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Abstract 

Aims: The present study aimed to explore microbial production of neurotransmitters related to cognitive function in the faecal microbiota of 
healthy older adults, and assess whether a multi-strain probiotic formula may influence production of these neuroactive metabolites, short-chain 
fatty acids, and the bacterial community. 
Method and results: The current study employed a three-stage continuous culture system with faecal microbiota from three healthy older 
adult donors. Neuroactive compounds were quantified using liquid chromatography mass spectroscopy, SCFAs using gas chromatography, and 
the bacterial community was assessed using fluorescence in situ hybridization with flow cytometry and 16S rRNA sequencing. Addition of 
the probiotic supplement ( Bifidobacterium lactis W51, Bifidobacterium lactis W52, Lactobacillus acidophilus W37, Lactobacillus salivarius W24, 
Lactobacillus casei W56, Bifidobacterium bifidum W23, Lactobacillus brevis W63, Lactococcus lactis W19, Lactococcus lactis W58) significantly 
increased the relative abundance of Lactococcus lactis in the transverse region, alongside a trend for increased Roseburia across the three colon 
regions modelled, valerate in the distal region, and GABA in the proximal region. 
Conclusions: While administration of the probiotic only had a small effect of trending increases in the synthesis of GABA and valerate, this 
highlights important mechanisms by which probiotics could be involved in the gut-brain axis. The model also enabled the observation of limited 
microbial production of other neurotransmitters. Further exploration in human studies is therefore warranted. Probiotics were confirmed to 
lead to microbial changes, both directly ( Lactococcus ) and indirectly ( Roseburia ). This research helps to support mechanistic understanding of 
probiotics and the gut-brain axis. 

Impact Statement 

The present work provides support for microbial production of neurotransmitters under physiologically relevant conditions, and highlights the 
potential for probiotic supplementation to influence the gut-brain axis via alterations in microbially derived GABA. 
Keywords: probiotics; human gut microbiome; in vitro models; applied microbiology; fermentation 
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Introduction 

Cognitive decline is a common characteristic of ageing, even 

in the absence of age-related disease such as Mild Cognitive 
Impairment (MCI) and Alzheimer’s disease (AD). In partic- 
ular, the domains of learning, memory, and executive func- 
tion tend to be affected (Burke and Barnes 2006 , Mattson and 

Arumugam 2018 ), posing daily challenges to the individual as 
well as reducing quality of life and often causing poorer men- 
tal health (Montejo et al. 2014 ). Given the increasing popula- 
tion, there is a growing need to identify lifestyle interventions 
which may mitigate against age-related cognitive decline and 

support healthy neural function. 
One such intervention that has gained support in recent 

years is the use of probiotics, which are defined as live mi- 
croorganisms that, when administered in adequate amounts,
confer a health benefit to the host (Hill et al. 2014 ). Probi- 
otic microorganisms have gained interest as potential modu- 
lators of neural function due to the discovery of the gut-brain 
Received 7 July 2025; revised 16 October 2025; accepted 21 October 2025
© The Author(s) 2025. Published by Oxford University Press on behalf of Applie
under the terms of the Creative Commons Attribution License (https://creativecom
and reproduction in any medium, provided the original work is properly cited.
xis (GBA), which describes multiple pathways via which the 
ut microbiota (GM) may interact with and affect the brain,
ncluding the vagus nerve, the neuroendocrine system, im- 
une pathways, and microbially derived metabolites (Mar- 

olis et al. 2021 , Mayer et al. 2022 ). To date, several ran-
omized control trials (RCTs) have explored the effects of 
robiotic interventions on cognitive function in older adults,
ith consistent evidence for a positive effect of probiotics 
n cognition compared to placebo controls, particularly in 

hose with MCI and AD (Eastwood et al. 2021 , Xiang et al.
022 , Handajani et al. 2023 ). Additionally, in healthy older
dults, a recent study found reduced cognitive reactivity to 

ad mood (lowering the risk of depression) and improvements 
o executive function following chronic supplementation with 

 multi-strain probiotic (Ecologic® Barrier) in addition to 

uicker reaction times during cognitive testing following just 
 single dose of the probiotic supplement (Eastwood et al.
025 ). 
d Microbiology International. This is an Open Access article distributed
mons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
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Figure 1. Schematic illustration of the three-stage continuous gut models 
utilized in the present work. Vessels containing culture medium, faecal 
microbiota, and a magnetic stirring flea are placed on magnetic stirrers. 
Temperature is controlled and maintained by connecting vessels to a 
circulating water bath, which floods the outer cavity of the vessels. 
Anaerobic conditions are maintained using a steady flow (15 mL/min) of 
N2, and pH is maintained using pH controllers connected to solutions of 
HCl and NaOH. A continuous flow of media is pumped into the proximal 
vessel via a peristaltic pump. Each region is then modelled as a separate 
vessel and connected to allow for gravitational feed from the proximal 
through to the transverse, then distal and finally a waste vessel, 
mimicking the typical transit through the human colon. This therefore 
provides a simulation model when the proximal, transverse, and distal 
vessels are well-controlled analogues of the colon regions, and not exact 
equivalents (illustration made with BioRender.com). 
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Despite promising results from RCTs exploring the effect of
robiotics on cognitive function, the potential mechanism(s)
f action underlying these behavioural effects remain unclear.
 number of studies, namely in animals, have reported in-
reased concentrations of neurotransmitters (NTs) in the lu-
en, serum, and brain following chronic probiotic interven-

ion (Pokusaeva et al. 2017 , Leblhuber et al. 2018 , Cao et al.
019 ), indicating that probiotics may increase the synthesis
f these neuroactive metabolites. GABA is known to be pro-
uced by several microbes via the glutamic acid decarboxy-
ase mechanism, which in turn provides a protective mecha-
ism for the bacteria against acidic environments (Das and
oyal 2015 , Otaru et al. 2021 ), but there is increasing evi-
ence that specific strains of bacteria, including those found
nterically, can produce other NTs. While much of this ev-
dence stems from pure microbial culture work (Girvin and
tevenson. 1954 , Tsavkelova et al. 2000 , Landete et al. 2007 ,
zoğul et al. 2012 , Das and Goyal 2015 , Danilovich et al.
021 , Rich et al. 2022 ), the presence of several NTs has been
eported in faecal batch culture (Eastwood et al. 2023 ) and
ontinuous culture models (Liu et al. 2021 ), which mimic the
uman colonic environment without the presence of epithe-
ial cells, suggesting these metabolites to be, in part, micro-
ially derived. Increasing the availability of these metabolites
ay be of particular significance for cognitive function, as
Ts such as serotonin, acetylcholine, norepinephrine, GABA,

nd dopamine are essential for cognitive processes (Handra
t al. 2019 , Murari et al. 2020 , Holland et al. 2021 ). Addi-
ionally, reductions in acetylcholine and altered tryptophan
etabolism through the kynurenine and serotonin pathways
ave been linked with cognitive decline and AD (Chen et al.
022 , Savonije and Weaver 2023 ). 
Gut microorganisms also produce short-chain fatty acids

SCFAs) as a result of polysaccharide fermentation (Fusco
t al. 2023 ). SCFAs such as butyrate, acetate, and propi-
nate regulate the expression of precursors tryptophan 5-
ydroxylase and tyrosine hydroxylase, which in turn influ-
nce the synthesis of serotonin (5-HT) and biosynthesis of cat-
cholamines dopamine, epinephrine, and norepinephrine, re-
pectively (Reigstad et al. 2015 ). Further to their role in neuro-
ransmitter synthesis, SCFAs play an integral role in the pro-
uction of brain-derived neurotropic factor (BDNF), blood-
rain-barrier integrity, gut permeability, and regulating neu-
oinflammation, all of which have a significant effect on cog-
itive function (Dalile et al. 2019 ). 
In vitro models are useful tools for determining how micro-

ial communities behave in the presence of different nutrients
hile under physiologically relevant conditions, without the
eed for human participants. Three-stage continuous culture
odels such as that developed by Macfarlane et al. ( 1998 )

llow for modelling of the human colon from the proximal
hrough to the distal and transverse colon, mimicking nutrient
vailability, temperature, and pH at each region. Such mod-
ls can be run for several weeks, allowing bacteria to reach a
teady state before initiating treatment and reassessing after a
econd steady state is reached. To that end, these models also
llow for repeat dosing of nutrients of interest over consecu-
ive days, mimicking a daily dietary intervention in vivo . 

As such, the current study employed a three-stage contin-
ous culture system with faecal microbiota of healthy older
dults with the aim to explore microbial production of neu-
otransmitters related to cognitive function in the faecal mi-
robiota of healthy older adults, and assess whether a multi-
train probiotic formula may influence production of these
euroactive metabolites, short-chain fatty acids, and the bac-
erial community. Based on previous data (Eastwood et al.
023 ), it was hypothesized that supplementation would in-
rease the production of GABA in the proximal (pH 5.5) re-
ion of the model, and could increase general production of
CFAs. No prediction was made as to the effect on other neu-
otransmitters of interest, given the exploratory nature of the
ork. 

aterials and methods 

thics statement 

he fermentation experiment received favourable ethical
pinion from the University of Reading Research Ethics Com-
ittee (UREC 15_20), and was performed in accordance with

he principles of the Declaration of Helsinki. 

ontinuous 3-stage model 

 modified version of the three-stage continuous culture sys-
em (Fig. 1 ) described by Macfarlane et al. ( 1998 ) was em-
loyed to simulate the proximal (vessel 1, 80 mL, pH = 5.5),

art/lxaf272_f1.eps
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transverse (vessel 2, 100 mL, pH = 6.2), and distal colon 

(vessel 3, 120 mL, pH = 6.8). Each region, modelled using 
glass fermenter vessels, was connected to the next in series 
to allow for a continuous flow of gut model media to mimic 
the nutritional input to each region of the colon. Compo- 
nents (g/L) included in the gut model media were as follows: 
potato starch (5 g), peptone water (5 g), tryptone (5 g), yeast 
extract (4.5 g), casein (4 g), guar gum (1 g), inulin (1 g),
pectin (2 g), arabinogalactan (2 g), xylan (2 g), potassium 

chloride (KCl, 4.5 g), sodium chloride (NaCl, 4.5 g), sodium 

bicarbonate (NaHCO3 , 1.5 g), magnesium sulphate heptahy- 
drate (MgSO4. 7H2 O, 1.25 g), potassium dihydrogen phos- 
phate (KH2 PO4 , 0.5 g), dipotassium phosphate, (K2 HPO4 ,
0.5 g), calcium chloride hexahydrate (CaCl2. 6H2 O, 0.15 g),
haemin (0.5 g), ferrous sulphate heptahydrate (FeSO4.7H2O,
0.005 g), and vitamin K, 10 μL. Additionally, each litre of me- 
dia contained 0.8 g L-cysteine HCI, 1 mL Tween 80, 4 g mucin 

(porcine gastric type III), and 0.4 g bile salts, representing hu- 
man secretions, and 4 mL resazurin solution (0.025 g/100 mL,
pH 7) as an anaerobic indicator. Physiologically relevant con- 
ditions were maintained throughout via continuous supply of 
N2 to ensure an anaerobic environment, a circulating water 
bath to maintain vessels at a temperature of 37◦C, and main- 
tenance of pH per vessel via pH controllers attached to 0.5 N 

NaOH and 0.5 N HCl solutions (Electrolab, Gloucestershire,
UK). Vessels were placed on magnetic stirrers to ensure con- 
tinual homogenization of the contents and therefore more ac- 
curate pH detection. 

To maintain an anaerobic environment faecal samples were 
collected in anaerobic jars (AnaeroJarTM 2.5 L, Basingstoke,
UK, Oxoid Ltd.) with anaerobic sachets (AnaeroGen, Oxoid).
Samples were used for inoculation within 2 h of production.
To prepare the faecal sample, a 20% (wt: v) faecal slurry with 

PBS (anaerobic phosphate buffered saline; 0.1 mol/L; pH 7.4) 
was homogenized in a stomacher (Stomacher 400, Seward,
West Sussex, UK) for 2 min (240 paddle beats/min). Vessels 
were inoculated to give a final concentration of 6% faecal 
slurry. Models were conducted in triplicate with a different 
faecal sample used for each run. Faecal donors were 3 healthy 
adults aged 65–72 (2 female, 1 male, all white British) with no 

antibiotic, pre-, or probiotic consumption within 3 months of 
sample collection. 

Following inoculation, the vessels were left for 24 h to allow 

the faecal bacteria to grow within the new environment. After 
24 h, the flow of gut model media was initiated by connect- 
ing a 3.5 L vessel of media to vessel 1 via a media pump. The 
flow was maintained at a retention rate to mimic the GI tran- 
sit time of a healthy adult (48 h, 6.25 mL/h). After 8 turnovers 
(384 h, 2400 mL), the first equilibrium (SS1) was reached 

[this was established by stabilizing of SCFA over 3 consec- 
utive days ( ± 10%)], and samples taken. After which, the 
probiotic (as detailed below) was added to vessel 1 as a sup- 
plement every morning until a second steady state (SS2) was 
achieved after a further 384 h. As such, the effect of additional 
probiotic bacteria on bacterial enumeration and metabo- 
lite production could be assessed by comparing SS2 with 

SS1. 

Multi-strain probiotic supplement 

The probiotic intervention used in the present study was 
a multi-strain probiotic supplement, commercially known 

as Ecologic® Barrier, containing the following 9 probiotic 
trains: Bifidobacterium lactis W51 , Bifidobacterium lactis 
52 , Lactobacillus acidophilus W37 , Lactobacillus salivar- 

us W24 , Lactobacillus casei W56 , Bifidobacterium bifidum 

23 , Lactobacillus brevis W63 , Lactococcus lactis W19, and
actococcus lactis W58 . To provide the equivalent of consum-

ng 4 g of the supplement/day (1 × 1010 CFU per/day), 1.3 g
f supplement was administered daily to the proximal vessel
f the model. 

reparation of samples 

ne millilitre, 1.5 mL, and 0.75 mL of sample were aliquoted
o Eppendorfs for liquid chromatography—mass spec- 
roscopy (neurotransmitters), gas chromatography (short- 
hain fatty acids), and fluorescence in situ hybridization 

FISH) coupled to flow cytometry (enumeration of bacte- 
ia), respectively. One millilitre samples were immediately 
tored at −20◦C. For GC and sequencing, samples were cen-
rifuged at 11, 600 g for 10 min, before transferring the su-
ernatant and storing the pellet at −20◦C. For FISH, sam-
les were centrifuged at 11, 600 g for 5 min. After remov-
ng the supernatant, the pellet was resuspended in 375 μL
f PBS before adding 1125 μL of 4% paraformaldehyde.
hese samples were then stored at 4◦C for 4–8 h before being
ashed twice with 1 mL of PBS and resuspending the pel-

et in 150 μL of PBS. Finally, 150 μL of ethanol was added,
he samples were vortexed to homogenize, and stored at 
20◦C. 

ISH with flow cytometry (flow-FISH) 

reparation of samples followed the protocol of Grimaldi 
t al. ( 2017 ). Briefly, samples were removed from storage at
20◦C and vortexed to redisperse. Seventy microlitre of sam- 
le was suspended in 500 μL of PBS before vortexing and cen-
rifuging for 3 min at 11, 600 g (consistent for all centrifuging
uring this process). For permeabilization of the bacterial cell 
all, supernatant was discarded, and the pellet resuspended 

n TE-FISH containing lysozyme (1 mg/mL) and incubated in 

he dark for 10 min at room temperature. Samples were then
e-centrifuged and washed using 500 μL PBS. For in situ hy-
ridization, pellets were resuspended in 150 μL of hybridiza- 
ion buffer (0.9 M NaCl, 0.2 M Tris-HCl (pH 8.0), 0.01%
odium dodecyl sulphate, 30% formamide), centrifuged, and 

esuspended again in 1 mL. Fifty microlitre of this solution
as added to each Eppendorf containing 4 μL of the oligonu-

leotide probe solutions, which were vortexed and incubated 

vernight at 36◦C using heating blocks. Following incubation,
25 μL of hybridization buffer was added, and Eppendorfs 
ere vortexed and centrifuged as standard. After discarding 

he supernatant, pellets were resuspended in 175 μL of wash-
ng buffer (0.064 M NaCl, 0.02 M Tris/HCl (pH 8.0), 0.5 M
DTA (pH 8.0), 0.01% sodium dodecyl sulphate), vortexed to 

omogenize, and incubated at 35◦C for 30 min in the heating
lock. The washed pellets were then centrifuged once again,
esuspended in 300 μL of PBS, vortexed, and stored in the
ark at 4◦C ready for flow cytometry. Enumeration of bac-
eria was conducted using the Accuri C6 flow cytometer and
nalysed using the Accuri CFlow Sampler software (BD, Erem- 
odegem, Brussels). 
Ten oligonucleotide probes (Table 1 ) were selected for in-

lusion, targeting a range of functionally relevant bacterial 
opulations. Additionally, a mixed 338EUB probe was used 

o enumerate total bacteria. 
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Table 1. Oligonucleotide probe sequences and corresponding target species. 

Probe Sequence Target species Reference 

Non-Eub ACTCCTAGGGAGGCAGA Control probe for EUB338 Wallner et al. ( 1993 ) 
Eub338I + GCTGCCTCCCGTAGGAGT Most bacteria Daims et al. ( 1999 ) 
Eub338II + GCAGCCACCCGTAGGTGT Planctomycetales Daims et al. ( 1999 ) 
Eub338III + GCTGCCACCCGTAGGTGT Verrucomicrobiales Daims et al. ( 1999 ) 
Bif164 CATCCGGCATTACCACCC Bifidobacterium spp. Langendijk et al. ( 1995 ) 
Lab158 GGTATTAGCAYCTGTTTGGA Lactobacillus and Enterococcus Harmsen et al. ( 2000 ) 
Bac303 CCAATGTGGGGGACCTT Bacteroidaceae , Prevotellaceae Manz et al. ( 1996 ) 
Erec482 GCTTCTTAGTCARGTACCG Most of the Clostridium 

coccoides-Eubacterium rectale group 
Franks et al. ( 1998 ) 

Rrec584 TCAGACTTGCCGYACCGC Roseburia Walker et al. ( 2005 ) 
Ato291 GGTCGGTCTCTCAACCC Atopobium cluster Harmsen et al. ( 2000 ) 
Prop853 ATTGCGTTAACTCCGGCAC Clostridium cluster IX Walker et al. ( 2005 ) 
Fprau655 CGCCTACCTCTGCACTAC Feacalibacterium prausnitzii and relatives Hold et al. ( 2003 ) 
DSV687 TACGGATTTCACTCCT Desulfovibrio genus Devereux et al. ( 1992 ) 
Chis150 TTATGCGGTATTAATCTYCCTTT Most of the Clostridium histolyticum group Franks et al. ( 1998 ) 
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6S rRNA sequencing 

n addition to flow-FISH, bacterial community was assessed
sing 16S rRNA sequencing, allowing for a more detailed un-
erstanding of how the probiotic supplement may affect dif-
erent genera of interest, including those present in the supple-
ent ( Lactobacillus, Bifidobacterium, and Lactococcus ), and

hose previously implicated in age-related change and health
utcomes in older adults, such as Alistipes , Akkermansia ,
lautia , Clostridium , Desulfovibrio , Faecalibacterium , Gem-
iger , Prevotella , Roseburia , and Ruminococcus (Duncan et

l. 2013 , Ragonnaud and Biragyn 2021 , Wilmanski et al.
021 , Zeng et al. 2023 , Borrego-Ruiz and Borrego 2024 ,
amos et al. 2025 ). 
Pellets were resuspended in 300 μL of sterile H2 O before

NA extraction was performed using QIAamp PowerFecal
ro DNA kits (QIAGEN, Germany) according to manufac-
urer’s instructions. The concentration of extracted DNA as
ell as purity (260/280 ratio) was measured using a Nan-
drop (NanoDropTM ND-1000 Spectrometer). As per instruc-
ions, concentration was deemed acceptable if between 20 and
00 ng/ μL. If greater than 100 ng/ μL, additional C6 solution
10 mM Tris buffer) was added in 25 μL quantities until sat-
sfactory. 

16S rRNA gene sequencing and bioinformatics were out-
ourced to Microsynth AG (Schützenstrasse 15, 9436 Balgach,
witzerland). 25 uL of extracted bacterial DNA per sample
as shipped on dry ice in sealed 96-well plates. To sequence

he V3 and V4 regions of the bacterial 16S rDNA gene, two-
tep, Nextera barcoded PCR libraries using the locus-specific
rimer pair 341F (5′ - CCT ACG GGN GGC WGC AG -3′ )
nd 805R (5′ - GAC TAC HVG GGT ATC TAA TCC -3′ ) with
0 PCR cycles for the first step and 20 PCR cycles for the sec-
nd step were created. 
Subsequent sequencing of PCR libraries was performed on

n Illumina MiSeq platform using a v2 500 cycle kit (2 × 300
b, V3-V4). The produced paired-end reads that passed
llumina’s chastity filter were subject to de-multiplexing
nd trimming of Illumina adaptor residuals using Illumina’s
cl2fastq software version v2.20.0.422. The quality of the
eads was checked with the software FastQC version 0.11.8
nd sequencing reads that fell below an average Q-score of
0 or had any uncalled bases (N) were removed from further
nalysis. The locus-specific primers were trimmed from the
equencing reads with the software cutadapt v3.2 and dis-
arded if the primer could not be trimmed. Trimmed forward
nd reverse reads of each paired-end read were merged
o in-silico reform the sequenced molecule considering a
inimum overlap of 15 bases using the software USEARCH

ersion 11.0.667. Merged reads that contained ambiguous
ases or were outliers regarding the expected amplicon size
istribution were also discarded. Samples that resulted in less
han 5000 merged reads were discarded, to not distort the
tatistical analysis. The remaining reads were denoised using
he UNOISE algorithm implemented in USEARCH to form
perational taxonomic units (OTUs) discarding singletons
nd chimaeras in the process. The resulting OTU abundance
able was then filtered for possible barcode bleed-in contami-
ations using the UNCROSS algorithm. OTU sequences were
ompared to the reference sequences of the RDP 16S database
 https://www.drive5.com/usearch/manual/sintax_downloads 
html ) and taxonomies were predicted considering a mini-
um confidence threshold of 0.5 using the SINTAX algorithm

mplemented in USEARCH. 

as chromatography 

reparation of samples for GC was carried out in line with
he method previously described by Richardson et al. ( 1989 ).
amples were defrosted, vortexed, and 1 mL transferred to
00 mm × 16 mm glass vials, in addition to 50 μL internal
tandard (0.1 M 2-ethylbutyric acid), 0.5 mL concentrated
Cl, and 2 mL diethyl ether. Vials were vortexed for 1 min

nd centrifuged for 10 min at 2000 g (Eppendorf 5804 R).
he upper diethyl ether layer was extracted and transferred

o new vials, from which 400 μL was taken and added to a
crewcap HPLC vials with 50 μL of MTBSTFA. The vials were
rotected from light and stored at room temperature for 72 h
rior to analysis to allow for all SCFAs, including lactate, to
erivatize. 
Samples were analysed using a 5690 series Gas Chro-
atograph (Hewlett Packard, UK) with HP-5 ms column

L × I.D. 30 m × 0.25 mm, 0.25 μm film thickness) coat-
ng of crosslinked (5%-phenyl)-methylpolysiloxane (Hewlett
ackard, UK). One microlitre of each sample was injected with
 run time of 17.7 min. Injector and detector temperatures
ere 275◦C and the column temperature programmed from
3 to 190◦C by 5◦C and held at 190◦C for 30 min. Helium
as used as the carrier gas at a flow rate of 1.7 mL/min (head
ressure, 133 KPa). The external standard solution included:
cetic acid (30 mM); propionic acid (20 mM); n-butyric acid

https://www.drive5.com/usearch/manual/sintax_downloads.html
https://www.drive5.com/usearch/manual/sintax_downloads.html
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Table 2. LC-MS/MS conditions used for quantification in faecal supernatant. 

Compound 
Retention 
time (min) 

Retention time 
window (min) 

Precursor ion 
(m/z) 

Product ion 
(m/z) 

Fragment or 
(V) 

Collision 
energy (V) Classification 

GABA 1.90 3 104 87 50 4 Organic acid 
3 104 45 50 20 

Norepinephrine 2.50 3 152 107 116 16 Catecholamine 
152 77 116 30 

Epinephrine 4.60 3 184 166 70 8 Catecholamine 
184 107 70 24 

Dopamine 7.00 3 154 137 75 8 Catecholamine 
154 91 75 28 

Serotonin 9.70 3 177 160 45 4 Amino acid derivative 
177 115 45 30 

Kynurenic acid 9.77 3 190 144 100 16 Organic acid 
190 172 100 4 

Tryptophan 10.20 3 205 188 78 4 Amino acid 
205 146 78 20 
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(20 mM); n-valeric acid (5 mM); iso-butyric acid (5 mM); iso- 
valeric acid (5 mM) (all Sigma-Aldrich). Quality control (QC) 
samples of external standard solution were included between 

donors to maintain accurate calibration. Peak integration was 
performed using Agilent Chemstation software (Agilent Tech- 
nologies, Basingstoke, UK), and quantification of each SCFA 

(mM) was calculated using internal response factors as de- 
scribed previously (Liu et al. 2016 ). 

LC-MS/MS 

Samples were first removed from storage at −20◦C and cen- 
trifuged for 5 min at 2000 g . Hundred microlitre of super- 
natant were added to 9.9 mL of HPLC water to form a 
1:100 dilution, which was then filtered using 0.22 μm ny- 
lon syringe filters. One microlitre was added to a screw- 
cap HPLC vial for analysis. In addition, 1 mL of batch cul- 
ture medium was prepared in the same manner to be anal- 
ysed as a control. Individual stock solutions were prepared 

using analytical standards powders of dopamine hydrochlo- 
ride (99%, Alfa Aesa), serotonin (Sigma–Aldrich), tryptophan 

(98%, Sigma–Aldrich), GABA (99%, Sigma–Aldrich), L(-)- 
epinephrine (99%, Acros Organics), L-noradrenaline (98%,
Alfa Aesar), and kynurenic acid (98%, Sigma–Aldrich), each 

at 1000 ng/mL. A mixed standard solution was then prepared 

from the individual stock solutions and used to create a 7- 
level calibration series with the following dilutions: 10, 5, 1,
0.5, 0.25, 0.125, and 0.0625 ng/mL. Additionally, a 1 ng/mL 

standard was run every 20 samples as a quality control. 
Samples were analysed by liquid chromatography −mass 

spectrometry/mass spectrometry (LC–MS/MS) using an Agi- 
lent 1200 HPLC system with a 6410 triple-quadrupole mass 
spectrometer with electrospray ion source in positive ion 

mode (Agilent Technologies, Basingstoke, UK). A gradient 
separation was carried out using a 150 × 2.1 mm Discovery 
HS F5–3 column, with a 2 × 2.1 mm Discovery C18 Supel- 
guard precolumn (both 3 μm particle size; Supelco, Dorset,
UK). The column was maintained at 40◦C. Mobile phase A 

was 0.1% formic acid in water and mobile phase B was 0.1% 

formic acid in acetonitrile. The column flow rate was main- 
tained at 0.4 mL/min. The timetable was as follows: 0–2 min,
100% A; 5 min, 75% A; 11 min, 65% A; 15–20 min 5% A; 
20.1–30 min, 100% A. The injection volume was 25 μL. The 
eluent from the column was run to waste from 0 to 1 min, and 

data were collected from 1 to 18 min. Data were acquired in 
ynamic MRM mode. The transitions studied and voltages 
sed are shown in Table 2 . Two transitions were acquired for
ach compound. 

ata analysis 

ll statistical analyses were performed using R statistical soft- 
are (R Core Team 2022 ). The effect of time (SS1 vs SS2) and

essel (proximal, transverse, and distal) on specific bacterial 
roups, relative abundance of a priori specified genera, SCFAs,
nd neurotransmitters was assessed using repeated-measures 
wo-way ANOVAs with post-hoc pairwise comparisons (Bon- 
erroni corrected) using the R Stats package (R Core Team
022 ). Statistical significance was set to P < 0.05 and data
resented as mean ± standard error unless otherwise stated. 

esults 

onors 

he experiment was performed in triplicate using faecal sam- 
les from 3 healthy donors between 65 and 72 (2 female and
 male, all white British). No antibiotics, pre-, or probiotics
ere consumed within 3 months of sample collection. 

ISH 

able 3 outlines the log 10 bacterial numbers per mL within 

ach functional group. No significant changes in bacterial 
numeration from SS1 to SS2 were observed, although the 
ffect of time on Roseburia subcluster (RREC) was trend- 
ng [F(1,12) = 3.83, P = 0.074], where bacterial numbers
ere higher at SS2 following probiotic feeding than SS1 

 P = 0.074]. 

6S rRNA sequencing 

he effect of time on Lactococcus was significant 
F(1,12) = 9.32, P = 0.010], where relative abundance 
ncreased significantly from SS1 to SS2 in the transverse 
essel ( P = 0.008). This appears to be driven by an increase in
ne particular subspecies of Lactococcus —Lactococcus lactis 
sp hordinae . As was suggested in the flow FISH data, relative
bundance of Roseburia increased between SS1 and SS2 in 

ll vessels, but these shifts were non-significant. Similarly,
elative abundance of Bifidobacterium increased between 

S1 and SS2, but again did not reach statistical significance.
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actobacillus was not detected in 16S rRNA gene data and
herefore a significant change could not be assessed. 

as chromatography 

igure 2 illustrates change in concentration for each
CFA/BCFA of interest between SS1 and SS2. Generally, SCFA
evels increased between SS1 and SS2 following daily probiotic
eeding, particularly in the distal region. While the main effect
f Time was trending for valerate [F(1,12) = 3.67, P = 0.08],
o significant main effect of time or vessel was seen for any
f the SCFAs measured. Concentrations of lactate were below
hat of minimum detection and are therefore not presented. 

C-MS/MS 

igure 3 illustrates change in concentration for each neu-
oactive compound of interest between SS1 and SS2. GABA,
opamine, norepinephrine, tryptophan, and kynurenic acid
ere detected at sufficient quantities, but concentrations of

pinephrine and serotonin were below that of minimum de-
ection and are therefore not presented. Despite increases in
ABA, dopamine, and tryptophan following probiotic feed-

ng, no statistically significant changes in concentration were
etected between SS1 and SS2 for any of the neuroactive
etabolites measured. Substantially higher values for trypto-
han in the proximal vessel driven by one donor make it dif-
cult to visualize changes in concentration between SS1 and
S2 in the other vessels. As such, a second graph for trypto-
han is presented below (Fig. 3 f), where these extreme values
ave been replaced with the mean concentration of the other
wo donors, for the purpose of improving visual clarity. 

iscussion 

his work aimed to assess how the addition of a multi-strain
robiotic supplement may affect both bacterial composition
nd the production of neuroactive metabolites within faecal
acterial communities from healthy older adults, using com-
rehensive three-stage continuous culture systems modelling
he large intestine. 

FISH indicated little change in bacterial composition be-
ween steady states, although an increase in numbers of Rose-
uria spp. following probiotic feeding was trending towards
ignificance, and this was mirrored in the sequencing data, par-
icularly in the distal region. Roseburia is a genus of Gram-
ositive bacteria belonging to the phylum Firmicutes under
he family Lachnospiraceae (Rainey 2009 ), which have gained
ttention for being prolific butyrate producers (Duncan et al.
002 , Nie et al. 2021 ). Maintenance of Roseburia in older
dults has been associated with healthier ageing (Claesson et
l. 2012 ). In particular, the incidence of frailty and cognitive
ecline was found to be reduced in older adults adhering to
 Mediterranean dietary intervention that promoted SCFA-
roducing bacteria such as Roseburia and Faecalibacterium
rausnitzii (Ghosh et al. 2020 ), likely due to the beneficial
ffects of butyrate on energy metabolism, immune function,
nd histone deacetylase inhibition, which in turn positively
mpact cognitive function (Stilling et al. 2016 , Alpino et al.
024 ). Trends in the present work therefore suggest that the
robiotic formulation utilized here may have the potential to
upport levels of Roseburia in older age, which could have a
eneficial effect on cognitive function. While Roseburia is not
ithin the probiotic consortia, these changes are likely to be
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Figure 2. SCFA concentrations of acetate (a), propionate (b), butyrate (c), valerate (d), isobutyrate (e), and isovalerate (f) (mM) per vessel at steady state 
1 (SS1) and steady state 2 (SS2). Two-way ANOVA indicated a trending main effect of time on valerate [F(1,12) = 3.67, P = 0.08]. Values are presented as 
mean ± standard error. SS1 is following fermentation of standard gut model media, while SS2 is following daily addition of the probiotic consortia until 
the next equilibrium was reached. Vessels 1, 2, and 3 are analogous to proximal, transverse, and distal colon regions, respectively. 
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an indirect consequence of cross-feeding due to the probiotics 
within the model system. 

16S sequencing data illustrated a significant increase in 

the relative abundance of Lactococcus lactis following probi- 
otic feeding. Lactococcus lactis is a Gram-positive lactic acid- 
producing bacterium thought to be of particular importance 
for immune function, with in vitro and animal models report- 
ing enhanced immune response against pathogenic bacteria 
(Santibañez et al. 2021 ), inhibition of cancer cells and proin- 
flammatory cytokines (Han et al. 2015 ), and stimulation of 
ileal mucosal immunity (Yu et al. 2021 ). In the latter study,
authors reported alterations in serum tryptophan and ileal 
GABAA α5 receptor gene expression, suggesting L . lactis may 
nfluence immune function by regulating amino acid profiles 
nd the GABAergic system. As such, L . lactis species may in-
uence the GBA via immune pathways. 
Several SCFAs were detected at SS1 and SS2, including ac-

tate, propionate, butyrate, valerate, and branch-chain fatty 
cids isobutyrate and isovalerate. Lactate was not detected at 
ither sampling timepoint across any of the modelled regions,
ikely due to the fact that lactic acid is utilized for the pro-
uction of SCFAs via various pathways, including the acry- 
ate pathway (Flint et al. 2015 ), the succinate pathway (Louis
t al. 2017 ), and the butyryl-CoA: acetate-CoA transferase 
oute (Duncan et al. 2004 ). SCFAs were produced in the ex-
ected relative quantities, such that acetate was greater than 

art/lxaf272_f2.eps
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Figure 3. Concentrations of GABA (a), dopamine (b), kynurenic acid (c), tryptophan (d), norepinephrine (e), and tryptophan with extreme values removed 
(f) (mM) per vessel at steady state 1 (SS1) and steady state 2 (SS2). Two-way ANOVAs identified no statistically significant main effects of time or 
vessel. Values are presented as mean ± standard error. SS1 is following fermentation of standard gut model media, while SS2 is following daily addition 
of the probiotic consortia until the next equilibrium was reached. Vessels 1, 2, and 3 are analogous to proximal, transverse, and distal colon regions, 
respectively. 

p  

t  

f  

i  

p  

o  

t  

i  

i  

d  

v  

c  

V  

o  

e  

g  

d  

a  

p  

r  

e  

t  

f  

v  

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

bio/article/136/11/lxaf272/8313615 by guest on 19 N
ovem

ber 2025
ropionate and butyrate, which were greater than valerate. Al-
hough concentrations generally increased following probiotic
eeding, particularly in the distal region, inter-donor variabil-
ty may have occluded statistically significant change. This is
erhaps unsurprising given that no additional carbohydrate
r protein sources were available for SCFA production, just
he additional microorganisms. Having said that, the increase
n valerate in the distal region from SS1 to SS2 was trend-
ng. Valerate is perhaps less understood than the more abun-
ant SCFAs, but microbial synthesis has been reported in vitro
ia number of pathways by select bacteria such as Escherichia
oli , Prevotella copri , and Megasphaera (Oliphant and Allen-
ercoe 2019 , Akhtar et al. 2022 ). Reported benefits of valerate
n the host include improved epithelial barrier integrity (Gao
t al. 2022 ) and anxiolytic effects, likely through GABAer-
ic type activity (Vishwakarma et al. 2016 ), meaning valerian
erivatives are often consumed to reduce anxiety, insomnia,
nd pain. Additionally, valeric acid appears to have a neuro-
rotective effect against pro-inflammatory cytokines and neu-
odegeneration in mouse models of AD and Parkinson’s dis-
ase (PD) (Jayaraj et al. 2020 , Dulla and Bindhu 2022 ), and is
herefore actively being investigated as a potential therapeutic
or neurodegenerative disorders (Jayaraj et al. 2020 ). Altered
alerate production is often not reported following probiotic

art/lxaf272_f3.eps
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intervention, likely as it is difficult to observe in vivo due to be- 
ing produced in relatively small quantities, prior to absorption 

within the body. As such, use of these in vitro models enables 
production to be better mapped. The trends in the data sug- 
gest the current probiotic formula may enhance microbially 
derived valerate, which, given that the aforementioned issues 
of epithelial permeability, increased inflammation, pain, and 

low mood are often encountered in older age, could be bene- 
ficial. 

Regarding neurotransmitters, GABA, dopamine, nore- 
pinephrine, tryptophan, and kynurenic acid were present at 
both steady states, while serotonin and epinephrine were not 
detected. While both serotonin and epinephrine have been re- 
ported in gut models previously (Liu et al. 2021 ), therefore 
suggesting some level of microbial production, levels below 

minimum detection in the present work indicate that micro- 
bial synthesis is likely a minor pathway, and more abundant 
neurotransmitter production may require host-led pathways,
combining host cells and end products of microbial fermen- 
tation (Reigstad et al. 2015 , Dicks 2022 ). Despite concentra- 
tions of GABA increasing after probiotic feeding as predicted,
particularly under proximal conditions, inter-donor variabil- 
ity once again made it difficult to establish statistical signif- 
icance. However, it is of interest to note that, as reported in 

previous work (Eastwood et al. 2023 ), quantities of GABA 

were far greater than that of the other metabolites, particu- 
larly at the lower pH found in the proximal vessel. This col- 
lective evidence suggests that, of the neuroactive metabolites 
analysed, gut microbes provide a major production pathway 
for GABA and therefore highlights GABA as a putative target 
for gut-brain axis interventions. 

Although GM composition varies greatly within older adult 
populations making it difficult to compare the present data 
with a population norm (Claesson et al. 2011 ), the micro- 
biota profiles of the present donors may represent healthy age- 
ing microbiomes and therefore limit the scope for a poten- 
tial benefit of the probiotic. Use of standard gut model media 
could also have contributed to a healthy microbial profile by 
SS1, which may not accurately reflect the colonic environment 
of ageing volunteers. As such, there may be a need to alter 
model media in future to more accurately mimic the diet of a 
healthy older adult population (Smith et al. 2022 , Norton et 
al. 2024 ). Additionally, as mentioned, the three donors elicited 

high inter-donor variability (see Supplementary Materials ) in 

the production of both SCFAs and neuroactive metabolites,
making it challenging to observe whether changes in metabo- 
lite production as a result of probiotic feeding were statisti- 
cally significant. This highlights that exploring how the start- 
ing consortia of bacteria interact with the effect of probiotics 
is a necessary avenue of future research. With that said, the 
continuous culture models utilized provide a highly controlled 

environment with which to meet the present study aim of ex- 
ploring the effect of probiotics on faecal metabolite produc- 
tion. It should also be noted that the metabolites targeted here 
are by no means an exhaustive list of metabolites with the 
potential to influence gut-brain activity. Future work utilizing 
continuous culture systems would likely benefit from looking 
at a wider range of metabolites, including other derivatives of 
the tryptophan pathway and bile acids (Connell et al. 2022 ), to 

continue expanding our understanding of GBA pathways and 

the role the probiotic bacteria may play. Finally, these mod- 
elling systems do not incorporate human cells, which, as is 
implied by the low levels of production in the current data,
re likely necessary for sufficient production of neurotrans- 
itters in the gut microbiota. Exposing the supernatant from 

hese models to colon cells to see the impact on subsequent
etabolite production, such as in enterochromaffin cells and 

nteroendocrine cells, would provide further insight into these 
otential pathways. 
In conclusion, the present study did not find compelling 

vidence for a beneficial effect of probiotics on microbially
erived metabolites in the faecal microbiota of healthy older 
dults. Trends in the current data suggest administration of 
his multi-strain probiotic supplement may support the preva- 
ence of Lactococcus and Roseburia , and synthesis of valerate,
ut the effect on other SCFAs and neuroactive metabolites re-
ains unclear. However, the data does provide further support 

or the microbial production of neurotransmitters, and high- 
ights that microbial production of GABA under low pH may
e a particularly relevant target for the gut-brain axis. 
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