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Abstract

Background and Aims Industrial oil palm planta-
tion management degrades tropical soils and disrupts
ecosystem functions. Applying oil palm leaf litter can
help restore soil fertility, but the underlying fungal-
driven decomposition and nitrogen recycling remain
understudied. This study examines fungal succes-
sion in degrading oil palm leaf litter, the fate of litter-
derived nitrogen in soil and roots, and the potential
for the restoration of fungal biodiversity.

Methods We produced '“N-labelled oil palms and
exposed dry leaf litter in 2-mm and 37-um mesh bags
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within a plantation. The finer mesh allowed micro-
bial access but restricted roots and most detritivores.
We measured litter mass loss, carbon and nitrogen
dynamics, and fungal communities via ITS barcoding
over six months. Root ingrowth and soil chemistry
were also analyzed.

Results  Litter mass decreased by 70% in both mesh
types, with soil accumulating litter-derived '°N. Fine
roots grew into the mesh after three months and took
up N, demonstrating nitrogen recycling. Fungal suc-
cession displayed clear temporal patterns: early colo-
nizers thrived with higher C/N ratios (Hypocreales,
Pleosporales, Chaetothyriales), while late colonizers
(e.g., Sordariales, Pleosporales, Chaetosphaeriales)
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correlated with C degradation. Arbuscular mycor-
rhizal fungi increased with declining C/N ratios and
coincided with root growth.

Conclusions Oil palm litter enhances nitrogen
availability, fosters AMF diversity, and improves
degraded soils. The numerous uncharacterized fungi
in litter decomposition highlight the need for further
research into their functional roles for sustainable soil
restoration.

Keywords Arbuscular mycorrhiza - Elaeis
guineensis - Diversity - Functional traits - Fungal
metabarcoding - Litter degradation - Mycorrhiza -
Nitrogen uptake - Soil restoration

Introduction

In south-east Asia, palm oil production is a major
source of income but has detrimental effects on the
abiotic and biotic environment (Dislich et al. 2017,
Iddris et al. 2023). In Indonesia, the world-largest
producer of palm oil (Monzon et al. 2021), the area
of oil palm plantations increased massively in the
past decades, now replacing approximately 32% of
the country’s native forests (Gaveau et al. 2022).
Most oil palms (Elaeis guineensis) are grown in
industrial plantations covering large areas (>50 ha
per plantation) with even-aged mono-specific palm
trees planted at regular distances. These plantations
are managed for high productivity through the exten-
sive use of fertilizers and herbicides for weed control
(Dislich et al. 2017; Wenzel et al. 2024). These treat-
ments have a significant negative impact on the bio-
diversity of most groups of above- and belowground
taxa, except for soil microbes (Montoya-Sinchez
et al. 2023; Zemp et al. 2023). Microbial diversity
is not or very little affected in plantation soil, but its
composition is drastically altered (Berkelmann et al.
2018; Ballauff et al. 2021; Carneiro De Melo Moura
et al. 2025).

Soil fungi are critical drivers of biogeochemical
processes. Saprotrophic fungi mine litter for carbon,
thereby, making nitrogen (N) and other minerals
available for plants (Setdld and McLean 2004; Talbot
et al. 2013). This process is promoted by a succession
of fungi, usually starting with the degradation of sim-
ple organic compounds, followed by the breakdown

2%

of more complex polymers (VofiSkova and Baldrian
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2013; Purahong et al. 2016). Mycorrhizal fungi form
symbiotic associations with roots, utilizing carbon
from photosynthesis to supply minerals to the trees
(Van Der Heijden et al. 2008). Mycorrhizal hyphae
play a crucial role in carbon allocation from above-
to belowground compartments (Brundrett and Teder-
soo 2018). The interplay of fungal soil communities
is vital for ecosystem functions and services such as
nutrient supply, carbon sequestration, and pathogen
protection (Baldrian 2017).

Efforts are being made to implement sustain-
able management practices in oil palm plantations to
increase biodiversity and ecological functions with-
out or minimal economic tradeoff (Darras et al. 2019;
Grass et al. 2020; Montoya-Sanchez et al. 2023;
Paterno et al. 2024). For example, a moderate reduc-
tion in fertilizer use, which does not affect yield (Dar-
ras et al. 2019) can increase arbuscular mycorrhizal
fungal (AMF) root colonization (Ryadin et al. 2022).
Mulching with palm fronds can enhance beneficial
microbial activities, stimulate soil N cycling, thereby
increasing soil fertility and health (Comte et al. 2012;
Riiegg et al. 2019; Formaglio et al. 2021). Given that
oil palms require large amounts of N to sustain their
high productivity and their roots are highly efficient
at N uptake (Edy et al. 2020), these practices offer a
promising route to maintaining yields while reduc-
ing reliance on synthetic fertilizers. In addition to
microbes, soil fauna is also involved in nutrient turn-
over by feeding on roots, fungi, and bacteria (Filser
et al. 2016; Tao et al. 2016).

Our knowledge on the composition of fungal
decomposer communities in typically managed oil
palm plantations and their contributions to root nutri-
ent uptake is limited. To address this gap and distin-
guish between the impact of microbes and other soil
processes, we exposed leaf litter in two different mesh
bag types: one with pore widths of 37-um, allowing
fungal ingrowth, and another with pore widths of
2-mm, additionally permitting access for fine roots
and soil fauna to the litter. We expected that mesh
bags with larger pores would result in greater fungal
diversity because mobile organisms can disperse fun-
gal spores in their environment and increase substrate
availability from root exudates and necromass ingress
(Philippot et al. 2013; Yang et al. 2017; Rivera et al.
2025). We hypothesized (1) that the differences in
litter accessibility result in different fungal commu-
nities and different decomposition rates. We further
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hypothesized (2) that the ecological functions of
the fungal communities are associated with distinct
stages of litter decay and (3) promote litter-derived
N supply to fine roots. The overarching aim of this
study was to investigate fungal communities during
the degradation of oil palm frond leaflets and track
the path of litter-derived nitrogen (N) into roots using
I5N-labelled frond leaf litter.

Materials and methods
Sample preparation

Young oil palm (Elaeis guineensis) saplings were
purchased from a local tree nursery (Jambi, Indone-
sia). They were potted in growth containers, grown
for 11 months, and irrigated with tap water as needed.
Every 24 days, the saplings were irrigated with 100
ml of 2 mM "NH,CI (99% N, CK Isotopes, Leices-
tershire, United Kingdom). Control saplings were irri-
gated with "“NH,CI. After 11 months, both labelled
and non-labelled saplings were harvested. The newly
formed leaves were collected, dried at 40 °C, and used
as leaf litter in the experiment.

Nylon fabric (CRP Import—Export GmbH, Ham-
burg, Germany) with pore sizes of 2 mm (for root and
hyphal ingrowth) and of 37 pm (for hyphal ingrowth)
were used to prepare mesh bags. The fabric was cut
into 3 cmX 10 cm pieces, sewn into bags, and filled
with 3.0 g of either N-labelled or non-labelled frag-
mented oil palm leaflets (without fronds) and sealed
by stitching.

Site, exposure and harvest of the mesh bags

We used the experimental area in a state-owned,
large-scale (2025 ha) industrial oil palm plantation
(PTPN VI, central coordinates: longitude 103.27056,
latitude —1.786861), which was part of the EFForTS
CRC 990 (Ecological and Socioeconomic Functions
of Tropical Lowland Rainforest Transformation Sys-
tems) project, located in Jambi province on Sumatra
(Indonesia). Details on oil palm management and
environmental conditions have been reported previ-
ously (Drescher et al. 2016; Darras et al. 2019). The
climate is humid tropical with an average annual pre-
cipitation of 2075+94 mm and two rainy seasons
peaking around March and December. The average

annual temperature is 26.7+0.2 °C. The soil is an
Acrisol with a sandy loam structure and a pH of 4.3.
The soil contained the following nutrient elements
(mg g_1 dwt): N 14, C: 23.7, K: 0.101, Ca: 0.201,
Mg: 0.021, Mn: 7.156, Fe: 37.259, P: 0.130 (Iddris
et al. 2023).

The oil palms were planted at a density of 142
plants ha=! with a spacing of 8 m and were approxi-
mately 17- to 19-year-old during the experiment.
The rows between the palms were alternatingly free
alleys (inter-rows) or used for depositing palm fronds
obtained during pruning and oil palm bunch harvest-
ing (Comte et al. 2012). The plantation was man-
aged conventionally, including fertilization (N-P-K:
260-50-220 kg ha™! a~!, split into two doses per
year) and herbicide treatments (1.5 1 glyphosate ha™!,
split into four doses per year). Fertilization and her-
bicide treatments were applied to the soil underneath
the palms in a circle of 2 m around each tree. The
inter-rows were not fertilized but were treated with
0.75 1 glyphosate ha™! (split into two applications per
year) (Iddris et al. 2023).

We installed our experiment in the inter-rows
because they were not affected by a previous influ-
ence of degrading palm fronds and were in areas least
exposed to fertilizer. Small holes, approximately 7 cm
deep, were dug into the mineral soil. A litter layer was
not present and marginal organic debris was removed.
Each mesh bag, containing either *N-labelled or
non-labelled litter, was inserted upright (5 cm long)
into the hole and covered with a 2-cm-thick soil layer.
Pairs of mesh bags with 2 mm and 37 pum pore size
were placed next each other. The distance to the next
pair of mesh bags was 40 to 60 m.

Soil exposure of the mesh bags started on Febru-
ary 13, 2019. Collection of the mesh bags (n=5 for
5N-labelled samples per mesh bag type, n=3 for
non-labelled samples per mesh bag type) took place
after 1, 3 and 6 months. At the harvest time points,
we measured mean soil humidity of 28.6+11.5%,
17.3+3.1%, and 45.9+9.0% and mean soil tempera-
tures of 28.0+1.3 °C,27.9+1.3°C,and 29.4+1.0 °C
for February, May and August, respectively. At har-
vest, the mesh bags were removed from the soil,
placed individually in plastic bags and transported
on cool packs in cooling boxes to Jambi University,
where they were stored at —15 °C. For transfer to
Gottingen University (Gottingen, Germany), the fro-
zen samples were transported by airfreight with cool
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packs in cool boxes. On arrival, the samples were still
frozen and stored at —20 °C.

Sample preparation

Each frozen mesh bag was weighed, opened and its
content collected in a Petri dish, which was placed on
ice. The empty bag weight was subtracted from the total
mesh bag weight to determine the weight of the mesh
bag content. The content of the bag was sorted accord-
ing to litter, roots and soil under a dissecting micro-
scope (Leica M205 FA; Leica Microsystems GmbH,
Wetzlar, Germany). We controlled few root samples by
cross-sectioning; they had a diameter of approximately
100 um. The weight of each fraction was recorded.
Aliquots of litter samples were removed and stored
at —20 °C. All remaining samples were dried for one
week at 40 °C (dry mass). Total dry litter biomass was
calculated using the dry to fresh mass ratio.

Carbon, nitrogen, 3C and "°N analyses

Dry soil and litter samples were milled in a ball mill
(Type MM400, Retsch, Haan, Germany) to a fine pow-
der. We weighed 10 mg of soil or 2 mg of litter per sam-
ple into tin capsules (VA Analysentechnik, Meerbusch,
Germany) on a super-micro balance (S4; Sartorius, Got-
tingen, Germany). Roots were present in low amounts
(<10 mg in 11 out of 17 root-containing samples) as
small fragments. Milling results in electrostatic attach-
ment of small amounts of powder to the container walls
and thereby causing loss of low amounts of samples,
which was critical for the roots. Therefore, we weighed
1 mg of root fragments without milling into the tin cap-
sules (Khokon et al. 2023). The contents of N and C and
the fractions of >N and '*C in the samples were analyzed
using separate isotope mass spectrometers for the meas-
urements of labelled and non-labelled samples (labelled:
Delta C, Finnigan MAT, Bremen, Germany; Interface:
Conflo III; Thermo Electron Corp., Bremen, Germany;
element analyser: NA1108; Fisons-Instruments, Rodano,
Milano, Italy and non-labelled samples: Delta V Plus,
Finnigan MAT; Interface: Conflo III; Finnigan MAT,;
element analyzer: NA1110; Fisons-Instruments). Acet-
anilide was used as the calibration standard.

All BN data presented in the figures and the
tables pertain to '°N originating from the labelled
oil palm leaf litter after correction for the natural
abundance of 'N. The natural abundance of >N in
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litter (0.3686+0.0005), roots (0.3670+0.0005), and
soil (0.3683 +£0.0005) was determined and these values
were used to calculate the enrichment of °N as follows:

5N atom-% excess (APE) = '°N atom-% in the labelled
sample — 1°N atom-% in the non-labelled sample.

The >N concentration per unit of dry sample was
calculated as:

5N (ug g7! d.wt.)=APE * 1000/100 * N.

Here, N represents the N concentration of the sam-
ple (mg N g~! d.wt.). The total dry mass of the sample
was used to determine the amount of C, N and °N per
mesh bag:

C amount (mg mesh bag™")=C (mg g~' d.wt.) * total
sample dry mass (g).

N amount (mg mesh bag™')=N (mg g~! d.wt.) * total
sample dry mass (g).

5N amount (ug mesh bag™))="N (ug g=! d.wt.) *
total sample dry mass (g).

DNA extraction and fungal community analysis

Frozen leaf litter was milled in a ball mill (Type MM400,
Retsch, Haan, Germany) to a fine powder. DNA extrac-
tion and processing were conducted as previously
described (Brandt et al. 2024). DNA was extracted from
milled litter samples using the DNeasy PowerSoil Kit
(Qiagen, Venlo, Netherlands) and subsequently cleaned
with the DNeasy PowerClean Cleanup Kit (Qiagen,
Venlo, Netherlands) following the manufacturer’s instruc-
tions. The ITS2 region was amplified using the fungal
specific markers ITS3 KYO2 (Toju et al. 2012) and ITS4
(White et al. 1990) and cleaned with MagSi-NGSPreb
Plus Magnetic Beads (MagnaMedics GmbH, Aachen,
Germany). Amplicon sequencing was performed on the
MiSeq platform using the MiSeq Reagent Kit v3 (Illu-
mina Inc., San Diego, USA) at the Gottingen Genomics
Laboratory. Primer sequences were removed using cuta-
dapt v.2.1 (Martin 2014) and quality filtering was carried
out using fastp v.0.21.0 (Chen et al. 2018) with a size filter
of minimum 120 base pairs and a mean quality >20 on a
sliding window of 10 base pairs. An amplicon sequence
variant (ASV) library was generated using vsearch v.2.7.0
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(Rognes et al. 2016) for dereplication, denoising (using
the unoise algorithm) and chimera detection both de-novo
and against the fungal reference database UNITE v.8.97
(Koljalg et al. 2013). Taxonomic annotation was per-
formed using the blast algorithm (Camacho et al. 2009)
as implemented in the classify-consensus-blast function
of giime2 v.2020.8.0 (Bolyen 2019). Functional anno-
tation of fungal ASVs was carried out using FunGuild
v1.1 (Nguyen et al. 2016). All quality filtered reads were
mapped against the ASV library with a similarity thresh-
old of 0.97 (corresponding to “operational taxonomic
units”’, OTU) using vsearch to generate the count table.
OTUs not classified as fungi were excluded from the
count table and the table was rarefied to the minimum
number of counts per sample (37,267).

Statistical analyses

Statistical analyses were performed using the program
Statgraphics Centurion v 18.1.12 (Statgraphics Technolo-
gies, The Plains, Virgina, USA). Data are presented as
means of n=5+SE, unless otherwise specified. Normal
distribution (Skewness and Kurtois ranging from —2 to
2) and variance homogeneity (modified Levene test) were
tested and data were log-transformed when necessary
to meet the assumptions of the model. General Linear
Models (GLM) with “mesh type” and “exposure time”
as fixed factors were developed. In cases where the mod-
els indicated significant differences between means at
p<0.05, a post hoc test (Tukey HSD) was conducted. If
transformation did not result in normally distributed data
structures, a rank test (Kruskal Wallis) was applied, fol-
lowed by pairwise comparisons of rank groups using the
Bonferroni procedure. Associations between fungal abun-
dances and leaf traits were determined using Spearman
rank correlations. Diversity indices of fungi (Richness,
Shannon Index, Chaol), redundancy analysis (RDA)
based on Bray Curtis distances, and PERMANOVA were
calculated using the software PAST version 5 (Hammer
and Harper 2001). Heatmaps were generated with Clust-
vis (Metsalu and Vilo 2015).

Results
Biomass, C, N and "°N dynamics in litter bags

After one month of exposure in soil, 2-mm mesh
bags lost about half of their initial mass, while

37-um mesh bags lost about 30% (Fig. 1a). By six
months, both mesh bag types had similar losses
accounting for 82% and 79% of their initial mass,
respectively (Fig. 1a). An interesting difference was
the massive soil incorporation in the 2-mm mesh
bags (Fig. la). The contrasting dynamic of litter
loss and soil incorporation resulted in a final total
mass similar to the initial weight in the 2-mm mesh
bags (Fig. 1a).

The initial N concentration in the litter was
22.8+0.3 mg N g! dry mass corresponding to
approximately 68 mg N in the mesh bags. After
one month, the 2-mm mesh bags lost 55% and the
37-um mesh bags 27% of their N content (Fig. 1b).
The decline rate in the 37-um mesh bags was not
significantly different from that in the 2-mm mesh
bags (see slopes in Fig. 2). However, the intercept
indicated greater initial loss from the 2-mm than
from the 37-um mesh bags (17% versus —2.7%,
p<0.001). The overall N loss in the 2-mm mesh
bags was partially compensated by N in newly cap-
tured soil (2.5+0.7 mg N g~!) within the mesh bags
(Fig. 1b).

The initial >N enrichment in the litter was
1.58+0.23 APE, corresponding to a total amount of
828 ug N per mesh bag. The loss of '°N from the
litter bags was similar to that of N (Fig. lc, slopes
in Fig. 2). Additionally, >N was present in newly
accumulated soil in the 2-mm mesh bags, showing
that litter degradation contributed to soil N enrich-
ment (Fig. 1¢). The accumulation of soil in the 2-mm
mesh bags increased the amount of "N from 1 to
37 ug per mesh bag within six months (F,,,=24.0,
Piime <0.001).

C and N concentrations in litter bags

The initial C concentration in the litter was
437+7 mg g~! dry mass and remained stable in
the 37-um mesh bags over the 6-month exposure
(Fig. 1d). In the 2-mm mesh bags, litter C concentra-
tions were lower after 3- and 6-month exposure than
in the 37-um mesh bags (Fig. 1d). In contrast to C,
the N concentrations increased in litter in the 37-um
mesh bags and remained stable in the 2-mm mesh
bags (Fig. le). As a result, the C/N ratios declined
during the 6-month exposure from 19 at the start to
about 12 in the 37-um mesh bags (Fig. 1f).

@ Springer
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Fig. 1 Total amounts of dry mass (a), nitrogen (b), and °N (¢)
in mesh bags and concentrations of carbon (d) and nitrogen (e)
and C/N-ratio (f) of leaf litter. R1, R3, and R6 refer to 2-mm
(“root-accessible””) and H1, H3 and H6 to 37-um mesh bags
(“hyphal-accessible”) harvested after 1-, 3- and 6-month expo-
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sure in soil of an oil palm plantation. Blue bars show means for
oil palm leaf litter and grey bars for soil, which accumulated in
the mesh bags (n=5+SE). Data were analyzed by GLM fol-
lowed by Tukey HSD post-hoc test. Different letters indicate
significant differences of means at p <0.05
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Root ingrowth and >N signatures inside the mesh
bags in roots, litter and soil

We expected root ingrowth into the 2-mm but not
into the 37-um mesh bags. Unexpectedly, both mesh
bag types contained very fine, thin roots (about
5 mg after 3 months and 14 mg after 6 months),
although all mesh bags, except one (without roots),
were visually intact at harvest. Because of high var-
iation of root presence, the differences in root mass
were not significant (GLM: F; ;4=1.35, p=0.292).

However, roots in the 37-pym mesh bags showed
significantly higher N enrichment than those
in the 2-mm mesh bags (Fj,;=5.63, p=0.042,
Fig. 3a). In the 37-um mesh bags, APE in roots
(1.23+0.07 APE) was similar to that in litter
(1.36 +£0.12 APE, Fig. 3b). In the 2-mm mesh bags
root APE (0.77+0.17 APE) was similar to that in
soil (0.66 +0.22 APE, Fig. 3c).

A temporal change in APE was neither observed
in roots (GLM: F, ,=1.88, p,.=0.199) nor in
soil (F, 13=0.84, p;y.=0.455) (Fig. 3a,c). In litter,
marginal changes (p <0.1) were found (Fs,9=2.39,
Piime =0.068) (Fig. 3b).

60 80 100
Litter loss %

15N-2 mm R?adj=0.788, slope: 0.96
. T .

Taxonomic dynamics of fungi during litter
degradation

The taxonomic composition of the fungal community
in litter changed during exposure in soil (Fig. 4a). The
compositional changes were mainly associated with
shifts in litter C/N and APE (Fig. 4a). Significant dif-
ferences between fungal communities were observed
between the first and later time points, while no dif-
ferences were noted between three- and six-month
exposure (Table 1). The composition of fungal com-
munities in 2-mm and 37-um mesh bags did not differ
significantly (Table 1, Fig. 4a).

OTU richness and Shannon diversity indices did
not differ between the two types of mesh bags. OTU
richness increased by 20% from month 1 to month 3
(Table 2). The Shannon index was higher in month 6
than in the previous months (Table 2).

Inspection of the taxonomic composition showed
that fungi of the order Hypocreales were initially the
most abundant (Fig. 4b). Their abundances declined
with increasing incubation time, regardless of mesh
bag type (Fig. 4b). Other orders with high relative
abundances at the beginning were Botryosphaeriales,

@ Springer
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Fig. 3 "°N (atom-% excess)
in roots (a), leaf litter (b)
and soil (¢). Atom-% excess
(APE) is the fraction of

5N per N corrected for

the natural abundance of
I5N. R1, R3, and R6 refer
to 2-mm and H1, H3 and
H6 to 37-um mesh bags
harvested after 1-, 3- and
6-month exposure in soil of
an oil palm plantation. Bars
show means (n=>5=+SE).
Data were analyzed by
ANOVA followed by

Tukey HSD post-hoc test.
Different letters indicate
significant differences of
means at p <0.05
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Fig. 4 Redundancy analy- (a)
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Table 1 PERMANOVA of similarity of the fungal community
composition in leaf litterbags with pore sizes of 2-mm (R) or
37-um (H) after 1-, 3-, and 6-month exposure in soil of an oil
palm plantation

R1 R3 R6 H1 H3
R3 0.0091
R6 0.0077 0.1919
H1 0.9036 0.0086 0.0067
H3 0.0156 0.7515 0.1924 0.008
H6 0.0071 0.1426 0.9082 0.0073 0.1984

PERMANOVA was conducted for pairwise comparisons using
Bray Curtis distances and 9999 permutations. The table shows
p < 0.05 in bold.

Sordariales and Mucorales (Fig. 4b). Mucorales
almost disappeared at later stages of litter degrada-
tion, while Sordariales, Pleosporales, Chaetospha-
eriales and Xylariales increased (Fig. 4b). Litter
contained over 40 different fungal orders but most
were rare, accounting for less than 1.5% of total
counts (Supplement Data 1). They were summarized
as rare orders (Fig. 4b). Overall, the phylum Asco-
mycota was dominant, while Mucoromycota and
Basidomycota (mainly Agaricales, Sebacinales and
Cantharellales) were less abundant. Glomeramycota
(Archeosporales, Diversisporales, Gigasporales and
Glomerales), representing AMF were relatively rare.
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Table 2 Diversity indices of fungi colonizing oil palm leaf lit-
ter

Time OTU(obs)# Chao-1* Shannon H
(month)

1 325+9a 395+11a 3.34+0.05ab
3 395+ 19b 475+26b 3.24+0.13a
6 362+ 11ab 442+ 14b 3.55+0.09

# indicates results of the Kruskal Wallis test; other analyses
were conducted with an ANOVA followed by Tukey HSD post
hoc test. Different letters in columns indicate significant differ-
ences at p < 0.05.

Data from different mesh bag types showed no differences (p
> 0.05) and were pooled. Data indicate means (n = 10 + SE
per time point). OTU,,, = observed number of Amplicon
Sequence Variants with 97% sequence similarity. Chao-1 =
estimated maximum OTU richness.

Fungal OTUs without any taxonomic assignment at
the order level increased in litter with increasing leaf
degradation (Fig. 4b).

Functional dynamics of fungi during litter
degradation

Functional assignments of fungal taxa to trophic
guilds revealed a significant increase in the abun-
dance of saprotrophic fungi with increasing degra-
dation (Fig. 5a). Surprisingly, the steepest increases
were found for AMF, although the overall OTU abun-
dances for this group were low compared to other
fungal guilds (Fig. 5b). Notably, not only did count
abundances increase but also richness, from initially
9 OTU-based taxa to 69 and 89 OTU-based taxa (cf.
Supplement Data sheet 1). Fungi for which no func-
tional classification was available also increased mas-
sively (Fig. 5f).

Multi-trophic fungi, which can live as patho-
gens, symbionts or saprotrophs, declined approxi-
mately threefold during the six-month exposure time
(Fig. 5c). Plant pathogens showed a similar pattern;
they were strongly enriched in litter after one month
of exposure and declined 4- to fivefold, thereafter
(Fig. 5d). The litter also contained parasitic fungi
(mainly mycoparasites) but their abundances were
unaffected by exposure time (Fig. 5e). Furthermore,
litter contained low abundances of fungi that can
form orchid mycorrhizae, ectomycorrhizae or endo-
phytic interactions (means: 241 + 68 counts across all
treatments, Fig. Se, triangles).

@ Springer

Changes in the abundances of saprotrophic fungi
were unrelated to litter traits (concentrations of N, C,
15N, C/N ratio or the amounts of litter, C, ’N or N per
mesh bag) (Table 3). The abundances of multitrophic
fungi, parasitic fungi, and pathogens were positively
associated with the amounts of N, '°N, and C in the
litter bags, while AMF and unclassified fungi showed
negative relationships with these traits (Table 3).
Furthermore, AMF were negatively related to the
C/N ratio of the litter, while pathotrophic fungi were
positively associated with the C concentration and the
C/N ratio (Table 3). Fungi without functional classifi-
cation showed negative relationships with APE and C
concentrations (Table 3).

We identified the 10 most abundant fungal spe-
cies for each time point and mesh bag type (Fig. 6).
This resulted in 23 different taxa because 14 taxa
were shared among two or more conditions. Among
the most abundant fungal species, four (ASV_00003,
ASV_00004, ASV_00005 and ASV_00015) were
found across all conditions (Fig. 6). They represented
multitrophic Hypocreales (Trichoderma sp., Nectri-
aceae: Fusarium sp. and an unknown Nectriaceae)
and a taxon from the Chaetomiaceae family (Sordari-
ales), for which a functional annotation was lacking.
In addition to these taxa, two species of the patho-
trophic-saprotrophic genus Rhizopus and a potential
ectomycorrhizal taxon (Sebacina sp.) were among
the most abundant early stage fungi. At later stages,
saprotrophic genera (Tubeufia sp., Leptodiscella sp.,
Acrocalymma sp.) and several taxa without a func-
tional but a taxonomic assignment at the order level
(Hypocreales, Sordariales, Pleosporales, Trechispo-
rales) were present in the group of the most abundant
taxa (Fig. 6).

Discussion

Litter degradation and colonization by roots foster
fungal richness and N recycling

We investigated the dynamics of the taxonomic
and functional profiles of litter-colonizing fungi in
an industrial oil palm plantation in relation to lit-
ter decay. Within six months, approximately 70% of
the oil palm leaf litter was degraded, which is line
with previous studies conducted in humid tropical
climate, including forests, oil palm plantations and
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Fig. 5 Fungal abundances in oil palm leaf litter according to
trophic groups. a Saprotrophs (SAP), b arbuscular mycorrhi-
zal fungi (AMF), ¢ multitrophic fungi (MULT), d pathogenic
fungi (PAT, including PAT-SAP fungi), e parasitic fungi (PAR,
circles) and endophytes and symbionts (ENDO, triangles), f
fungi without trophic assignment (UNK). Data show box-plots

other land use systems (Moradi et al. 2014; Pulung-
gono et al. 2019; Kerdraon et al. 2020). The initial
loss depended on the accessibility of the litter, as the
intercepts of the decay rates in mesh bags with wider
or smaller pores differed significantly. Reasons for

with the mean as cross and the median as horizontal line. Dots
show individual measurements. R1, R3, and R6 refer to fungi
in litter of 2-mm and H1, H3 and H6 to that in 37-um mesh
bags harvested after 1-, 3- and 6-month exposure in soil of an
oil palm plantation. Different letters indicate significant differ-
ences (Kruskal Wallis test)

rapid losses in mesh bags with wider pores might be
accessibility to meso- and macrofauna (Scheu and
Setild 2002) and greater wash out of small particu-
late materials by rainfall. The accumulation of soil
in the 2-mm mesh bags indicates profound exchange
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Table 3 Spearman Rank
Correlations for the
association of different
fungal life styles and the
amounts of litter mass,
carbon and nitrogen and
their concentrations

For each parameter, the
upper row shows the
coefficient (coeff.) and
the lower row the p-value.
Significant relationships
(p < 0.05) are highlighted
bold.

Fig. 6 Heat map of hierar-
chical clustering of fungal
abundances. Rows were unit
variance scaled. Columns
were fixed. The ten most
abundant fungi for each
sampling date and mesh bag
type were included. R1, R3,
and R6 refer to fungal spe-
cies in litter of 2-mm and
H1, H3 and H6 to that in
37-um mesh bags harvested
after 1-, 3- and 6-month
exposure in soil of an oil
palm plantation. Column
traits shows the trophic
level of the fungal species
by a color code
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Coeff./p-value SAP AMF MULT PAT PAR UNK
litter amount (g) —-0.359 0.634 0.490 0.313 0.378 —0.443
p-value 0.053 0.001 0.008 0.092 0.032 0.017
5N amount (ug) —0.162 —0.437 0.550 0.453 0.389 —0.625
p-value 0.383 0.019 0.003 0.015 0.036 0.001
N amount (mg) —0.200 —0.442 0.508 0.365 0.398 —0.504
p-value 0.282 0.017 0.006 0.049 0.032 0.007
C amount (mg) —-0.334 —0.657 0.552 0.566 0.425 —0.648
p-value 0.072 0.000 0.003 0.002 0.022 0.001
APE —0.030 —0.185 0.154 0.256 0.200 —0.399
p-value 0.873 0.318 0.408 0.168 0.281 0.032
BN (ug g7 dowt.) 0.123 0.294 0.146 0.060 0.056 —0.232
p-value 0.509 0.114 0.433 0.745 0.762 0.212
N (mg g~' d.wt.) 0.111 0.312 0.129 0.043 —0.103 —0.173
p-value 0.552 0.093 0.488 0.819 0.579 0.351
C (mg g~ d.wt) —0.072 —0.213 0.357 0.471 0.235 —0.573
p-value 0.697 0.251 0.055 0.011 0.205 0.002
C/N -0.217 —0.645 0.073 0.429 0.271 —0.269
p-value 0.243 0.001 0.695 0.021 0.139 0.147
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with the environment but in contrast to our expecta-
tion, this did not affect the composition of the fungal
communities in leaf litter. Despite the similarities of
the fungal communities, decomposition processes in
different mesh bag types resulted in differences in N
and C concentrations in litter, supporting divergence
between “freely accessible” and “microbial-driven”
litter degradation. Thus, we reject our first hypoth-
esis that different fungal communities drove dif-
ferences in litter decomposition. Instead, other soil
processes, for instance litter-feeding soil fauna might
have additionally affected litter degradation, leading
to the observed decreases in litter C concentrations
in the accessible mesh bags. However, the abundance
of protists, which link lower and higher levels in soil
food webs, is low in plantation soil (Krashevska et al.
2016). Therefore, further experiments are neces-
sary to clarify the roles and interactions of different
trophic levels for litter decomposition. A limitation of
our study was the unavailability of multiple land-use
systems due to logistical constraints. To gain a more
comprehensive understanding of litter-degrading soil
microbial communities and their responses to varying
environmental conditions, future research should be
conducted in a range of additional sites and land-use
systems.

In contrast to the accessible mesh bags, micro-
bial litter decay in the 37-um mesh bags resulted in
an apparent accumulation of N, similar to that found
in other studies (e.g., Pulunggono et al. 2019; Zhang
et al. 2020; Tennakoon et al. 2022). It was suggested
that intense colonization by fungal hyphae with their
relatively high N contents (3%—5%; Kim et al. 2003)
may concentrate additional N in the decaying litter
(e.g., Bonanomi et al. 2014; Chomel et al. 2016). In
our experiment, this mechanism would have diluted
the PN signature (APE) in litter because of the incor-
poration of new external N. Since the '°N signature
was stable, our results show that microbial litter deg-
radation resulted in N retention. This may happen due
to the higher C than N demand of the microbes, as
the initial C/N-ratio of the leaf litter exceeded 20 but
other resource use modes are also possible (Manzoni
et al. 2021).

Our study shows that roots grew into the decom-
posing litter within three months. Litter invasion by
roots was also evident by the increasing abundances
of AMF, which are obligate symbionts depend-
ing on plant-derived carbon (Oliveira et al. 2024).

However, it remains unclear how roots entered the
37-um mesh bags. The smallest root diameters of
oil palm roots (tertiary or quaternary roots) were
not smaller than 400 to 500 um (Yahya et al. 2010;
Kotowska et al. 2023). In other studies, fine root
diameters of various species were not less than 50
to 100 um (Kong et al. 2014). Therefore, the 37-um
mesh bags should have excluded roots. We observed
a moderate presence of weeds, which may have sent
roots into the mesh bags. Perhaps very thin weed
roots can squeeze themselves through micro-pores,
or use undetected tiny damage points in the mesh.
Roots in the 2-mm mesh bags resembled those in
the 37-um mesh bags, and thus, did not originate
from oil palms. The absence of oil palm roots in the
2-mm mesh bags was probably due to low soil fer-
tility in the inter-rows. The density of oil palm roots
is highest where fertilizers are placed, usually in the
palm circle (Pradiko et al. 2022). Since the inter-
rows were not fertilized, an expansion of oil palm
roots into this area was unlikely.

In our study, the biomass of the roots in the mesh
bags was very low, so large amounts of N could not
be captured. However, our labelling experiment
demonstrates the potential of roots for the acqui-
sition of N from degrading litter. Roots benefited
from N enrichment because they acquired more N
from degrading litter in the 37-um mesh bags than
roots in more accessible mesh bags, where we found
lower >N enrichment. The differences in the root
5N signatures suggested that roots fed on litter N
in the 37-um mesh bags and on soil N in the 2-mm
mesh bags.

Roots in tropical ecosystems preferentially explore
litter, not poor soil, for nutrients and, in turn, foster
microbial activities (Zhou et al. 2024). In line with
this, we observed that the appearance of roots in litter
was associated with increasing fungal species rich-
ness, thus, promoting microbial biodiversity. Further-
more, the accumulation of litter-derived °N in roots
highlights the contribution of roots to the recycling of
organic N. On the practical side, the productivity of
oil palms was maintained by the application of palm
residues compared with mineral fertilizers (Tao et al.
2017) and reduced nutrient leaching loss (Kurniawan
et al. 2018; Formaglio et al. 2021). Our study shows
that microbial N immobilization, stimulation of fun-
gal diversity and root N acquisition underpin these
beneficial effects.
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Fungal succession in decomposing oil palm litter
uncovers shifts from multitrophic/pathogenic to
saprotrophic/mycorrhizal communities

Leaf litter decomposition typically begins with the
degradation of easily hydrolysable compounds such
as sugars and hemicellulose, then progresses to more
complex polymers like cellulose and eventually
ligninLeaf litter decomposition typically begins with
the degradation of easily hydrolysable compounds
such as sugars and hemicellulose, then progresses to
more complex polymers like cellulose and eventually
lignin (Héttenschwiler et al. 2005). Fungi mediate
these processes by producing extracellular enzymes,
tailored for the successive breakdown of organic
materials (Asplund et al. 2018; Wang et al. 2020).
The interactions between soil fungi and bacteria also
influence litter decomposition, potentially accelerat-
ing the decay rates (Schneider et al. 2010). However,
fungi are generally considered the primary drivers
of litter decomposition (Schneider et al. 2010). With
different stages of litter decay, fungal taxa have been
classified as early, intermediate and late stage decom-
posers (Krishna and Mohan 2017). This trajectory has
been observed in various (sub)tropical environments
and substrates, including empty fruit bunches of oil
palm, wood, lignin, cellulose and leaf litter (Prom-
puttha et al. 2002, 2007; DeAngelis et al. 2011; Not-
tingham et al. 2018; Osono 2020; Dossa et al. 2021;
Tennakoon et al. 2022; Kusumaningtyas et al. 2565).
Our study confirmed a drastic shift in the fungal com-
munity from the early to later stages of litter mass
loss, accompanied by significant decreases in the
foliar C/N ratio. These findings are important because
our understanding of the ecological potential of litter-
colonizing fungi in degraded, herbicide-treated soils
is still limited.

We have previously shown that the composition
of soil fungal communities was highly similar across
different landscapes in tropical lowland oil palm plan-
tations, including the present study site (Brinkmann
et al. 2019). The main fungal orders in oil palm plan-
tation soils (Brinkmann et al. 2019) largely over-
lapped with the main fungal orders found here in leaf
litter (Hypocreales, Pleosporales, Sordariales, Chae-
tothyriales). For example, Hypocreales were the most
abundant order of early stage fungi. The greatest frac-
tion in this order was represented by Fusarium spe-
cies, which have also been identified as a major genus

@ Springer

in soil (Brinkmann et al. 2019). Fusarium sp. have
symbiotic, saprotrophic and pathogenic life styles;
distinct species can cause devastating diseases in oil
palm plantations (Suwandi et al. 2012), while oth-
ers have plant-protective functions (L"Haridon et al.
2011). Here, Fusarium sp. co-occurred together with
Trichoderma sp., which is known as bio-control agent
(Jin et al. 2022; Kabir et al. 2023). Fungi in litter not
only facilitate decomposition but can also have pro-
tective roles (Naidu et al. 2015). Here, early stage
oil palm litter was enriched with Rhizopogus sp.,
which is known to act synergistically with Fusarium
sp. to accelerate decay processes (Jatav et al. 2020).
Further, we found a number of fungal taxa that were
abundant at early decomposition stages in oil palm
litter but rare in soil (Brinkmann et al. 2019). For
example, Sebacinales have broad trophic abilities
(endophytes, ectomycorrhizal and saprotrophic spe-
cies) and some are famous growth-promoting species
(Serenpidita sp., previously known as Piriformospora
indica) (Weil} et al. 2016). Botryosphaeriaceae also
have a broad trophic range but contain many impor-
tant pathogens (Rathnayaka et al. 2023). Tremellales
grow well on sucrose (Bhatnagar et al. 2018), which
concurs with a role as early decomposers suggested
by their abundance at the early stage of litter decay
and lower abundances at late stages. Mucorales were
rare in soil (Brinkmann et al. 2019) but showed high
abundances in early stage oil palm leaf litter (this
study). An extensive investigation of fungi from dif-
ferent phyla on substrates of varying complexity
revealed that members of the Mucorales grow on
simple carbohydrates but hardly on cellulose or other
complex substrates (Leifheit et al. 2024). However,
this specificity may depend on the specific isolates
(Pawtowska et al. 2019). Altogether, a notable result
of our study was that multitrophic taxa and poten-
tially pathogenic fungi dominated the early stages of
decay of oil palm leaf litter.

Later stages of decay were characterized by a shift
to lower C/N ratios along with a surprising combi-
nation of fungal lifestyles: AMF, saprotrophic fungi
and fungi without trophic affiliation. A recent meta-
analysis (Chorefo-Parra and Treseder 2024) reported
positive effects of AMF on litter decomposition,
possibly via the exudation of plant-derived carbohy-
drates, which in turn stimulate saprotrophic microbes.
Chorefo-Parra & Treseder (2024) identified low
substrate C/N as the most important factor for AMF
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mediated decomposition and reported the greatest
positive effect sizes in leaf litter compared with other
degrading tissues (Chorefio-Parra and Treseder 2024).
Although it is unlikely that AMF are directly involved
in litter decay, their abundance and species richness
increased markedly in late-stage leaf litter with low
C/N ratios, supporting the possibility that they may
have indirectly influenced the decomposition process.
The increase in AMF diversity is noteworthy because
oil palm roots harbor only a very limited spectrum of
these symbionts compared with other tropical land
use systems (Edy et al. 2022). Therefore, the present
results indicate opportunities for soil biodiversity
restoration.

It was surprising to find that changes in litter traits
correlated with changes in the abundance of function-
ally unknown fungi, but not with an increase in sap-
rotrophic fungal taxa. We attribute this lack of cor-
relation to the limited understanding and research on
the ecological functions of fungi, particularly those
that are rare in soil but proliferate in degrading lit-
ter in tropical ecosystems (Stallman et al. 2024). Our
results therefore suggest that the observed pattern
does not necessarily reflect dominance by novel func-
tional groups but rather a shift in the composition of
saprotrophs, some of which are not yet functionally
characterized. This assumption is reasonable since
both annotated as well as many functionally unknown
taxa were members of the orders Sordariales and
Pleosporales. These orders comprise numerous spe-
cies classified in bioassays as cellulose and lignin
guilds (Bhatnagar et al. 2018). For example, Sord-
aria sp. primarily targets polysaccharides (Franco
et al. 2018); it is considered a pioneer species that
can modify the physical and chemical properties of
the litter, enhancing conditions for subsequent colo-
nizers (Rivera et al. 2025). Biotechnological studies
found superior lignolytic activities for several mem-
bers of the Pleosporales and Chaetosphaeriales, caus-
ing high rates of plant biomass conversion (Shrestha
et al. 2015). Members of the Chaetosphaeriales were
enriched in litter at the end of our study, suggesting
that they mark the transition into the last phase of
litter decomposition. As the group of fungi without
trophic annotation showed a tight relationship with
litter C concentrations, we speculate that these fungi
are potent litter saprotrophs. However, further studies
are needed to isolate and further characterize these
species.

Conclusions

This study shows that the composition of litter-
associated fungal communities shifted with the pro-
gression of litter degradation, leading to increased
soil fertility. This process resulted in N retention
and aided accumulation of litter-derived N in soil
and roots, contributing to N recycling. Thereby,
oil palm leaf litter can promote ecological ben-
efits in impoverished tropical plantation soil. Spe-
cifically, it can increase the diversity of beneficial
fungi, such as AMF, which are essential for plant
growth. By applying palm frond litter, farmers can
increase AMF diversity, potentially leading to more
sustainable plantation management. Furthermore,
our study highlights the potential for biotechnologi-
cal applications of fungal taxa with intense sapro-
trophic capabilities. While the potential benefits of
litter applications in impoverished tropical planta-
tion soil are promising, they also come with risks.
Early decomposition processes driven by multi-
trophic fungi can be problematic, as many of these
fungi have pathogenic potential. However, the pres-
ence of antagonistic fungi in leaf litter may help to
control these pathogens, suggesting that a deeper
understanding of their interactions is crucial. To
ensure the safe and effective use of litter applica-
tions, further research is needed to clarify the con-
ditions under which fungal communities can be
used to promote healthy litter decomposition. This
study highlights the importance of litter degradation
for N retention and recycling in tropical plantation
soil. Our findings provide practical opportunities for
the restoration of AMF diversity and suggest that
simple, affordable measures, such as applying palm
frond litter, can contribute to more sustainable plan-
tation management.
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