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within a plantation. The finer mesh allowed micro-
bial access but restricted roots and most detritivores. 
We measured litter mass loss, carbon and nitrogen 
dynamics, and fungal communities via ITS barcoding 
over six months. Root ingrowth and soil chemistry 
were also analyzed.
Results  Litter mass decreased by 70% in both mesh 
types, with soil accumulating litter-derived 15N. Fine 
roots grew into the mesh after three months and took 
up 15N, demonstrating nitrogen recycling. Fungal suc-
cession displayed clear temporal patterns: early colo-
nizers thrived with higher C/N ratios (Hypocreales, 
Pleosporales, Chaetothyriales), while late colonizers 
(e.g., Sordariales, Pleosporales, Chaetosphaeriales) 

Abstract 
Background and Aims  Industrial oil palm planta-
tion management degrades tropical soils and disrupts 
ecosystem functions. Applying oil palm leaf litter can 
help restore soil fertility, but the underlying fungal-
driven decomposition and nitrogen recycling remain 
understudied. This study examines fungal succes-
sion in degrading oil palm leaf litter, the fate of litter-
derived nitrogen in soil and roots, and the potential 
for the restoration of fungal biodiversity.
Methods  We produced 15N-labelled oil palms and 
exposed dry leaf litter in 2-mm and 37-µm mesh bags 
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correlated with C degradation. Arbuscular mycor-
rhizal fungi increased with declining C/N ratios and 
coincided with root growth.
Conclusions  Oil palm litter enhances nitrogen 
availability, fosters AMF diversity, and improves 
degraded soils. The numerous uncharacterized fungi 
in litter decomposition highlight the need for further 
research into their functional roles for sustainable soil 
restoration.

Keywords  Arbuscular mycorrhiza · Elaeis 
guineensis · Diversity · Functional traits · Fungal 
metabarcoding · Litter degradation · Mycorrhiza · 
Nitrogen uptake · Soil restoration

Introduction

In south-east Asia, palm oil production is a major 
source of income but has detrimental effects on the 
abiotic and biotic environment (Dislich et  al. 2017; 
Iddris et  al. 2023). In Indonesia, the world-largest 
producer of palm oil (Monzon et  al. 2021), the area 
of oil palm plantations increased massively in the 
past decades, now replacing approximately 32% of 
the country´s native forests (Gaveau et  al. 2022). 
Most oil palms (Elaeis guineensis) are grown in 
industrial plantations covering large areas (> 50 ha 
per plantation) with even-aged mono-specific palm 
trees planted at regular distances. These plantations 
are managed for high productivity through the exten-
sive use of fertilizers and herbicides for weed control 
(Dislich et al. 2017; Wenzel et al. 2024). These treat-
ments have a significant negative impact on the bio-
diversity of most groups of above- and belowground 
taxa, except for soil microbes (Montoya-Sánchez 
et  al. 2023; Zemp et  al. 2023). Microbial diversity 
is not or very little affected in plantation soil, but its 
composition is drastically altered (Berkelmann et  al. 
2018; Ballauff et al. 2021; Carneiro De Melo Moura 
et al. 2025).

Soil fungi are critical drivers of biogeochemical 
processes. Saprotrophic fungi mine litter for carbon, 
thereby, making nitrogen (N) and other minerals 
available for plants (Setälä and McLean 2004; Talbot 
et al. 2013). This process is promoted by a succession 
of fungi, usually starting with the degradation of sim-
ple organic compounds, followed by the breakdown 
of more complex polymers (Voříšková and Baldrian 

2013; Purahong et al. 2016). Mycorrhizal fungi form 
symbiotic associations with roots, utilizing carbon 
from photosynthesis to supply minerals to the trees 
(Van Der Heijden et  al. 2008). Mycorrhizal hyphae 
play a crucial role in carbon allocation from above- 
to belowground compartments (Brundrett and Teder-
soo 2018). The interplay of fungal soil communities 
is vital for ecosystem functions and services such as 
nutrient supply, carbon sequestration, and pathogen 
protection (Baldrian 2017).

Efforts are being made to implement sustain-
able management practices in oil palm plantations to 
increase biodiversity and ecological functions with-
out or minimal economic tradeoff (Darras et al. 2019; 
Grass et  al. 2020; Montoya-Sánchez et  al. 2023; 
Paterno et al. 2024). For example, a moderate reduc-
tion in fertilizer use, which does not affect yield (Dar-
ras et  al. 2019) can increase arbuscular mycorrhizal 
fungal (AMF) root colonization (Ryadin et al. 2022). 
Mulching with palm fronds can enhance beneficial 
microbial activities, stimulate soil N cycling, thereby 
increasing soil fertility and health (Comte et al. 2012; 
Rüegg et al. 2019; Formaglio et al. 2021). Given that 
oil palms require large amounts of N to sustain their 
high productivity and their roots are highly efficient 
at N uptake (Edy et al. 2020), these practices offer a 
promising route to maintaining yields while reduc-
ing reliance on synthetic fertilizers. In addition to 
microbes, soil fauna is also involved in nutrient turn-
over by feeding on roots, fungi, and bacteria (Filser 
et al. 2016; Tao et al. 2016).

Our knowledge on the composition of fungal 
decomposer communities in typically managed oil 
palm plantations and their contributions to root nutri-
ent uptake is limited. To address this gap and distin-
guish between the impact of microbes and other soil 
processes, we exposed leaf litter in two different mesh 
bag types: one with pore widths of 37-µm, allowing 
fungal ingrowth, and another with pore widths of 
2-mm, additionally permitting access for fine roots 
and soil fauna to the litter. We expected that mesh 
bags with larger pores would result in greater fungal 
diversity because mobile organisms can disperse fun-
gal spores in their environment and increase substrate 
availability from root exudates and necromass ingress 
(Philippot et al. 2013; Yang et al. 2017; Rivera et al. 
2025). We hypothesized (1) that the differences in 
litter accessibility result in different fungal commu-
nities and different decomposition rates. We further 
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hypothesized (2) that the ecological functions of 
the fungal communities are associated with distinct 
stages of litter decay and (3) promote litter-derived 
N supply to fine roots. The overarching aim of this 
study was to investigate fungal communities during 
the degradation of oil palm frond leaflets and track 
the path of litter-derived nitrogen (N) into roots using 
15N-labelled frond leaf litter.

Materials and methods

Sample preparation

Young oil palm (Elaeis guineensis) saplings were 
purchased from a local tree nursery (Jambi, Indone-
sia). They were potted in growth containers, grown 
for 11 months, and irrigated with tap water as needed. 
Every 24 days, the saplings were irrigated with 100 
ml of 2 mM 15NH4Cl (99% 15N, CK Isotopes, Leices-
tershire, United Kingdom). Control saplings were irri-
gated with 14NH4Cl. After 11 months, both labelled 
and non-labelled saplings were harvested. The newly 
formed leaves were collected, dried at 40 °C, and used 
as leaf litter in the experiment.

Nylon fabric (CRP Import—Export GmbH, Ham-
burg, Germany) with pore sizes of 2 mm (for root and 
hyphal ingrowth) and of 37 µm (for hyphal ingrowth) 
were used to prepare mesh bags. The fabric was cut 
into 3 cm × 10 cm pieces, sewn into bags, and filled 
with 3.0 g of either 15N-labelled or non-labelled frag-
mented oil palm leaflets (without fronds) and sealed 
by stitching.

Site, exposure and harvest of the mesh bags

We used the experimental area in a state-owned, 
large-scale (2025  ha) industrial oil palm plantation 
(PTPN VI, central coordinates: longitude 103.27056, 
latitude −1.786861), which was part of the EFForTS 
CRC 990 (Ecological and Socioeconomic Functions 
of Tropical Lowland Rainforest Transformation Sys-
tems) project, located in Jambi province on Sumatra 
(Indonesia). Details on oil palm management and 
environmental conditions have been reported previ-
ously (Drescher et al. 2016; Darras et al. 2019). The 
climate is humid tropical with an average annual pre-
cipitation of 2075 ± 94  mm and two rainy seasons 
peaking around March and December. The average 

annual temperature is 26.7 ± 0.2  °C. The soil is an 
Acrisol with a sandy loam structure and a pH of 4.3. 
The soil contained the following nutrient elements 
(mg g−1 d.wt.): N 1.4, C: 23.7, K: 0.101, Ca: 0.201, 
Mg: 0.021, Mn: 7.156, Fe: 37.259, P: 0.130 (Iddris 
et al. 2023).

The oil palms were planted at a density of 142 
plants ha−1 with a spacing of 8 m and were approxi-
mately 17- to 19-year-old during the experiment. 
The rows between the palms were alternatingly free 
alleys (inter-rows) or used for depositing palm fronds 
obtained during pruning and oil palm bunch harvest-
ing (Comte et  al. 2012). The plantation was man-
aged conventionally, including fertilization (N-P-K: 
260–50–220  kg  ha−1 a−1, split into two doses per 
year) and herbicide treatments (1.5 l glyphosate ha−1, 
split into four doses per year). Fertilization and her-
bicide treatments were applied to the soil underneath 
the palms in a circle of 2  m around each tree. The 
inter-rows were not fertilized but were treated with 
0.75 l glyphosate ha−1 (split into two applications per 
year) (Iddris et al. 2023).

We installed our experiment in the inter-rows 
because they were not affected by a previous influ-
ence of degrading palm fronds and were in areas least 
exposed to fertilizer. Small holes, approximately 7 cm 
deep, were dug into the mineral soil. A litter layer was 
not present and marginal organic debris was removed. 
Each mesh bag, containing either 15N-labelled or 
non-labelled litter, was inserted upright (5  cm long) 
into the hole and covered with a 2-cm-thick soil layer. 
Pairs of mesh bags with 2 mm and 37 µm pore size 
were placed next each other. The distance to the next 
pair of mesh bags was 40 to 60 m.

Soil exposure of the mesh bags started on Febru-
ary 13, 2019. Collection of the mesh bags (n = 5 for 
15N-labelled samples per mesh bag type, n = 3 for 
non-labelled samples per mesh bag type) took place 
after 1, 3 and 6 months. At the harvest time points, 
we measured mean soil humidity of 28.6 ± 11.5%, 
17.3 ± 3.1%, and 45.9 ± 9.0% and mean soil tempera-
tures of 28.0 ± 1.3 °C, 27.9 ± 1.3 °C, and 29.4 ± 1.0 °C 
for February, May and August, respectively. At har-
vest, the mesh bags were removed from the soil, 
placed individually in plastic bags and transported 
on cool packs in cooling boxes to Jambi University, 
where they were stored at −15  °C. For transfer to 
Göttingen University (Göttingen, Germany), the fro-
zen samples were transported by airfreight with cool 



	 Plant Soil

Vol:. (1234567890)

packs in cool boxes. On arrival, the samples were still 
frozen and stored at −20 °C.

Sample preparation

Each frozen mesh bag was weighed, opened and its 
content collected in a Petri dish, which was placed on 
ice. The empty bag weight was subtracted from the total 
mesh bag weight to determine the weight of the mesh 
bag content. The content of the bag was sorted accord-
ing to litter, roots and soil under a dissecting micro-
scope (Leica M205 FA; Leica Microsystems GmbH, 
Wetzlar, Germany). We controlled few root samples by 
cross-sectioning; they had a diameter of approximately 
100  µm. The weight of each fraction was recorded. 
Aliquots of litter samples were removed and stored 
at −20  °C. All remaining samples were dried for one 
week at 40 °C (dry mass). Total dry litter biomass was 
calculated using the dry to fresh mass ratio.

Carbon, nitrogen, 13C and 15N analyses

Dry soil and litter samples were milled in a ball mill 
(Type MM400, Retsch, Haan, Germany) to a fine pow-
der. We weighed 10 mg of soil or 2 mg of litter per sam-
ple into tin capsules (VA Analysentechnik, Meerbusch, 
Germany) on a super-micro balance (S4; Sartorius, Göt-
tingen, Germany). Roots were present in low amounts 
(< 10  mg in 11 out of 17 root-containing samples) as 
small fragments. Milling results in electrostatic attach-
ment of small amounts of powder to the container walls 
and thereby causing loss of low amounts of samples, 
which was critical for the roots. Therefore, we weighed 
1 mg of root fragments without milling into the tin cap-
sules (Khokon et al. 2023). The contents of N and C and 
the fractions of 15N and 13C in the samples were analyzed 
using separate isotope mass spectrometers for the meas-
urements of labelled and non-labelled samples (labelled: 
Delta C, Finnigan MAT, Bremen, Germany; Interface: 
Conflo III; Thermo Electron Corp., Bremen, Germany; 
element analyser: NA1108; Fisons-Instruments, Rodano, 
Milano, Italy and non-labelled samples: Delta V Plus, 
Finnigan MAT; Interface: Conflo III; Finnigan MAT; 
element analyzer: NA1110; Fisons-Instruments). Acet-
anilide was used as the calibration standard.

All 15N data presented in the figures and the 
tables pertain to 15N originating from the labelled 
oil palm leaf litter after correction for the natural 
abundance of 15N. The natural abundance of 15N in 

litter (0.3686 ± 0.0005), roots (0.3670 ± 0.0005), and 
soil (0.3683 ± 0.0005) was determined and these values 
were used to calculate the enrichment of 15N as follows:

15N atom-% excess (APE) = 15N atom-% in the labelled 
sample – 15N atom-% in the non-labelled sample.

The 15N concentration per unit of dry sample was 
calculated as:

15N (µg g−1 d.wt.) = APE * 1000/100 * N.

Here, N represents the N concentration of the sam-
ple (mg N g−1 d.wt.). The total dry mass of the sample 
was used to determine the amount of C, N and 15N per 
mesh bag:

C amount (mg mesh bag−1) = C (mg g−1 d.wt.) * total 
sample dry mass (g).

N amount (mg mesh bag−1) = N (mg g−1 d.wt.) * total 
sample dry mass (g).

15N amount (µg mesh bag−1) = 15N (µg g−1 d.wt.) * 
total sample dry mass (g).

DNA extraction and fungal community analysis

Frozen leaf litter was milled in a ball mill (Type MM400, 
Retsch, Haan, Germany) to a fine powder. DNA extrac-
tion and processing were conducted as previously 
described (Brandt et al. 2024). DNA was extracted from 
milled litter samples using the DNeasy PowerSoil Kit 
(Qiagen, Venlo, Netherlands) and subsequently cleaned 
with the DNeasy PowerClean Cleanup Kit (Qiagen, 
Venlo, Netherlands) following the manufacturer´s instruc-
tions. The ITS2 region was amplified using the fungal 
specific markers ITS3 KYO2 (Toju et al. 2012) and ITS4 
(White et  al. 1990) and cleaned with MagSi-NGSPreb 
Plus Magnetic Beads (MagnaMedics GmbH, Aachen, 
Germany). Amplicon sequencing was performed on the 
MiSeq platform using the MiSeq Reagent Kit v3 (Illu-
mina Inc., San Diego, USA) at the Göttingen Genomics 
Laboratory. Primer sequences were removed using cuta-
dapt v.2.1 (Martin 2014) and quality filtering was carried 
out using fastp v.0.21.0 (Chen et al. 2018) with a size filter 
of minimum 120 base pairs and a mean quality ≥ 20 on a 
sliding window of 10 base pairs. An amplicon sequence 
variant (ASV) library was generated using vsearch v.2.7.0 
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(Rognes et  al. 2016) for dereplication, denoising (using 
the unoise algorithm) and chimera detection both de-novo 
and against the fungal reference database UNITE v.8.97 
(Kõljalg et  al. 2013). Taxonomic annotation was per-
formed using the blast algorithm (Camacho et al. 2009) 
as implemented in the classify-consensus-blast function 
of qiime2 v.2020.8.0 (Bolyen 2019). Functional anno-
tation of fungal ASVs was carried out using FunGuild 
v1.1 (Nguyen et al. 2016). All quality filtered reads were 
mapped against the ASV library with a similarity thresh-
old of 0.97 (corresponding to “operational taxonomic 
units”, OTU) using vsearch to generate the count table. 
OTUs not classified as fungi were excluded from the 
count table and the table was rarefied to the minimum 
number of counts per sample (37,267).

Statistical analyses

Statistical analyses were performed using the program 
Statgraphics Centurion v 18.1.12 (Statgraphics Technolo-
gies, The Plains, Virgina, USA). Data are presented as 
means of n = 5 ± SE, unless otherwise specified. Normal 
distribution (Skewness and Kurtois ranging from −2 to 
2) and variance homogeneity (modified Levene test) were 
tested and data were log-transformed when necessary 
to meet the assumptions of the model. General Linear 
Models (GLM) with “mesh type” and “exposure time” 
as fixed factors were developed. In cases where the mod-
els indicated significant differences between means at 
p < 0.05, a post hoc test (Tukey HSD) was conducted. If 
transformation did not result in normally distributed data 
structures, a rank test (Kruskal Wallis) was applied, fol-
lowed by pairwise comparisons of rank groups using the 
Bonferroni procedure. Associations between fungal abun-
dances and leaf traits were determined using Spearman 
rank correlations. Diversity indices of fungi (Richness, 
Shannon Index, Chao1), redundancy analysis (RDA) 
based on Bray Curtis distances, and PERMANOVA were 
calculated using the software PAST version 5 (Hammer 
and Harper 2001). Heatmaps were generated with Clust-
vis (Metsalu and Vilo 2015).

Results

Biomass, C, N and 15N dynamics in litter bags

After one month of exposure in soil, 2-mm mesh 
bags lost about half of their initial mass, while 

37-µm mesh bags lost about 30% (Fig. 1a). By six 
months, both mesh bag types had similar losses 
accounting for 82% and 79% of their initial mass, 
respectively (Fig. 1a). An interesting difference was 
the massive soil incorporation in the 2-mm mesh 
bags (Fig.  1a). The contrasting dynamic of litter 
loss and soil incorporation resulted in a final total 
mass similar to the initial weight in the 2-mm mesh 
bags (Fig. 1a).

The initial N concentration in the litter was 
22.8 ± 0.3  mg N g−1 dry mass corresponding to 
approximately 68  mg N in the mesh bags. After 
one month, the 2-mm mesh bags lost 55% and the 
37-µm mesh bags 27% of their N content (Fig. 1b). 
The decline rate in the 37-µm mesh bags was not 
significantly different from that in the 2-mm mesh 
bags (see slopes in Fig.  2). However, the intercept 
indicated greater initial loss from the 2-mm than 
from the 37-µm mesh bags (17% versus −2.7%, 
p < 0.001). The overall N loss in the 2-mm mesh 
bags was partially compensated by N in newly cap-
tured soil (2.5 ± 0.7 mg N g−1) within the mesh bags 
(Fig. 1b).

The initial 15N enrichment in the litter was 
1.58 ± 0.23 APE, corresponding to a total amount of 
828 µg 15N per mesh bag. The loss of 15N from the 
litter bags was similar to that of N (Fig.  1c, slopes 
in Fig.  2). Additionally, 15N was present in newly 
accumulated soil in the 2-mm mesh bags, showing 
that litter degradation contributed to soil N enrich-
ment (Fig. 1c). The accumulation of soil in the 2-mm 
mesh bags increased the amount of 15N from 1 to 
37 µg per mesh bag within six months (F2,14 = 24.0, 
ptime < 0.001).

C and N concentrations in litter bags

The initial C concentration in the litter was 
437 ± 7  mg  g−1 dry mass and remained stable in 
the 37-µm mesh bags over the 6-month exposure 
(Fig. 1d). In the 2-mm mesh bags, litter C concentra-
tions were lower after 3- and 6-month exposure than 
in the 37-µm mesh bags (Fig.  1d). In contrast to C, 
the N concentrations increased in litter in the 37-µm 
mesh bags and remained stable in the 2-mm mesh 
bags (Fig.  1e). As a result, the C/N ratios declined 
during the 6-month exposure from 19 at the start to 
about 12 in the 37-µm mesh bags (Fig. 1f).
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Fig. 1   Total amounts of dry mass (a), nitrogen (b), and 15N (c) 
in mesh bags and concentrations of carbon (d) and nitrogen (e) 
and C/N-ratio (f) of leaf litter. R1, R3, and R6 refer to 2-mm 
(“root-accessible”) and H1, H3 and H6 to 37-µm mesh bags 
(“hyphal-accessible”) harvested after 1-, 3- and 6-month expo-

sure in soil of an oil palm plantation. Blue bars show means for 
oil palm leaf litter and grey bars for soil, which accumulated in 
the mesh bags (n = 5 ± SE). Data were analyzed by GLM fol-
lowed by Tukey HSD post-hoc test. Different letters indicate 
significant differences of means at p < 0.05
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Root ingrowth and 15N signatures inside the mesh 
bags in roots, litter and soil

We expected root ingrowth into the 2-mm but not 
into the 37-µm mesh bags. Unexpectedly, both mesh 
bag types contained very fine, thin roots (about 
5  mg after 3  months and 14  mg after 6  months), 
although all mesh bags, except one (without roots), 
were visually intact at harvest. Because of high var-
iation of root presence, the differences in root mass 
were not significant (GLM: F3,19 = 1.35, p = 0.292).

However, roots in the 37-µm mesh bags showed 
significantly higher 15N enrichment than those 
in the 2-mm mesh bags (F12,1 = 5.63, p = 0.042, 
Fig.  3a). In the 37-µm mesh bags, APE in roots 
(1.23 ± 0.07 APE) was similar to that in litter 
(1.36 ± 0.12 APE, Fig. 3b). In the 2-mm mesh bags 
root APE (0.77 ± 0.17 APE) was similar to that in 
soil (0.66 ± 0.22 APE, Fig. 3c).

A temporal change in APE was neither observed 
in roots (GLM: F2,12 = 1.88, ptime = 0.199) nor in 
soil (F2,18 = 0.84, ptime = 0.455) (Fig. 3a,c). In litter, 
marginal changes (p < 0.1) were found (F5,29 = 2.39, 
ptime = 0.068) (Fig. 3b).

Taxonomic dynamics of fungi during litter 
degradation

The taxonomic composition of the fungal community 
in litter changed during exposure in soil (Fig. 4a). The 
compositional changes were mainly associated with 
shifts in litter C/N and APE (Fig. 4a). Significant dif-
ferences between fungal communities were observed 
between the first and later time points, while no dif-
ferences were noted between three- and six-month 
exposure (Table 1). The composition of fungal com-
munities in 2-mm and 37-µm mesh bags did not differ 
significantly (Table 1, Fig. 4a).

OTU richness and Shannon diversity indices did 
not differ between the two types of mesh bags. OTU 
richness increased by 20% from month 1 to month 3 
(Table 2). The Shannon index was higher in month 6 
than in the previous months (Table 2).

Inspection of the taxonomic composition showed 
that fungi of the order Hypocreales were initially the 
most abundant (Fig.  4b). Their abundances declined 
with increasing incubation time, regardless of mesh 
bag type (Fig.  4b). Other orders with high relative 
abundances at the beginning were Botryosphaeriales, 

Fig. 2   Linear relationship 
of litter loss and nitrogen 
loss. Data points show 
individual measurements 
for 37-µm mesh bags: N 
(black), 15N (red), and for 
2-mm mesh bags: N (blue), 
15N (green). Inset: adjusted 
R2 values and slopes of 
GLM
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Fig. 3   15N (atom-% excess) 
in roots (a), leaf litter (b) 
and soil (c). Atom-% excess 
(APE) is the fraction of 
15N per N corrected for 
the natural abundance of 
15N. R1, R3, and R6 refer 
to 2-mm and H1, H3 and 
H6 to 37-µm mesh bags 
harvested after 1-, 3- and 
6-month exposure in soil of 
an oil palm plantation. Bars 
show means (n = 5 ± SE). 
Data were analyzed by 
ANOVA followed by 
Tukey HSD post-hoc test. 
Different letters indicate 
significant differences of 
means at p < 0.05
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Sordariales and Mucorales (Fig.  4b). Mucorales 
almost disappeared at later stages of litter degrada-
tion, while Sordariales, Pleosporales, Chaetospha-
eriales and Xylariales increased (Fig.  4b). Litter 
contained over 40 different fungal orders but most 
were rare, accounting for less than 1.5% of total 
counts (Supplement Data 1). They were summarized 
as rare orders (Fig.  4b). Overall, the phylum Asco-
mycota was dominant, while Mucoromycota and 
Basidomycota (mainly Agaricales, Sebacinales and 
Cantharellales) were less abundant. Glomeramycota 
(Archeosporales, Diversisporales, Gigasporales and 
Glomerales), representing AMF were relatively rare. 

Fig. 4   Redundancy analy-
sis of the taxonomic fungal 
community composition 
(a) and relative abun-
dances of fungal orders 
in oil palm leaf litter (b). 
The redundancy analysis 
was performed with 9999 
permutations (F = 2.09, 
p = 0.0004). Vectors show 
RCW (relative water con-
tent of soil) and litter traits: 
atom-% excess (APE), C/N 
ratio, C_conc = C concen-
tration, N_amount and 
15N_amount in litter. The 
relative abundances were 
determined for counts of 
the rarefied data set (37,267 
counts per sample). R1, 
R3, and R6 refer to fungal 
orders in litter of 2-mm and 
H1, H3 and H6 to that in 
37-µm mesh bags harvested 
after 1-, 3- and 6-month 
exposure in soil of an oil 
palm plantation

Table 1   PERMANOVA of similarity of the fungal community 
composition in leaf litterbags with pore sizes of 2-mm (R) or 
37-µm (H) after 1-, 3-, and 6-month exposure in soil of an oil 
palm plantation

PERMANOVA was conducted for pairwise comparisons using 
Bray Curtis distances and 9999 permutations. The table shows 
p < 0.05 in bold.

R1 R3 R6 H1 H3

R3 0.0091
R6 0.0077 0.1919
H1 0.9036 0.0086 0.0067
H3 0.0156 0.7515 0.1924 0.008
H6 0.0071 0.1426 0.9082 0.0073 0.1984
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Fungal OTUs without any taxonomic assignment at 
the order level increased in litter with increasing leaf 
degradation (Fig. 4b).

Functional dynamics of fungi during litter 
degradation

Functional assignments of fungal taxa to trophic 
guilds revealed a significant increase in the abun-
dance of saprotrophic fungi with increasing degra-
dation (Fig.  5a). Surprisingly, the steepest increases 
were found for AMF, although the overall OTU abun-
dances for this group were low compared to other 
fungal guilds (Fig.  5b). Notably, not only did count 
abundances increase but also richness, from initially 
9 OTU-based taxa to 69 and 89 OTU-based taxa (cf. 
Supplement Data sheet 1). Fungi for which no func-
tional classification was available also increased mas-
sively (Fig. 5f).

Multi-trophic fungi, which can live as patho-
gens, symbionts or saprotrophs, declined approxi-
mately threefold during the six-month exposure time 
(Fig.  5c). Plant pathogens showed a similar pattern; 
they were strongly enriched in litter after one month 
of exposure and declined 4- to fivefold, thereafter 
(Fig.  5d). The litter also contained parasitic fungi 
(mainly mycoparasites) but their abundances were 
unaffected by exposure time (Fig.  5e). Furthermore, 
litter contained low abundances of fungi that can 
form orchid mycorrhizae, ectomycorrhizae or endo-
phytic interactions (means: 241 ± 68 counts across all 
treatments, Fig. 5e, triangles).

Changes in the abundances of saprotrophic fungi 
were unrelated to litter traits (concentrations of N, C, 
15N, C/N ratio or the amounts of litter, C, 15N or N per 
mesh bag) (Table 3). The abundances of multitrophic 
fungi, parasitic fungi, and pathogens were positively 
associated with the amounts of N, 15N, and C in the 
litter bags, while AMF and unclassified fungi showed 
negative relationships with these traits (Table  3). 
Furthermore, AMF were negatively related to the 
C/N ratio of the litter, while pathotrophic fungi were 
positively associated with the C concentration and the 
C/N ratio (Table 3). Fungi without functional classifi-
cation showed negative relationships with APE and C 
concentrations (Table 3).

We identified the 10 most abundant fungal spe-
cies for each time point and mesh bag type (Fig. 6). 
This resulted in 23 different taxa because 14 taxa 
were shared among two or more conditions. Among 
the most abundant fungal species, four (ASV_00003, 
ASV_00004, ASV_00005 and ASV_00015) were 
found across all conditions (Fig. 6). They represented 
multitrophic Hypocreales (Trichoderma sp., Nectri-
aceae: Fusarium sp. and an unknown Nectriaceae) 
and a taxon from the Chaetomiaceae family (Sordari-
ales), for which a functional annotation was lacking. 
In addition to these taxa, two species of the patho-
trophic-saprotrophic genus Rhizopus and a potential 
ectomycorrhizal taxon (Sebacina sp.) were among 
the most abundant early stage fungi. At later stages, 
saprotrophic genera (Tubeufia sp., Leptodiscella sp., 
Acrocalymma sp.) and several taxa without a func-
tional but a taxonomic assignment at the order level 
(Hypocreales, Sordariales, Pleosporales, Trechispo-
rales) were present in the group of the most abundant 
taxa (Fig. 6).

Discussion

Litter degradation and colonization by roots foster 
fungal richness and N recycling

We investigated the dynamics of the taxonomic 
and functional profiles of litter-colonizing fungi in 
an industrial oil palm plantation in relation to lit-
ter decay. Within six months, approximately 70% of 
the oil palm leaf litter was degraded, which is line 
with previous studies conducted in humid tropical 
climate, including forests, oil palm plantations and 

Table 2   Diversity indices of fungi colonizing oil palm leaf lit-
ter

# indicates results of the Kruskal Wallis test; other analyses 
were conducted with an ANOVA followed by Tukey HSD post 
hoc test. Different letters in columns indicate significant differ-
ences at p < 0.05.
Data from different mesh bag types showed no differences (p 
> 0.05) and were pooled. Data indicate means (n = 10 ± SE 
per time point). OTU(obs) = observed number of Amplicon 
Sequence Variants with 97% sequence similarity. Chao-1 = 
estimated maximum OTU richness.

Time 
(month)

OTU(obs)
# Chao-1# Shannon H

1 325 ± 9a 395 ± 11a 3.34 ± 0.05ab
3 395 ± 19b 475 ± 26b 3.24 ± 0.13a
6 362 ± 11ab 442 ± 14b 3.55 ± 0.09b
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other land use systems (Moradi et  al. 2014; Pulung-
gono et  al. 2019; Kerdraon et  al. 2020). The initial 
loss depended on the accessibility of the litter, as the 
intercepts of the decay rates in mesh bags with wider 
or smaller pores differed significantly. Reasons for 

rapid losses in mesh bags with wider pores might be 
accessibility to meso- and macrofauna (Scheu and 
Setälä 2002) and greater wash out of small particu-
late materials by rainfall. The accumulation of soil 
in the 2-mm mesh bags indicates profound exchange 

Fig. 5   Fungal abundances in oil palm leaf litter according to 
trophic groups. a Saprotrophs (SAP), b arbuscular mycorrhi-
zal fungi (AMF), c multitrophic fungi (MULT), d pathogenic 
fungi (PAT, including PAT-SAP fungi), e parasitic fungi (PAR, 
circles) and endophytes and symbionts (ENDO, triangles), f 
fungi without trophic assignment (UNK). Data show box-plots 

with the mean as cross and the median as horizontal line. Dots 
show individual measurements. R1, R3, and R6 refer to fungi 
in litter of 2-mm and H1, H3 and H6 to that in 37-µm mesh 
bags harvested after 1-, 3- and 6-month exposure in soil of an 
oil palm plantation. Different letters indicate significant differ-
ences (Kruskal Wallis test)
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Table 3   Spearman Rank 
Correlations for the 
association of different 
fungal life styles and the 
amounts of litter mass, 
carbon and nitrogen and 
their concentrations

For each parameter, the 
upper row shows the 
coefficient (coeff.) and 
the lower row the p-value. 
Significant relationships 
(p < 0.05) are highlighted 
bold.

Coeff./p-value SAP AMF MULT PAT PAR UNK

litter amount (g) −0.359 0.634 0.490 0.313 0.378 −0.443
p-value 0.053 0.001 0.008 0.092 0.032 0.017
15N amount (µg) −0.162 −0.437 0.550 0.453 0.389 −0.625
p-value 0.383 0.019 0.003 0.015 0.036 0.001
N amount (mg) −0.200 −0.442 0.508 0.365 0.398 −0.504
p-value 0.282 0.017 0.006 0.049 0.032 0.007
C amount (mg) −0.334 −0.657 0.552 0.566 0.425 −0.648
p-value 0.072 0.000 0.003 0.002 0.022 0.001
APE −0.030 −0.185 0.154 0.256 0.200 −0.399
p-value 0.873 0.318 0.408 0.168 0.281 0.032
15N (µg g−1 d.wt.) 0.123 0.294 0.146 0.060 0.056 −0.232
p-value 0.509 0.114 0.433 0.745 0.762 0.212
N (mg g−1 d.wt.) 0.111 0.312 0.129 0.043 −0.103 −0.173
p-value 0.552 0.093 0.488 0.819 0.579 0.351
C (mg g−1 d.wt.) −0.072 −0.213 0.357 0.471 0.235 −0.573
p-value 0.697 0.251 0.055 0.011 0.205 0.002
C/N −0.217 −0.645 0.073 0.429 0.271 −0.269
p-value 0.243 0.001 0.695 0.021 0.139 0.147

Fig. 6   Heat map of hierar-
chical clustering of fungal 
abundances. Rows were unit 
variance scaled. Columns 
were fixed. The ten most 
abundant fungi for each 
sampling date and mesh bag 
type were included. R1, R3, 
and R6 refer to fungal spe-
cies in litter of 2-mm and 
H1, H3 and H6 to that in 
37-µm mesh bags harvested 
after 1-, 3- and 6-month 
exposure in soil of an oil 
palm plantation. Column 
traits shows the trophic 
level of the fungal species 
by a color code
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with the environment but in contrast to our expecta-
tion, this did not affect the composition of the fungal 
communities in leaf litter. Despite the similarities of 
the fungal communities, decomposition processes in 
different mesh bag types resulted in differences in N 
and C concentrations in litter, supporting divergence 
between “freely accessible” and “microbial-driven” 
litter degradation. Thus, we reject our first hypoth-
esis that different fungal communities drove dif-
ferences in litter decomposition. Instead, other soil 
processes, for instance litter-feeding soil fauna might 
have additionally affected litter degradation, leading 
to the observed decreases in litter C concentrations 
in the accessible mesh bags. However, the abundance 
of protists, which link lower and higher levels in soil 
food webs, is low in plantation soil (Krashevska et al. 
2016). Therefore, further experiments are neces-
sary to clarify the roles and interactions of different 
trophic levels for litter decomposition. A limitation of 
our study was the unavailability of multiple land-use 
systems due to logistical constraints. To gain a more 
comprehensive understanding of litter-degrading soil 
microbial communities and their responses to varying 
environmental conditions, future research should be 
conducted in a range of additional sites and land-use 
systems.

In contrast to the accessible mesh bags, micro-
bial litter decay in the 37-µm mesh bags resulted in 
an apparent accumulation of N, similar to that found 
in other studies (e.g., Pulunggono et al. 2019; Zhang 
et al. 2020; Tennakoon et al. 2022). It was suggested 
that intense colonization by fungal hyphae with their 
relatively high N contents (3%—5%; Kim et al. 2003) 
may concentrate additional N in the decaying litter 
(e.g., Bonanomi et al. 2014; Chomel et al. 2016). In 
our experiment, this mechanism would have diluted 
the 15N signature (APE) in litter because of the incor-
poration of new external N. Since the 15N signature 
was stable, our results show that microbial litter deg-
radation resulted in N retention. This may happen due 
to the higher C than N demand of the microbes, as 
the initial C/N-ratio of the leaf litter exceeded 20 but 
other resource use modes are also possible (Manzoni 
et al. 2021).

Our study shows that roots grew into the decom-
posing litter within three months. Litter invasion by 
roots was also evident by the increasing abundances 
of AMF, which are obligate symbionts depend-
ing on plant-derived carbon (Oliveira et  al. 2024). 

However, it remains unclear how roots entered the 
37-µm mesh bags. The smallest root diameters of 
oil palm roots (tertiary or quaternary roots) were 
not smaller than 400 to 500 µm (Yahya et al. 2010; 
Kotowska et  al. 2023). In other studies, fine root 
diameters of various species were not less than 50 
to 100 µm (Kong et al. 2014). Therefore, the 37-µm 
mesh bags should have excluded roots. We observed 
a moderate presence of weeds, which may have sent 
roots into the mesh bags. Perhaps very thin weed 
roots can squeeze themselves through micro-pores, 
or use undetected tiny damage points in the mesh. 
Roots in the 2-mm mesh bags resembled those in 
the 37-µm mesh bags, and thus, did not originate 
from oil palms. The absence of oil palm roots in the 
2-mm mesh bags was probably due to low soil fer-
tility in the inter-rows. The density of oil palm roots 
is highest where fertilizers are placed, usually in the 
palm circle (Pradiko et  al. 2022). Since the inter-
rows were not fertilized, an expansion of oil palm 
roots into this area was unlikely.

In our study, the biomass of the roots in the mesh 
bags was very low, so large amounts of N could not 
be captured. However, our labelling experiment 
demonstrates the potential of roots for the acqui-
sition of N from degrading litter. Roots benefited 
from N enrichment because they acquired more N 
from degrading litter in the 37-µm mesh bags than 
roots in more accessible mesh bags, where we found 
lower 15N enrichment. The differences in the root 
15N signatures suggested that roots fed on litter N 
in the 37-µm mesh bags and on soil N in the 2-mm 
mesh bags.

Roots in tropical ecosystems preferentially explore 
litter, not poor soil, for nutrients and, in turn, foster 
microbial activities (Zhou et  al. 2024). In line with 
this, we observed that the appearance of roots in litter 
was associated with increasing fungal species rich-
ness, thus, promoting microbial biodiversity. Further-
more, the accumulation of litter-derived 15N in roots 
highlights the contribution of roots to the recycling of 
organic N. On the practical side, the productivity of 
oil palms was maintained by the application of palm 
residues compared with mineral fertilizers (Tao et al. 
2017) and reduced nutrient leaching loss (Kurniawan 
et al. 2018; Formaglio et al. 2021). Our study shows 
that microbial N immobilization, stimulation of fun-
gal diversity and root N acquisition underpin these 
beneficial effects.
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Fungal succession in decomposing oil palm litter 
uncovers shifts from multitrophic/pathogenic to 
saprotrophic/mycorrhizal communities

Leaf litter decomposition typically begins with the 
degradation of easily hydrolysable compounds such 
as sugars and hemicellulose, then progresses to more 
complex polymers like cellulose and eventually 
ligninLeaf litter decomposition typically begins with 
the degradation of easily hydrolysable compounds 
such as sugars and hemicellulose, then progresses to 
more complex polymers like cellulose and eventually 
lignin (Hättenschwiler et  al. 2005). Fungi mediate 
these processes by producing extracellular enzymes, 
tailored for the successive breakdown of organic 
materials (Asplund et  al. 2018; Wang et  al. 2020). 
The interactions between soil fungi and bacteria also 
influence litter decomposition, potentially accelerat-
ing the decay rates (Schneider et al. 2010). However, 
fungi are generally considered the primary drivers 
of litter decomposition (Schneider et al. 2010). With 
different stages of litter decay, fungal taxa have been 
classified as early, intermediate and late stage decom-
posers (Krishna and Mohan 2017). This trajectory has 
been observed in various (sub)tropical environments 
and substrates, including empty fruit bunches of oil 
palm, wood, lignin, cellulose and leaf litter (Prom-
puttha et al. 2002, 2007; DeAngelis et al. 2011; Not-
tingham et al. 2018; Osono 2020; Dossa et al. 2021; 
Tennakoon et al. 2022; Kusumaningtyas et al. 2565). 
Our study confirmed a drastic shift in the fungal com-
munity from the early to later stages of litter mass 
loss, accompanied by significant decreases in the 
foliar C/N ratio. These findings are important because 
our understanding of the ecological potential of litter-
colonizing fungi in degraded, herbicide-treated soils 
is still limited.

We have previously shown that the composition 
of soil fungal communities was highly similar across 
different landscapes in tropical lowland oil palm plan-
tations, including the present study site (Brinkmann 
et al. 2019). The main fungal orders in oil palm plan-
tation soils (Brinkmann et  al. 2019) largely over-
lapped with the main fungal orders found here in leaf 
litter (Hypocreales, Pleosporales, Sordariales, Chae-
tothyriales). For example, Hypocreales were the most 
abundant order of early stage fungi. The greatest frac-
tion in this order was represented by Fusarium spe-
cies, which have also been identified as a major genus 

in soil (Brinkmann et  al. 2019). Fusarium sp. have 
symbiotic, saprotrophic and pathogenic life styles; 
distinct species can cause devastating diseases in oil 
palm plantations (Suwandi et  al. 2012), while oth-
ers have plant-protective functions (L’Haridon et  al. 
2011). Here, Fusarium sp. co-occurred together with 
Trichoderma sp., which is known as bio-control agent 
(Jin et al. 2022; Kabir et al. 2023). Fungi in litter not 
only facilitate decomposition but can also have pro-
tective roles (Naidu et  al. 2015). Here, early stage 
oil palm litter was enriched with Rhizopogus sp., 
which is known to act synergistically with Fusarium 
sp. to accelerate decay processes (Jatav et al. 2020). 
Further, we found a number of fungal taxa that were 
abundant at early decomposition stages in oil palm 
litter but rare in soil (Brinkmann et  al. 2019). For 
example, Sebacinales have broad trophic abilities 
(endophytes, ectomycorrhizal and saprotrophic spe-
cies) and some are famous growth-promoting species 
(Serenpidita sp., previously known as Piriformospora 
indica) (Weiß et  al. 2016). Botryosphaeriaceae also 
have a broad trophic range but contain many impor-
tant pathogens (Rathnayaka et al. 2023). Tremellales 
grow well on sucrose (Bhatnagar et al. 2018), which 
concurs with a role as early decomposers suggested 
by their abundance at the early stage of litter decay 
and lower abundances at late stages. Mucorales were 
rare in soil (Brinkmann et al. 2019) but showed high 
abundances in early stage oil palm leaf litter (this 
study). An extensive investigation of fungi from dif-
ferent phyla on substrates of varying complexity 
revealed that members of the Mucorales grow on 
simple carbohydrates but hardly on cellulose or other 
complex substrates (Leifheit et  al. 2024). However, 
this specificity may depend on the specific isolates 
(Pawłowska et al. 2019). Altogether, a notable result 
of our study was that multitrophic taxa and poten-
tially pathogenic fungi dominated the early stages of 
decay of oil palm leaf litter.

Later stages of decay were characterized by a shift 
to lower C/N ratios along with a surprising combi-
nation of fungal lifestyles: AMF, saprotrophic fungi 
and fungi without trophic affiliation. A recent meta-
analysis (Choreño-Parra and Treseder 2024) reported 
positive effects of AMF on litter decomposition, 
possibly via the exudation of plant-derived carbohy-
drates, which in turn stimulate saprotrophic microbes. 
Choreño‐Parra & Treseder (2024) identified low 
substrate C/N as the most important factor for AMF 
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mediated decomposition and reported the greatest 
positive effect sizes in leaf litter compared with other 
degrading tissues (Choreño-Parra and Treseder 2024). 
Although it is unlikely that AMF are directly involved 
in litter decay, their abundance and species richness 
increased markedly in late-stage leaf litter with low 
C/N ratios, supporting the possibility that they may 
have indirectly influenced the decomposition process. 
The increase in AMF diversity is noteworthy because 
oil palm roots harbor only a very limited spectrum of 
these symbionts compared with other tropical land 
use systems (Edy et al. 2022). Therefore, the present 
results indicate opportunities for soil biodiversity 
restoration.

It was surprising to find that changes in litter traits 
correlated with changes in the abundance of function-
ally unknown fungi, but not with an increase in sap-
rotrophic fungal taxa. We attribute this lack of cor-
relation to the limited understanding and research on 
the ecological functions of fungi, particularly those 
that are rare in soil but proliferate in degrading lit-
ter in tropical ecosystems (Stallman et al. 2024). Our 
results therefore suggest that the observed pattern 
does not necessarily reflect dominance by novel func-
tional groups but rather a shift in the composition of 
saprotrophs, some of which are not yet functionally 
characterized. This assumption is reasonable since 
both annotated as well as many functionally unknown 
taxa were members of the orders Sordariales and 
Pleosporales. These orders comprise numerous spe-
cies classified in bioassays as cellulose and lignin 
guilds (Bhatnagar et  al. 2018). For example, Sord-
aria sp. primarily targets polysaccharides (Franco 
et  al. 2018); it is considered a pioneer species that 
can modify the physical and chemical properties of 
the litter, enhancing conditions for subsequent colo-
nizers (Rivera et  al. 2025). Biotechnological studies 
found superior lignolytic activities for several mem-
bers of the Pleosporales and Chaetosphaeriales, caus-
ing high rates of plant biomass conversion (Shrestha 
et al. 2015). Members of the Chaetosphaeriales were 
enriched in litter at the end of our study, suggesting 
that they mark the transition into the last phase of 
litter decomposition. As the group of fungi without 
trophic annotation showed a tight relationship with 
litter C concentrations, we speculate that these fungi 
are potent litter saprotrophs. However, further studies 
are needed to isolate and further characterize these 
species.

Conclusions

This study shows that the composition of litter-
associated fungal communities shifted with the pro-
gression of litter degradation, leading to increased 
soil fertility. This process resulted in N retention 
and aided accumulation of litter-derived N in soil 
and roots, contributing to N recycling. Thereby, 
oil palm leaf litter can promote ecological ben-
efits in impoverished tropical plantation soil. Spe-
cifically, it can increase the diversity of beneficial 
fungi, such as AMF, which are essential for plant 
growth. By applying palm frond litter, farmers can 
increase AMF diversity, potentially leading to more 
sustainable plantation management. Furthermore, 
our study highlights the potential for biotechnologi-
cal applications of fungal taxa with intense sapro-
trophic capabilities. While the potential benefits of 
litter applications in impoverished tropical planta-
tion soil are promising, they also come with risks. 
Early decomposition processes driven by multi-
trophic fungi can be problematic, as many of these 
fungi have pathogenic potential. However, the pres-
ence of antagonistic fungi in leaf litter may help to 
control these pathogens, suggesting that a deeper 
understanding of their interactions is crucial. To 
ensure the safe and effective use of litter applica-
tions, further research is needed to clarify the con-
ditions under which fungal communities can be 
used to promote healthy litter decomposition. This 
study highlights the importance of litter degradation 
for N retention and recycling in tropical plantation 
soil. Our findings provide practical opportunities for 
the restoration of AMF diversity and suggest that 
simple, affordable measures, such as applying palm 
frond litter, can contribute to more sustainable plan-
tation management.
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