.

Figure 6.2 presents the full fields at the surface — SSH, temperature, zonal, and

meridional velocity — on the first day after the spin-up. For both the nature run and free-

run, we observe a western boundary current, indicated by higher velocities. Additionally,

eddies of different scales are clearly seen in the SSH fields. Notably, the nature run exhibits

more pronounced small-scale features across all fields compared to the free-run which we

expect due to the higher resolution. This is observed similarly in the salinity field (not

shown).

We also compare the mean and variability (represented by the standard deviation)

of the fields over the course of the year, as shown in figures 6.3 and 6.4, respectively.
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Nature run Free run

Figure 6.2: GYRE configuration model fields on the first day of the runs after the spin up at the surface.

The left column is the nature run, interpolated to 1/12o resolution and the right column is the free-run.

The top row shows elevation, second row is temperature, third row is zonal velocity and the final row is

meridional velocity.

119



Nature run Free run

Figure 6.3: As figure 6.2 but the mean fields.

120



The mean values for all variables exhibit similar patterns to the first day of the run. The

nature run shows greater variability in the SSH field compared to the free-run, whereas the

temperature field exhibits the opposite. This may be explained by the higher resolution

of the eddies, which enhance the transport of temperature. When time-averaged, this

results in increased variability in the temperature field, as the eddies redistribute heat

more effectively. The nature run, being higher resolution, may better constrain these

features, resulting in a smoother temporal evolution. In contrast, the free-run may

generate spurious variability due to unresolved sub-grid processes or weaker constraints.

Salinity exhibits a similar pattern to temperature (not shown). The velocities also have a

higher variability in the nature run compared to the free-run. Overall, variability shown

in figure 6.4 is highest near the western boundary current.

In the next section we describe the data assimilation set-up for the assimilation

experiments.

6.3 Data assimilation set-up

In this section we detail the data assimilation set-up for the assimilation experiments.

These settings are relevant to both the single observation experiments in section 6.4 and

the assimilation experiments in sections 6.5-6.8. We run the assimilation experiments

using NEMO and NEMOVAR. NEMOVAR uses 3D FGAT as the operational assimilation

method (Mogensen et al., 2009; Mogensen and Balmaseda, 2012; Waters et al., 2015),

discussed in section 3.2.2. We run the assimilation experiments on a daily cycle. On

each cycle a one-day run of NEMO reads in the observations and interpolates the

model values to the observation locations at the nearest model time-step and outputs

these innovations. NEMOVAR reads in these innovations together with a gridded

model background file (which is used in the multivariate balance calculations) and error

covariance information, and produces the analysis increments on the model grid for the

model variables. These analysis increments are read into a second run of NEMO during

which they are applied slowly using Incremental Analysis Updates (IAU). NEMO expects

increments in temperature, salinity, sea-surface height and the horizontal velocities.
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Nature run Free run

Figure 6.4: As figure 6.2 but the standard deviation fields.
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6.3.1 Observations

Generating the observations

The observations used in this chapter are simulated from the nature run described in

section 6.1.1. For the standard observations (excluding those of velocity), we use the

times and day of year as well as locations of real observations used in the Met Office

FOAM system for the year 2016. Similar to the experiments in Waters et al. (2024a).

We assume that the observation errors are uncorrelated Gaussian noise, therefore we add

Gaussian noise with spatially constant standard deviations to the interpolated nature

run values. These standard deviations are given in table 6.2 and are also used in the

specification of the observation error covariance matrix. Table 6.2 also indicates which

observation types are standard, as referred to in table 6.1.

Standard observation types

We use the standard observations types for all the assimilation experiments, these are: in-

situ temperature and salinity profiles; in-situ and satellite sea surface temperature (SST)

observations and altimeter observations of sea level anomaly (SLA). The coverage of these

observations on the first day of the assimilation experiments is shown in figure 6.5.

Velocity observations

Some of our experiments also use observations which could be obtained from a SKIM-like

satellite mission (Ardhuin et al., 2019). This is velocity data that has been simulated

using the open-source SKIMulator tool (Gaultier and Ubelmann, 2024). This simulates

measurements of total surface current velocities (TSCV) across a wide satellite swath

as show in figures 6.5e and 6.5f. We assimilate 2D TSCVs which give both the zonal

and meridional component of the velocities along the SKIM swath. This swath moves

across the domain over time. The SKIMulator tool provides several levels of output.

While it can generate radial velocities in the satellite’s reference frame, in our case we

use the next level of output, where these radial velocities have been mapped—via an

optimal interpolation procedure — onto a grid within the satellite swath, from which

zonal and meridional velocities are estimated. A recent study by the European Space

Agency Assimilation of TSCV (ESA A-TSCV) project (Waters et al., 2024a; Mirouze
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(a) Temperature profile (b) Salinity profile (c) SST

(d) Altimeter (SLA) (e) Zonal velocity (f) Meridional velocity

Figure 6.5: Coverage of the observations used in the assimilation experiments on the first day of the

assimilation.

et al., 2024; Waters et al., 2024b) performed OSSEs to demonstrate the potential positive

impact TSCV observations could have on ocean forecasting. The simulated TSCV data

used here has the same sampling characteristics as was used in that project.

Observation Error standard deviation Standard

Temperature profile 1◦C ✓

Salinity profile 0.18psu ✓

SST 0.3◦C ✓

SLA 0.05m ✓

TSCV 0.1ms−1

Table 6.2: Observation error standard deviations.
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Assimilating the observations

We have a daily assimilation cycle and use IAU to incorporate the observations. The IAU

is the process of adding analysis increments into a model forecast in a gradual manner

(Bloom et al., 1991, 1996). In NEMOVAR, for each day a model forecast is generated from

the previous analysis state. This does not produce any data assimilation increments but

instead generates the model equivalent of the observations. The daily analysis increments

are then calculated and then gradually applied throughout the day using the IAU. Using

the IAU helps to reduce the shock of adding the increments to the model fields (Waters

et al., 2015) and reduce any adverse impact the increments may have on sensitive model

fields (Bloom et al., 1996).

The observations used in each assimilation experiment are given in table 6.1. Having

discussed the details of the observations used in the assimilation experiments we now

briefly discuss the background error covariance settings.

6.3.2 Background error covariance settings

The background error covariance matrix and balance operator, K, in NEMOVAR are

discussed in section 3.4.3 with the updated balance operator that includes the new velocity

control variables described in section 5.2.1. The standard deviations and lengthscales

that we specify at the surface of the GYRE configuration are given in the table 6.3. The

vertical lengthscales are three times the vertical grid resolution, in table 6.3 we use the

grid resolution near the surface.

The values for the error standard deviations for the model variables are chosen based

on the magnitude of the full fields, representing roughly a 10% error. We see that

streamfunction is of magnitude 103 − 104 (from chapter 5) and choose the standard

deviation to be 103. This is also approximately a 10% error. We investigate the sensitivity

of the assimilation to this value in section 6.8. The standard deviation of velocity potential

is chosen to have an equivalent weighting. Future work would use a more objective method

to measure these standard deviations.
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Variable
Error standard

deviation

Horizontal

lengthscale

Vertical

lengthscale

ηU 0.01m 4◦ -

T 0.5◦C 35km 30m

SU 0.25psu 35km 30m

uU 0.2ms−1 35km 30m

vU 0.2ms−1 35km 30m

ψU 103m2s−1 35km 30m

χU 103m2s−1 35km 30m

Table 6.3: Background error covariance settings at the surface.

6.4 Single observation experiments

Before presenting the full assimilation results, we first evaluate the impact of introducing

the proposed control variables, ageostrophic streamfunction and ageostrophic velocity

potential, through a set of idealised single observation experiments. These experiments

act as a tool for assessing how the new variables influence the structure and spatial spread

of the analysis increments, as governed by the background error covariance matrix.

The aims of these experiments are to:

• Demonstrate the implementation of the updated balance operator (5.5) in

NEMOVAR (section 5.2.1);

• Determine whether the proposed control variables lead to physically sensible changes

in the analysis;

• Illustrate the forward transformation from control to model space of the new CVT.

Single observation experiments are widely used to investigate the background error

covariances of an assimilation system. The resulting analysis increments are proportional

to the forecast error covariances between the observed quantity and all other variables

and locations in the domain (Thépaut et al., 1996). They provide valuable insight into

how observational information spreads via the background error covariance matrix (Xiao

and Sun, 2007).
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To this end, we use two types of idealised observations: a single idealised TSCV

observation with zonal and meridional components of the innovation equal to 0.1ms−1;

and an altimeter observation of SLA with innovation of −0.1m. The SLA observation

illustrates how the velocities are currently updated in NEMOVAR through the geostrophic

balance relation. The TSCV observation reveals how directly updating the unbalanced

component alters the velocity increments.

Each observation is assimilated independently on the first day of the assimilation

run, following the GYRE12_DA spin-up (section 6.1.1, figure 6.1). The observation

and background error covariance settings are described in section 6.3. The experiment

with the altimeter observation uses the current NEMOVAR balance operator (3.18). We

run two experiments with the TSCV observation, the first (Control) using the current

balance operator, with the ageostrophic velocities as control variables. The second

(New CVs) using the updated balance operator (5.5), which uses the proposed control

variables, ageostrophic streamfunction and ageostrophic velocity potential. For this

second experiment we use the background error covariance settings of the new CVs 1

experiment, described in table 6.1. The resulting analysis increments allow us to visualise

the effect of the control variables.

Figure 6.6: Locations of the single observation experiments.

We conduct these experiments at three different locations in the domain (shown in

figure 6.6):

• An active region near the western boundary current at 30◦ N latitude and 78◦ W
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longitude;

• An inactive region at 30◦ N latitude and 65◦ W longitude;

• A north-eastern boundary region at 39◦ N latitude and 55◦ W longitude.

The increments produced at these three locations are largely comparable and therefore in

the rest of this section we show results from the active location, given by the black cross

in figure 6.6. The results from the other two locations are presented in appendix I.

In figure 6.7, we present the velocity increments generated by the single observation

experiments. These figures show a 6◦ × 6◦ area centred on the observation location,

which is indicated by the black cross in figure 6.6. We first note that the increments

produced by the TSCV observation using the proposed control variables appear reasonable

when compared to those generated using the current balance operator. This is a positive

outcome, achieved without extensive parameter tuning.

A key motivation for introducing the new control variables is that they allow

for correlated ageostrophic (unbalanced) velocity components; in contrast the current

NEMOVAR balance operator (3.18) assumes these components are uncorrelated and

updates them independently. As shown in figure 6.7, the unbalanced velocity increments

associated with the current control variables produce an isotropic update centred around

the observation location, with a relatively uniform magnitude and consistent sign. In

contrast, the increments resulting from the new control variables exhibit a similarly sized

spatial footprint but a more complex structure, including variations in magnitude and a

clear change in sign across the region.

We also observe that the full velocity increments are significantly larger in magnitude

than the unbalanced components. The full speed increments are also notably larger than

the unbalanced speed increments, as seen in figure 6.8. This is due to the magnitude of

the unbalanced velocity background error variances, which were not calculated based on

any outputs of the gyre configuration.

Therefore, the full velocity increments are not substantially influenced by the

unbalanced component in this configuration. However, in more realistic ocean models

with stronger ageostrophic flows, the new control variables could have a more pronounced

impact.
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SLA observation
TSCV observation

(Control)

TSCV observation

(New CVs)

Figure 6.7: The velocity increments at the surface for the single observation experiments. The

first column are velocity increments generated from the SLA experiment. The second column are the

increments from the first experiment using a TSCV observation with current control variables and the final

column is the second TSCV experiment with the new control variables. The first row is the unbalanced

zonal velocity increments, second row is the full zonal velocity increments, the third row is the unbalanced

meridional velocity increments and the final row is the full meridional velocity increments.

The full velocity increments from the SLA observation experiment exhibit a circulation

pattern around the observation location, as shown by the direction of the speed vectors in
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SLA observation
TSCV observation

(Control)

TSCV observation

(New CVs)

Figure 6.8: The speed increments at the surface with velocity vectors superimposed for the single

observation experiments. The first column is the speed increment from the SLA observation experiment.

The second column are the speed increments from the first experiment using a TSCV observation with

current control variables and the final column is the second TSCV experiment with the new control

variables. The first row is the unbalanced speed increments, and the final row is the full speed increments.

figure 6.8. This pattern primarily arises from the geostrophic balance used to update the

velocity field. In particular, a velocity increment at the location of the SLA innovation

requires an associated SSH gradient to maintain geostrophic balance, which results in

dipolar SSH features flanking the innovation location. These features, in turn, generate

a rotational velocity pattern consistent with the observed circulation. In contrast, the

velocity increments from the TSCV experiments display a structurally different pattern.

While these increments also arise mainly from the balanced (geostrophic) component, the

velocity field is further modified by contributions from the unbalanced component and

spatial spreading via the diffusion operator in NEMOVAR, which is used to model spatial

background error correlations (Weaver et al., 2016). Consequently, the increment pattern

differs significantly from that in the SLA case, reflecting the distinct characteristics of the

assimilated observations rather than a fundamental change in the balance constraints.

In summary, the single observation experiments demonstrate that the inclusion of
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velocity data, along with the proposed control variables, produces sensible and physically

consistent increments. These differ from the increments produced by the SLA observation

as expected. These results provide confidence to proceed with assimilation experiments

using a full suite of observations, as described in section 6.3.1.

6.5 Assimilation experiments

We run multiple assimilation experiments in the following sections, the details of which

can be found in table 6.1. Firstly, we have a free-run of the model, as described in

section 6.1. Secondly, we run two control experiments. The control experiments are the

baseline experiments whereby we use the current balance operator used in the NEMOVAR

system. For the first control experiment we assimilate the standard observation types.

As the velocities are unobserved they are only updated through the geostrophic balance

relations. For the second control experiment we also assimilate the simulated TSCV

observations described in section 6.3.1 and the ageostrophic velocity increments are the

velocity control variables.

Finally, we run assimilation experiments with the proposed velocity control variables -

ageostrophic streamfunction and velocity potential increments. The experiments using the

new control variables all assimilate the synthetic velocity observations. Without velocity

observations the change in velocity control variables has no effect on the analysis, see

appendix H. The first experiment with the new control variables (new CVs 1 in table

6.1) uses σψ, σχ = 103m2s−1 for the standard deviation of streamfunction and velocity

potential. See section 6.3.2 for a discussion of this choice. This is varied in subsequent

experiments, as described in section 6.8. The second experiment (new CVs 2) with the new

control variables sets σψ = 103m2s−1 and σχ = 0m2s−1. By setting the background error

standard deviation of ageostrophic velocity potential to zero, we are effectively assuming

that the background is perfect for this component. As a result, the analysis increment

for that variable is forced to be zero, meaning this control variable is not used during the

assimilation. In practical terms, this removes the ageostrophic divergent component of the

flow from the analysis update. As discussed in section 3.5, a theoretical benefit of using

these new control variables is that we can control the horizontal divergence introduced by

the assimilation of velocity data, thereby reducing any spurious vertical motions generated
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by the data assimilation.

6.5.1 Methods of comparison

Before presenting the results of the assimilation experiments, we first detail the methods

used to evaluate the analyses generated by each experiment, xa, compared to the nature-

run (the ‘truth’), xt. We use three methods of comparison in this work all discussed and

compared in section 2.6: root mean square error (RMSE), mean absolute error (MAE)

and standard deviation of the error.

When assessing the analysis produced by the experiments, we are evaluating three key

aspects:

1. Has the mean improved?

2. Is the variability better captured?

3. How accurate is the analysis?

A method that can be used to assess all of the above is the RMSE, defined in section

by (2.20). An assessment of the mean can be demonstrated using the MAE, defined by

(2.21). Finally, we calculate the standard deviation of the error, which reveals how the

variability of the truth has been captured in the analysis, defined by (2.22). In the next

sections we present the results of the assimilation experiments using these assessment

metrics.

6.5.2 One day assimilation

Given the computational expense of running long assimilation experiments, we initially

test that our data assimilation system behaves as expected on the first day. Initially, we

run the free-run, control 1, control 2, new CVs 1 and new CVs 2 experiments for a one day

period. We aim to test whether the increments produced by the new control variables,

new CVs 1, are sensible and whether new CVs 2 can reduce the magnitude of the vertical

velocities diagnosed from the increments. Throughout this chapter we will refer to the

middle of the top model layer (top 10m of the model) as the surface.

Figure 6.9 shows the velocity increments on the first day of the second control

experiment and the two assimilation experiments with the new control variables just
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Control 2 New CVs 1 New CVs 2

Figure 6.9: Surface velocity increments. The first column is the second control experiment which

includes the synthetic velocity observations. The second column is the first experiment with the new

control variables and the final column is the second experiment with the new control variables, where the

divergent part of the flow is set to zero. The first row is the zonal velocity increments, second row is the

meridional velocity increments and the final row is the vertical velocities diagnosed from the horizontal

velocity increments.

described, at the surface. For the horizontal velocities, we clearly see that the increments

for the new control variables are sensible due to the similar magnitude and pattern

as the control experiment, but there are some small scale differences, which we would

expect. We also examine the magnitude of the vertical velocities that are diagnosed from

the horizontal velocity increments. This is calculated in NEMOVAR by integrating the

continuity equation, which depends on the horizontal divergence. Figure 6.9 shows that

the introduction of the new control variables has reduced the magnitude of the vertical
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velocity increments diagnosed form the horizontal velocity increments. When the δχU
component is removed, the increments decrease even further. The small-scale vertical

velocity structures are likely associated with the ageostrophic component of the flow,

whereas the larger-scale features, that we see align with the altimeter tracks, come from

the balanced component. Notably, removing the ageostrophic divergent part of the flow

eliminates most of the small-scale vertical structures. This is an encouraging result, as it

suggests that the assimilation process is less likely to introduce spurious vertical velocities

when horizontal velocity increments are applied. In the following section, we extend these

experiments to a full year and compare the analyses to the ‘truth’.

6.6 Year long assimilation

In this section, we conduct year long experiments. Having established that the velocity

increments using our new control variables are satisfactory after one assimilation cycle,

we now investigate their impact over multiple assimilation cycles. We aim to compare

their long-term performance with the control experiments and the free-run. We run the

following experiments for one year; the free-run, control 1, control 2, new CVs 1 and new

CVs 2; details are given in table 6.1. For each experiment, we compare the analysis to

the ‘truth’ given by the nature run. As the nature run is at a higher resolution, 1/36◦,

we interpolate this to 1/12◦, to be able to directly compare the experiments’ results with

the nature run.

6.6.1 Errors averaged over the domain

For each experiment we compare the analysis to the nature run by calculating the RMSE,

MAE and standard deviation over time at each depth, as described in section 6.5.1, for

each model variable. Figures 6.10, 6.12, 6.13 present the RMSE, MAE and standard

deviation, respectively, at the surface for each experiment over the course of the year.

As expected, the free-run (blue line) yields the highest RMSE for the model variables,

shown in figure 6.10, indicating the poorest performance. However, this trend is less

pronounced for the velocity components, where the first control experiment (orange line)

also performs poorly, as shown in figures 6.10d and 6.10e. This is due to the absence of
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velocity observations in the first control experiment. Although the assimilation updates

the velocities through balance relationships, the lack of direct velocity data limits the

improvement in these variables compared to SSH, temperature, and salinity, which are

directly observed.

(a)

(b)

Figure 6.10: RMSE calculated over the whole domain at the surface.
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(c)

(d)

(e)

Figure 6.10 (continued).
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(a) 1st February (b) 1st May

Figure 6.11: Nature run minus the free-run for temperature at the surface, on the first day of the

assimilation run, 1st February, (left) and 1st May (right).

A notable feature in the free-run is the decline in surface temperature RMSE, shown

in figure 6.10b. This reduction is also evident in the MAE in figure 6.12b, but not in

the standard deviation (figure 6.13b). To further investigate this behaviour, figure 6.11

compares surface temperature differences between the nature run and the free-run on day

1 (1st February) and on May 1st. Initially, the free-run generally underestimates surface

temperature across most of the domain, with the largest discrepancies along the western

boundary current. By May 1st, the temperature differences in areas away from the western

boundary current decrease significantly, showing that the free-run values become closer

to those of the nature run.

The control 2 experiment, given by the green line in figures 6.10, 6.12 and 6.13,

incorporates synthetic velocity observations as described in section 6.3.1. This experiment

shows an overall improvement in the analysis across all model variables for all error

metrics. This result highlights the value of future ocean current measurements for

data assimilation and aligns with the findings of Waters et al. (2024b). We run two

additional year long experiments to test the new velocity control variables; one using

σψ, σχ = 103m2s−1 (new CVs 1), and another with the divergent component of the

ageostrophic flow removed by setting σχ = 0m2s−1 (new CVs 2). Overall, the RMSE,

MAE, and standard deviation results from the experiments using these new control

variables are promising.
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(a)

(b)

(c)

Figure 6.12: MAE calculated over the whole domain at the surface.
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(d)

(e)

Figure 6.12 (continued).

Between May and August, the new control variables show improvements in RMSE,

MAE, and standard deviation — given by the red and purple lines in figures 6.10, 6.12, and

6.13 — compared to the control experiments. This improvement is especially pronounced

in the RMSE of horizontal velocities (figures 6.10d and 6.10e) where the new control

variables substantially outperform the control 2 experiment. In the first half of the year,

excluding the divergent component of the ageostrophic flow (purple line) has little effect on

the error metrics compared to the experiment that includes it (red line). This indicates
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that, during this period, the assimilation is relatively insensitive to the removal of the

divergent component. This result is promising, as it suggests that the settings used in the

new CVs 2 experiment may provide a realistic approach to constraining vertical velocity

magnitude. This is explored further later in this chapter.

(a)

(b)

Figure 6.13: Standard deviation calculated over the whole domain at the surface.
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(c)

(d)

(e)

Figure 6.13 (continued).

141



In contrast, during the second half of the year, particularly from August onward, the

experiment that excludes the divergent component (purple line) begins to show a worse

performance for horizontal velocities. This is most evident in figures 6.12d and 6.12e,

where the MAE of new CVs 2 generally exceeds that of new CVs 1 (red line), and in some

cases even performs worse than control 2 (green line). A similar trend is observed for

RMSE and standard deviation metrics during this period. In August, both new control

variable experiments show a decline in performance, with a marked increase in RMSE.

Nevertheless, the experiment that retains the divergent component (red line) recovers

after the August–September dip and achieves performance comparable to control 2 for

most variables, as seen in figures 6.10, 6.12, and 6.13.

19th August 23rd August

Figure 6.14: The top row is the difference between the zonal velocity of new CVs 1 from the nature run

and the bottom row is the zonal velocity observations. These are for two dates in August, the left 19th

August and the right 23rd August.

The increase in RMSE in August for both new CVs experiments, without a
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corresponding rise in MAE, suggests the presence of large errors or outliers, to which

RMSE is more sensitive. Further analysis indicates that the degradation begins around

21st August. To investigate this further, we examine the raw error from the new CVs 1

experiment relative to the nature run (figure 6.14, top row). The panels show the error

on 19th and 23rd August, during which the RMSE spike occurs. A pronounced error

increase is visible on 23rd August in the far western region of the domain. As shown

in the bottom row of figure 6.14, there are no observations in this area on 23rd August,

whereas observations are present on 19th August. This pattern is consistent for both

zonal and meridional velocity components. The lack of observational constraints in this

region appears to have led to this RMSE spike. However, the RMSE subsequently returns

to improved levels after this brief degradation for new CVs 1.

For the new CVs 2 experiment, a similar increase in error is observed in the western

region of the domain. Figure 6.15 shows the time-averaged RMSE for zonal velocity in

July (left panel) and September (right panel). The error is clearly higher in September,

particularly in the western part of the domain. The degraded performance of this

experiment in the second half of the year is probably due to the absence of the divergent

component in the control variable formulation as this degradation is not observed in new

CVs 1. Without this component being updated by the data assimilation, the model may be

less capable of dynamically adjusting the velocity fields in regions where observations are

temporarily absent. This hypothesis warrants further investigation to better understand

the role of the divergent flow in maintaining dynamical consistency under sparse velocity

observational coverage.

(a) July (b) September

Figure 6.15: Time averaged RMSE for zonal velocity in July and September at the surface for new CVs

2.
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Overall, figures 6.10, 6.12 and 6.13 suggest that the inclusion of the new velocity

variables leads to a more substantial reduction in the mean error than in the variability.

These results indicate that the new velocity control variables have potential to enhance

the assimilation of future ocean current data, which is a key objective of this work. All

error metrics show reasonable performance, and with further tuning of certain parameters,

we anticipate that these improvements can be made more significant.

We also examine the RMSE, MAE, and standard deviation as functions of depth,

averaged over time and space (figures 6.16, 6.17, and 6.18). In the deeper ocean without

direct ocean measurements, data assimilation updates the variables here indirectly

through mechanisms such as through the barotropic component of the increments,

which apply depth-uniform corrections derived from surface observations like SSH. For

temperature and salinity, the free-run exhibits the largest errors near the surface,

with control 1 consistently performing second worst across all three metrics. Below

approximately 1000m, the free-run improves sharply, and its performance surpasses the

assimilation experiments, which show increased errors at these depths. As this work

focuses on surface velocities and no velocity observations are available at depth, we do

not explore this behaviour further; however, it presents an interesting avenue for future

research. The horizontal velocity fields show a similar trend, though the assimilation

experiments begin to degrade at deeper depths. Interestingly, the RMSE, MAE and

standard deviation see an improvement from assimilating velocity data below 1500m,

even though the velocity observations are only at the surface. Overall, new CVs 1 delivers

the best performance across all variables and depths, followed closely by control 2 and new

CVs 2. Notably, new CVs 2 outperforms control 2 at the surface, which is an encouraging

result for our new control variables.
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(a)

(b)

(c)

(d)

Figure 6.16: The RMSE over the depths of the assimilation results over one year.
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(a)

(b)

(c)

(d)

Figure 6.17: The MAE over the depths of the assimilation results over one year.
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(a)

(b)

(c)

(d)

Figure 6.18: The standard deviations over the depths of the assimilation results over one year.
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6.6.2 RMSE averaged over time

Here, we present RMSE results averaged over time to identify where in the domain

the largest errors occur and how they are spatially distributed. This analysis also

highlights regional differences between experiments. We first compare the second control

experiment (which includes velocity observations) with the first control experiment. For

SSH, temperature, and salinity, the improvements are relatively minor (not shown).

However, for horizontal velocities, the addition of velocity data leads to a more substantial

improvement, as shown in figure 6.19. In this figure, red indicates a reduction in error

relative to the previous experiment, blue indicates an increase, and white indicates no

change. The most notable improvement occurs along the western boundary current, a

region characterised by strong eddy activity, suggesting that assimilating velocity data is

particularly beneficial in dynamically active regions.

Figure 6.19: Difference in the RMSE averaged over time at the surface. This is the difference between

horizontal velocity errors in the two control experiments. Red indicates a reduction in error from

assimilating the velocity data using the old control variables compared to not assimilating velocity data.

For the experiments using the new control variables, we compare both configurations

to the second control experiment. The spatial differences in RMSE, averaged over time,

are shown in figure 6.20. The first column displays the difference between the new

CVs 1 experiment (which includes the divergent component of the ageostrophic flow)

and the second control. Once again, red indicates a reduction in error relative to the

control experiment, blue indicates an increase, and white indicates no change. While

the differences are not substantial across the domain, the most noticeable changes occur

in eddy-rich regions, where there is a mix of localised improvements and degradations.

Overall, the errors remain comparable in much of the domain for all variables. The second
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Figure 6.20: Differences in the RMSE averaged over time at the surface. The first column is the control

2 minus new CVs 1 and the second column is the control 2 minus new CVs 2. The first row is SSH, and

then temperature, salinity, zonal velocity and meridional velocity respectively. Red indicates a reduction

in error of the new CVs experiments compared to control 2.
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column shows the difference between the new CVs 2 experiment (excluding the divergent

component) and the second control. In this case, we observe more widespread degradation,

particularly in the velocity fields and temperature. Although the increase in temperature

RMSE appears significant compared to the other variables, it is important to note that

the RMSE for temperature is larger, as we see in figure 6.10b. Therefore, the relative

increase in error is not as severe as it may initially seem. The notable increase in velocity

RMSE is likely linked to the degradation observed after August, discussed previously in

the domain-averaged RMSE plots for the zonal and meridional velocities (figures 6.10d

and 6.10e). Spatially, the degradation is most pronounced in the northern part of the

domain, although localised improvements appear in the southwestern corner, coinciding

with high eddy activity and the western boundary current. This pattern contrasts with

the elevated RMSE seen in September in figure 6.15b, which highlights the spatial and

temporal variability of the error growth.

Overall, these results suggest that setting the standard deviation of velocity potential

to zero has a more complex and spatially variable impact on RMSE than the globally

averaged results in figure 6.10 initially suggest. While the new CVs 2 experiment leads

to performance degradation in some regions — particularly in the north — it also yields

improvements in dynamically active areas. This highlights a trade-off in performance and

underscores the importance of further investigating the spatial sensitivity of the control

variable formulation. By setting σχ = 0, the background errors in the velocities are

reduced, effectively giving less weight to the velocity observations. This adjustment may

contribute to the observed differences between the new CVs 1 and new CVs 2 experiments.

6.6.3 Summary

In these year-long experiments, we identify that the new control variables show

considerable promise. The surface-averaged errors indicate that the new control variables

lead to improved performance compared to the original variables when assimilating

velocity data. Notably, the performance during the first half of the year is significantly

better. However, after August, where we identify a gap in the velocity observations near

the western boundary current and regions of intense eddy activity, the performance of the

new control variables deteriorates. In particular, the experiment in which the divergent
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component is removed fails to recover and continues to underperform relative to the other

experiments.

When examining performance with depth, we observe a decline in assimilation quality

at deeper levels. However, since the surface layers are of primary interest, this degradation

is not a major concern for this configuration; performance within the upper 2000m remains

reasonable. In the context of an operational system, where deeper layers are likely to be

of greater relevance, this warrants more detailed investigation. Time-averaged RMSE

analyses show that the largest improvements and degradations in performance occur in

regions of strong eddy activity. Additionally, the removal of the ageostrophic velocity

potential introduces more pronounced errors across the domain. Despite the overall

poorer spatial performance, there are several periods in the time series plots where this

experiment performs comparably to the second control experiment and the experiment

that includes the divergent component. For this reason, we continue to explore this

experimental setup further and test the hypothesis that it may help reduce the magnitude

of the vertical velocity.

6.7 Vertical velocities

As discussed, by setting the standard deviation of the ageostrophic velocity potential

increment to zero (in experiment new CVs 2), we are removing the ageostrophic divergent

component of the velocity from the analysis increments. In section 6.5 we illustrated

that the magnitude of the vertical velocity increment diagnosed from the horizontal

velocity increments, after one day of assimilation, appeared to decrease with this setting.

Here we assess the impact on the vertical velocities over a longer period of assimilation

to assess whether using the new control variables and the additional removal of the

ageostrophic divergent flow helps to reduce the spurious generation of vertical velocities

by the assimilation. It is important to note that the vertical velocity increments shown

in figure 6.9 are diagnosed from the horizontal velocity increments. However, in NEMO

vertical increments are not directly applied during the IAU; instead, the vertical velocities

are adjusted by the model during the assimilation process.

In the previous section, our analysis focused primarily on the surface of the domain.

However, when examining vertical velocities, we consider subsurface layers, as vertical
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velocity is not defined at the surface itself due to the use of a Lorenz staggered grid

(Holdaway et al., 2013). Therefore, in this section, we extend our focus to include near-

surface depths.

Firstly, we evaluate the RMSE, MAE, and standard deviation of the vertical velocities,

consistent with the previous section. As discussed in section 3.5, the control experiments

are expected to perform poorly, since ocean data assimilation tends to artificially inflate

the magnitude of vertical velocities (Ford and Barciela, 2017). Figure 6.21 shows the

RMSE, averaged over the horizontal domain and a year, across different depths. As

expected, the free-run performs significantly better than the control experiments. Among

the assimilation runs, control 2 performs best, while both the new control variables

and control 1 experiments perform similarly poorly across depths. At greater depths,

the experiment removing the ageostrophic velocity potential increment shows the worst

performance. These patterns are temporally consistent across all depths and are similarly

evident in both the MAE and standard deviation.

Figure 6.21: RMSE of the vertical velocities across the depths over a year.

Although the performance of our new control variables with respect to vertical velocity

errors is disappointing, our primary interest in this work lies in the magnitude of the

vertical velocities; therefore, we examine the spatial mean of their absolute values, see

figure 6.22. As expected, the free-run gives the smallest vertical velocities. However,

all assimilation experiments see a sharp increase in the mean at the beginning of the

assimilation period. Interestingly, during the first half of the year, the new CVs 1

experiment shows slightly improved performance; however, this advantage deteriorates
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after August. This decline may be related to the broader degradation in performance

of the new control variable experiments from August onward, as discussed in section

6.6. Overall, it seems as though the introduction of the new control variables does

not lead to any improvement, and notably, the removal of the ageostrophic divergent

flow appears to further increase the magnitude of the vertical velocities. This outcome

is contrary to our initial hypothesis, which proposed that eliminating the ageostrophic

divergent component would reduce vertical velocity magnitudes. The results, however,

clearly suggest otherwise. It is important to note that this analysis is based on the spatial

mean of the full vertical velocity field produced by the assimilation.

(a) 10m depth

(b) Averaged across the depths

Figure 6.22: Spatial mean of the absolute values of the vertical velocities averaged over the domain.

To further assess whether the new control variables offer any benefit in reducing
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vertical velocities, we examine the increments diagnosed from the horizontal velocities,

as shown in figure 6.9. Specifically, we calculate the spatial mean of the absolute

values of these increments at various depths over the course of a year. However, the

resulting time series plots are highly noisy, making it difficult to extract meaningful trends.

Consequently, we focus our analysis on the month of March.

(a) 10m depth

(b) Average across the depths

Figure 6.23: Spatial mean of the absolute values of the vertical velocity increments diagnosed from the

horizontal velocity increments averaged over the domain for March.

Figure 6.23 shows the spatial mean of the absolute values of the diagnosed vertical

velocity increment at 10m depth, as well as the values calculated at each depth over the

month. Comparing the new CVs 2 experiment to control 2, we observe that the removal

of the ageostrophic divergent flow consistently reduces the magnitude of the diagnosed

vertical velocity increment throughout the month. Interestingly, control 1 has small
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vertical velocities at some times when examining the 10m depth (figure 6.23a). However,

when averaged across all depths (figure 6.23b), it is evident that this experiment has the

largest mean vertical velocity increments overall. The observed reduction in diagnosed

vertical velocity increments when setting σχ = 0m2s−1 confirms that we are able to reduce

the magnitude of the vertical velocities diagnosed from the horizontal velocities. However,

this raises an important question: if the diagnosed increments are reduced, why do the

magnitudes of the vertical velocity fields from the assimilation remain so large?

Figure 6.24: Spatial mean of the absolute values of the diagnosed vertical velocity increments and

difference between the vertical velocities at the end of the assimilation period and the start, averaged

over the domain for the new CVs 2 experiment for the year.

To address this question, we examine the difference in vertical velocities produced

by the model before and after the assimilation period. This difference demonstrates the

impact of the increments applied to the model variables through the IAU, as discussed

in section 6.3.1. Figure 6.24 shows the magnitude of this difference for the new CVs

2 experiment, where σχ = 0m2s−1, averaged over the entire year. The difference in

vertical velocity before and after assimilation is significantly larger than the diagnosed

increments, indicating a strong response of the model to the assimilation process. This

large discrepancy suggests that the model continues to generate spurious vertical motions.

In particular, it implies that the balanced component of the vertical velocity is divergent

and therefore plays a dominant role in determining the total vertical velocity magnitude.

It should be noted that the diagnosed increments are defined at the same vertical levels as

the horizontal velocities, and thus include values at the surface. In contrast, the model’s
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vertical velocity is prescribed to be zero at the surface.

To further illustrate this point, figure 6.25 presents the same analysis but for the

horizontal velocity components. In this figure, the solid purple line represents the analysis

increments, while the dashed line shows the difference between model fields before and

after the application of the IAU (i.e., the increments after the IAU). Here, we see that the

diagnosed and post-IAU increments match closely for horizontal velocities, highlighting

the contrast with the vertical velocity case and making the discrepancy in vertical velocity

even more striking.

(a) Zonal velocity

(b) Meridional velocity

Figure 6.25: Spatial mean of the absolute values of the horizontal velocity increments from the DA and

the increments from the IAU (difference between the horizontal velocities before and after the assimilation

period), averaged over the domain for the new CVs 2 experiment for the year.

Overall, we conclude that using the proposed control variables and setting σχ =
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0m2s−1 does reduce the magnitude of the diagnosed vertical velocity increments. However,

the model still introduces spurious vertical velocities during the assimilation process,

indicating that the balanced component of the vertical velocity is divergent and thus

plays a dominant role in determining the total vertical velocity magnitude. This suggests

that further work is needed to improve the NEMOVAR balance operator so that it can

better account for vertical velocities.

6.8 Month long assimilation

In this section we present results from multiple month long experiments to test the

sensitivity of the assimilation analysis to the specified background error standard deviation

of streamfunction. These are experiments new CVs 2-5 described in table 6.1.

6.8.1 Sensitivity to standard deviations

Having examined the errors from the year-long experiments, we now investigate the

sensitivity of the analysis to variations in the background error standard deviation of

the streamfunction over a one-month period, while keeping the standard deviation of the

velocity potential fixed (and all other aspects of the assimilation). This investigation is not

intended to prescribe an optimal configuration for NEMOVAR in future experiments, but

rather to offer insight into the sensitivity of the analysis to these parameter choices. The

experiments are conducted for the month of March, selected because the analysis errors

observed over the annual period showed a marked decrease in February and reached a

stable state by March. We present only the RMSE and MAE metrics, as the year-long

results demonstrated that the standard deviation patterns closely mirrored those of RMSE

for the velocities. Figures 6.26 and 6.27 show the horizontal velocity RMSE and MAE

results, respectively, at the surface.

In the year-long experiments, we set σψ = 103m2s−1, a value chosen to be consistent

with the typical magnitude of the streamfunction field, as discussed in section 6.3.2.

As shown in figures 6.26 and 6.27, increasing this value by an order of magnitude to

σψ = 104m2s−1 (pink line) leads to a substantial degradation in performance, with RMSE

and MAE consistently worse than those of the second control experiment that incorporates
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(a) Zonal velocity

(b) Meridional velocity

Figure 6.26: RMSE for the month long experiments.

velocity data. This is likely due to overfitting the velocity data and indicates a high

sensitivity of the assimilation to large increases in σψ.

Conversely, reducing σψ by one or two orders of magnitude has a much smaller impact.

For σψ = 102m2s−1 and 101m2s−1 (black and gold lines), the RMSE remains comparable

throughout the month-long period, with σψ = 103m2s−1 generally yielding the lowest

zonal velocity RMSE and occasionally outperforming in the meridional component as

well. While the RMSE exhibits considerable variability — consistent with the year-long

findings — the lower values of σψ show similar average performance. The MAE is even less

sensitive to reductions in σψ, with all tested values producing largely comparable results

across both velocity components. We also investigate the impact of setting σψ = 0 and

158



(a) Zonal velocity

(b) Meridional velocity

Figure 6.27: MAE for the month long experiments.

find that the resulting errors are comparable to those obtained using the lowest standard

deviations presented in this section. The lack of sensitivity to the reduction in σψ may

indicate that the balanced component of the flow contributes most significantly to the

analysis, and that reducing the ageostrophic component has a relatively minor effect. In

a more realistic configuration with spatially and temporally varying wind forcing, the

ageostrophic velocity component would likely be larger than in the GYRE setup, and

therefore more sensitive to reductions in the standard deviations.

We extend the RMSE and MAE analysis across depth levels in figure 6.28 and observe

consistent patterns; the largest standard deviation (σψ = 104m2s−1, pink line) results

in significantly higher errors, while the smaller values produce nearly indistinguishable
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(a)

(b)

(c)

(d)

Figure 6.28: RMSE and MAE for the month long experiments across the depths for the horizontal

velocities. The top and second row are RMSE. The third and bottom row are MAE.
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results. Similar trends are observed in the other model variables (SSH and salinity)

whereas temperature seems to have a negligible sensitivity to the changing of the

standard deviations. These findings indicate that increasing the standard deviation of the

streamfunction, while keeping the velocity potential unchanged, can substantially degrade

the quality of the analysis. In contrast, reducing σψ by one or more orders of magnitude

has minimal impact, with σψ = 103m2s−1 typically yielding the most favourable results

on average.

6.8.2 Summary

In this set of experiments, we investigate the sensitivity of the analysis to the new

control variables by varying the specified background error standard deviation of the

streamfunction field. We find that increasing the standard deviation to a magnitude

comparable to the largest values of the field significantly worsens the results. In contrast,

reducing the standard deviations by multiple orders of magnitude leads to an improved

performance. These results offer guidance for the use of these variables within the GYRE

configuration and an insight into the sensitivity to the specified background error standard

deviation of the streamfunction field. However, the results would likely differ in a more

realistic setup with more complex wind forcing. Ideally, these parameters should be

estimated using statistical methods that provide spatially varying variances, thereby

capturing regions of greater uncertainty within the domain.

6.9 Summary and conclusions

In this chapter we conducted assimilation experiments to test whether the proposed

velocity control variables - ageostrophic streamfunction and velocity potential - can

provide an improvement to the analysis produced by NEMOVAR, compared to the

previous control variables.

After outlining the experimental setup, observations, and comparison methodology,

we presented the results of multiple assimilation experiments. First, we investigated

the increments generated by the single-observation experiments. These experiments

demonstrated that the inclusion of velocity data, along with the proposed velocity
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control variables, produced sensible increments. Following this, we conducted assimilation

experiments using the full suite of available observations. Two control experiments were

conducted. The first employed the standard observations currently used operationally,

while the second incorporated synthetic velocity observations using the previous control

variables, the ageostrophic velocities. Subsequently, two assimilation experiments were

performed using ageostrophic streamfunction and velocity potential as control variables.

In the second of these experiments, we removed δχU , effectively eliminating increments to

the divergent component of the ageostrophic flow. As anticipated, this removal led to a

reduction in the magnitude of the vertical velocity increment, after one assimilation cycle.

Each experiment was then run over a one-year period. Overall, the error metrics;

RMSE, MAE, and standard deviation, showed either further reduction or comparable

behaviour when velocity observations were introduced and when the new velocity variables

were used, marking a promising outcome. However, despite these improvements, the

overall magnitude of the vertical velocities was not significantly reduced, suggesting that a

substantial portion of the increase is attributable to divergence in the balanced part of the

increments. Additionally, the method by which increments are introduced into the model

through the IAU may also be generating spurious vertical velocities. We finally conducted

month-long experiments to assess the sensitivity of the analysis to the background error

standard deviation set for the streamfunction, while continuing to exclude the divergent

flow component. The results showed that increasing the standard deviation of the

streamfunction by an order of magnitude degraded the quality of the analysis, whereas

smaller standard deviation values generally produced comparable results.

Overall, we have demonstrated that the proposed velocity control variables are able

to improve the analysis produced by NEMOVAR when assimilating velocity observations

using the GYRE configuration. Their implementation in more realistic models — with

stronger ageostrophic signals — could yield an even greater impact. However, spurious

vertical motions in the model, generated by the data assimilation, were not reduced,

indicating that further investigation into the treatment of the balanced component of the

flow is required.
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Chapter 7

Conclusion

In this thesis we designed a new velocity CVT for use in NEMOVAR, assessing

its implications and demonstrating its potential for assimilating future ocean current

measurements.

Ocean forecasts are important to many applications such as numerical weather

prediction and marine safety. These forecasts heavily rely on data assimilation. This

is the process of combining observations with numerical models, weighting each by their

associated errors. In the ocean, we commonly use variational data assimilation, in which

a least-squares problem is solved. Within variational data assimilation, a transformation

is performed from model variables to control variables, which simplifies the problem by

assuming that the control variables are uncorrelated. In ocean data assimilation, the

velocity control variables have required less attention due to the limited assimilation of

velocity observations. However, with the prospect of future ocean current measurements,

these variables require more careful consideration.

In chapter 2, we introduced the key mathematical concepts for this thesis, such as

Helmholtz Theorem and the Shapiro filter. In chapter 3, we presented an overview of

data assimilation, with a focus on incremental variational data assimilation and the

control variable transform (CVT). We reviewed the existing CVTs used in variational

ocean data assimilation and discussed the limitations of the current velocity variables in

NEMOVAR. We also presented the method proposed by Li et al. (2006), proposing its

use in NEMOVAR.

In chapter 4, we developed a CVT using these new variables within a shallow water
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model, exploring the numerical challenges involved in implementing the transformation.

In chapter 5, we extended this work to NEMOVAR, highlighting the intricacies of using

these variables in an operational framework, as well as their sensitivity to parameters

and the persistent numerical issues within the CVT. Finally, in chapter 6, we conducted

assimilation experiments to demonstrate the potential positive impact these new variables

could have within NEMOVAR.

7.1 Research questions

In chapter 1, we identified three key questions that the research in this thesis set out to

answer:

1. What numerical challenges and implications arise from the discrete transformation

of the velocities to their irrotational and non-divergent parts?

2. How can the discretisation of this transformation be extended from an idealised

framework to application within a realistic ocean model?

3. What are the implications of using these alternative velocity variables in variational

data assimilation, and how do these variables respond to the assimilation of velocity

observations?

We now address each of these based on the work presented in chapters 4 - 6.

1. What numerical challenges and implications arise from the

discrete transformation of the velocities to their irrotational and

non-divergent parts?

In chapter 4, we performed the discrete transformation from the ageostrophic velocities

into their irrotational and non-divergent parts using a shallow water model. To achieve

this, we applied the method proposed by Li et al. (2006), which formulates the discrete

Helmholtz decomposition as a linear system. We solved this system by minimising a cost

function to obtain a least-squares solution. Due to the non-uniqueness of the Helmholtz

decomposition in our domain, the method uses Tikhonov regularisation. The Li et al.
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(2006) method additionally moves the discrete location of streamfunction on the Arakawa-

C grid to circumvent the need for explicit boundary conditions. In this work, we identified

an alternative approach to perform the discrete Helmholtz decomposition, by solving the

Poisson equations, (2.6) and (2.7), directly, as discussed in detail in appendix D. We

found this method to be equivalent to the cost function approach, but more intricate to

implement due to placement of streamfunction on the grid. Consequently, we opted to

proceed with the cost function method.

We formulated a novel control variable transformation based on the shallow water

model and defined the U- and T-transforms. In examining how to compute the

streamfunction derivatives in (4.16) and (4.17), we found two equivalent methods on

a uniform grid. However, both imply the existence of implicit (Neumann) boundary

conditions on streamfunction — an implication not thoroughly discussed in the literature.

This arose due to averaging streamfunction to the boundary when calculating the

derivatives. We provided a detailed mathematical explanation of how these Neumann

boundary conditions arise.

In implementing the Li et al. (2006) method, we encountered an issue of grid-scale

noise, which appeared as a checkerboard pattern in the velocity reconstructions. This

problem stems from the averaging of streamfunction derivatives and was evident both

analytically and numerically in the velocity error fields. Through spatial correlation

analysis using the SWEs, we showed how this pattern can contaminate the statistics

of the control variables. To mitigate this, we proposed using a second order Shapiro filter.

A single iteration proved effective in removing the checkerboard noise. We examined

the placement of the filter within the transformation process and determined that post-

processing was necessary to suppress the noise effectively. However, we also observed that

applying the filter unfortunately introduced larger reconstruction errors in the velocities.

Overall, we developed a new control variable transformation with ageostrophic

streamfunction and velocity potential as the velocity control variables. This was

implemented in the shallow water model and led to the discovery of several critical

challenges associated with applying the Li et al. (2006) method for decomposing velocities

into their non-divergent and irrotational components.
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2. How can the discretisation of this transformation be extended

from an idealised framework to application within a realistic

ocean model?

In chapter 5, we integrated the proposed velocity control variables — ageostrophic

streamfunction and velocity potential — into NEMOVAR. Building on the work from

chapter 4, we extended the approach from the shallow water model to the more

realistic ocean modelling framework, NEMO. To achieve this, we updated the existing

balance operator in NEMOVAR to include a transformation from the ageostrophic

velocity components to ageostrophic streamfunction and velocity potential. This required

formulating the Helmholtz decomposition in discrete form using spherical coordinates.

We described implementing these control variables in a more complex system compared

to the SWEs, including the need for spatial weighting and a more sophisticated approach

to regularisation.

After defining the new balance operator and the discretised Helmholtz decomposition

within it, we demonstrated the transformation of velocity fields into their non-divergent

and irrotational components using the GYRE configuration of NEMO. We examined

the impact of varying the convergence tolerance and regularisation parameter by

reconstructing the velocities after the transformation. We found that, beyond a certain

threshold, further reductions in these parameters had negligible impact on reconstruction

errors but incurred substantial computational cost.

Using a Fourier analysis of both the streamfunction field and the reconstruction errors,

we observed that the checkerboard pattern, previously identified in the shallow water

model, also appeared in this more complex domain and coordinate system. To address

this, we proposed the use of the Shapiro filter, a method already used in NEMOVAR, to

suppress this numerical artifact. To determine the number of iterations required, we again

performed a Fourier analysis and found that a single iteration was sufficient to remove the

checkerboard noise. However, the Shapiro filter led to an increase in the reconstruction

errors. We revealed that this was due to the filter not only removing the small-scale noise

associated with the checkerboard pattern but also modifying large-scale wave components.

Overall, we successfully incorporated the new velocity control variables into the complex

balance operator used in NEMOVAR, along with the discretised Helmholtz decomposition
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adapted to the NEMO coordinate system. We demonstrated the transformations sensitivity

to parameter choices and confirmed the presence of the checkerboard pattern. We concluded

that, to effectively overcome this issue, a filtering approach that more selectively targets

small-scale waves is necessary.

3. What are the implications of using these alternative velocity

variables in variational data assimilation, and how do these

variables respond to the assimilation of velocity observations?

In chapter 6, we performed new assimilation experiments comparing the current

velocity control variables — ageostrophic velocities — with the newly proposed

ageostrophic streamfunction and velocity potential, in NEMOVAR. These represent the

first experiments to use the new velocity control variables alongside idealised SKIM-like

satellite velocity observations, within the GYRE configuration of NEMO.

Single-observation experiments demonstrated that the inclusion of these new velocity

control variables produced sensible analysis increments compared to the current system.

Over the course of year-long experiments, we demonstrated that the inclusion of these

new variables in NEMOVAR has the potential to improve the quality of the analysis.

Notably, this improvement was observed even without extensive tuning of the background

error statistics. We also conducted experiments in which the divergent component of

the ageostrophic velocities was removed by setting the ageostrophic velocity potential

increment to zero. This led to a reduction in the magnitude of the ageostrophic vertical

velocity increments, a significant benefit of the new control variables. However, we also

found that this approach did not reduce the overall magnitude of the full vertical velocity

increments. Instead, the balanced component of the vertical velocity was responsible

for the increase. This highlights a limitation and suggests that additional strategies are

required to effectively constrain vertical velocities in the system. We investigated the

sensitivity of the analysis to the standard deviation of the streamfunction while keeping

the divergent part of the flow removed. We found that the analysis was more sensitive to

larger values of the standard deviation, whereas smaller values produced relatively similar

results.

Overall, we have demonstrated the positive impact new velocity control variables can

167



have on the analysis produced by NEMOVAR when assimilating future ocean current

measurements. We have shown that the assimilation results are sensitive to the choice

of background error statistics and that constraining the vertical velocities requires more

than simply introducing new unbalanced control variables.

7.2 Main conclusions

The three key conclusions of this thesis are:

1. We designed a novel control variable transformation using alternative velocity

variables for use in NEMOVAR.

2. We discovered new implications of implementing this transformation that emerged

from a detailed mathematical analysis.

3. We demonstrated the potential for improving the assimilation of future ocean

current measurements using the new control variable transformation.

7.3 Future work

This thesis set out to provide an insight into how ageostrophic streamfunction and velocity

potential can be used as the velocity control variables in NEMOVAR. We discussed some

of the challenges and impacts of using these. We now consider how this work may

be extended in order to provide further insight. In the long term, the main aim of

future research is to implement these assimilation experiments within a full global model,

incorporating a realistic observing system and background error statistics derived from

more robust methodologies. In the remainder of this section, we outline several steps that

can be taken to move toward this goal.

Firstly, our experiments focused on a single type of domain, a closed ocean basin. Since

the control variables were designed to avoid the need for explicit boundary conditions,

it would be valuable to investigate their use in other domain types, such as limited-

area domains, as done in Li et al. (2006), or global domains with islands and narrow

straits. This would provide further insight into how the issues we observed, such as
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the checkerboard pattern, filtering effects, and boundary-related challenges, manifest

themselves in more varied domains.

Another task for further research is to investigate the cross-correlations of the

proposed control variables. In section 3.5, we discussed that control variables based

on streamfunction and velocity potential are more suitable than those based directly

on velocity components. A statement frequently agreed upon in literature based on

the conclusions of Daley (1993). This was briefly explored in appendix A, where we

examined the cross-correlations of the proposed control variables. These preliminary

experiments indicated that ageostrophic streamfunction and velocity potential were

actually more correlated than the ageostrophic velocity components, regardless of whether

the Shapiro filter was applied. One possible contributing factor is the modification of the

Helmholtz decomposition through the use of Tikhonov regularisation, which may have

affected the independence of the transformed variables. However, these findings are not

conclusive. Further investigation is required to assess the correlation between ageostrophic

streamfunction and velocity potential increments. This should ideally be carried out in

a more realistic setting, such as the GYRE configuration or a global configuration, to

provide a more definitive understanding.

On the topic of statistics, the assimilation experiments presented in chapter 6 were

conducted using the new control variables. As discussed in section 6.3.2, the standard

deviation values for the control variables were assumed to be constant throughout

the entire domain and were chosen based on the magnitude of the model fields. We

subsequently tested the sensitivity of the assimilation to changes in the standard deviation

of the streamfunction variable. However, these assimilation experiments should be

repeated using a more robust approach, such as the NMC method (Parrish and Derber,

1992), to estimate the background error statistics. In appendix A we found strong cross

correlations between the proposed velocity control variables, using a rudimentary method

to estimate forecast errors (namely the "quick covs" method). A better forecast error

estimation method, such as the NMC method, may provide a more accurate estimation of

these cross correlations, which may be found to be smaller for these proposed variables.

If this were found, it would be a further validation in favour of the use of ageostrophic

streamfunciton and velocity potential as velocity control variables.

Another valuable next step in extending this work would be to consider the filtering
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process more analytically. As discussed in section 5.4.1, there is a need to replace the

Shapiro filter with an alternative that more selectively targets high-frequency components

of the FFT spectrum. Future research should aim to identify and evaluate such a filter.

Importantly, this investigation should go beyond numerical experiments and include a

thorough analytical study to better understand the filtering properties and their impact

on the control variables and overall assimilation performance.

The assimilation experiments, conducted in chapter 6, could also be extended by

incorporating in situ data, such as HF radar observations, to evaluate how these new

variables might impact NEMOVAR in current operational settings, rather than only

in future scenarios. Additional assessment methods could be introduced, such as using

Lagrangian techniques to track particle trajectories; testing uncertainty by perturbing the

initial conditions of the assimilation experiments; and evaluating forecast skill in addition

to analysis accuracy.

As concluded in section 6.7, the introduction of the new control variables did not

succeed in constraining the vertical velocities. However, this issue appeared to be

primarily related to the balanced component of the velocity field. Further work is needed

to understand why the balanced component of the vertical velocities increases and how

this behaviour might be better constrained within the assimilation system.

While we have highlighted the unresolved issues associated with using these alternative

velocity variables in NEMOVAR, this thesis has demonstrated that they hold the potential

for improving the current ocean data assimilation system. As such, this approach presents

an exciting and worthwhile opportunity for further research.
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Appendix A

Cross-correlations of control

variables using the SWEs

In section 4.3 we discussed the numerical implications of transforming to ageostrophic

streamfunction and velocity potential from the horizontal velocities, using the shallow

water model. Here, we investigate the cross-correlations of the proposed control variables

and how using the Shapiro filter affects these correlations. The correlation analysis

described in this section will test the validity of the assumption that the control variable

errors are uncorrelated. In particular, we discuss whether the newly proposed control

variables are less correlated than the ageostrophic velocities; taking into consideration the

numerical implications and solutions discussed in section 4.3. We aim to address these

points using the numerical model described in section 4.1, by calculating the correlations

between the background errors of the control variables. To begin, we detail the method

to calculate these correlations.

A.1 Method

To examine the correlations between control variables, we do so by calculating the cross-

variable correlations at each grid point using the ‘quick covs method’ (Polavarapu et al.,

2005), similar to section 4.3.3. Using this method, we take differences between model

forecasts at regular time intervals. These forecast differences act as a proxy for background

errors. We take differences until we have a larger enough data set. Using these differences,
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we look at the correlations of the difference fields. We investigate the correlation between

control variables by transforming the forecast time-differences of the state variables using

the T-transform, described in section 4.2.2. The following steps are taken to perform the

correlation analysis using the shallow water model:

1. Run the shallow water model described in section 4.1 for 200 days after spinning

the model up for 200 days.

2. Calculate the day-to-day model differences as a proxy for the background error: δη,

δu and δv.

3. Calculate the current velocity control variables, δuU and δvU , using geostrophic

balance (4.12), for each daily difference field.

4. Calculate the new velocity control variables, δψU and δχU , using the T-transform,

for each daily increment.

5. Calculate the correlations between control variables increments at each grid point.

As discussed in section 4.3.3 we use a 24-hour interval for our forecasts. We are solely

concerned with the correlations between the velocity control variables, corr(δuU , δvU) and

corr(δψU , δχU).

Figure A.1: The cross-correlations of the control variables across the domain. Titles include the control

variables and the percentage of the field that could be considered approximately uncorrelated i.e. the %

of the field below a certain threshold, chosen to be 0.2. F represents the Shapiro filter.
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A.2 Results and discussion

First, we calculate the correlations between the ageostrophic velocities, the control

variables currently used in NEMOVAR. The correlation field, corr(δuU , δvU), is shown in

figure A.1a. To further understand how correlated these two variables are we calculate the

percentage of the field that could be considered approximately uncorrelated, by finding

the % of the field below a certain threshold, chosen to be 0.2. We find that only a third

of the correlation field could be considered approximately uncorrelated.

We then consider the correlations of the proposed velocity control variables,

ageostrophic streamfunction and velocity potential. Using the method described in

section A.1 we calculate the correlations. Figure A.1b shows the correlation field, with

27.8% of the field considered uncorrelated. This field clearly displays the checkerboard

pattern discussed in section 4.3.2, therefore we apply the Shapiro filter, F , to the

ageostrophic streamfunction increment, after performing the transformation from the

horizontal velocities. We then calculate corr(FδψU , δχU). The resulting correlation field

is shown in figure A.1c, with only 28.4% of the field uncorrelated.

It is often considered that control variables based on streamfunction and velocity

potential are more appropriate than the velocity vector components since the assumption

that they are uncorrelated is more suitable (Daley, 1993, Section 5.2). Daley (1993)

assumes there is no correlation between velocity potential and streamfunction. The

justification for this comes from the observational and theoretical work of Hollingsworth

and Lönnberg (1986) and Panchev (1971) respectively. However, through our correlation

analysis we find that ageostrophic streamfunction and velocity potential are more

correlated than the ageostrophic velocities, regardless of the use of the Shapiro filter.

We must consider that altering the Helmholtz transformation by using Tikhonov’s

regularisation could have contributed to these higher correlations. Alternatively, these

results could be improved by using a better background error proxy method. However,

further study is needed to provide a concrete conclusion regarding the correlation between

ageostrophic streamfunction and velocity potential increments.
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Appendix B

Geostrophic balance

When calculating the balanced component of the velocities using geostrophic balance,

we also introduce a computational mode that leads to noisy structures. This can be

demonstrated on a uniform grid by calculating uB
i+ 1

2 ,j
using (4.12),

uB
i+ 1

2 ,j
= 1

4

(
ηi,j+1 − ηi,j

∆y + ηi,j − ηi,j−1

∆y + ηi+1,j+1 − ηi+1,j

∆y + ηi+1,j − ηi+1,j−1

∆y

)
= 1

4∆y

(
ηi,j+1 − ηi,j−1 + ηi+1,j−1 − ηi+1,j−1

)
.

A similar expression can be found for vB. The balanced component of the velocity has

no dependence on the adjacent elevation values, i.e. ηi,j and ηi+1,j. This leads to the

checkerboard pattern discussed in section 4.3.2. This is a disadvantage of using the

Arakawa-C grid, as discussed by Randall (1994). Marshall et al. (1997) and Weller et al.

(2012) discuss a similar Coriolis mode on the Arakawa-C grid. To resolve this issue when

performing the transformation in section 4.3.1 with the SWEs, we apply the Shapiro filter

to the ageostrophic components of the velocities, see section 4.3.4. This removes any noise

that would negatively affect the Helmholtz decomposition.
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Appendix C

Approaches to implementing the

CVT for the shallow water model

In this section we describe and illustrate the potential CVT processes to consider when

implementing the alternative velocity control variables, ageostrophic streamfunction and

velocity potential. We describe how we transform from the model variables to these control

variables and how there are two approaches to solving the Helmholtz decomposition for

streamfunction and velocity potential.

C.1 One system approach

The one system approach is as follows: from the model output we find the daily

increments. We apply geostrophic balance to these increments and calculate the

ageostrophic velocity increments. We transform from the ageostrophic velocity increments

to ageostrophic streamfunction and velocity potential increments using the inverse of the

Helmholtz decomposition. This process is detailed in section 4.2 and illustrated in figure

C.1.

C.1.1 Adding the Shapiro filter

In section 4.3.4 and appendix B we discuss applying the Shapiro filter to the ageostrophic

velocity increments and the ageostrophic streamfunction increment. We update the

discretisation of the linear system in section 4.2.3 to include this filtering as follows:
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1. Find δuU and δvU using geostrophic balance (4.12).

2. Apply the Shapiro filter to the ageostrophic velocities to give, FδuU and FδvU .

3. We find the least squares solution to the following linear system,

Aδz = δvUf

where

δz =

δψU
δχU

 and δvUf
= FδvU =

FδuU
FδvU


and

A =

−∆y ∆x

∆x ∆y

 (C.1)

by minimising the following cost function with respect to δz,

Jf (δz) = 1
2(FδvU − Aδz)T(FδvU − Aδz). (C.2)

This involves setting the gradient of (C.2) equal to zero,

∇Jf (δz) = −AT(FδvU − Aδz) = 0,

ATAδz = ATFδvU

δz = (ATA)−1ATFδvU .

4. Apply the Shapiro filter to δψU to give FδψU .

5. Use FδψU and δχU as the velocity control variables.

This updated process is illustrated in figure C.2.

C.1.2 Alternative filtering approach

In section 4.3.4 we discuss applying the Shapiro directly to the streamfunction derivatives

within the Helmholtz transformation. The discretisation of the linear system in section

4.2.3 including this filtering is given by:

1. Find δuU and δvU using geostrophic balance (4.12).
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2. We find the least squares solution to the following linear system,

Afδz = δvU

where

δz =

δψU
δχU

 and δvU =

δuU
δvU


and

Af = AF =

−∆y ∆x

∆x ∆y


F 0

0 1

 =

−F∆y ∆x

F∆x ∆y

 (C.3)

by minimising the following cost function with respect to δz,

Jf (δz) = 1
2(δvU − AFδz)T(δvU − AFδz). (C.4)

This involves setting the gradient equal to zero,

∇Jf (δz) = −FTAT(δvU − AFδz) = 0,

FTATAFδz = FTATδvU

δz = (FTATAF)−1FTATδvU .

3. Use δψU and δχU as the velocity control variables.

This process is shown in figure C.3. This approach was not adopted as the CVT

process using the shallow water model. We showed in section 4.3.4 that this placement

of the filter failed to adequately remove the checkerboard pattern.

C.2 Two system approach

We refer to the discrete linear system described in section 4.2.3. There we solved for

ageostrophic streamfunction and velocity potential by minimising (4.15) directly with

respect to δz using the conjugate gradient (CG) method (see section 2.2.2). We refer to

this is as the one system approach, and the workflow is illustrated as a flow diagram

in figure C.1. An alternative approach involves solving the Helmholtz equations for

streamfunction and velocity potential is by separating the calculation of δψU and δχU ,

i.e. solving the divergence and vorticity equations,

DU = ∂δuU
∂x

+ ∂δvU
∂y

= ∇2δχU , (C.5)
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ξU = ∂δvU
∂x

− ∂δuU
∂y

= ∇2δψU . (C.6)

We discretise these equations to give

LδχU = D̂U (C.7)

and

LδψU = ξ̂U , (C.8)

where L is the discrete Laplacian operator.

Similar to the one system approach, we use Tikhonov’s regularisation to address the

non-uniqueness of the Helmholtz decomposition (see section 4.2.3). To find the minimum

of the cost function, (4.15) in the one system approach, we set the gradient equal to zero,

∆Jµ(δz) = −AT(δvU − Aδz) + µδz = 0

⇒ ATAδz + µδz = ATδvU

⇒ (ATA + µI)δz = ATδvU (C.9)

where I is the identify matrix and A =

−∆y ∆x

∆x ∆y

. We note that A = AT and therefore

ATA =

∆2
x + ∆2

y 0

0 ∆2
x + ∆2

y

 =

L 0

0 L

 (C.10)

where ∆2
x and ∆2

y are the discretisation of ∂2

∂x2 and ∂2

∂y2 . We also have

ATδvU =

−∆yδuU + ∆xδvU

∆xδuU + ∆yδvU

 =

 ξ̂U

D̂U


and so (C.9) can separate into two separate Poisson equations, each with their own

regularisation parameter,

(L + µχI)δχU = D̂U (C.11)

and

(L + µψI)δψU = ξ̂U . (C.12)

To solve (C.11) and (C.12) to find streamfunction and velocity potential we must address

the fact that the 2D Laplacian matrix is singular with both negative and zero value
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eigenvalues due to the Neumann boundary conditions imposed on streamfunction, see

sections 2.5 and 2.5. To transform to a solvable matrix problem, we must first have

positive eigenvalues, and so we instead solve,

−(L + µχI)δχU = −D̂U (C.13)

and

−(L + µψI)δψU = −ξ̂U . (C.14)

We refer to this alternative approach as the two system approach, and the flow diagram

is shown in figure C.4. Through the Lagrangian approach in appendix D, we are able to

demonstrate that the Laplacian operator used in (C.14) must be carefully discretised due

to the location of streamfunction on the grid.
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Figure C.1: One system approach to finding the ageostrophic streamfunction and velocity potential

increments. From the model output we find the daily increments, then use geostrophic balance to find

the ageostrophic velocity increments. We then find the ageostrophic streamfunction and velocity potential

increments through the inverse of the Helmholtz decomposition.
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Figure C.2: One system approach to finding the ageostrophic streamfunction and velocity potential

increments with the Shapiro filter after the transformation. From the model output we find the daily

increments, then use geostrophic balance to find the ageostrophic velocity increments and apply the

Shapiro filter. We then find the the ageostrophic streamfunction and velocity potential increments

through the inverse of the Helmholtz decomposition. We then again apply the Shapiro filter to the

ageostrophic streamfunction increment.
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Figure C.3: One system approach to finding the ageostrophic streamfunction and velocity potential

increments within the transformation. From the model output we find the daily increments, then use

geostrophic balance to find the ageostrophic velocity increments. We then find the the ageostrophic

streamfunction and velocity potential increments through the inverse of the Helmholtz decomposition.

The Shapiro filter is applied to the ageostrophic streamfunction derivatives within the transformation.
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Figure C.4: Two system approach to finding the ageostrophic streamfunction and velocity potential

increments. From the model output we find the daily increments, then use geostrophic balance to find

the ageostrophic velocity increments. We then find the ageostrophic divergence and vorticity. Finally, we

find the ageostrophic streamfunction and velocity potential increments through the Poisson equations.
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Appendix D

A Lagrangian approach

In this section we describe how Lagrangian multipliers can be used to derive the Poisson

equations (2.6) and (2.7) from Helmholtz Theorem. The Lagrangian approach also reveals

the boundary conditions we impose on the velocities. We focus on the use of Helmholtz

Theorem on a uniform grid as described in chapter 4. We first address the Helmholtz

equations in the continuous setting. We then adapt this to investigate the effect of

introducing Tikhonov’s regularisation, as used in the Li et al. (2006) method. In the

discrete case we also derive similar equations. However, we clearly show that the Laplacian

operator applied to ψ is different from the standard Laplacian operator. This is due to

placing ψ at a the centre of the grid and the averaging involved in finding the derivatives,

as discussed in section 4.3.2. The following two sections are self-contained notation-wise,

and we discuss the general Helmholtz decomposition for the full model fields, rather than

the ageostrophic increments. The results are equivalent analytically.

D.1 Continuous equations

In this section, we formulate an energy minimisation problem to find the velocity fields

u and v, constrained by the Helmholtz decomposition, that best approximate the given

fields ũ and ṽ. We want to minimise the following,

J (x) = 1
2

∫
Y

∫
X

(u− ũ)2 + (v − ṽ)2 dxdy. (D.1)
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subject to the constraint x = H(z). Here, x =

u
v

, z =

ψ
χ

 and H is the Helmholtz

relation detailed in theorem 2.1.2. To do so, in a continuous setting, we define a

Lagrangian,

L = J (x) +
∫
S
λT(x − H(z)) dS (D.2)

where λ =

λ1

λ2

 are the Lagrangian multipliers. This can be re-written as

L = J (x) +
∫
Y

∫
X

[
λ1(u−

(
− ∂ψ

∂y
+ ∂χ

∂x

)
) + λ2(v −

(
∂ψ

∂x
+ ∂χ

∂y

)
)
]
dxdy (D.3)

where X and Y define the spatial domain of integration. We find the stationary values

of L. These are found by computing the first order variation of L with respect to the

perturbations δλ1, δλ2, δu, δv, δψ and δχ, as follows,

δL = δJ +
∫
Y

∫
X

[
δλ1(u−

(
− ∂ψ

∂y
+ ∂χ

∂x

)
) + δλ2(v −

(
∂ψ

∂x
+ ∂χ

∂y

)
)

+ λ1(δu−
(

− ∂δψ

∂y
+ ∂δχ

∂x

)
) + λ2(δv −

(
∂δψ

∂x
+ ∂δχ

∂y

)
)
]
dxdy (D.4)

with

δJ =
∫
Y

∫
X

(u− ũ)δu+ (v − ṽ)δv dxdy. (D.5)

To find the stationary values of L we require δL to vanish for any given perturbation.

Therefore, to establish these conditions (D.4) must be reduced to an expression

that isolates the perturbations. As the first order perturbations are arbitrary, the

stationarity condition is satisfied if and only the coefficients of the perturbations,

δλ1, δλ2, δu, δv, δψ and δχ, are equal to zero. First, we consider coefficients of the δu

and δv from (D.4) and (D.5). By setting these coefficients equal to zero, we obtain

u− ũ+ λ1 = 0 ⇒ λ1 = ũ− u, (D.6)

v − ṽ + λ2 = 0 ⇒ λ2 = ṽ − v. (D.7)

Next, consider the first-order derivatives,
∫
Y
λ1
∂δψ

∂y
dy =

[
λ1δψ

]
Y

−
∫
Y

∂λ1

∂y
δψ dy, (D.8)

∫
X
λ2
∂δψ

∂x
dx =

[
λ2δψ

]
X

−
∫
X

∂λ2

∂x
δψ dx, (D.9)
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∫
X
λ1
∂δχ

∂x
dx =

[
λ1δχ

]
X

−
∫
X

∂λ1

∂x
δχ dx, (D.10)∫

Y
λ2
∂δχ

∂y
dy =

[
λ2δχ

]
Y

−
∫
Y

∂λ2

∂y
δχ dy. (D.11)

We substitute (D.6) and (D.7) into the boundary terms of (D.8) - (D.11),[
λ1δψ

]
Y

=
[
(ũ− u)δψ

]
Y

= 0,[
λ2δψ

]
X

=
[
(ṽ − v)δψ

]
X

= 0,[
λ1δχ

]
X

=
[
(ũ− u)δχ

]
X

= 0,[
λ2δχ

]
Y

=
[
(ṽ − v)δχ

]
Y

= 0,

due to the no-flow through condition, u = ũ = 0 and v = ṽ = 0 on the boundary. This

reduces (D.4) to,

δL =
∫
Y

∫
X

δλ1(u−
(

− ∂ψ

∂y
+ ∂χ

∂x

)
) + δλ2(v −

(
∂ψ

∂x
+ ∂χ

∂y

)
)

+ δu
(

(u− ũ+ λ1)
)

+ δv
(

(v − ṽ + λ2)
)

δψ

∂λ2

∂x
− ∂λ1

∂y

 + δχ

∂λ1

∂x
+ ∂λ2

∂y

dxdy. (D.12)

Moreover, by setting the coefficients of δλ1 and δλ2 equal to zero, we retrieve the Helmholtz

constraint. Finally, setting the coefficients of δψ and δχ equal to zero, and using (D.6)

and (D.7), we obtain
∂λ2

∂x
− ∂λ1

∂y
= 0 ∂λ1

∂x
+ ∂λ2

∂y
= 0

⇒ ∂(ṽ − v)
∂x

− ∂(ũ− u)
∂y

= 0 ⇒ ∂(ũ− u)
∂x

+ ∂(ṽ − v)
∂y

= 0

⇒ −∂ũ

∂y
+ ∂ṽ

∂x
= −∂u

∂y
+ ∂v

∂x
⇒ ∂ũ

∂x
+ ∂ṽ

∂y
= ∂u

∂x
+ ∂v

∂y
.

We observe that the terms on the left-hand side involving ũ and ṽ correspond to the

definitions of vorticity, ξ̃ (2.7), and divergence, D̃ (2.6). Since u and v satisfy the

Helmholtz equations given by (2.4) and (2.5), we can also rewrite the right-hand side

accordingly, to give

ξ̃ = − ∂

∂y

(
− ∂ψ

∂y
+ ∂χ

∂x

)
+ ∂

∂x

(
∂ψ

∂x
+ ∂χ

∂y

)
D̃ = ∂

∂x

(
− ∂ψ

∂y
+ ∂χ

∂x

)
+ ∂

∂y

(
∂ψ

∂x
+ ∂χ

∂y

)
.

We have derived the discrete Poisson equations, ξ̃ = ∇2ψ and D̃ = ∇2χ and therefore

must solve these to find u and v.
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D.1.1 Tikhonov’s regularisation

As discussed in section 2.2.1, Tikhonov’s regularisation can be used to improve the

convergence and conditioning of an inverse problem, detailed in section 4.2.3. We can

use the Lagrangian approach to demonstrate how this constraint is implemented in our

system. Tikhonov’s regularisation adds an additional constraint to the cost function (D.1),

JT = J + 1
2

∫
Y

∫
X
µ1(ψ − ψb)2 + µ2(χ− χb)2 dxdy. (D.13)

This form penalises deviations of the control variables, ψ and χ, from their respective

background (or prior) values, ψb and χb. In the specific case discussed by Li et al. (2006),

the regularisation term takes the form 1
2αzTz, which penalises the squared amplitude of

the control variable. This corresponds to choosing zb = 0, i.e., a prior value of zero.

Following this approach, we set ψb, χb = 0 which simplifies the regularised cost function

to JT = J + 1
2

∫
Y

∫
X µ1ψ

2 + µ2χ
2 dxdy. We then take the first order variation to give

δJT = δJ +
∫
Y

∫
X
µ1ψδψ + µ2χδχ dxdy.

We want to minimise this cost function with the constraints given previously. This leads

to the following Poisson equations

ξ̃ = ∇2ψ − µ1ψ and D̃ = ∇2χ− µ2χ. (D.14)

D.2 Discrete equations

We now use the Lagrangian approach to derive the discrete Poisson equations. Recall

figure 3.2b, we discretise on the Arakawa C-grid with streamfunction located at the centre

of the grid cells, as proposed by Li et al. (2006). When discretising, we use masks to

determine what are land and ocean points (this mask is defined at the centre of the grid

cells) and to enforce boundary conditions on the velocities (this mask is defined on the

boundaries of the grid cells). These are given by,

m =


1 at ocean points

0 at land points
(D.15)

and

ϵu, ϵv =


0 on the boundary

1 not on the boundary.
(D.16)
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The boundary condition masks ϵu, ϵv enforce the physical boundary condition of zero

normal velocity at the boundary. To simplify the notation, we have mi,jψi,j = ψ′
i,j and

mi,jχi,j = χ′
i,j. The Helmholtz equations (2.4) and (2.5) can be discretised to give,

ui+ 1
2 ,j

= ϵu
i+ 1

2 ,j
(−∆yψi+ 1

2 ,j
+ ∆xχi+ 1

2 ,j
)

= ϵu
i+ 1

2 ,j

 − 1
4∆y

(
ψ′
i+1,j+1 − ψ′

i+1,j−1 + ψ′
i,j+1 − ψ′

i,j−1

)
+ 1

∆x

(
χ′
i+1,j − χ′

i,j

) (D.17)

and

vi,j+ 1
2

= ϵv
i,j+ 1

2
(∆xψi,j+ 1

2
+ ∆yχi,j+ 1

2
)

= ϵv
i,j+ 1

2

 1
4∆x

(
ψ′
i+1,j+1 − ψ′

i−1,j+1 + ψ′
i+1,j − ψ′

i−1,j

)
+ 1

∆y

(
χ′
i,j+1 − χ′

i,j

). (D.18)

To derive the Poisson equations we define a Lagrange function similar to section D.1, as

follows,

L̂ = ˆJ (x) +
∑
i

∑
j

λ̂1
i+ 1

2 ,j

(
ϵu

i+ 1
2 ,j
ui+ 1

2 ,j
−
ϵu

i+ 1
2 ,j

4∆y

(
ψ′
i+1,j+1 − ψ′

i+1,j−1 + ψ′
i,j+1 − ψ′

i,j−1

)

+
ϵu

i+ 1
2 ,j

∆x

(
χ′
i+1,j − χ′

i,j

))

+λ̂2
i,j+ 1

2

(
ϵv

i,j+ 1
2
vi,j+ 1

2
−
ϵv

i,j+ 1
2

4∆x

(
ψ′
i+1,j+1−ψ′

i−1,j+1+ψ′
i+1,j−ψ′

i−1,j

)
+
ϵv

i,j+ 1
2

∆y

(
χ′
i,j+1−χ′

i,j

)
(D.19)

where

Ĵ =
∑
i

∑
j

1
2

ϵu
i+ 1

2 ,j

(
ui+ 1

2 ,j
− ũi+ 1

2 ,j

)2
+ ϵv

i,j+ 1
2

(
vi,j+ 1

2
− ṽi,j+ 1

2

)2
 (D.20)

and λ̂1, λ̂2 are Lagrangian multipliers. Similar to the continuous case, we can obtain the

Poisson equations by taking the derivative of the Lagrange function, L̂, with respect to

all the variables and setting them equal to zero to find the stationary values. As such we

have

δĴ =
∑
i

∑
j

[
ϵu

i+ 1
2 ,j

(ui+ 1
2 ,j

− ũi+ 1
2 ,j

) + ϵv
i,j+ 1

2
(vi,j+ 1

2
− ṽi,j+ 1

2
)
]
. (D.21)

Firstly, setting the derivatives with respect to the Lagrangian multipliers, ∂L̂/∂λ̂1 and

∂L̂/∂λ̂2, equal to zero gives the Helmholtz constraint. We now set ϵu
i+ 1

2 ,j
λ̂1

i+ 1
2 ,j

= λ̂′
1

i+ 1
2 ,j

,
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ϵv
i,j+ 1

2
λ̂2

i,j+ 1
2

= λ̂′
2

i,j+ 1
2
, ϵu

i+ 1
2 ,j
ui+ 1

2 ,j
= u′

i+ 1
2 ,j

, ϵv
i,j+ 1

2
vi,j+ 1

2
= v′

i,j+ 1
2

for simplicity an

calculate derivatives with respect to the velocities,

∂L̂
∂ui+ 1

2 ,j

= ∂Ĵ
∂ui+ 1

2 ,j

+ λ̂′
1

i+ 1
2 ,j

= u′
i+ 1

2 ,j
− ũ′

i+ 1
2 ,j

+ λ̂′
1

i+ 1
2 ,j

∂L̂
∂vi,j+ 1

2

= ∂Ĵ
∂vi,j+ 1

2

+ λ̂′
2

i,j+ 1
2

= v′
i,j+ 1

2
− ṽ′

i,j+ 1
2

+ λ̂′
2

i,j+ 1
2
.

We equate these to zero to give the following,

∂L̂
∂δui+ 1

2 ,j

= 0 ⇒ λ̂′
1

i+ 1
2 ,j

= ũ′
i+ 1

2 ,j
− u′

i+ 1
2 ,j

(D.22)

and
∂L̂

∂δvi,j+ 1
2

= 0 ⇒ λ̂′
2

i,j+ 1
2

= ṽ′
i,j+ 1

2
− v′

i,j+ 1
2
. (D.23)

We finally calculate the derivatives of L̂ with respect to streamfunction and velocity

potential,

∂L̂
∂ψi,j

= 1
4∆y

(
λ̂′

1
i− 1

2 ,j−1
− λ̂′

1
i− 1

2 ,j+1
+ λ̂′

1
i+ 1

2 ,j−1
− λ̂′

1
i+ 1

2 ,j+1

)
− 1

4∆x

(
λ̂′

2
i−1,j− 1

2
− λ̂′

2
i+1,j− 1

2
+ λ̂′

2
i−1,j+ 1

2
− λ̂′

2
i+1,j+ 1

2

)
(D.24)

∂L̂
∂χi,j

= − 1
∆x

(
λ̂′

1
i− 1

2 ,j
− λ̂′

1
i+ 1

2 ,j

)
− 1

∆y

(
λ̂2

i,j− 1
2

− λ̂2
i,j+ 1

2

)
. (D.25)

By equating (D.24) and (D.25) to zero and substituting in the expressions for the

Lagrangian multipliers, (D.22) and (D.23), we obtain

1
4∆y

ũ′
i− 1

2 ,j−1−ũ′
i− 1

2 ,j+1+ũ′
i+ 1

2 ,j−1−ũ′
i+ 1

2 ,j+1−
(
u′
i− 1

2 ,j−1−u′
i− 1

2 ,j+1+u′
i+ 1

2 ,j−1−u′
i+ 1

2 ,j+1

)
= 1

4∆x

ṽ′
i−1,j− 1

2
−ṽ′

i+1,j− 1
2
+ṽ′

i−1,j+ 1
2
−ṽ′

i+1,j+ 1
2
−

(
v′
i−1,j− 1

2
−v′

i+1,j− 1
2
+v′

i−1,j+ 1
2
−v′

i+1,j+ 1
2

)
(D.26)

and

1
∆y

ṽ′
i,j− 1

2
−ṽ′

i,j+ 1
2
−

(
v′
i,j− 1

2
−v′

i,j+ 1
2

) = − 1
∆x

ũ′
i− 1

2 ,j
−ũ′

i+ 1
2 ,j

−
(
u′
i− 1

2 ,j
−u′

i+ 1
2 ,j

). (D.27)

From (D.27) we obtain

ũ′
i+ 1

2 ,j
− ũ′

i− 1
2 ,j

∆x +
ṽ′
i,j+ 1

2
− ṽ′

i,j− 1
2

∆y︸ ︷︷ ︸
D̂i,j

=
u′
i+ 1

2 ,j
− u′

i− 1
2 ,j

∆x +
v′
i,j+ 1

2
− v′

i,j− 1
2

∆y (D.28)
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where D̂i,j is the discrete divergence. From (D.26) we obtain,

− 1
4∆y

(
ũ′
i− 1

2 ,j+1 − ũ′
i− 1

2 ,j−1 + ũ′
i+ 1

2 ,j+1 − ũ′
i+ 1

2 ,j−1

)
+ 1

4∆x
(
ṽ′
i+1,j− 1

2
− ṽ′

i−1,j− 1
2

+ ṽ′
i+1,j+ 1

2
− ṽ′

i−1,j+ 1
2

)
︸ ︷︷ ︸

ξ̂i,j

= − 1
4∆y

(
u′
i− 1

2 ,j+1−u
′
i− 1

2 ,j−1+u
′
i+ 1

2 ,j+1−u
′
i+ 1

2 ,j−1

)
+ 1

4∆x
(
v′
i+1,j− 1

2
−v′

i−1,j− 1
2
+v′

i+1,j+ 1
2
−v′

i−1,j+ 1
2

)
(D.29)

where ξ̂i,j is the discrete vorticity. We firstly examine the equation for divergence. From

(D.28) and using the discrete Helmholtz equations ((D.17) and (D.18)) we have

D̂i,j =
u′
i+ 1

2 ,j
− u′

i− 1
2 ,j

∆x +
v′
i,j+ 1

2
− v′

i,j− 1
2

∆y

= 1
∆x

 − 1
4∆y

(
ψ′
i+1,j+1 − ψ′

i+1,j−1 + ψ′
i,j+1 − ψ′

i,j−1

)
+ 1

∆x

(
χ′
i+1,j − χ′

i,j

)

+ 1
4∆y

(
ψ′
i,j+1 − ψ′

i,j−1 + ψ′
i−1,j+1 − ψ′

i−1,j−1

)
+ 1

∆x

(
χ′
i,j − χ′

i−1,j

)
+ 1

∆y

 − 1
4∆x

(
ψ′
i+1,j+1 − ψ′

i−1,j+1 + ψ′
i+1,j − ψ′

i−1,j

)
+ 1

∆x

(
χ′
i,j+1 − χ′

i,j

)

+ 1
4∆y

(
ψ′
i+1,j − ψ′

i−1,j + ψ′
i+1,j1 − ψ′

i−1,j−1

)
+ 1

∆x

(
χ′
i,j − χ′

i,j−1

).
We combine the ψ′ and χ′ terms above. As such the ψ′ terms fully cancel out, and we are

left with,

D̂i,j = 1
∆x2

(
χ′
i+1,j − 2χ′

i,j + χ′
i−1,j

)
+ 1

∆y2

(
χ′
i,j+1 − 2χ′

i,j + χ′
i,j−1

)
= ∆2

xχ
′
i,j + ∆2

yχ
′
i,j

where ∆2
x and ∆2

y are the discretisation of ∂2

∂x2 and ∂2

∂y2 . This gives,

D̂i,j = Lχ′
i,j (D.30)

where L is the discrete Laplacian operator. This is the standard discrete Laplacian

operator using centred differencing. We now show that the same cannot be said for
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vorticity. From (D.29) we have,

ξ̂i,j = − 1
4∆y

 − 1
4∆y

(
ψ′
i,j+2 − ψ′

i,j + ψ′
i−1,j+2 − ψ′

i−1,j − ψ′
i,j + ψ′

i,j−2 − ψ′
i−1,j + ψ′

i−1,j−2

+ ψ′
i+1,j+2 − ψ′

i+1,j + ψ′
i,j+2 − ψ′

i,j − ψ′
i+1,j + ψ′

i+1,j−2 − ψ′
i,j + ψ′

i,j−2

)

+ 1
∆x

(
χ′
i,j+1 − χ′

i−1,j+1 − χ′
i,j−1 + χ′

i+1,j+1 − χ′
i,j+1 − χ′

i+1,j−1 + χ′
i,j−1

)
+ 1

4∆x

 1
4∆x

(
ψ′
i+2,j − ψ′

i,j + ψ′
i+2,j−1 − ψ′

i,j−1 − ψ′
i,j + ψ′

i−2,j − ψ′
i,j−1 + ψ′

i−2,j−1

+ ψ′
i+2,j+1 − ψ′

i,j+1 + ψ′
i+2,j − ψ′

i,j − ψ′
i,j+1 + ψ′

i−2,j+1 − ψ′
i,j + ψ′

i−2,j−1

)

+ 1
∆y

(
χ′
i+1,j − χ′

i+1,j−1 − χ′
i−1,j + χ′

i−1,j−1 + χ′
i+1,j+1 − χ′

i+1,j − χ′
i−1,j+1 + χ′

i−1,j

).
The χ′ subsequently cancel, leaving the ψ′ terms only. Upon further examination, it

is revealed that the discretised streamfunction terms, ∆yψ and ∆xψ, from the discrete

Helmholtz decomposition (D.17) and (D.18) are present, this reduces the above to

ξ̂i,j = 1
4∆y

(
∆yψ

′
i− 1

2 ,j+1 − ∆yψ
′
i− 1

2 ,j−1 + ∆yψ
′
i+ 1

2 ,j+1 − ∆yψ
′
i+ 1

2 ,j−1

)
+ 1

4∆x

(
∆xψ

′
i+1,j− 1

2
− ∆xψ

′
i−1,j− 1

2
+ ∆xψ

′
i+1,j+ 1

2
− ∆xψ

′
i−1,j+ 1

2

)
= ∆̄2

xψ
′
i,j + ∆̄2

yψ
′
i,j

⇒ ξ̂i,j = L̄ψ′
i,j (D.31)

where ∆̄2
x are ∆̄2

y and L̄ are non-standard discrete operators caused by the placement

of streamfunction at the centre of the grid. Therefore, when using the the two-process

method described in section C.2, care must be taken when implementing these non-

standard operators. Additionally, it is important to note that the Lagrangian formulation

yields an expression for the vorticity evaluated at the centre of the grid cell — a

consequence that is consistent with the placement of the streamfunction at the same

location. However, on an Arakawa C-grid vorticity is usually located at the corner of the

grid-cell (Madec et al., 2023), the more common location of streamfunction in literature

(Lynch, 1989; Watterson, 2001). Accordingly, the vorticity should be computed as follows,

ξi+ 1
2 ,j+

1
2

= ∆2
yψ

′
i+ 1

2 ,j+
1
2

+ ∆2
xψ

′
i+ 1

2 ,j+
1
2

(D.32)
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where

∆2
yψ

′
i+ 1

2 ,j+
1
2

= 1
∆y

(
∆yψ

′
i+ 1

2 ,j+1 −∆yψ
′
i+ 1

2 ,j

)
= 1

∆y

 1
4∆y

(
ψ′
i,j+2 −ψ′

i,j+ψ′
i+1,j+2 −ψ′

i+1,j

)

− 1
4∆y

(
ψ′
i,j+1 − ψ′

i,j−1 + ψ′
i+1,j+1 − ψ′

i+1,j−1

)
and

∆2
xψ

′
i+ 1

2 ,j+
1
2

= 1
∆x

(
∆xψ

′
i+1,j+ 1

2
−∆xψ

′
i,j+ 1

2

)
= 1

∆x

 1
4∆x

(
ψ′
i+2,j+1+ψ′

i+2,j−ψ′
i,j+1−ψ′

i,j

)

− 1
4∆x

(
ψ′
i+1,j+1 + ψ′

i+1,j − ψ′
i−1,j+1 − ψ′

i−1,j−

).
This approach can be most clearly demonstrated using figure D.1. We firstly calculate

the streamfunction derivatives at the necessary locations, given by the red and yellow

dots, as described in section 4.3.2 (this involves finding the derivatives and averaging

them to the correct velocity locations). The second derivatives are then calculated at the

corner points of the grid, given by the green dots, where vorticity is located.

Hence, when applying this two-system approach of solving the Poisson equations, to

find ageostrophic streamfunction and velocity potential, special care must be taken to use

the correct Laplacian operator. The intuitive or "natural" method of implementing the

Laplacian operator is not numerically equivalent and should therefore be avoided.

192



Figure D.1: A visual demonstration of the Laplacian operator used to solve (C.8) using the

streamfunction location proposed by Li et al. (2006) given by the blue dot. The streamfunction derivatives

are located at red and yellow dots, these are calculated as described in section 4.3.2 (this involved finding

the derivatives and averaging them to the correct velocity locations). The second derivatives are then

calculated at the corner points of the grid, given by the green dots, where vorticity is located.
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Appendix E

Testing of the adjoint and gradient

When performing the transformation to ageostrophic streamfunction and velocity

potential, in chapter 4, there are occasions where we calculate the adjoint and the gradient

of an operator. This section describes the validation tests for these calculations.

E.1 The adjoint test

The adjoint test is used to verify whether an adjoint operator has been implemented

correctly (Li et al., 1994; Lawless et al., 2003). Let M be a linear operator and MT its

adjoint. To test this, we generate a random perturbation δx and apply the operator M to

obtain Mδx. We apply the adjoint to this result to give, MTMδx. To check the validity

of the adjoint we verify the following identity holds,

⟨Mδx,Mδx⟩ = ⟨δx,MTMδx⟩. (E.1)

This can be verified by examining the difference between the dot products and checking

if it is sufficiently close to zero, within the limits of machine precision.

E.2 The gradient test

The gradient test verifies the accuracy of a function’s gradient calculation (Navon et al.,

1992; Li et al., 1994). Suppose we have a function, J(x) and

J(x + αh) = J(x) + αhT∇J(x) +O(α2) (E.2)
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where α is a scalar and h is of unit length, i.e.

h = ∇J(x)
∥∇J(x)∥ .

We define,

Φ(α) = |J(x + αh) − J(x)|
αhT∇J(x)

= 1 +O(α). (E.3)

The gradient test involves plotting the value of Φ(α) as α approaches zero. If the values

are consistent, i.e. they are close to 1 as expected from (E.3), then the gradient calculation

is correct. To ensure that the plot values do not deviate significantly from 1, we also plot

1 − Φ(α) for verification.
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Appendix F

Non-divergence of the velocity

generated by streamfunction

As discussed in section 2.1, Helmholtz theorem states that a velocity field can be

split into its non-divergent and irrotational parts. Notably, the velocity generated by

streamfunction should be non-divergent i.e. ∇·vψ = 0. Here we investigate this statement

and expose the intricacies of coding these equations. Note we deal with the full model

fields in this chapter, rather than the ageostrophic increments. The result would be the

same analytically.

We discretise the divergence of the velocity generated by streamfunction,

Dψ = ∇ · vψ = ∂

∂x

−∂ψ
∂y

 + ∂

∂y

∂ψ
∂x

 (F.1)

on a uniform grid to give

D̂ψ = ∆x

(
− ∆yψ

)
+ ∆y

(
∆xψ

)
. (F.2)

Recall figure 3.2b, we discretise on the Arakawa C-grid, with streamfunction located at

the centre of the grid cell, as proposed by Li et al. (2006). When discretising we use

masks as described in section D.2. The land mask m is given by (D.15) and the boundary

condition masks ϵu, ϵv (given by D.16 ) enforce the physical boundary condition of zero

normal velocity at the boundary. Therefore at a given location on the grid we have,

D̂ψi,j
= mi,j

∆x

(
− ∆yψ

)
i,j

+mi,j

∆y

(
∆xψ

)
i,j

. (F.3)
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In section 4.2.4 we discussed two different approaches for calculating the

streamfunction derivatives and how they are equivalent on a uniform grid. However,

these approaches are not equivalent when on a non-uniform grid. This is also linked to

the masking used. Therefore, in NEMOVAR we use approach B. In this section we use

approach B to investigate the divergence of the velocity generated by streamfunction.

This involves averaging the values of streamfunction before calculating derivatives, as

follows,

1. Average ψ to the corner of the grid cells, as given by ψ̄ in figure 4.3. The land mask

is applied to the values of ψ before doing so.

2. To calculate
(

∆x

(
− ∆yψ

))
i,j

,

(a) Find the value of (∆yψ) at the u-point by calculating the y-derivative of ψ̄

using centred differencing.

(b) Apply the boundary mask to these u-points.

(c) Find the value of ∆x

(
− ∆yψ

)
at the centre of the grid cell by calculating the

x-derivative of (∆yψ) using centred differencing.

3. To calculate
(

∆y

(
∆xψ

))
i,j

,

(a) Find the value of (∆xψ) at the v-point by calculating the x-derivative of ψ̄

using centred differencing.

(b) Apply the boundary mask to these v-points.

(c) Find the value of ∆x

(
− ∆yψ

)
at the centre of the grid cell by calculating the

x-derivative of (∆yψ) using centred differencing.

This is the process we implement in NEMOVAR to calculate this divergence. The

corner value of streamfunction is given as

ψ̄i+ 1
2 ,j+

1
2

= 1
M

(
mi,j+1ψi,j+1 +mi,jψi,j +mi+1,j+1ψi+1,j+1 +mi+1,jψi+1,j

)
(F.4)

with M = max(1,mi,j+1 + mi,j + mi+1,j+1 + mi+1,j) is the number of surrounding ocean
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points. From the process described above we have,(
∆x(−∆yψ)

)
i,j

= − 1
∆x

ϵu
i+ 1

2 ,j
(∆yψ)i+ 1

2 ,j
− ϵu

i− 1
2 ,j

(∆yψ)i− 1
2 ,j

 (F.5)

= − 1
∆x

ϵui+ 1
2 ,j

∆y

(
ψ′
i+ 1

2 ,j+
1
2

− ψ′
i+ 1

2 ,j−
1
2

)
−
ϵu

i− 1
2 ,j

∆y

(
ψ̄i− 1

2 ,j+
1
2

− ψ̄i− 1
2 ,j−

1
2

)
and(

∆y

(
∆xψ

))
i,j

= 1
∆y

ϵv
i,j+ 1

2
(∆xψ)i,j+ 1

2
− ϵv

i,j− 1
2
(∆xψ)i,j− 1

2

 (F.6)

= 1
∆y

ϵvi,j+ 1
2

∆x

(
ψ̄i+ 1

2 ,j+
1
2

− ψ̄i− 1
2 ,j+

1
2

)
−
ϵv

i,j− 1
2

∆x

(
ψ̄i+ 1

2 ,j−
1
2

− ψ̄i− 1
2 ,j−

1
2

).

F.1 Away from the boundaries

Away from the boundaries, the masks will be set to ϵu, ϵv = 1 and m = 1. This gives

ψ̄i+ 1
2 ,j+

1
2

= 1
4

(
ψi,j+1 + ψi,j + ψi+1,j+1 + ψi+1,j

)
.

We obtain(
∆x(−∆yψ)

)
i,j

= − 1
4∆x∆y

(∆yψ)i+1,j+ 1
2
+(∆yψ)i+1,j− 1

2
+(∆yψ)i−1,j+ 1

2
+(∆yψ)i−1,j− 1

2


and(

∆y

(
∆xψ

))
i,j

= 1
4∆x∆y

(∆xψ)i− 1
2 ,j+1 + (∆xψ)i+ 1

2 ,j+1 + (∆xψ)i− 1
2 ,j−1 + (∆xψ)i+ 1

2 ,j−1

.
Adding these two terms we get D̂ψi,j

= 0, meaning non-divergence is preserved away from

the boundary.

F.2 Near the boundaries

We now calculate the value of D̂ψi,j
for the case shown in figure 4.4, at a point located

near the eastern boundary. We have,

(
∆x(−∆yψ)

)
i,j

= − 1
∆x

0 × (∆yψ)i+ 1
2 ,j

− 1 × (∆yψ)i− 1
2 ,j

 (F.7)

= 1
∆x∆y

(
ψ̄i− 1

2 ,j+
1
2

− ψ̄i− 1
2 ,j−

1
2

)
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and
(

∆y

(
∆xψ

))
i,j

= 1
∆y

1 × (∆xψ)i,j+ 1
2

− 1 × (∆xψ)i,j− 1
2

 (F.8)

= 1
∆x∆y

(
ψ̄i+ 1

2 ,j+
1
2

− ψ̄i− 1
2 ,j+

1
2

)
−

(
ψ̄i+ 1

2 ,j−
1
2

− ψ̄i− 1
2 ,j−

1
2

)
where

ψ̄i− 1
2 ,j+

1
2

= 1
4

(
ψi−1,j+1 + ψi−1,j + ψi,j+1 + ψi,j

)
ψ̄i− 1

2 ,j−
1
2

= 1
4

(
ψi−1,j + ψi,j + ψi−1,j−1 + ψi,j−1

)
ψ̄i+ 1

2 ,j+
1
2

= 1
2

(
ψi,j+1 + ψi,j

)
ψ̄i+ 1

2 ,j−
1
2

= 1
2

(
ψi,j + ψi,j−1

)
.

Therefore,

(
∆x(−∆yψ)

)
i,j

= 1
4∆x∆y

ψi−1,j+1 − ψi−1,j−1 + ψi,j+1 − ψi,j−1

)
and

(
∆y

(
∆xψ

))
i,j

= 1
4∆x∆y

(
ψi,j+1 − ψi−1,j+1 − ψi,j−1 + ψi−1,j−1

)
.

These combine to give

D̂ψi,j
= 1 ×

(
∆x(−∆yψ)

)
i,j

+ 1 ×
(

∆y

(
∆xψ

))
i,j

= 1
4∆x∆y

(
ψi−1,j+1 − ψi−1,j−1 + ψi,j+1 − ψi,j−1

)
+ 1

4∆x∆y

(
ψi,j+1 − ψi−1,j+1 − ψi,j−1 + ψi−1,j−1

)
= 1

2∆x∆y

(
ψi,j+1 − ψi,j−1

)
̸= 0.

We have shown that the streamfunction induced velocity is divergent near the

boundaries with how the code is currently setup in NEMOVAR. However, it is important

to point out a conflict we have made in this method of masking. In (F.5) we have applied

the mask ϵu, which enforces the value of zero at the boundary, to the y-derivatives of

streamfunction. The logic behind this is that we must apply some form of masking in
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NEMOVAR to a value at the boundary. However, by doing do we have assumed that the

y-derivative of streamfunction has the same boundary condition as the normal velocity.

Essentially enforcing ∆yψ = 0 on the eastern and western boundaries. This implies that

streamfunction is constant along these boundaries, which would further imply that we

should re-arrange (F.8) to give

1
∆x∆y

 (
ψ̄i+ 1

2 ,j+
1
2

− ψ̄i+ 1
2 ,j−

1
2

)
︸ ︷︷ ︸

=0

−
(
ψ̄i− 1

2 ,j+
1
2

− ψ̄i− 1
2 ,j−

1
2

). (F.9)

The first term above is equal to zero as we state that ψ is constant along the boundary.

As such, when we combine (F.7) and (F.9) we obtain D̂ψi,j
= 0. Therefore, we do in fact

preserve non-divergence with the Li et al. (2006) approach, the issue of divergence at the

boundary arises due to the discretisation and masking applied in NEMOVAR.

This setting of the boundary conditions — where the streamfunction is held constant

along the boundary — is undesirable. As noted by Li et al. (2006), Watterson (2001)

assume a constant streamfunction along the coastline, which implies a non-divergent

flow—an assumption that breaks down in regions with significant Ekman transport.

This discretisation implemented in NEMOVAR does introduce some complications as

mentioned. However, it is important to emphasise that in NEMOVAR, the streamfunction

derivative at the boundary is not currently used independently. Once it is combined with

the velocity potential derivative, the resulting velocity field is subjected to a boundary

condition that enforces zero velocity, rendering the masking of derivatives effectively

redundant. The Li et al. (2006) approach still ensures we do not enforce any explicit

values of streamfunction on the boundary. We have demonstrated the above using a

uniform grid for simplicity of notation; however, the remarks extend to a non-uniform

grid, as used in NEMOVAR.

In summary, while this issue of masking the streamfunction derivatives should be

carefully considered in future developments and applications of this discretisation and

masking approach in NEMOVAR, it does not presently impact the assimilation process

with the new control variables.
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Appendix G

FFT boundary conditions

In chapter 5, we utilise the Fast-Fourier Transform (FFT) to examine the impact of the

checkerboard pattern. The Fourier transform assumes periodic boundary conditions, but

in section 5.4, we apply the FFT to 1D and 2D fields that are non-periodic. To investigate

the implications of this, we analyse two simple waveforms. The first, illustrated in figure

G.1a, is a full sine wave (over 2π), which is periodic. The second, shown in figure G.1b,

is a partial sine wave that is non-periodic. Fourier spectra are displayed on the right of

both waves.

Interestingly, in figure G.1b, despite the non-periodic nature, the assumption of

periodic boundary conditions does not significantly distort the general shape and

magnitudes of the frequencies compared to figure G.1b. However, there is a small amount

of low-frequency power present that should not be there. Although this result may depend

on the input filed, a similar result is also discussed in Baxter et al. (2011). Therefore, in

the Fourier analysis presented in section 5.4, it is important to be mindful of the subtle

distortion introduced in the high-frequency components due to the non-periodic nature

of the input fields.
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(a) Left: Sine wave. Right: Spectrum of the wave calculated using the FFT.

(b) Left: Partial sine wave. Right: Spectrum of the wave calculated using the FFT.

Figure G.1: FFT of periodic and non-periodic signals.
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Appendix H

No velocity observations

This thesis aims to prepare for the assimilation of future ocean current measurements,

by improving the velocity variables that are used in ocean data assimilation. However,

does changing the velocity variables have any effect on the analysis if there are no

velocity observations? To answer this question, we investigate the effect of changing

the velocity variables with only a single height observation in our simple shallow water

model, described in section 4.1.

Recall the variational data assimilation cost function with the control variable

transform,

J (z) = 1
2zTz + 1

2

(
y − h(Uz)

)T
R−1

(
y − h(Uz)

)
(H.1)

with x = Uz where x is the model variable, U is the U-transform and z is the control

variable, as described in section 3.3. The gradient of the cost function is given by

∇J (z) = z + UTHTR−1
(

y − h(Uz)
)
. (H.2)

Here, we investigate whether the gradient of the cost function changes with respect to

the new control variables, given no velocity observations. In the shallow water model we

have x = (η, u, v)T. Suppose we have only a single observation of height, ηo, with R = ση

and h = H = (1, 0, 0).

To begin, we examine the gradient of the cost function when using the velocity control

variables currently used in NEMOVAR, z = (η, uU , vU)T, the ageostrophic velocities.
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Substituting our single observation into (H.2) we have,
∂J
∂η

∂J
∂uU

∂J
∂vU

 =


η

uU

vU

 +


1 − g

f

(
∂
∂y

)T
g
f

(
∂
∂x

)T

0 1 0

0 0 1




1

0

0


1
ση

(
ηo − (1, 0, 0)


η

u

v


)

=


η + 1

ση
(ηo − η)

uU

vU

 .

Now suppose we use the proposed velocity control variables z = (η, ψU , χU)T, ageostrophic

streamfunction and velocity potential. The gradient becomes,


∂J
∂η

∂J
∂ψU

∂J
∂χU

 =


η

ψU

χU

 +


1 − g

f

(
∂
∂y

)T
g
f

(
∂
∂x

)T

0 −
(
∂
∂y

)T (
∂
∂x

)T

0
(
∂
∂x

)T (
∂
∂y

)T




1

0

0


1
ση

(
ηo − (1, 0, 0)


η

u

v


)

=


η + 1

ση
(ηo − η)

ψU

χU

 .

As seen above, the absence of velocity observations results in no update to the velocity

control variables. Since we have a linear system, the gradient can be set to zero to find

the analysis, i.e. ∇J (za) = 0. We have here in both cases the height analysis is equal to

ηa = ηo
1 − ση

.

When using the ageostrophic velocities as control variables, we have

uaU = 0 ⇒ ua = − g

f

(
∂η

∂y

)
+ 0

vaU = 0 ⇒ va = g

f

(
∂η

∂x

)
+ 0

and using ageostrophic streamfunction and velocity potential as control variables, we have

ψaU = 0 ⇒ ua = − g

f

(
∂η

∂y

)
+ 0

χaU = 0 ⇒ va = g

f

(
∂η

∂x

)
+ 0.
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Therefore, without velocity observations, we have shown in a simplified system that

modifying the velocity control variables does not influence the resulting analysis. This

conclusion also applies to more complex CVTs, such as the balance operator used

in NEMOVAR. As described in section 3.4.3, the NEMOVAR balance operator takes

temperature as the lead variable, and then separates salinity, sea surface height (SSH),

and horizontal velocity into balanced and unbalanced components. This separation is

performed in this specific order meaning the velocity variables do not influence the

preceding variables — namely temperature, salinity, and SSH. As a result, we observe

no impact on the analysis when modifying the velocity variables, if there are no direct

velocity observations.
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Appendix I

Single observation experiments

This appendix provides supplementary plots for the single observation experiments

described in section 6.4, which were designed to evaluate the impact of introducing

the proposed control variables — ageostrophic streamfunction and ageostrophic velocity

potential — on the structure of the analysis increments. We perform these experiments

at three different locations in the domain (shown in figure 6.6):

• An active region near the western boundary current at 30◦ N latitude and 78◦ W

longitude;

• An inactive region at 30◦ N latitude and 65◦ W longitude;

• A north-eastern boundary region at 39◦ N latitude and 55◦ W longitude.

With section 6.4 presenting the results for the active region. The figures in this section

are all centred around the observation locations.

In figures I.1 and I.3, we present the results from the inactive location, indicated by

the yellow cross in figure 6.6. The structure of the increments is very similar to those

observed in the active region (figures 6.7 and 6.8), though the magnitudes of the full

increments are smaller, as expected in a region of reduced dynamical activity. An even

greater reduction is seen near the boundary, marked by the red cross in figure 6.6. The

corresponding results are shown in figures I.2 and I.4, where the TSCV speed increments

are an order of magnitude smaller. Despite the reduced magnitudes, the spatial structures

remain consistent with those observed in the active region.
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SLA observation
TSCV observation

(Control)

TSCV observation

(New CVs)

Figure I.1: The velocity increments at the surface for the single observation experiments. The first

column is the SLA observation experiment. The second column is the first experiment using a TSCV

observation with current control variables and the final column is the second TSCV experiment with the

new control variables. The first row is the unbalanced zonal velocity increments, second row is the full

zonal velocity increments, the third row is the unbalanced meridional velocity increments and the final

row is the full meridional velocity increments. These are the increments produced in the inactive region,

indicated by the yellow cross in figure 6.6.
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SLA observation
TSCV observation

(Control)

TSCV observation

(New CVs)

Figure I.2: The velocity increments at the surface for the single observation experiments. The first

column is the SLA observation experiment. The second column is the first experiment using a TSCV

observation with current control variables and the final column is the second TSCV experiment with the

new control variables. The first row is the unbalanced zonal velocity increments, second row is the full

zonal velocity increments, the third row is the unbalanced meridional velocity increments and the final

row is the full meridional velocity increments. These are the increments produced near the boundary,

indicated by the red cross in figure 6.6.
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SLA observation
TSCV observation

(Control)

TSCV observation

(New CVs)

Figure I.3: The speed increments with velocity vectors superimposed at the surface for the single

observation experiments. The first column is the SLA observation experiment. The second column is

the first experiment using a TSCV observation with current control variables and the final column is

the second TSCV experiment with the new control variables. The first row is the unbalanced speed

increments, and the final row is the full speed increments. These are the increments produced in the

inactive region, indicated by the yellow cross in figure 6.6.
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SLA observation
TSCV observation

(Control)

TSCV observation

(New CVs)

Figure I.4: The speed increments at the surface with velocity vectors superimposed for the single

observation experiments. The first column is the SLA observation experiment. The second column is

the first experiment using a TSCV observation with current control variables and the final column is

the second TSCV experiment with the new control variables. The first row is the unbalanced speed

increments, and the final row is the full speed increments. These are the increments produced near the

boundary, indicated by the red cross in figure 6.6.
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