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Abstract

The research in this thesis integrates the complementary strengths of five machine

learning (ML) methods, namely logistic regression (LR), elastic net logistic regression

(ENET), support vector machines (SVM), random forests (RF), and neural networks

(NN), to simultaneously optimize predictive accuracy and refine variable selection in

binary classification tasks. Predictive performance of the ensemble with these five

base predictors is evaluated and the impacts of heterogeneity in predictive accuracy

and dependency between base predictors are quantified. A novel ensemble prediction

and feature selection method based on the majority vote approach, denoted as MV-FS

(majority vote-feature selection), is developed to mitigate the limitations of individual

predictors and so ensure robust performance across diverse datasets. Theoretical

and simulation evaluations of the proposed methodology provide insights into how

variations in the model performance and inter-model relationships influence overall

effectiveness, which in turn can be used to ensure generalisation and stability, even

in challenging classification scenarios.

To validate its practical effectiveness, the ensemble is applied to study two distinct

cases in the biological and soft matter areas. In the first case, the MV-FS method is

employed to explore the relationship between the physicochemical features of antimi-

crobial peptides (AMPs) and their antibacterial activities, a task of significant impor-

tance in drug discovery due to the growing need for novel antibiotics. In this regard,

ML has emerged as a powerful tool for predicting peptide sequences with enhanced

antimicrobial activity and selectivity, revolutionizing the way researchers approach
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the development of novel antimicrobial agents. By extending existing ML methods

via incorporating scientific knowledge of physicochemical and structural characteris-

tics of AMPs with a data-driven ensemble approach, the MV-FS method is able to

deepen confidence in identifying the key physicochemical features governing antimi-

crobial activity and predict regions in the physicochemical descriptor space with high

probabilities to find active AMPs.

In the second case, the ensemble is preliminarily tested for predicting the conforma-

tional transitions of single charged polymer chains, which can help understand the

structural variations of biomacromolecules in different environments and the associ-

ation behaviours of synthesised polymers for developing novel functional materials.

Using molecular dynamics simulation results as training datasets, the conformational

regimes predicted by the ensemble method agree well with theoretical expectations,

indicating the strong potential of ML methods in predicting the structural properties

of macromolecules, especially in regimes where brute force simulations are computa-

tionally very costly.

Overall, the research presented in this thesis not only advances the state-of-the-art in

ensemble learning for binary classification but also provides a scalable and adaptable

framework that can be extended to other domains. By combining interpretability,

robustness, and high predictive accuracy, the proposed methodology offers a powerful

tool for researchers and practitioners seeking to address classification problems with

high precision and reliability.
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Introduction

Antimicrobial peptides (AMPs) are short chains of amino acids with a broad spectrum

of antimicrobial activity. Found in various organisms, including humans, animals and

plants, AMPs can inhibit growth and replication of bacteria, fungi, viruses, and even

cancer cells (Zasloff, 2002). This anti-infective attribute coupled with a relatively low

likelihood of developing bacterial resistance make AMPs attractive candidates for ad-

dressing the growing problem of antibiotic resistance. Central to the application of

AMPs in antimicrobial drug development is knowledge on how their physicochemical

properties and structural features combine to influence antimicrobial activity. This

information is required to help identify the most effective existing naturally occur-

ring peptides, and is also used in the design of new peptides, to guide structural

modifications (such as amino acid substitutions or chemical modifications) so as to

tailor AMPs for specific microbial strains or conditions, and to enhance stability and

efficacy of active AMPs.

Machine learning (ML) has become a vital tool (Xu et al., 2021; Vishnepolsky et al.,

2018) in helping understand the mechanisms and identify key factors governing the

antimicrobial activity of AMPs. ML methods have been applied to identify hid-

den patterns and relationships between AMPs and predictors of activity, to predict

1
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peptide activity based on their sequences, structural information, physicochemical

properties and other characteristics (Torrent et al., 2011; Porto et al., 2012; Xiao

et al., 2013; Lira et al., 2013; Khamis et al., 2015), and suggest modifications to

existing peptides or propose entirely novel sequences with enhanced antimicrobial

activity (Wang et al., 2011; Maccari et al., 2013; Bhadra et al., 2018).

Notwithstanding the wealth of research in understanding and predicting the gen-

eral antimicrobial potency of AMP, in many instances the precise compositions and

mechanisms for AMPs being active against particular bacterial strains (Vishnepol-

sky et al., 2018) or other microbial strains remain unclear. There is also a lack of

high-performing ML models in the literature for predicting new amino acid sequences

with high therapeutic effects against particular microbial strains (Vishnepolsky et al.,

2019). These shortcomings motivate the research presented in this thesis. In partic-

ular, ML methods that are able to reliably identify the key features of AMPs driving

anti-infective activity against a particular infective agent, and to predict regions of

the feature space where such AMPs are highly likely to be found with high degrees of

sensitivity and specificity will be developed and evaluated. Ensemble learning is used

to realise both the feature identification and prediction objectives set in this work.

Feature selection techniques include filter methods that rank features based on intrin-

sic properties of the data (such as correlation with the outcome variables) and then

select the top-ranked features, wrapper methods (e.g. best subset and stepwise selec-

tion) that search for the subset of features that achieves the best performance (Kursa

& Rudnicki, 2010), and embedded methods (e.g. lasso and trees) that incorporate

feature selection directly into the model building process (Tibshirani, 1996; Breiman,
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1995). Moreover, ensemble feature selection aims to improve the robustness and per-

formance of feature selection processes by combining the outputs of multiple individ-

ual feature selection algorithms to make more informed and reliable decisions about

which features to include in a model. By leveraging the strengths of various algo-

rithms, ensemble feature selection approaches are able to identify features consistently

exhibiting high relevance across different methods, thereby increasing the robustness

of feature selection. They can also reduce the impact of biases or limitations associ-

ated with individual methods (Saeys et al., 2008), leading to enhanced feature ranking

and selection accuracy, effective dimensionality reduction and improved model gen-

eralization. In this thesis, a novel ensemble feature selection method is developed

and evaluated. Although methods have been proposed for improved identification of

anti-cancer peptides (Hu et al., 2011; Akbar et al., 2017; Ge et al., 2020), there is no

evidence in the literature on the use of ensemble feature selection methods within the

context of AMP activity.

ML methods based on different principles, or models based on different training sets,

can provide different predictions. An ensemble machine prediction method leverages

the strengths of a set of different methods and/or models by combining the predic-

tions of a set of base predictors to produce a final result that is optimal in the sense

that the combination reduces both bias and variance and provides better predictive

power than that of each constituent base predictor. These base predictors are typi-

cally simpler models that may individually have limitations or shortcomings but can

contribute collectively to a stronger final prediction when combined strategically. In

particular, when the data is nonlinear or involves intricate interactions, combining

multiple models allows complex relationships in the data to be captured.
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Ensemble methods have been widely and successfully deployed in various application

areas (Polikar, 2006). A crucial issue for designing a good ensemble prediction method

is the proper selection of base predictors (Polikar, 2006). Base predictors are often

designed to capture certain patterns or relationships in the data, but might not be able

to capture all the complexities of the underlying problem. To ensure the predictions

of the ensemble methods are statistically pairwise independent and correct with high

probability, base predictors should be both diverse and accurate. Another crucial issue

is the combination rule for integrating the outputs of the base predictors (Polikar,

2006). One example of the combination rule for discrete or categorical outcomes is

the majority vote which predicts the outcome as the most frequent class predicted by

the base predictors.

The thesis begins with an overview of ML methods and the theory underpinning the

techniques used therein. Common ensemble learning and feature selection techniques

will also be covered in the first chapter. Chapter 2 begins with a basic description

of peptides and their properties followed by a literature review on machine learn-

ing methods used for predicting AMP activity. Next, the DB-SCAN method imple-

mented by Vishnepolsky et al. (2018) is programmed and applied to the same peptide

sequences, as well as to a larger dataset, in efforts to validate the regions of the physic-

ochemical space where the authors suggested antimicrobial peptides (AMPs) active

against the Escherichia coli (e-coli) bacteria are highly likely to be found. Chapter

3 explores performances of other machine learning methods, and incorporates scien-

tific knowledge of key physicochemical features and structural characteristics with a

data-driven ensemble approach, to identify key factors governing antimicrobial ac-

tivity of AMPs against bacteria, and predict regions of the physicochemical space
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with a high probability of active peptides. The influence of diverse and accurate base

predictors and the majority vote combination rule in ensemble learning are evaluated

theoretically and via simulations before subsequently being applied to the analysis

of antimicrobial peptides in Chapter 4. In Chapter 5, the developed methods are

applied to enhance the prediction of conformational properties in charged polymers,

specifically through the construction of a conformational phase diagram for diblock

polyampholyte chains. Chapter 6 summarizes the key results and findings of the

thesis, while also addressing the limitations of the study and outlining potential di-

rections for future research. Notwithstanding the use of ensemble learning in the

thesis, it should be noted that the research was conducted with due recognition of

the fact that interpretable ML models are crucial for understanding the rationale

behind predictions and making informed decisions.

ML methods have gained significant prominence in various fields due to their ability to

extract valuable insights from data, automate decision-making processes, and enhance

predictive capabilities. For example, in healthcare they are used for disease diagnosis,

drug discovery, and patient management. There deep learning models can analyze

medical images to detect diseases like cancer (e.g., Koh et al., 2022), and predictive

models can forecast patient readmission rates (e.g., Huang et al., 2021). In finance,

examples of machine learning applications include the analysis of transaction data

to identify suspicious activities (fraud detection) (e.g., Hernandez Aros et al., 2024),

the prediction of stock prices based on historical data (e.g., Phuoc et al., 2024), and

credit scoring (e.g., Tyagi, 2022). ML methods also enable machines to generate and

manipulate human language in applications that include sentiment analysis, chatbots,

and language translation (e.g., Jurafsky & Martin, 2025), as well as to interpret and
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analyze visual information from images or videos in facial recognition, autonomous

vehicles, and object detection applications. Developed and evaluated in this thesis

are approaches that will allow researchers to effectively leverage this transformative

technology in the design of antimicrobial peptides and related research areas.



Chapter 1

Machine Learning Methods

Machine learning (ML) is a subset of artificial intelligence (AI) that utilises a wide

range of mathematical, statistical and computational techniques and algorithms with

the objective to enable computers to learn from data, and to make predictions or

decisions without explicit programming. Described in this chapter is a methodology

for the ML techniques used in this thesis. Consider a collection of functions or models

indexed by Ω, {f(x;ω);ω ∈ Ω}, with input observation(s) x and let y(x;ω) denote

the output of f(x;ω). The input observations are also known as predictor variables,

independent variables or features; the output is also called the response, outcome,

dependent variable or target. These terms will be used interchangeably throughout

the thesis. Also, for convenience, arguments of y(x;ω) and f(x;ω) may frequently

be dropped. The ML training process involves determining from the collection the

model f(x;ω) that optimises an objective defined by the output. The learning process

encompasses the training and the trained model’s ability to generalize and make

predictions on new, unseen data.

7
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The work in this thesis focuses on supervised learning. Here training is achieved using

a dataset consisting of N paired observations (yi,xi), where the observed response

yi and predictor variables xi; i = 1, . . . , N, are typically realisations of a random re-

sponse variable Y and a random vector variable X, respectively. This type of dataset

is known as labelled data in the computer sciences. The primary objective of super-

vised learning is to be able to use previously unseen observations x to predict the

outcome y with a high level of certainty (Hastie et al., 2011). Common supervised

learning algorithms include linear regression, logistic regression, neural networks, de-

cision trees, and support vector machines. The theory underlying these and other

supervised ML methods are covered in this chapter.

When training is done using data xi; i = 1, . . . , N, that do not include a response

or output, otherwise known as unlabelled data, the learning is said to be unsuper-

vised. Here the goal is to discover interesting features about the problem studied

using observations of X only. Clustering and dimensionality reduction are common

tasks in unsupervised learning, with methods such as k-means clustering (MacQueen,

1967), hierarchical clustering (Lance & Williams, 1967) and principal component

analysis (PCA) (Pearson, 1901) used to identify patterns, structures, or groupings in

the training data. Interestingly, an unsupervised learning density-based spatial clus-

tering method (DB-SCAN) (Ester et al., 1996) was implemented in the motivating

work (Vishnepolsky et al., 2018) for this research. This method will be introduced in

this chapter.

Alongside supervised and unsupervised learning, there is reinforcement learning (for

example, see Sutton & Barton, 2018) where the training is the trade-off between ex-

ploration and exploitation along with reward, which can be positive for all state-action
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pairs, to make sequential decisions that maximize a cumulative reward function. This

type of learning is prevalent in robotics, game-playing AI, and autonomous systems

and is achieved using algorithms such as Monte Carlo, state-action-reward-state-

action (SARSA), Q-learning and deep Q-networks (DQN). Reinforcement learning

is not covered in this thesis.

Methods used for training can also be classed as either parametric, non-parametric

or semi-parametric, depending on how the models in the collection used for training

are defined. Parametric methods use a collection of models that are well-defined

in a finite-dimensional parameter space, meaning their properties are completely and

unambiguously determined by their parameters. A simple example is linear regression

where

f(x) = β0 + β1x1 + . . .+ βpxp, (1.1)

for observed predictor variables x = (x1, . . . , xp) and β =

(
β0 β1 · · · βp

)T

an

unknown parameter vector in (p + 1) dimensional parameter space. Other methods

include principal component analysis, discriminant analysis, logistic regression, neural

networks, ridge regression, lasso and elastic net. In contrast, non-parametric methods

do not assume a rigid parametric form for the fitted model (James et al., 2023) and

include methods such as k-means clustering, kernel logistic regression, decision trees

and support vector machines. Nonparametric models are not completely lacking in

parameters but rather, the number of parameters is flexible. In fact, as will be

seen later, the specification of the models in non-parametric methods requires an

assumption of an infinite-dimensional parameter space. Semiparametric methods use

models that combine parametric and nonparametric models and so have a model
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component with finite-dimensional parameter space, and another with an infinite-

dimensional parameter space. A well-known example is the Cox model (Cox, 1972)

f(t) = f0(t)e
β0+β1x1+...+βpxp , where t typically denotes time. The function f0(t) (a

step function) is not pre-specified in terms of any parameters and represents the non-

parametric component, whereas β0 + β1x1 + . . .+ βpxp is the parametric component.

It is often computationally much easier to estimate a parametric model than a non-

parametric model and the parametric model is also easier to interpret and understand.

However, a parametric model may not match the true form of the relationship between

the response Y and predictor variables X. Indeed, as its parameter space is unre-

stricted, the non-parametric approach has the potential to fit a wider range of possible

shapes for this relationship. In other words, it is more flexible than the parametric

method. This modelling flexibility however comes at a cost. The non-parametric ap-

proach usually requires a larger number of observations and is more likely to overfit

the training data, which can reduce the model’s generalisability. Also, complicated

models may be difficult to interpret and may limit understanding of the relationship

between an individual predictor variable and the response. Semi-parametric methods

seek to capitalise on the strengths of parametric and non-parametric models, but

increasing both model flexibility and interpretability.

As will become evident in the following section, components of the training procedure

for different ML methods tend to be different, which leads to learning algorithms

with different strengths and weaknesses. This variation in training coupled with

the difference between parametric and non-parametric models produces a diverse

repertoire of ML methods. This thesis explores conditions under which this diversity

is advantageous and investigates how it may be exploited to improve the learning
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process.

1.1 Supervised Learning

Consider the random response variable Y and a random vector X and suppose of

interest is to learn the relationship f between Y and X using N paired observations

(yi,xi); i = 1, . . . , N. Often very little is known about the form of f and the primary

concern of the training process is to find an approximation or estimate to be used in

making predictions of the output Y for a given value of X, and to make inferences

about the relationship between Y and X. As distinguishing between the various types

of estimators is not crucial to understanding the work in this thesis, for simplicity

of notation and unless it compromises clarity and comprehension, all estimators will

be denoted using the caret ‘̂’ notation. A good estimator f̂ of f produces accurate

estimates of Y with low variability. The data used to estimate f is called training

data. If the predictive power of f̂ is evaluated using a second independent dataset, this

is called the test dataset. The structure of f and its estimation for various supervised

learning procedures are covered below. Methods for evaluating the predictive power

of f are introduced in Section 1.4.

1.1.1 Linear regression

Linear regression is a fundamental, widely used technique in supervised machine learn-

ing and statistics. It is a simple but powerful method for modelling the relationship

between a continuous outcome Y and a set of predictor variables X = (X1, . . . , Xp).

It is also very useful for explaining the driving principles and concepts for all ML
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methods. Following this section is an introduction to the ML methods for discrete or

categorical outcomes used in the thesis. In the realm of ML terminology, techniques

designed for handling continuous outcomes are often denoted as regression methods,

whereas those tailored to discrete or categorical outcomes are labelled as classification

methods.

The multiple linear regression model is Y = f(x) + ϵ, where f(x) is provided by

equation (1.1) and ϵ quantifies the deviation between Y and f(x). The training

process uses training data (yi,xi); i = 1, . . . , N to determine the form of f(x) that

minimises the sum of squared errors loss function or residual sum of squares,

RSS =
N∑
i=1

[yi − f(xi)]
2 =

N∑
i=1

[yi − (β0 + β1xi1 + . . .+ βpxip)]
2 , (1.2)

over the parameter space β. The minimising function is called the fitted model and is

denoted f̂(x). The label “squared errors” for the objective function RSS comes from

the fact that yi − f(xi) is the error ei or “loss” incurred as a result of using f(xi) to

estimate yi. This objective function is also sometimes referred to as the L2 norm loss

function as it is the square of the L2 norm of the error vector

(
e1 · · · eN

)
. While

for inferential purposes the error random variable ϵ is assumed to follow a normal

distribution with mean µ = 0 and variance σ2, that is ϵ ∼ N(0, σ2), this assumption

is not necessary when determining the optimal model in the training procedure.

From the matrix X such that its ith row is the observed predictor vector xi but
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with a leading 1 appended. Thus X =



1 x11 · · · x1p

1 x21 · · · x2p

...
...

...
...

1 xN1 · · · xNp


. As the ith element of

the product Xβ is simply f(xi), the linear regression optimisation problem can be

written as

min
β
R = min

β

{
(y −Xβ)T (y −Xβ)

}
, (1.3)

where y =

(
y1 · · · yN

)T

is the vector of observed outcomes. Using straightforward

differential calculus it can be shown that this has solution β̂ =

(
β̂0 β̂1 · · · β̂p

)T

given by

β̂ =
(
XTX

)−1
XTy, (1.4)

and the equation of the fitted model is therefore f̂(x) = β̂0 + β̂1x1 + · · ·+ β̂pxp.

Note that if the model does not include an intercept term β0, the first column of the

matrix X is dropped. Also note from equation (1.4) that multiplying any observed

predictor variable xj by a constant c simply leads to scaling of the estimate β̂j by
1
c

and therefore the product xjβ̂j, and hence the predicted value ŷ, remains unchanged.

In other words, the least squares estimates are scale invariant.

Clearly existence of the estimates β̂ depends on whether the matrix XTX is in-

vertible, in other words whether observed values of X1, X2, . . . , Xp are linearly inde-

pendent. More importantly, although these estimates may exist they can be highly

unstable, that is a small change in the training dataset can lead to a big change
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in the estimates, if the observed predictor variables are nearly dependent (multi-

collinear). This is because it can be shown that the variance-covariance matrix

V ar
(
β̂
)

=
(
XTX

)−1
σ2 and hence variances of the estimates can be large if the

determinant of XTX is close to zero. We can reduce this variance by shrinking or

setting some elements of the parameter vector β to zero.

In shrinkage methods, all p predictor variables are fitted, but the estimates of the

model parameters β1, . . . , βp are shrunk towards zero relative to the least squares

estimates by introducing an additional penalty in the objective function provided in

equation (1.3). This shrinkage, also known as regularization, has the effect of reducing

the variance of the parameter estimates (Hastie et al., 2011), and can also be used

to do variable selection, see Section 1.5. In particular, predictor variables for which

the parameter estimates are shrunk to zero may not be relevant to the response. The

three regularisation techniques introduced here are ridge regression, lasso regression

and elastic net regression.

Ridge regression

Ridge regression (Hoerl & Kennard, 1970) shrinks the regression parameter estimates

by restricting the L2 norm, ∥β∥2 =
√

βTβ =
√∑p

j=1 β
2
j , of the parameter vector

β =

(
β1 · · · βp

)T

in the optimisation problem given by equation (1.3), without

the intercept term β0. The ridge regression estimates β̂ridge are therefore defined by,

β̂ridge = argmin
β∈Rp

{
(y −Xβ)T (y −Xβ)

}
subject to βTβ ≤ s,
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for some s > 0. Reformulated in terms of “Loss + Penalty”, or Lagrangian form, the

ridge regression estimates are

β̂ridge = argmin
β∈Rp

{
(y −Xβ)T (y −Xβ) + λβTβ

}
, (1.5)

where λ ≥ 0 is a tuning (smoothing) parameter, to be determined separately. As was

the case for linear regression, this is a straightforward optimisation problem with a

solution,

β̂ridge =
(
XTX + λI

)−1
XTy, (1.6)

where I is the Identity matrix.

Note that, if it is included in the model, the intercept parameter β0 in ridge regression

is usually unpenalised (Hastie et al., 2011) and thus the ridge regression estimates

with intercept included are

(β̂0, β̂
ridge) = argmin

β0∈R,β∈Rp

{
(y − β01−Xβ)T (y − β01−Xβ) + λβTβ

}
,

where 1 is a column vector of all ones. If the columns of X are centered, that

is each element xij gets replaced by xij − x̄j where x̄j =
∑

i xij/N , the intercept

estimate is simply β̂0 = ȳ =
∑

i yi/N . Typically columns of X and the vector y

are both centred and so an intercept parameter is not included in the model (Hastie

et al., 2011). Also, whereas the least squares estimate in linear regression are scale-

invariant, in contrast, because of the penalty
∑p

j=1 β
2
j , the ridge regression estimate

β̂ridge
j can change substantially when multiplying xj by a constant. To avoid this

scale invariance introducing biases into predicting the outcome y, it is best to apply

ridge regression after scaling each predictor variable by its standard deviation (James
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et al., 2023).

The tuning parameter λ helps to control the relative importance of the data-dependent

empirical error and the penalty term (Ogutu et al., 2012). When λ = 0, the penalty

term has no effect and ridge regression estimates are the same as least squares es-

timates. Whereas λ → ∞, the penalty term has increasing impact and the ridge

regression estimates will converge to zero (James et al., 2023). In general, ridge re-

gression works better than standard regression if the number of predictor variables p

is almost as large as the number of training observations N as in this case, provided

the relationship between Y and X is close to linear, the standard regression estimates

β̂ will have low bias but may have high variance. Also, if p > N , standard regression

estimates do not have a unique solution. As a variable selection method, ridge re-

gression has computational advantages, in terms of the number of models fitted, over

other variable selection methods, (see Section 1.5), but one obvious disadvantage is

that the ridge estimates are not typically shrunk to zero and hence all p predictor

variables are potentially included in the final model.

Lasso regression

Least Absolute Shrinkage and Selection Operator or lasso (Tibshirani, 1996), is a

relatively recent alternative to ridge regression that is able to exactly shrink some

parameter estimates to zero. The method was motivated by a proposal published

in Breiman (1995) for shrinking the standard regression estimates β̂1, . . . , β̂p by min-

imising

N∑
i=1

[
yi − β̂0 −

(
c1β̂1xi1 + . . .+ cpβ̂pxip

)]2
subject to cj > 0 ∀j,

p∑
j=1

cj ≤ t, t > 0.
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This optimisation procedure was termed a “nonnegative garotte” by the author.

Starting with the standard regression estimates, the garotte shrinks each β̂j by the

non-negative factor cj under the constraint
∑p

j=1 cj ≤ t and t > 0. Using simulation

studies, Breiman (1995) showed that the garotte compares well with ridge regres-

sion except when the true model has many small non-zero parameters. However,

the Garotte solution is dependent on the sign and magnitude of the standard regres-

sion estimates and can suffer if the model overfits the training data, or the predictor

variables are correlated (Tibshirani, 1996).

Tibshirani (1996) proposed modifying the optimisation of equation (1.3) without the

intercept term by constraining the L1 norm, ∥β∥1 =
∑p

j=1 |βj|, of β =

(
β1 · · · βp

)T

.

Use of the L1 norm penalty gives rise to the lasso estimates,

β̂lasso = argmin
β∈Rp

{
(y −Xβ)T (y −Xβ)

}
subject to ∥β∥1 ≤ t, t > 0,

or in Lagrangian form,

β̂lasso = argmin
β∈Rp

{
(y −Xβ)T (y −Xβ) + λ

p∑
j=1

|βj|

}
, (1.7)

where λ ≥ 0 is a tuning parameter.

The lasso optimisation problem is very similar to ridge regression, with the L2 penalty

replaced by the L1 penalty. As in ridge regression, the data are typically standardised

before use in training, and the intercept term is unpenalised if included in the model.

Also, the smoothing parameter acts in a similar way as in ridge regression. However,

unlike linear and ridge regression, there is no closed form expression for the lasso

estimates β̂lasso as the ℓ1 penalty leads to solutions that are nonlinear in the observed
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outcomes y (Hastie et al., 2011). Furthermore, unlike ridge regression, the ℓ1 norm

penalty has the effect of forcing some of the coefficient estimates to be exactly equal

to zero when the tuning parameter (λ) is sufficiently large (James et al., 2023).

Elastic net regression

Elastic net regression, proposed by Zou and Hastie (2005), is a shrinkage method

that is a mixture of lasso and ridge regression. Like lasso regression, it is able to do

intrinsic variable selection, while like ridge regression, it is able to shrink together the

estimates of correlated predictor variables. Thus, it can be viewed as a generalization

of lasso regression that is strong against extreme correlations between the predictor

variables (Ogutu et al., 2012).

Assume the observed response vector y is centred and the predictor variables xij are

standardized, as above, so that the training observations satisfy,

n∑
i=1

yi = 0,
n∑

i=1

xij = 0 and
n∑

i=1

x2ij = 1, for j = 1, 2, . . . , p.

The näıve elastic net parameter estimates are defined as (Zou & Hastie, 2005),

β̂naive = argmin
β∈Rp

{
(y −Xβ)T (y −Xβ) + λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj|

}
, (1.8)

for λ1, λ2 > 0. Denoting α = λ2/(λ1+λ2) the authors argue that this is equivalent to

β̂naive = argmin
β∈Rp

{
(y −Xβ)T (y −Xβ)

}
subject to (1− α)

p∑
j=1

|βj|+ α

p∑
j=1

β2
j ≤ t.

This convex combination of lasso and ridge regression penalities, (1− α)
∑p

j=1 |βj|+
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α
∑p

j=1 β
2
j ; 0 ≤ α ≤ 1, is the elastic net penalty. If α = 1 the solution β̂naive is the

ridge estimates whereas if α = 0 the lasso estimates are obtained.

Using data from a real study, as well as simulations, Zou and Hastie (2005) show that

the naive elastic net procedure tends to overshrink the parameters unless the penalty

is very close to either ridge regression or lasso, and propose to address this via the

modification,

β̂enet = (1 + λ2)argmin
β∈Rp

{
(y −Xβ)T (y −Xβ) + λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj|

}
, (1.9)

where β̂enet = (1 + λ2)β̂
naive are the elastic net estimates of β. The authors provide

theoretical justification for this scaling in Section 3.2 of their manuscript. If the pre-

dictor variables are not standardised, the elastic net parameter estimates are obtained

by replacing 1 + λ2 in equation (1.9) by 1 + λ2/N (Zou & Zhang, 2009).

The minimising the sum of squared error loss function procedure for parameter esti-

mation introduced in this section is known as the least squares method, and is one

of a variety of parameter estimation methods introduced in this chapter. Different

estimation methods tend to produce different estimates but this is not always the

case. For example, Maximum Likelihood Estimation (MLE), which is introduced be-

low, produces estimates for the linear regression model that are identical to the least

squares estimates.

There are several other issues (see James et al., 2023, for example) to consider before

the fitted model is used in prediction and inference. A common question asked of the

fitted model is whether or not all the predictor variables help to explain Y , or whether

only a subset will suffice. This question motivates the feature (variable) selection



20

component of this research and will be addressed later in the chapter. Another

common question which will be addressed later in detail relates to accuracy of the

predictions. Issues that are equally important, such as how well the model fits the

data, whether some responses in the training data are far from their predicted values

(outliers) and whether some observations have a strong influence on estimation of

model parameters, are not the focus of this thesis and so are not covered.

1.1.2 Logistic regression

Logistic regression analysis (Cox, 1958) is a well-established statistical technique used

to build and interpret a model of the relationship between predictor variables X and

a binary or binomial response variable Y . In machine learning, logistic regression may

be used to model the probability of a K = 2 class output or outcome via the linear

function in the predictor variables given by β0+β1X1+. . .+βpXp. For ease of notation

this linear function is written here as β0 +Xβ, where the vector X = (X1, . . . , Xp)

and the vector β = (β1, . . . , βp)
T , as before. Assuming the binary response Y takes

values 0 or 1, and denoting the probability that Y = 1 conditional on the observations

x of X as P (x; β0,β), the logistic regression model is given by

logit(P (x; β0,β)) = β0 + xβ, (1.10)

where logit(P) = logP/(1 − P) is the logit transformation. This probability model

can be used to predict class membership for given values of x if values for the param-

eters β0 and β are available. Note that, as will be seen in the models of AMP activity

in this thesis, the linear component β0+xβ can be extended to quadratic and higher
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order polynomials in x by simply linearly adding the appropriate terms. Another ex-

tension of the logistic model to non-linearly separable data classification problems is

kernel logistic regression (Zhu & Hastie, 2005), which uses concepts similar to support

vector machines. This method is not covered in the thesis.

Estimates of β0 and β are obtained by maximising, over β0,β, the objective function

L(β0,β) =
N∏
i=1

P (xi; β0,β)
yi (1− P (xi; β0,β))

(1−yi) , (1.11)

where (yi,xi); i = 1, . . . , N is the training data. This function is algebraically the

joint conditional probability of observing the binary outcomes y1, . . . , yN given the

predictor values, but it is taken as a function of the parameters β0 and β, and there-

fore it quantifies how likely the observed data is under various parameter values.

In particular, the observations are most probable under the assumed model when

L(β0,β) attains its maximum value. The rationale for estimating β0 and β by maxi-

mizing L(β0,β) is that the best estimators are those which make the observed data

most probable. The function L(β0,β) is known as the likelihood function, or simply

the likelihood, and a parameter value β̂ which L(β0,β) attains its maximum value is

known as a maximum likelihood estimate (MLE).

Equivalently, and for ease of the computational complexity, the log-likelihood

ℓ (β0,β) =
N∑
i=1

{yi logP (xi; β0,β) + (1− yi) log (1− P (xi; β0,β))} , (1.12)

is maximised. Substituting for P (xi; β0, β), see equation (1.10), and simplifying gives

=
N∑
i=1

{
yi(β0 + xiβ)− log

(
1 + eβ0+xiβ

)}
. (1.13)
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Setting the derivatives of ℓ (β0,β) to zero produces the score equations,

U =

∂ℓ(β0,β)
∂β0

∂ℓ(β0,β)
∂β

 =

0

0

 , (1.14)

where

∂ℓ (β0,β)

∂β0
=

N∑
i=1

(yi − P (xi; β0, β)) and
∂ℓ (β0,β)

∂β
=

N∑
i=1

xT
i (yi − P (xi; β0,β)).

(1.15)

These are p+1 nonlinear equations in β0 and β which are solved numerically, as there

is no analytic solution in the general case. In particular, the score equations may be

solved using the Newton-Raphson algorithm, which requires the second-derivative or

Hessian matrix,

H =

∂2ℓ(β0,β)

∂β2
0

∂2ℓ(β0,β)
∂βT ∂β0

∂2ℓ(β0,β)
∂β0∂β

∂2ℓ(β0,β)
∂βT ∂β

,

 (1.16)

where

∂2ℓ (β0,β)

∂β2
0

= −
N∑
i=1

P (xi; β0β) (1− P (xi; β0,β)), (1.17)

∂2ℓ (β0;β)

∂βT∂β
= −

N∑
i=1

xT
i xiP (xi; β0,β) (1− P (xi; β0,β)), (1.18)

∂2ℓ (β0,β)

∂βT∂β0
= −

N∑
i=1

xiP (xi; β0,β) (1− P (xi; β0,β)), (1.19)

and ∂2ℓ(β0,β)
∂β0∂β

=
(

∂2ℓ(β0,β)
∂βT ∂β0

)T
. Starting with

(
β0 β

)old

, a single Newton update is

(
β0 β

)new

=

(
β0 β

)old

−H−1U, (1.20)
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where the score U and hessian H are evaluated at

(
β0 β

)old

.

Note that the hessian H of second derivatives of the log-likelihood function ℓ (β0,β)

is the negative of observed Fisher Information Î (β0,β) while taking expectation over

the random vector of observations Y produces Fisher Information matrix I. In this

case, the above second derivatives do not include Y and thus E(Î) = I, i.e. observed

and expected Fisher Information are identical. Replacing H in equation (1.20) with

I, called Fisher scoring, can help to improve convergence and is used in numerical

algorithms to obtain the maximum likelihood estimates β̂0 and β̂, which are then

used to estimate the probability P̂(x) = P(x, β̂0, β̂).

1.1.3 Logistic elastic net regression

Similarly to linear regression with the elastic net penalty, logistic elastic net regres-

sion (Zou & Hastie, 2005) fits the logistic regression model but with the combined

lasso and ridge regularization. Parameter estimation is via regularized maximum

likelihood. In particular, the logistic elastic net estimates are provided by Friedman

et al. (2010),

(β̂0, β̂
enet) =

1

N
argmax
β0∈R,β∈Rp

{
ℓ (β0,β)− λ

(
α

2

p∑
j=1

β2
j + (1− α)

p∑
j=1

|βj|

)}
, (1.21)

where ℓ (β0,β) is given in equation (1.13). As stated earlier, the L1 norm penalty

generates a sparse model while the L2 norm penalty encourages grouping effects

and stabilizes the L1 regularization path (Zou & Hastie, 2005). The grouping effect

occurs when parameters corresponding to highly associated predictor variables differ

only slightly (Zhou, 2013; Yi et al., 2022), while stability is defined as the robustness
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to slight changes in data (Kamkar et al., 2016). Choice of the parameter α allows

adjustment of the trade-off between sparsity and stability.

Elastic net regression’s inherent ability to perform variable selection via regulariza-

tion makes it a valuable tool in situations where controlling overfitting is essential.

Overfitting occurs when a machine learning model learns the training data too well,

capturing noise and specific patterns that do not generalize to unseen data, leading

to poor performance on new observations. Elastic net can be particularly useful if the

dataset has multicollinearity issues (where predictor variables are highly correlated).

As shown above, parameter estimation for the traditional logistic regression model is

via weighted least squares and, as argued in Section 1.1.1, this method can produce

unstable parameter estimates with high variability in the presence of multicollinearity.

On the other hand, the logistic elastic net regression estimates are less likely to suffer

from these issues. Application of logistic elastic net regression is prevalent in various

domains, including healthcare for disease prediction, finance for credit scoring, and

marketing for customer churn prediction. Software is readily available in many pop-

ular data analysis and machine learning libraries, including glmnet (Friedman et al.,

2010) in the R software (R Core Team, 2021), making it easily accessible.

Maximum likelihood estimation, utilised by both logistic and logistic elastic net re-

gression methods, provides the most efficient estimators when the assumptions of the

likelihood function are met. In particular, unbiased maximum likelihood estimators

achieve Rao-Cramér lower bound (Rao, 1945; Cramér, 1946) while, in general, they

are usually asymptotically unbiased and have the smallest possible variances. MLEs

can also be robust to outliers if the likelihood function used is less affected by extreme

observations. However, a limitation of the maximum likelihood estimation method is
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its dependence on specification of a statistical model of the data distribution. This

explicit specification of a likelihood function is not required in the other machine

learning methods considered in this chapter.

1.1.4 Classification trees

A tree model constructs the relationship between the response Y and its predictor

variables X1, . . . , Xp by stratifying or segmenting the set of possible values for the

predictor variables (the predictor space) into several smaller and more homogeneous

regions, and fitting a simple model, (such as the mean response in the case of a contin-

uous response, or the most frequent outcome, for discrete or categorical responses),

in each region. The relationship between response and predictor variables is often

depicted using a tree diagram, but upside down in the sense that the leaves are at

the bottom of the tree. The root is the top node of the tree and represents the entire

dataset or population being classified. Each internal node is characterised by a pre-

dictor variable, or feature, and a condition or rule that splits the population into two

or more subsets based on that predictor variable. Branches emanate from internal

nodes and represent the path to follow based on the condition specified at the internal

node. Finally, the leaves (or terminal nodes) represent the predicted outcomes for

observations from the population. The tree diagram used for depicting the tree model

of a continuous response Y is known as a regression tree while that for a discrete or

categorical response is called a classification tree.

Figure 1.1 illustrates a classification tree model that involves making a sequence of

binary decisions. The prediction model for an observation (X1, . . . , X5) follows the
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Figure 1.1: The tree diagram. A classification tree depicting the tree model of a
binary (Yes/No) outcome and five predictor variables (X1-X5) as a sequence of binary
decisions.

path determined by whether or not X4 is greater than some known constant t1, and

continues by following the conditions specified at each node until a leaf is reached.

The depth of a tree is the maximal length of a path from the root to a leaf. The

example in the figure has a depth equal to four. A deeper tree can capture more

complex patterns in the data, but is likely to reduce the model’s generalisability to

unseen data (overfitting). A tree with a depth equal to one is called a stump.

The classification trees used in this thesis are fitted using recursive binary parti-

tioning (Hastie et al., 2011). This process starts by splitting the predictor space

X1, . . . , Xp into two regions, modelling the response Y in each region, and choosing

the predictor variable Xj and the point s at which this predictor variable is split to

achieve the best fit. Next, both of these regions are split into two more regions, and
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this process of splitting continues, until some stopping criterion is reached. The nodes

of the tree are defined by the regions obtained in the splitting process.

For classification trees, a stopping criterion is that splitting stops if the region (node)

is pure, that is all of the training observations within the region are of the same class,

but this criterion produces a perfect fit to the training data and potential overfitting.

An alternative is to set the tree depth appropriately to avoid the tree being both too

deep or too shallow, and underfitting the data. In practice, the optimal tree depth

can be set as a hyper-parameter in the fitting algorithm, and is determined using

the training data. Methods for doing so will be discussed later. Other options for

stopping include not splitting if the number of observations in a region is less than

some minimum number, or if some minimum level of gain is not achieved by the split.

Measures of gain are discussed below.

Consider the problem of splitting a particular region constructed in the recursive

process into two regions R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} in order

to achieve the best split. The fitted value within R1 is its most commonly occurring

outcome, and so, given j and s, a natural measure of fit is the fraction of observations

that do not belong to the most common class,

E1 = 1−max
k
p̂k, (1.22)

where p̂k denotes the proportion of training observations in R1 belonging to class

k; k = 1, . . . , K. Similarly for R2. A good fitting model will have a small value for

the overall error E, given by a weighted average of E1 and E2. So this problem
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reduces to solving

min
j,s

{
n1(j, s)

n
E1(j, s) +

n2(j, s)

n
E2(j, s)

}
, (1.23)

by scanning all possibilities for j and s, where n1(j, s) is the number of observations in

R1(j, s), n2(j, s) is the number of observations in R2(j, s) and n = n1(j, s) + n2(j, s).

However, it turns out (James et al., 2023) that E is not sufficiently sensitive for

constructing the tree and either Gini Index (Breiman et al., 1984), defined for a

region as

G =
K∑
k=1

p̂k (1− p̂k) , (1.24)

or cross-entropy (deviance) (Shannon, 1948),

D =−
K∑
k=1

p̂k log p̂k, (1.25)

is preferred. Notice that log(p) = log(1 − (1 − p)) ≈ −(1 − p), by Taylor Theorem,

and so G and D are numerically similar.

Gini Index is a measure of variance between the K classes. It is small if all the p̂k are

close to zero or one, and so is referred to as a measure of node purity. As the objective

of the tree-building process is construction of homogeneous regions, the chosen split

at each stage of the process produces the lowest Gini Index. In other words, as in the

above, the splitting criteria for a region are given by the values for j and s that solve

min
j,s

{
n1(j, s)

n
G1(j, s) +

n2(j, s)

n
G2(j, s)

}
. (1.26)
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Similarly, the chosen split produces the highest reduction in cross-entropy, where the

change in cross-entropy due to splitting into the two regions R1(j, s) and R2(j, s)

is given by the difference between cross-entropy D of the region and the average

cross-entropy, n1(j,s)
n

D1(j, s) +
n2(j,s)

n
D2(j, s).

Note that in cases where the predictor variableXj is numeric, as assumed in the above

description, split points s are usually restricted to mid-points between consecutively

ordered and distinct observed values of Xj. In the case of a categorical variable, the

split points are levels of the variable. Note also that recursive binary splitting does not

always lead to the optimal model as the best split is made at each step, rather than

looking ahead and picking a split that leads to a better model in some future step.

This approach is often described as greedy. Furthermore, to prevent overfitting, trees

may be grown using pruning (see James et al., 2023, for example) which is a process

of simplifying the tree by removing branches that do not contribute significantly to

the accuracy of the classification.

Wei Yin Loh (2014) credits the regression tree algorithm of Morgan and Sonquist (1963)

as the first of its kind to be published in the literature but asserts that the book Clas-

sification and Regression Trees (CART) (Breiman et al., 1984) was instrumental in

regenerating interest in the subject. One of the advantages of classification trees is

their interpretability. They provide a clear, human-readable structure that can be

easily understood and visualized, making them a valuable tool for explaining the

decision-making process to non-technical stakeholders. Classification trees are widely

used in various fields, including finance, healthcare, marketing, and natural language

processing. They are the basis for more advanced ensemble methods like random
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forests and gradient boosting, which combine multiple decision trees to improve clas-

sification accuracy and robustness.

Random forest

Ho (1995, 1998) proposal to address the tree model’s lack of generalisation by con-

structing a collection of trees, or forest, using randomly selected subspaces of the

predictor space is the first appearance of this concept found in the literature. With

p predictor variables, there are 2p possible subspaces over which trees can be con-

structed. For each selected subspace, Ho constructs the tree using the entire training

dataset and used examples to illustrate that his approach maintains the highest ac-

curacy on the training data and improves on generalization accuracy. The author

advises that independence between trees is critical if the forest is to achieve better

accuracy than individual trees.

Subsequently, Breiman (2001) provides a formal definition of a random forest as a

collection of trees with the same distribution, and with each tree in the collection

dependent on values of a random vector, sampled independently. Breiman (2001)

additionally presents a theoretical underpinning for random forests and uses this to

argue that this approach solves the overfitting problem. The author also shows that

accuracy of a random forest depends on the accuracy of individual trees and the

dependence between them, in concurrence with Ho (1995, 1998). This issue will be

covered is some detail in Chapter 4 within a more general context.

In practice, a random vector is generated for each tree, independent of previously

generated random vectors but with the same distribution, and the tree is grown
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using the training dataset and the random vector. For instance, suppose we have a

single training dataset with N observations, indexed by 1 to N . The dataset used to

grow a particular tree in the collection can be N random observations selected with

replacement from this dataset, in which case the random vector associated with this

tree is N randomly selected members from {1, . . . , N}. In general, this resampling

method for model fitting and parameter estimation is known as bootstrapping. To

further decouple trees in the forest, Breiman (2001) introduces the concept of using a

random selection of the p predictor variables at each node to determine the split and

uses empirical evidence to show that accuracy is unaffected by the number of predictor

variables selected. After a large number of classification trees are generated, the fitted

value for a given observation is the most popular class predicted by the trees. This

approach for constructing a forest of trees is utilised in this thesis.

The random forest’s potential gain in prediction accuracy over a single tree comes

at the cost of interpretability, as it is more difficult to identify from a collection of

models the variables that are most important in predicting the outcome. However,

summary measures of variable importance can help. One such is Gini Importance,

or Mean Decrease in Impurity, which is based on how much a predictor variable

decreases the Gini Index (or any other impurity measure like deviance) when it is

used for splitting nodes. Every time a variable is used to split the data, the change

in Gini Index from before to after the split is measured and the importance score of

the variable is calculated by summing up the change in Gini Index across all nodes

where the variable was used, averaged over the whole tree. This process is repeated

for each tree in the random forest, and the final importance score for each variable

is averaged across all the trees. Other measures (for example see Zhou & Hooker,
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2020) are based on the mean decrease in accuracy when a variable is dropped, how

much each variable contributes to each prediction and how often a variable is used

for splitting.

1.1.5 Neural networks

Neural networks are built on the artificial neuron, the concept of which was inspired by

the structure and function of biological neurons in the human brain. The foundation

for the artificial neuron was laid by the McCulloch-Pitts model (1943) which uses

propositional logic to construct a mathematical representation of how neurons could

be connected to perform basic logical operations. The representation is based on the

premise that a neuron takes input signals from other neurons and combines these into

a single “output” which is then sent on to other neurons only if the combined input

signals exceed some threshold. The authors claim that this “all-or-none” assumption

is sufficient to ensure neuron activity can be represented as a proposition.

Frank Rosenblatt (1957, 1958) introduced the perceptron in 1957, a single-layer neural

network capable of binary classification. Intended to mimic the behaviour of a real

neuron, a perceptron takes an input vector x =

(
x1 · · · xp

)
, linearly combines its

elements using weights vector α = (α1, . . . , αp)
T and produces an output y based on

a function ϕ applied to the combined elements, called an activation function. This

is illustrated in Figure 1.2. Activation functions enable the modelling of complex

relationships between y and x. The simplest activation function is the Heaviside, or
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unit, step function given by

ϕ(x) =

1, if xα > some threshold value;

0 otherwise.

Figure 1.2: Perceptron. The activation function ϕ(·) takes inputs
(
X1 · · · Xp

)
combined with weights (α1, . . . , αp) and bias α0 and outputs Ŷ if the threshold is
exceeded. The intermediate stage between input and output is the hidden layer.

The threshold value can be viewed as a measure of how easy it is to get the perceptron

to “fire”. Moving the threshold to the left hand side of the above inequality gives

ϕ(x) =

1, if α0 + xα > 0;

0, otherwise,



34

where α0 = −(threshold value) is known as the bias of the perceptron. Note that

the output of the function is more likely to be 1 if the bias α0 is positive than if it is

negative. This fact is used in training a perceptron. Other commonly used activation

functions (Nwankpa et al., 2021) are the sigmoid function,

ϕ(x) =
e(α0+xα)

1 + e(α0+xα)
, (1.27)

which is a smoothed version of the Heaviside function; the hyperbolic tangent func-

tion,

ϕ(x) =
e(α0+xα) − e−(α0+xα)

e(α0+xα) + e−(α0+xα)
;

the linear function,

ϕ(x) = α0 + xα;

and the rectified linear unit (ReLU), which is a piecewise linear function given by,

ϕ(x) = max {0, α0 + xα} ,

and so outputs a linear function if this is positive, otherwise it outputs zero.

Training a perceptron involves initially guessing values for the bias and the weights,

using the activation function to predict each of the N training responses yi, i =

1, . . . , N and adjusting the weights (and bias) based on the error in predicting yi, i =

1, . . . , N. The adjustment is referred to as back-propagation. This is an iterative pro-

cedure, continuing until some stopping criteria is met. A similar approach, described

next, is used for training the neural network, which is formed by simply adding to-

gether a set of perceptrons and progressively combining outputs at the hidden layers

to produce the final output. Figure 1.3 depicts an artificial neural network (ANN)
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with a single hidden layer.

Figure 1.3: A single hidden layer (“vanilla”) neural network comprising M derived
features, Zm = ϕ(α0,m +Xα); m = 1, . . . ,M, at the hidden layer. The output Ŷ is
obtained using a function of the linear combination of Z1, . . . , ZM with weights β0 and
β1, . . . , βM . Additional layer(s) can be added between the hidden layer and output;
the input for such a layer is the output of the layer that precedes it in the network.

Numerical algorithms for estimating the weights in a single hidden layer neural net-

work with M derived features Z1, . . . , ZM , are described below. The estimation pro-

cess is often referred to as training the network. Consider the classification problem

with K classes, so that there are K possible outcomes (target measurements) for the

response Y , denoted by Y1, . . . , YK , with each Yk a Bernoulli (0 − 1) variable, and
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write the derived features as

Zm = ϕ (Xαm) ; m = 1, . . . ,M, (1.28)

where αm = (α0m, α1m, α2m, . . . , αpm)
T is a vector of weights incorporating the bias,

and vector X = (1, X1, X2, . . . , Xp) comprise of the p predictor variables augmented

with the constant 1 as an additional input feature. Notice that there are M weights

αj,1, . . . , αj,M associated with each predictor variable Xj; j = 1, . . . , p, which added

to the M biases give a total of M(p + 1) weights at the input. The target Yk is

modelled as a function of the linear combination,

Tk = Zβk; k = 1, 2, . . . , K, (1.29)

where βk = (β0k, β1k, β2k, . . . , βMk)
T is a vector of weights at the output and vector

Z = (1, Z1, Z2 . . . , ZM) comprise theM derived features augmented with the constant

1. There are K weights βm1, . . . , βmK associated with each Zm, which added to the

K biases β01, . . . , β0K , gives K(M + 1) weights at the output layer.

Methodology for estimating the M(p + 1) and K(M + 1) input and output weights

are described here using activation function ϕ (xαm) and the softmax function for

transforming the derived variables t1, . . . , tK at the output,

gk (t1, . . . , tK) =
etk∑K
l=1 e

tl
; k = 1, 2, . . . , K. (1.30)

For any given observation x = (x1, . . . , xp), each of the K outputs of the softmax

function is a number between 0 and 1 and the sum of the outputs is 1. Indeed

gk (t1, . . . , tK) is an estimate of the probability that x is in the kth class. After
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training, the observation x is classified to the class for which fk(x) = gk (t1, . . . , tK)

is largest.

As is the case for all the methods described in this chapter, the weights in the neural

network optimise an objective function that quantifies the fit of the model to the

training data. The objective used in the description of the estimation methodology

here is the deviance (1.25) used in constructing the classification tree. Noting that

yik is unity if the ith observation in the training dataset belongs to class k otherwise

yik is zero, the deviance for the training data is D (θ) = −
∑N

i=1Di (θ) where

Di (θ) =
K∑
k=1

yik log fk (xi) , (1.31)

vector xi denotes the i
th observed set of predictor values and the argument θ denote

the weights. It can be seen that this expression for the deviance is a scalar multiple of

equation (1.25), albeit with a different estimator for probability of class membership.

Presented below is a methodology for minimising D (θ) using gradient descent meth-

ods, which iteratively search for the optimal weights by moving along the curve D (θ)

in a direction based on the gradient. One simple choice for the search direction is the

negative gradient of D (θ), leading to the method of steepest descent. An alterna-

tive is the conjugate gradient method (Hestenes & Stiefel, 1952). Both methods are

described in Appendix A.1. Here, the methodology for training the neural network

using the steepest descent method is first described. Next, the method is adapted to

the conjugate gradient approach.

For r = 0, 1, 2, . . . , the updates of the weight vectors at the (r + 1)th iteration in the
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steepest descent method are given by

β
(r+1)
k = β

(r)
k − γ(r)

N∑
i=1

∂Di

∂β
(r)
k

; k = 1, . . . , K, (1.32)

and

α(r+1)
m = α(r)

m − γ(r)
N∑
i=1

∂Di

∂α
(r)
m

; m = 1, . . . ,M, (1.33)

where γ(r) is the step-size or learning rate. An appropriate learning rate is crucial for

good performance of the algorithm. In particular, too small a rate will lead to slow

convergence while too large a rate can make the algorithm diverge. As a consequence,

many techniques for learning rate selection (Allred & Kelly, 1990; Konar, Khandelwal

& Tripathi, 2020; Wu & Martin, 2023) have been proposed. An option implements

the exact steepest descent method (see Appendix A.1) which requires solving one-

dimensional optimization problems and gives,

γ(r) =


min
γ
D

(
β

(r)
k − γ

∑N
i=1

∂Di

∂β
(r)
k

)
, for βk;

min
γ
D
(
α

(r)
m − γ

∑N
i=1

∂Di

∂α
(r)
m

)
, for αm.

(1.34)

The above derivatives are obtained using the chain rule.

First consider the partial derivative of Di with respect to vector βk for some k.

Equations (1.29) and (1.30) show that βk occurs only in the function Tk and that Tk

is in every fl(xi); l = 1, . . . , K, hence

∂Di

∂βk

=
K∑
l=1

∂Di

∂fl(xi)

∂fl(xi)

∂tik

∂tik
∂βk

; k = 1, . . . , K, (1.35)
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where tik is the “current” value of Tk for the ith observation. Differentiating equa-

tion (1.31),

∂Di

∂fl(xi)
= yil

1

fl(xi)
; l = 1, . . . , K, (1.36)

while differentiating equation (1.30) gives

∂fl (xi)

∂tik
=

fl (xi) (1− fk (xi)) ; if l = k,

−fl (xi) fk (xi) ; if l ̸= k.
(1.37)

Since

∂tik
∂βk

= zi,

combining the above terms give

−∂Di

∂βk

= δizi; k = 1, . . . , K, (1.38)

where

δi =


−

K∑
l=1

yil (1− fk (xi)) ; if l = k,∑K
l=1 yil fk (xi) ; if l ̸= k.

(1.39)

Next, for the partial derivative with respect to weight vector αm for fixed m, equa-

tion (1.29) also shows that Zm occurs in every Tk and therefore,

∂Di

∂αm

=
K∑
k=1

K∑
l=1

∂Di

∂fl(xi)

∂fl(xi)

∂tik

∂tik
∂zim

∂zim
∂αm

; m = 1, . . . ,M.

Differentiating equation (1.29) with respect to zm and equation (1.28) with respect
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to αm give

∂tik
∂zim

= βmk and
∂zim
∂αm

= ϕ′(xiαm)xi,

where ϕ′ is the derivative of activation function ϕ. It follows that

− ∂Di

∂αm

= simxi; m = 1, . . . ,M, (1.40)

for

sim =
K∑
k=1

βmkϕ
′(xiαm)δi. (1.41)

The quantities δi and sim can be viewed as “errors” from the current model fit at the

output and hidden layer units, respectively. In fitting the neural network, the weights

are updated using a two-pass algorithm. In the forward-pass, the current weights are

fixed and estimated probabilities f̂k(xi) are computed using equation (1.30). In the

backward-pass, the errors δi (equation (1.39)) for each observation are computed

using current values of f̂k(xi). These values for δi are then “back-propagated” via

the “back-propagation equations” (1.41) to give “errors” sim; m = 1, . . . ,M ; i =

1, . . . , N associated with current values of weights βmk and αm. Both sets of errors

are then used in the gradient descent equations (1.32) and (1.33) to update the

weights. The algorithm starts using initial guesses β
(0)
k and α

(0)
m for the weights. This

back-propagation algorithm, developed by Rumelhart et al. (1986), has also been

called the delta rule.

Back-propagation, a key training technique, is a simple approach and is easy to pro-

gram on a parallel architecture computer as each hidden unit Zm passes and receives

information only to and from units that share a connection. In other words, the

training is efficient as computations can be done separately (parallel processing). But
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the steepest gradient descent estimation process can be very slow, (see for example

Hastie et al., 2011), and methods such as conjugate gradient are preferred.

Conjugate gradient and steepest descent methods differ in the search direction. While

steepest descent uses as search direction the negative gradient of the objective func-

tion, conjugate gradient searches for the minimum in a direction conjugate to all

previous search directions; see Appendix A.1 for an explanation and a derivation of

the method. Thus for r = 0, 1, 2, . . . , the weights at the (r + 1)th iteration are up-

dated as in equations (1.32) and (1.33) but with the derivatives replaced by search

directions [d(βk)]
(r) and [d(αm)]

(r) to now get,

β
(r+1)
k = β

(r)
k + γ(r)[d(βk)]

(r); k = 1, . . . , K, (1.42)

and

α(r+1)
m = α(r)

m + γ(r)[d(αm)]
(r); m = 1, . . . ,M. (1.43)

Normally set as in the steepest gradient method, the first search directions are (Fletcher

& Reeves, 1964),

[d(βk)]
(0) = −

N∑
i=1

∂Di

∂β
(0)
k

and [d(αm)]
(0) = −

N∑
i=1

∂Di

∂α
(0)
m

.

For r ≥ 1, the search directions are recursively defined as (Fletcher & Reeves, 1964),

[d(βk)]
(r) = −

N∑
i=1

∂Di

∂β
(r)
k

+ δ(r)[d(βk)]
(r−1),
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and

[d(αm)]
(r) = −

N∑
i=1

∂Di

∂α
(r)
m

+ δ(r)[d(αm)]
(r−1),

where δ(r) is a scalar. A well-known form for δ(r) is the ratio of the square of the L2

norm of successive gradient vectors in the iterative process, provided by the Fletcher-

Reeves (FR) formula (1964),

δFR
(r) =

(
N∑
i=1

∂Di

∂β
(r)
k

)T ( N∑
i=1

∂Di

∂β
(r)
k

)
(

N∑
i=1

∂Di

∂β
(r−1)
k

)T ( N∑
i=1

∂Di

∂β
(r−1)
k

) and δFR
(r) =

(
N∑
i=1

∂Di

∂α
(r)
m

)T ( N∑
i=1

∂Di

∂α
(r)
m

)
(

N∑
i=1

∂Di

∂α
(r−1)
m

)T ( N∑
i=1

∂Di

∂α
(r−1)
m

) ,

for updating weights at the output and hidden layers respectively. An alternative

form called the Polak-Ribière-Polyak (PRP) formula (Polak & Ribière, 1969; Polyak,

1969) modifies the numerators in the above to get

δPRP
(r) =

(
N∑
i=1

∂Di

∂β
(r)
k

)T ( N∑
i=1

[
∂Di

∂β
(r)
k

− ∂Di

∂β
(r−1)
k

])
(

N∑
i=1

∂Di

∂β
(r−1)
k

)T ( N∑
i=1

∂Di

∂β
(r−1)
k

)
and

δPRP
(r) =

(
N∑
i=1

∂Di

∂α
(r)
m

)T ( N∑
i=1

[
∂Di

∂α
(r)
m

− ∂Di

∂α
(r−1)
m

])
(

N∑
i=1

∂Di

∂α
(r−1)
m

)T ( N∑
i=1

∂Di

∂α
(r−1)
m

) .

Performances of the FR and PRP formulas have been compared for efficiency and

convergence on various occasions (see for example Powell, 1986; Touati-Ahmed &
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Storey, 1990; Gilbert & Nocedal, 1992; Babaie-Kafaki, 2012; Babaie-Kafaki & Ghan-

bari, 2015; Mishra, Chakraborty, Samei & Ram, 2021; Hasibuan, Hendraputra, GS

& Saragih, 2022). Which of the two is preferred is unclear as this depends on the

particular problem; Powell (1986) concludes that “practical experience and careful

consideration of the ingredients of a calculation are vital to the development” of any

optimisation algorithm. As in the steepest descent method, various options for the

learning rates γ(r) exist, including equation (1.34), and exact and inexact line search

techniques (Nocedal & Wright, 2006).

Early work in classification used the identity function, gk (t1, . . . , tK) = tk, at the

output layer but this was later abandoned in favour of the softmax function (1.30).

Note that for K = 2 it is easy to show that the softmax function and the logit

transformation (1.10) in logistic regression are equivalent. Additionally, the single

hidden layer neural network model with a linear activation function and the logistic

model are identical, but the models are fitted in different ways.

There are many acknowledged issues with training the neural network. Typically the

global minimiser of the objective function can lead to overfitting and to avoid this,

some regularisation is needed (Hastie et al., 2011). Techniques include randomly

dropping neurons during training and ℓ1 or ℓ2 regularisation, which help prevent

overfitting by introducing penalties on large weights. Additional challenges include

class imbalance (Zhou et al., 2006), hyperparameter tuning (such as tuning the num-

ber of hidden layers) (Diaz et al., 2017), the quality and quantity of the data used to

train the neural network, and the availability of sufficient computational resources.
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1.1.6 Support vector machine

The approach for classifying an outcome Y described here uses a separating hyper-

plane in a space defined by the predictor vector X = (X1, . . . , Xp). A hyperplane in

p-dimensional space is a flat affine subspace of dimension p− 1. In particular, a hy-

perplane separating the two classes of a binary outcome is constructed by maximising

the margin between classes, where the margin is defined as the distance between the

hyperplane and the nearest training observations from each class. A maximal margin

classifier achieves perfect linear separation of the two classes in the p-dimensional

space of the predictor variables (feature space). The support vector classifier ad-

dresses problems where classes overlap so that linear separation in the p-dimensional

feature space is not possible by allowing some training observations to be on the

wrong side of their margin. Generalising these two classifiers is the support vector

machine (SVM) which enlarges the feature space to allow linear separation.

Writing on the early history of SVMs, Chervonenkis (2013) asserts that the theoret-

ical foundation for maximal margin classifiers and support vector classifiers, which

underpins the SVM, was developed in the 1960’s by Vladimir N. Vapnik and Alexey

Ya. Chervonenkis (Institute of Control Sciences of the Russian Academy of Sciences,

Moscow, Russia) during their work on statistical learning theory. The concept of

using kernels was introduced by Boser et al. (1992) to handle situations where linear

separation of the training data was not possible in p-dimensional feature space. Their

methodology is described below.

Consider training the binary classification model using data (yi,xi); i = 1, . . . , N,

with yi taking values −1 or 1 and with xi = (xi1, . . . , xip) a vector in p-dimensional
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feature space and write the equation of the separating hyperplane as

h(x)Tβ + β0 = 0,

where h(x)T = (h1(x), h2(x), . . . , hM(x)) is an M dimensional vector of predefined

functions hm(x); m = 1, . . . ,M, and β is an M -dimensional vector of coefficients.

Notice the assumption here that the boundary separating the two classes is linear in

its parameters but it is not restricted to linear dependence inX. Using the convention

that observations “above” the hyperplane are labelled 1 and those “below” are labelled

−1, a hyperplane that perfectly separates the training observations according to class

labels has the property that

(h(xi)
Tβ + β0)

 > 0; if yi = 1,

< 0; if yi = −1,
(1.44)

or equivalently that,

yi
(
h(xi)

Tβ + β0
)
> 0; for all i = 1, . . . , N.

Also, as the distance of a point h(xi) in the transformed space from the hyperplane is

1
∥β∥

(
h(xi)

Tβ + β0
)
if the point is above the hyperplane, and is it− 1

∥β∥

(
h(xi)

Tβ + β0
)

if below, the minimum distance of the training data from the hyperplane is given by

∆ = min
i

[
1

∥β∥
yi
(
h(xi)

Tβ + β0
)]
,

and the objective is to find values of β and β0 that maximize this margin, subject

to the constraints that all observations are on the correct side, and at a distance of
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at least the margin from the hyperplane. This provides the constrained optimisation

problem,

max
β,β0

∆ subject to
1

∥β∥
yi
(
h(xi)

Tβ + β0
)
≥ ∆; i = 1, . . . , N. (1.45)

The optimal margin ∆̂ is attained for those training observations satisfying

1

∥β∥
yi
(
h(xi)

Tβ + β0
)
= ∆̂,

called support vectors. Also, it is easy to see that if (β̂, β̂0) satisfies the constraints in

equation (1.45), then so does any scalar multiple (bβ̂, bβ̂0), b > 0 and therefore there

exists an infinite number of possible optimising hyperplanes that differ only in scaling.

This problem can be solved by setting ∥β∥ to some fixed value or alternatively, by

fixing the product of the margin ∆ and ∥β∥ (Boser et al., 1992). In particular, setting

∆∥β∥ = 1,

gives that maximising ∆ is equivalent to minimising ∥β∥ and the problem of finding

the maximal margin separating hyperplane h(x)T β̂ + β̂∗
0 = 0 reduces to solving the

convex quadratic problem,

min
β,β0

1

2
∥β∥2 subject to yi

(
h(xi)

Tβ + β0
)
≥ 1; i = 1, . . . , N. (1.46)

Note that multiplying by 1/2 does not change the solution and is “included for cos-

metic reasons” (Boser et al., 1992). The maximal margin is ∆∗ = 1/∥β̂∥.

The above can be extended to the problem where the classes overlap and linear
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separation is not possible by modifying the constraints to allow some observations to

be on the wrong side of their margin, as done in the support vector classifier (Hastie

et al., 2011). Two natural ways for modify the constraints in (1.45) are (James et al.,

2023),

1

∥β∥
yi
(
h(xi)

Tβ + β0
)
≥ ∆− ξi and

1

∥β∥
yi
(
h(xi)

Tβ + β0
)
≥ ∆(1− ξi),

where ξi ≥ 0; i = 1, . . . , N, are constrained slack variables. These two ways lead to

different solutions. The first modification seems natural as it measures the overlap ξi

in actual distance from the margin, but leads to a non-convex optimisation problem.

The slack ξi in the second way measures the proportional amount by which the ith

observation is on the wrong side of the margin and so measures overlap in relative

distance. This changes the width of the margin but produces a convex optimisation

problem and so is preferred (James et al., 2023).

Modifying the constraints using the second way, the optimisation given by equa-

tion (1.46) becomes,

min
β,β0

1

2
∥β∥2 subject to


yi
(
h(xi)

Tβ + β0
)
≥ 1− ξi,

ξi ≥ 0,
N∑
i=1

ξi ≤ constant; i = 1, . . . , N.

Bounding
∑N

i=1 ξi places a limit on the total proportional amount by which training

observations fall on the wrong side of the margin. Computationally it is more con-

venient to incorporate this sum into the objective function (Hastie et al., 2011) to
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get,

min
β,β0

1

2
∥β∥2 + C

N∑
i=1

ξi subject to yi
(
h(xi)

Tβ + β0
)
≥ 1− ξi, ξi ≥ 0; i = 1, . . . , N,

(1.47)

where C is a “cost” parameter. Using the Method of Lagrange Multipliers generalised

to inequality constraints, (see Appendix A.1), to solve this problem gives the Lagrange

(primal) function,

LP =
1

2
∥β∥2 + C

N∑
i=1

ξi −
N∑
i=1

λi
[
yi
(
h(xi)

Tβ + β0
)
− (1− ξi)

]
−

N∑
i=1

νiξi,

where λi, νi ≥ 0; i = 1, . . . , N, are Lagrange multipliers, or Kühn-Tucker coefficients.

Solving equation (1.47) is equivalent to searching a saddle point at which LP is at a

minimum with respect to β and a maximum with respect to λi, i = 1, . . . , N (Boser

et al., 1992).

Partially differentiating LP with respect to the vector β and setting the derivative to

the zero vector gives,

β =
N∑
i=1

λiyih(xi). (1.48)

Similarly, differentiating with respect to β0 and ξi gives,

0 =
N∑
i=1

λiyi, (1.49)

λi = C − νi. (1.50)

These equations must be satisfied at the optimum. They are used to produce the

Wolfe dual LD (Hastie et al., 2011) by eliminating β, β0 and ξi, νi; i = 1, . . . , N, from
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LP .

Substituting for β in 1
2
∥β∥2 = 1

2
βTβ gives this term as

1

2

N∑
i=1

N∑
i′=1

λiλi′yiyi′h(xi)
Th(xi′),

while substituting in
∑N

i=1 λiyih(xi)
Tβ gives

N∑
i=1

N∑
i′=1

λiλi′yiyi′h(xi)
Th(xi′).

Further C − νi − λi = 0 leads to Cξi + λi(1− ξi)− νiξi = (C − νi − λi)ξi + λi being

simply λi, and noting that
∑N

i=1 λiyi = 0 gives,

LD =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
i′=1

λiλi′yiyi′⟨h(xi),h(xi′)⟩, (1.51)

where ⟨h(xi),h(xi′)⟩ = h(xi)
Th(xi′) is the inner product of h(xi) and h(xi′). In-

corporating the conditions under which this objective function was constructed gives

the optimisation problem,

max
λ1,...,λN

{
N∑
i=1

λi −
1

2

N∑
i=1

N∑
i′=1

λiλi′yiyi′⟨h(xi),h(xi′)⟩

}
; 0 ≤ λi ≤ C,

N∑
i=1

λiyi = 0,

which is solved under the additional Karush-Kuhn-Tucker conditions (Hastie et al.,

2011)

λi
[
yi(h(xi)

Tβ + β0)− (1− ξi)
]
= 0, (1.52)

νiξi = 0, (1.53)

yi(h(xi)
Tβ + β0)− (1− ξi) ≥ 0. (1.54)
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Writing the optimisers of the above as λ̂1, . . . , λ̂N , then by equation (1.48) the solution

for β is

β̂ =
N∑
i=1

λ̂iyih(xi).

By constraint (1.52), λ̂i will be non-zero only if constraint (1.54) is exactly met and

therefore the support vectors are those observations xi for which yi(h(xi)
Tβ+ β0) =

1 − ξi. Support vectors on the margin will have ξ̂i = 0 and so any of these points

can be used to solve equation (1.52) for β̂0. For numerical stability, an average of all

such solutions is used (Hastie et al., 2011). The tuning parameter of this procedure

is the cost parameter C. Too large a value allows too few observations to be on the

wrong side of their margin, which leads to an overly wiggly boundary and overfitting

in the original feature space. Too small a value provides a smoother boundary but

the classifier may miss important patterns in the data.

Substituting for the estimates β̂ and β̂0 in h(xi)
Tβ + β0 gives the decision function,

f̂(x) =
N∑
i=1

λ̂iyi⟨h(x),h(xi)⟩+ β̂0. (1.55)

By equation (1.44), the support vector machine classifies an observation x0 as 1 if

f̂(x0) > 0 and as −1 if f̂(x0) < 0. Importantly, as both this decision function

and equation (1.51) involve the transformation of the predictor space h(x) through

inner products only, it is sufficient to know only a symmetric, positive-definite kernel

function,

K(x,x′) = ⟨h(x),h(x′)⟩ (1.56)

that computes inner products in the transformed space (Hastie et al., 2011; Boser

et al., 1992). Three popularly used kernel functions are the d-degree polynomial
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kernel,

K(x,x′) = (1 + ⟨x,x′⟩)d , (1.57)

the radial kernel,

K(x,x′) = exp
(
−γ∥x− x′∥2

)
, (1.58)

and the sigmoid kernel,

K(x,x′) = tanh (κ1⟨x,x′⟩+ κ2) . (1.59)

A review of properties of kernels is provided in (Cervantes et al., 2020) who also

conclude that choice of the kernel used should be based on characteristics of the data

and further that the results will also depend on the value(s) of the kernel parame-

ter(s). Grid search and cross-validation methods are proposed (Hastie, Tibshirani &

Friedman, 2011) for hyper-parameter tuning; that is to determine the cost C, and

the kernel and it parameter values (e.g. γ, κ1, κ2).

Osuna et al. (1957) present a robust discussion on the underlying theory of support

vector machines. Since development, this method has gained popularity across var-

ious fields, including finance, biology, and computer vision and the SVM remains

a valuable supervised machine learning tool. They are particularly well-adapted to

high-dimensional spaces. Over the years various extensions and variations, including

multi-class SVMs, semi-supervised SVMs, and online SVMs, have been proposed to

address specific challenges.
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1.2 Ensemble Methods

An ensemble machine learning method leverages the strengths of a set of different

methods and/or models by combining the predictions of a set of base predictors to

produce a final result that is optimal in the sense that the combination reduces both

bias and variance and provides better predictive power than that of each of its con-

stituent base predictors. In particular, when the data is nonlinear or involves intricate

interactions, combining multiple models allows complex relationships in the data to

be captured. Covered here are ensemble methods that use a single machine learning

method, such as a decision tree, to construct a set of base predictors constructed

using variants, or modifications, of the training data. The base predictors here are

simpler models that may individually have limitations or shortcomings but can con-

tribute collectively to a stronger final prediction when combined strategically. The

base predictors need not be treated equally when combining base predictions; well-

performing base predictors can be given more weight than poorly performing ones.

Three common methods covered here are Bagging, Boosting and Stacking. Bagging

is part of the process of fitting a random forest model while Boosting and Stacking

are included in the thesis for completeness.

1.2.1 Bagging

One way to reduce variance and enhance the predictive accuracy of a statistical learn-

ing method is to generate multiple training datasets from the population, build a sep-

arate prediction model for each, and combine their predictions (James et al., 2023).

Introduced by Breiman (1996a), bagging applies this principle in a more practical
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setting where only a single training set is available. It is particularly effective for

complex and noisy datasets, helping to mitigate overfitting. The bagging process

begins with bootstrapping (Efron, 1979), a technique that creates multiple subsets

of the original training dataset by randomly sampling data points with replacement.

This results in subsets of similar size to the original dataset, though some instances

may be repeated while others are omitted. Each subset is then used to train a sep-

arate base model. Bagging, short for bootstrap aggregating, combines these models’

predictions to improve overall performance.

Consider predicting the response y0 at input x0. Given a training set,

Z = {(x1, y1), (x2, y2), . . . , (xN , yN)},

from the population, generate B bootstrapped training sets to produce the boot-

strap samples Zb, b = 1, 2, ..., B. Next, use a machine learning method to fit a

prediction model on the bth bootstrapped training set and obtain the prediction

f̂ b(x0), b = 1, 2, ..., B. Thus each base model generates its own prediction for a

given input instance. Finally, combine the B predictions to create a final prediction

f̂bag(x0). If the response Y is quantitative the final prediction is often computed

as the average, f̂bag(x0) = 1
B

∑B
b=1 f̂

b(x0), or median of the individual base model

predictions. In the case of a classification problem, the final prediction is typically

determined by a majority vote among the predictions of all the base models. For this

thesis, bootstrapping was applied to provide quantification of uncertainty associated

with the estimation of the real AMP.
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Random Forest, introduced in Section 1.1.4, is a well-known example of a bagging-

based ensemble algorithm, where each base model is a decision tree constructed using,

not all, but only a pre-determined random subset of the p predictor variables. Thus,

Random Forest further enhances bagging by introducing additional randomness dur-

ing the tree-building process, which helps to diversify the ensemble even more.

By training multiple models on different subsets of data, bagging reduces the variance

of predictions. This is particularly beneficial when base models are prone to overfit-

ting. The combined ensemble model thus tends to produce more stable and reliable

predictions, but this comes with a loss of interpretability of the model. Bagging also

helps improve the generalisation performance of the ensemble by reducing the impact

of outliers and noise in the training data. The averaging or voting process across

multiple models tends to smooth out individual model errors, leading to a more ac-

curate final prediction. Breiman (1996a) argues that substantial gains in accuracy

can be achieved if perturbing the training dataset causes significant changes in the

base models. However, if the learning method has high bias, the bagged estimate will

also be highly biased. Finally, an important characteristic of bagging is that it can

be parallelized, as the training of each base model is independent of the others. This

makes bagging well-suited for distributed computing environments.

1.2.2 Boosting

The core idea behind boosting is to sequentially train a series of base models, each

focusing on correcting the mistakes of its predecessors. Each base model tends to

be a weak learner, such as a decision tree with limited depth or performance, and
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so individually may not perform well on the entire dataset, but it possesses enough

discriminatory power to classify some observations better than random chance. Dur-

ing each iteration of the boosting algorithm, a new base model is obtained using the

same dataset as the original data but with different weights assigned to the training

observations. The weights indicate the importance of each observation in terms of its

misclassification in previous rounds of the sequential training. By iteratively adjust-

ing the weights, and emphasizing those outcomes that were misclassified in previous

rounds, boosting gradually creates a robust and accurate composite model. Popu-

lar boosting algorithms include AdaBoost (Adaptive Boosting) (Freund & Schapire,

1997), Gradient Boosting (Friedman, 2001, 2002; Mason et al., 1999) which is similar

to AdaBoost but models are trained in a more general gradient descent framework

minimizing a loss function, and XGBoost (Extreme Gradient Boosting) (Chen &

Guestrin, 2016), among others.

The algorithm AdaBoost.M1 (Freund & Schapire, 1997) is outlined here for binary

classification and using the decision tree method to construct the base models. As-

sume the response is coded as Y ∈ {−1, 1} and a total of B iterations are performed,

and let wi denote the weight applied to training observation (xi, yi); i = 1, ..., N . The

objective is to construct base models f̂b and weights αb; b = 1, . . . , B using iteratively

re-weighted training data, and hence to produce the weighted voting prediction at

x0,

f̂(x0) = sign

(
B∑
b=1

αbf̂b(x0)

)
. (1.60)

Observations (xi, yi) that are misclassified by the current ensemble model are assigned

higher weights in subsequent iterations. This ensures that the new base model focuses

more on those instances that were challenging for the ensemble up to that point. The
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aim is to correct the mistakes of previous models and improve overall predictive

performance. In addition, the weight αb assigned to base model f̂b is determined

based on the performance of f̂b in classifying all training outcomes. Better-performing

models are assigned higher weights, indicating their relative importance in the final

ensemble.

Setting weights wi = 1/N initially, a tree with d splits, (d + 1 terminal nodes), is

fitted to the training data using weights wi and estimates f̂1(xi), i = 1, . . . , N, are

obtained. Next, the weighted misclassification error rate,

err1 =

∑N
i=1wiI

(
yi ̸= f̂1(xi)

)
∑N

i=1wi

,

and the log-odds,

α1 = log

(
1− err1
err1

)
,

are computed. Notice that only misclassified observations (yi ̸= f̂1(xi)) contribute to

the error err1 and that α1 gets larger and more positive as err1 approaches zero. For

the next iteration, the weights wi are updated by wi ← wi ·exp{α1I(yi ̸= f̂1(xi))}; i =

1, . . . , N, and thus observations misclassified by f̂1 have their weights scaled by a

factor exp(α1), increasing their relative influence for the next iteration. The above

steps are repeated B times. Since at step b, observations misclassified by the tree at

the previous b − 1 step have their weights increased while those correctly classified

have their weights decreased, as the iterations proceed, each successive tree is forced

to concentrate on training observations that were missed by the previous tree.

To prevent overfitting, boosting algorithms often include regularization techniques

such as limiting the depth d of decision trees or applying a learning rate that controls
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the impact of each new base model on the ensemble. The number d of splits in each

tree in a boosted ensemble controls the complexity of the ensemble. Frequently d = 1

works well, in which case each tree is a stump, consisting of a single split. In this

case, the boosted ensemble is fitting an additive model, since each term involves only a

single variable. More generally d is the interaction depth, and controls the interaction

order of the boosted model, since d splits can involve at most d variables. Boosting

can also overfit the training data if the number of base models B is too large. To

address this, cross-validation can be used to select the number of trees B. Finally,

a shrinkage parameter λ which is a small positive number and controls the boosting

learning rate is often used. Normally, values are 0.01 or 0.001 but the value depends

on the problem. If very small λ can require using a very large value of the number

of trees B to achieve good performance. Finally, while the final prediction of the

boosting ensemble is often a weighted combination of the predictions from individual

base models, see equation (1.60), other aggregation strategies are possible, (see Chen

& Guestrin, 2016, for example).

Boosting can significantly enhance the accuracy of models, especially when the un-

derlying base models are only slightly better than random guessing. While boosting

can potentially lead to overfitting if the algorithm is not controlled properly, for ex-

ample by finding the right balance between the number of iterations and the learning

rate, it is generally less prone to overfitting compared to training a single, highly

complex model. It is also possible to overfit the boosting model if the base models

are too complex. Boosting can be sensitive to noisy data and outliers. If the base

models focus too much on noisy samples, the final boosted model might suffer from

reduced generalisation performance. Depending on the class distribution and how
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boosting is implemented, the boosting classifier may be biased towards the majority

class, affecting its ability to predict minority classes effectively. Finally, boosting in-

volves creating multiple base models sequentially, which can make it computationally

intensive and time-consuming, especially if the dataset is large.

1.2.3 Stacking

Unlike bagging and boosting, which focus on combining multiple instances of a sin-

gle base model, stacking leverages the diversity of multiple base models to create a

more robust and accurate final prediction. While the stacking method, also known

as stacked generalisation, was formalised and evaluated by Breiman (1996b) from

an idea by Wolpert (1992), the concept of combining predictions is well-known in

statistics (Rao & Subrahmaniam, 1971; Efron & Morris, 1973; Rubin & Weisberg,

1975; Berger & Bock, 1976; Green & Strawderman, 1991). Breiman (1996b) pre-

sented evaluations of stacking when base models are constructed using regression

trees, using linear regression with subset selection, and using ridge regression. For

each of these three situations Breiman (1996b) showed that stacking can produce

predictions with substantially reduced errors, that stacking never does worse than

the single best base model used in the ensemble, and advocated that biggest gains

came when dissimilar sets of predictors were stacked.

The stacking process involves multiple stages. In the first stage, a variety of diverse

base models are constructed, often using different methods. Thus these models can in-

clude decision trees, support vector machines, neural networks, k-nearest neighbours,

and more. Each base model is individually trained on the same training dataset but
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can employ different feature representations, parameter settings, and learning strate-

gies. To prevent overfitting and ensure generalization, a validation set is often used

during this stage. In the second stage, a meta-model, also called the blender or aggre-

gator, is employed to combine the first-level predictions from the base models. This

meta-model is typically a simpler model, such as a linear regression, logistic regres-

sion, or another machine learning algorithm, which takes the first-level predictions as

inputs and generates the stacked prediction.

The following illustration of stacking for binary classification follows the approach

outlined in (Ting & Witten, 1999), but with leave-one-out cross-validation. Let

f̂
(−i)
m (xi); m = 1, . . . ,M, denote the predicted probability at xi using base model

m(−i), obtained when method m is applied to the training dataset without the ith

observation. The set
{
f̂−i
1 (xi), . . . , f̂

−i
M (xi)

}
are then the M first-level predictions of

the ith observation, i = 1, . . . , N , to be used in the second stage. Assuming a linear

regression meta-model, the stacked prediction f̂(x0) for a new observation x0 is the

weighted linear combination,

f̂(x0) =
M∑

m=1

wst
mf̂m(x0), (1.61)

where estimates of the weights wst = {wst
1 , . . . , w

st
M} are obtained from the least

squares linear regression of yi on f̂
−i
m (xi); m = 1, ...,M . Following Breiman (1996b),

the weights are constrained to be non-negative, ŵst
m ⩾ 0, and to sum to 1,

∑
m ŵ

st
m = 1,

and thus the stacking weights are given by

ŵst = argmin
w

N∑
i=1

[
yi −

M∑
m=1

wst
mf̂

−i
m (xi)

]2
subject to ŵst

m ⩾ 0;
∑
m

ŵst
m = 1. (1.62)
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The final prediction is
∑

m ŵ
st
mf̂m(x0), where f̂m(x0) is obtained by applying method

m to the entire training dataset.

Notice that equation (1.61) is simply a weighted linear combination of M predic-

tions of x0 and so, from this perspective, stacking is similar to majority vote (see

Chapter 4). The key advantage of stacking is its ability to capture diverse patterns

and characteristics from different base models, leading to improved predictive per-

formance. By combining the strengths of various models, stacking can mitigate the

weaknesses of individual models and provide more accurate, robust, and stable pre-

dictions. It is therefore particularly useful when dealing with complex and challenging

prediction tasks, where a single model might struggle to capture all the underlying

patterns in the data. But as with bagging, having more than one model hinders

interpretability.

1.3 Unsupervised Learning

Covered in this section is a density based spatial clustering method that has been

used (Vishnepolsky et al., 2018) for classifying peptides. Spatial clustering methods

partition spatial data into subsets, called clusters, such that observations within each

cluster are more similar than those in different clusters. Clustering methods may be

grouped into three distinct types: combinatorial algorithms, mixture modelling and

mode seeking (Hastie et al., 2011). Combinatorial methods use the data directly with

no direct reference to a probability model and assign the data to clusters depending

on some measure of similarity between pairs of observations. An example is K-means

clustering. On the other hand, mixture modelling assumes that each cluster of data
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are independent, identically distributed observation from some distribution. The dis-

tribution of all observations is then a mixture of the distributions of the clusters.

This model is fitted using maximum likelihood or Bayesian approaches. An example

is Gaussian mixture model which assumes a certain number of clusters, with observa-

tions in each cluster being a sample from some normal (Gaussian) distribution. The

third type, mode seeking, attempts to estimate distinct modes of the data distribu-

tion non-parametrically. That is, without assuming any form for the distribution.

An example is the patient rule induction method (PRIM) which partitions the data

space into boxed regions and seeks boxes for which the outcomes have a high average.

A thorough coverage of this method is provided by Hastie et al. (2011).

1.3.1 DB-SCAN

Density-Based Spatial Clustering and Application with Noise (DB-SCAN) (Ester

et al., 1996) is a combinatorial method that seeks to form dense clusters of data

separated by regions of lower density. Here, density is measured by the number of

observations close to a given point. The DB-SCAN algorithm is based on the notion

of “clusters” and “noise”, where noise is defined as the set of data points that are not

within any cluster. The key idea is for each point of a cluster, the neighbourhood of

a given radius has to contain at least a minimum number of points.

DB-SCAN requires two important parameters, namely ϵ and minimum points (MinP ).

The first parameter (ϵ) defines the radius of the neighbourhood around a point x

(called the ϵ-neighbourhood of x) while the second (MinP ) defines the minimum

number of points within the ϵ-neighbourhood. The shape of a neighbourhood is
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defined by the choice of a distance function between points x and x′, denoted by

dist (x,x′). Typically Euclidean distance is used. Core points are those within a

cluster, border points are on a cluster border and outlier points (noise) are not in any

cluster.

Consider a training dataset T consisting of points in a space. The ϵ-neighbourhood

of a point x in T is (Birant & Kut, 2007),

Nϵ (x) = {x′ ∈ T | dist (x,x′) ⩽ ϵ} . (1.63)

A point x ∈ T is a core point if,

|Nϵ (x)| ⩾MinP, (1.64)

and a non-core point x′ in the neighbourhood of a core point x is a border point if,

|Nϵ (x
′)| < MinP. (1.65)

DB-SCAN works with the concept of density-reachability to find clusters (Ester,

Kriegel, Sander & Xu, 1996). Points can be directly density-reachable, density-

reachable or density-connected. A point x′ is directly density-reachable from a point

x if x′ ∈ Nϵ (x) and x is a core point. If x′ is also a core point then, as x ∈ Nϵ (x
′),

the point x is directly density-reachable from x′. In other words, directly density-

reachable is symmetric for pairs of core points. A point x′ is density-reachable from

a point x if there are a set of core points leading from x to x′. Density-reachable is a

canonical extension of direct density-reachability but, unlike direct density-reachable,

is not symmetric for pairs of core points. A point x′ is density-connected to a point
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x if there are a core point o, such that both x′ and x are density-reachable from o.

Density-connectivity is a symmetric relation.

A cluster C is defined as a subset C ⊆ T satisfying the following “maximality”

and “connectivity” requirements. A point x′ is in C if x′ is density-reachable from

x and x is a core point in C. Also, all points x,x′ ∈ C are density-connected.

Finally, if C1, . . . , CK are clusters of the dataset T with respect to parameters ϵk and

MinPk; k = 1, . . . , K, noise is the set of points in T not belonging to any Ck. That

is,

noise = {x ∈ T | ∀k : x /∈ Ck} . (1.66)

As mentioned earlier, clusters depend on the parameters ϵ and MinP . It is recom-

mended (Birant & Kut, 2007) that the value of MinP should be chosen at least 3.

Having chosen MinP , Ester et al. (1996) suggests the value for ϵ be chosen by us-

ing a δ-distance graph that plots the ordered distances of every point in T from its

δ =MinP nearest neighbour in descending order. The best values of ϵ are where this

plot shows a strong bend. Given parameters ϵ and MinP , the DB-SCAN algorithm

constructs a cluster by first arbitrarily choosing a point x and finding all points that

are density-reachable from x. This yields a cluster if x is a core point. On the other

hand, if x is a border point, then by definition no points are density-reachable from

x and the algorithm considers some other point in T .

This section covered the theory for the classification methods that will be used in

subsequent chapters. Next, measures for evaluating performance of the classification

model will be introduced, following which common feature selection methods for

identifying the predictor variables within a set that are most appropriate for predicting
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the outcome will be covered.

1.4 Performance Metrics

Let the random variable Y0 be the true (unknown) value of a categorical response

for given predictor variables X = x0 and let f̂(x0) denote the prediction by a ML

model estimated using a training dataset T . A typical choice for measuring the error

in predicting Y0 = y0 using f̂(x0) is the zero-one loss function,

I(f̂(x0) ̸= y0) =

1 if f̂(x0) ̸= y0, (prediction incorrect);

0 if f̂(x0) = y0, (prediction correct).

Another option is the deviance loss function,

D(y0, f̂(x0)) = −2
K∑
k=1

I(Y0 = k) log p̂k(x0),

where p̂k(x0) is the estimated probability that the observation belongs to class k, k =

1, . . . , K. The zero-one loss function counts the number of incorrect predictions (mis-

classifications) whereas the deviance is based on the probability of belonging to the

predicted class. If the learning method correctly predicts class probabilities with high

levels of certainty, the deviance will be close to zero. Conversely, the deviance will be

large if these probabilities are small.

The test error for a ML model, also called the generalisation error, is defined as the

expectation of the loss function, given T . The test error is therefore specific to the

training set and so different datasets will lead to different test errors. Estimation of the

test error is best achieved through use of a designated test dataset. This approach is



65

therefore adopted in this thesis. Alternatively, if a test dataset is unavailable, the test

error may be estimated using cross-validation, or using resampling techniques such as

bootstrap. Cross-validation methods hold out a subset of the training data from the

model fitting process and then apply the fitted model to the held-out observations

in order to estimate the error rates. In K-fold cross-validation the training data is

randomly divided into K equal-sized sets, with K − 1 of these sets combined and

used for training and the “held-out” set used for estimating the test error. Each of

the K sets is held-out once, resulting in K estimates of the test error which are then

averaged to produce the final estimate. Note that each observation in the training

dataset is used only once as a test dataset for estimating the test error.

A so-called “out-of-bag” estimate of test error can be obtained for ML models such

as a random forest that uses bootstrap samples for training (see section 1.1.4). In

particular, observations not in the bootstrap sample and thus not used for training

the current model are used to estimate the test error. This test error estimation

procedure capitalises on the fact that slightly less than two-thirds of the original

training observations are expected to appear in a bootstrap sample. To see why

this is, consider randomly sampling N observations with replacement from a training

dataset of N observations. As the probability that a given observation is not selected

at a draw is 1− 1
N
and the bootstrap sample consists N random draws, the probability

that the observation is not in the bootstrap sample is
(
1− 1

N

)N
and hence

P (the observation ∈ bootstrap sample) = 1−
(
1− 1

N

)N

≈ 1− e−1 = 0.632.
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Error Rates

The approach adopted in this thesis for finding the best predictive model is to con-

struct models using a selected set of different classification methods and to evaluate

each model’s performance based on the zero-one loss. A common measure of quality

of the classification model for binary outcomes is the test misclassification error rate

(ER) defined as

ER =
FN + FP

TP + FN + TN + FP
(1.67)

where TP and TN are respectively the numbers of correctly predicted positive and

negative outcomes in a test dataset, FP is the number of negative outcomes incor-

rectly predicted as positive and FN is the number of positive outcomes incorrectly

predicted as negative. These counts are often displayed in a “confusion matrix” (Ta-

ble 1.1). An overall measure of prediction accuracy is AC = 1− ER.

Table 1.1: Confusion matrix. Counts of the observed and predicted outcomes in
binary classification.

Observed

Positive Negative

Predicted
Positive TP FP

Negative FN TN

Positive Predictive Value

There are also a number of other associated measures for specific circumstances. Use-

ful when the cost of false positives is high, precision or accuracy of positive predictions
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is measured by the positive predictive value (PPV), and is the ratio of correctly pre-

dicted positive observations to the total predicted positives,

PPV =
TP

TP + FP
. (1.68)

Sensitivity is defined as the ratio of correctly predicted positive observations to all

observations in the actual class,

SN =
TP

TP + FN
. (1.69)

Also known as the true positive rate or recall, SN measures the ability of the model

to capture all the relevant instances of the positive class. The related false negative

rate 1−SN quantifies the positive outcomes that are incorrectly classified. Balancing

PPV and SN using their harmonic mean is the F1 score,

F1 = 2
PPV × SN
PPV + SN

.

Specificity, or true negative rate, is estimated as the ratio of correctly predicted

negative observations to the total observations in the actual negative class,

SP =
TN

TN + FP
,

and measures the ability of the model to correctly identify negative outcomes, while

the false positive rate 1−SP is the ratio of incorrectly predicted positive observations

to the total observations in the actual negative class and measures the frequency of

false alarms or instances when the model predicts positive when the actual class is
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negative. Finally, performance can be measured by the area under a plot of the

true positive rate against the false positive rate at various probability thresholds for

predicting class membership. Known as Receiver Operating Characteristic (ROC),

this plot displays the model’s ability to distinguish between positive and negative

outcomes as the threshold is varied.

1.5 Variable Selection

Variable (feature) selection involves identifying and prioritizing the most relevant and

informative predictor variables in the training data to improve the machine learning

model generalisation and to enhance interpretability. The various methods existing

in the literature are commonly classified within the machine learning community as

either wrappers, filters or embedded methods. Wrapper methods follow an iterative

process of evaluating different subsets of features by training and testing a machine

learning model. The evaluation is based on performance metrics such as goodness of

fit to the training data and measures of prediction accuracy. Embedded methods in-

corporate feature selection within the process of fitting the ML model to the training

data. On the other hand, filter methods assess the relevance of features indepen-

dently of the machine learning model, using statistical measures such as correlation

to evaluate the importance of each feature.

1.5.1 Wrappers

The key steps in a typical wrapper method are subset generation and model evaluation

in an iterative process. Wrapper methods generate various subsets of the predictor
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variables using different combinations from the training dataset. Each subset is then

used to train and test the machine learning model, and performance is assessed using

a predefined evaluation metric. The process is repeated for all the generated subsets,

and the subset that maximizes the model’s performance is selected.

A common example of a wrapper method is all-subsets or best-subset selection in

which all possible subsets of the set of predictor variables are evaluated and the best-

performing model is selected. Another is forward selection, which starts with an

empty set of predictor variables and iteratively adds one feature at a time, selecting

the one that improves the model’s performance the most, until a stopping criterion is

met. Stopping criteria include no further improvement in performance after adding

predictor variables, a predefined number of predictor variables have been evaluated,

and a computational budget (e.g., time or number of evaluations) is exhausted.

Conversely, backward elimination starts with all predictor variables and iteratively

removes the predictor variable that least affects model performance based on a certain

criterion (e.g. p-value or some other performance metric), until a stopping criterion is

met. In a variant of backward elimination called recursive feature elimination, more

than one predictor variable may be removed at each iteration. Combining forward

and backward selection is sequential (stepwise) selection which starts either as in

forward selection with no predictor variables, or with a randomly selected subset.

At each iteration, the predictor variable that most improves model performance is

added, if any, and the one that least affects model performance is removed, if any.

This approach addresses the potential problem of eliminating predictor variables that

may become relevant later on in the iterative process.
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The Boruta algorithm (Kursa & Rudnicki, 2010) is a wrapper designed to identify

all relevant predictor variables in a dataset, rather than just selecting a minimal

set that results in the highest model performance. It is particularly useful for high-

dimensional datasets where many predictor variables might have small, but important

contributions to the outcome variable. Boruta operates by using a random forest

classifier as the learning model and compares the importance of observed values of

a predictor variable to the importance of randomly shuffled copies (called shadow

features). The importance of each observed predictor variable is compared to the

maximum importance of shadow features. A predictor variable is considered relevant

if its importance is consistently higher than the importance of shadow features and

irrelevant if its importance is consistently lower. This process ensures that only

variables with statistically significant importance are selected.

Wrapper methods directly assess the impact of subsets of predictor variables on the

model’s performance, ensuring that the selected predictor variables contribute to

improved model accuracy. They also account for interactions between predictor vari-

ables, capturing nuanced relationships that may be missed by other feature selection

methods and the choice of evaluation metric can be tailored to the specific goals of

the model. However, wrapper methods can be computationally intensive, especially

in problems with a large number of predictor variables and complex models.

1.5.2 Embedded methods

Embedded methods select predictor variables during the model’s training phase. Ex-

amples include regularisation methods such as ridge regression, lasso and elastic net
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that shrink the estimates of less relevant predictor variables, effectively eliminating

them from the model. In particular, addition of the ℓ1 penalty term to the objective

function in logistic regression encourages variable selection by forcing some parameter

estimates to be exactly zero. This results in a sparse model, which means that only a

subset of the predictor variables is considered in the final model, effectively selecting

the most important. The ℓ2 penalty discourages large parameter estimates which

helps to prevent overfitting, and stabilises the model by spreading the influence of all

predictor variables, rather than emphasizing a few. The combination of both ℓ1 and

ℓ2 regularization allows the logistic elastic net model to benefit from the variable se-

lection capability of lasso while still enjoying the stabilizing effects of ridge regression.

Similarly, tree-based algorithms such as random forest prune less relevant predictor

variables after evaluating their relevance during the tree-building process, while neu-

ral networks can incorporate techniques like penalising large weights, discouraging

the model from relying heavily on specific predictor variables.

Embedded methods eliminate the need for separate variable selection algorithms,

making the overall model development pipeline more efficient. They also automat-

ically prevent overfitting if the chosen penalty parameter value is large enough, en-

hancing the model’s ability to perform well on unseen data, but they are limited to

the variable selection capabilities embedded in the chosen algorithm.

1.5.3 Filters

Unlike wrapper methods, which involve training a model multiple times to evaluate

feature subsets, filters rely on statistical measures to assess the relevance of predictor
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variables independently of the learning algorithm. Many filter methods rank predic-

tor variables based on a specific scoring criterion. Examples include evaluating the

correlation between predictor variables and selecting those with the highest relevance

to the outcome, using the standard χ2 test statistic to assess statistical significance

of individual categorical predictor variables and selecting those with the most sig-

nificant impact on the model, and quantifying the amount of information provided

by a predictor variable regarding the outcome and dropping those features with low

information. Note that the mutual information between two random variables X and

Y is

I(X, Y ) =
∑
x∈X

∑
y∈Y

P(x, y) log
(
P(x, y)
P(x)P(y)

)
,

where P(x, y) is the joint probability distribution of X and Y , and P(x), P(y) are

the marginal probabilities.

Filter models are computationally efficient for high-dimensional datasets and model-

agnostic, making them applicable to various algorithms, but they also tend to ig-

nore interactions between predictor variables, which can lead to suboptimal mod-

els. Correlation-based filters assume that predictor variables are independent of each

other and so are not multicollinear, which is unlikely to hold in real-world datasets

and may lead to the selection of redundant predictor variables, creating problems of

multicollinearity. Because filter methods do not consider the model’s overall perfor-

mance in the variable selection process, they may result in lower accuracy compared

to wrapper or embedded methods.
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1.6 Discussion

Key concerns when developing a machine learning method is its accuracy in predicting

previously unseen observations and its interpretability. Deeply rooted in statistical

and machine learning theory and practice is that all models are imperfect and there

is no “best” learning method for a given problem. One model or method may work

well on one dataset, but some other model or method may work better on a different

but similar dataset and thus selecting a model and method for training the model

is often very challenging. This thesis investigates this issue within the context of

predicting peptide activity, a complex problem characterized by limited knowledge

about its underlying structure and governing principles.

This chapter provides the underlying theory for five different methods used in classifi-

cation problems, namely logistic regression and the related elastic net logistic regres-

sion, random forests, neural networks and support vector machines. With regards to

the learning model, logistic regression requires parametric specification of the math-

ematical form of the model whereas random forests, neural networks and SVMs do

not. In particular, logistic regression requires manually accounting for non-linear re-

lationships between the predictor variables and outcome whereas random forests and

neural networks can automatically model such relationships, as can support vector

machines using the kernel “trick”.

Because the logistic model is constrained, it is more resistant to overfitting, especially

with small datasets. It is also more interpretable, meaning it is easier to understand

how the model arrived at a decision. On the other hand, complex models like neural

networks or SVMs may overfit on small datasets. Thus, the best model is often
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dependent on the amount of data available: smaller datasets tend to favour simpler

models with lower variance models to prevent overfitting. In contrast, larger datasets

can support the training of complex models without overfitting and with sufficient

data for complex models to learn the general underlying patterns for minimizing error

and capturing complex patterns.

Neural networks require careful tuning of hyperparameters such as the learning rate,

the number of layers, the number of neurons per layer, and the choice of activation

functions. SVMs involve selecting the appropriate kernel function and optimizing

the cost parameter. For random forests, determining the number of trees and their

maximum depth is critical. This process of hyperparameter tuning plays a crucial role

in optimizing model performance, as these choices significantly impact the model’s

ability to generalize to new data. However, it is often a complex and non-trivial task,

requiring techniques like grid search, random search, or more advanced methods to

explore the parameter space effectively.

This chapter describes a set of classification methods based on different perspectives

for modelling the data. There is no “best” learning method for every problem be-

cause each method has its strengths and weaknesses, which depend on the nature

of the data, the task at hand, the need for interpretability, the availability of com-

putational resources, and many other factors. The choice of the best method is

context-dependent, and often, multiple models must be tested and evaluated on the

specific problem to find the most appropriate solution.



Chapter 2

Machine Learning and

Antimicrobial Peptides

This chapter introduces the structure and properties of peptides and reviews the use

of machine learning methods in predicting anti-microbial peptide activity. First, we

describe the chemical structure of amino acids found in nature and the role they

play in determining the physicochemical properties of peptides, which are essential

in the immune system for defence against pathogens. Next, the nine physicochemical

properties used in the Vishnepolsky et al. (2018) study are introduced in detail.

Following this is an overview of the application of contemporary machine learning

methods in studying peptide activity. Lastly in this chapter, the adaptation of DB-

SCAN by Vishnepolsky et al. (2018) to predicting regions of the predictor space with

anti-microbial peptides (AMPs) active against the Escherichia coli (e-coli) bacteria

is described in detail and applied to a larger dataset, to replicate the findings of the

authors.

75
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2.1 Peptides

Peptides are fundamental chains of organic molecules called amino acids, serving

diverse functions within organisms. There are 20 standard amino acids found in

nature and each is made up of a carboxyl group (COOH), an amino group (NH2)

and a hydrogen atom bonded to a tetrahedral carbon atom, designated the α-carbon,

and a side chain, or R group, which is different for different amino acids. Illustrated

in Figure 2.1 is the generic structure of an amino acid and two examples of naturally

occurring amino acids with their side chains.

(a) Generic amino acid structure (b) Alanine (c) Cysteine

Figure 2.1: Structure of (a) generic amino acid, (b) alanine (Ala) and (c) cysteine
(Cys), two naturally occurring amino acids. The side chain of Ala is CH3, a methyl
group, and for Cys it is CH2SH. Taken from https://www.chem.ucla.edu.

Side chains differ in structure, electrical charge, and polarity (distribution of electric

charge) and so are useful in categorising amino acids. For example, the acid/base

properties of its side chain are used to classify an amino acid as either acidic, basic, or

nonacidic, while the polarity and hydrogen bonding ability of its side chain determines

whether or not an amino acid interacts with water. Amino acids that do not interact

with water are classed as hydrophobic, whereas those that do are hydrophilic. The

hydrophobicity of an amino acid is typically quantified by the energy associated with

the amino acid being dissolved in water, or its transfer free energy. Figure 2.2 shows
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the 20 naturally occurring amino acids grouped by their side-chains.

Figure 2.2: Chemical structure of the 20 amino acids found in nature. Taken from
www.technologynetworks.com/applied-sciences.

Peptides are formed when amino acids are linked together by peptide bonds, see

Figure 2.3, which result from a condensation (dehydration) reaction between the

carboxyl group of one amino acid and the amino group of another (Hamley, 2020).

As illustrated in the figure, bonding of the amino acids leads to most peptides having

a N-terminal or amine group, and a C-terminal or carboxyl group. The remains of
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Figure 2.3: Schematic of a peptide, taken from www.chem.libretexts.org.

an amino acid after bonding is the residue. Unlike proteins, which are long chains of

amino acid residues, the chains of amino acids forming peptides are typically short,

ranging from two to fifty residues.

Peptides serve a myriad of functions in biological systems. Peptides act as signalling

molecules, facilitating communication between cells and tissues. Examples include

neuropeptides, which regulate neuronal function and neurotransmitter release, and

peptide hormones like insulin, which control blood sugar levels. Certain peptides

function as enzyme inhibitors or activators, modulating the activity of specific en-

zymes in metabolic pathways. For instance, protease inhibitors regulate the activity

of proteolytic enzymes involved in protein degradation and processing. Peptides con-

tribute to the structural integrity of tissues and organs. Collagen, a fibrous protein

composed of peptide chains, provides strength and elasticity to connective tissues

such as skin, tendons, and cartilage. Of interest in this thesis is the role of peptides

in the immune system, in particular the defence against pathogens.
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2.2 Physicochemical Properties of Peptides

Peptide versatility is a consequence of their structural and physicochemical diver-

sity. The primary structure of a peptide refers to the linear sequence of amino acids.

Its secondary structure, which includes α-helices, β-sheets, random coils or extended

linear enriched with specific amino acids (Hamley, 2020), is determined by hydrogen

bonding between amino acids in close proximity in the sequence. Tertiary and quater-

nary structures result from interactions between distant amino acid residues, leading

to the formation of stable three-dimensional structures. The structure of a peptide

influences its stability, binding affinity, physicochemical properties and biological ac-

tivity. The models developed in this thesis use the same set of nine physicochemical

and activity measures to classify AMPs as in the motivating paper (Vishnepolsky

et al., 2018), namely normalized hydrophobicity (H), normalized hydrophobic mo-

ment (M), net charge (C), isoelectric point (I), penetration depth (D), tilt angle

(O), propensity to disordering (R), linear moment (L) and propensity to aggregation

(A). Vishnepolsky and Pirtskhalava (2014) provide detailed definitions of these nine

features.

Hydrophobicity of a peptide is defined as the highest value of the hydrophobicities

calculated for all fragments of a certain length along the peptide. A fragment’s

hydrophobicity is based on the sum of the transfer-free energies of its amino acids.

Fragment lengths vary within the range of 4-50 amino acid residues. If the peptide

length is less than the length of the considered fragment, hydrophobicity is computed

for the full peptide. Hydrophobic moment µH of a peptide consisting of A amino
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acids is defined as

µH =


[

A∑
a=1

Hasin (δa)

]2
+

[
A∑

a=1

Hacos (δa)

]2
1/2

,

where Ha is the numerical hydrophobicity of the ath residue and δ is the angle of

rotation of the residue along the helix axis (Hamley, 2020). Hydrophobic moment

measures the extent of a peptide having both hydrophobic and hydrophilic regions

(amphiphilicity) based on the periodicity of its secondary structure and the transfer-

free energies of all residues (Hamley, 2020; Vishnepolsky & Pirtskhalava, 2014). Nor-

malised values of the hydrophobicity (H) and hydrophobic moment (M) are used to

construct the classification models.

Linear (hydrophobic) moment (L) is another quantitative characteristic for linear

amphiphaticity developed by Vishnepolsky and Pirtskhalava (2014) that measures

the degree of segregation of the hydrophobic and hydrophilic residues along the helix

axis. In particular,

L = D
(∑

H+
a −

∑
H−

a

)
,

where

D =
∣∣∣∑H+

a · a
/∑

H+
a −

∑
H−

a · a
/∑

H−
a

∣∣∣ ,
is the distance between the centres of the hydrophobic and hydrophilic parts of the

considered fragment of length A and H+
a , H

−
a ; a = 1, . . . , A, are the transfer free

energies of the ath residue from water to the hydrophobic environment under the

conditions that H+
a > 0 corresponds to hydrophobic residue, and H−

a < 0 corresponds

to hydrophilic residue (Vishnepolsky & Pirtskhalava, 2014). The values of H, M and

L used in the current work are determined by the Moon-Fleming hydrophobicity
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scale (Moon & Fleming, 2011; Vishnepolsky et al., 2018).

The net charge (C) of a peptide at a given pH is the sum of the charges on all ionizable

groups, that is, the side chains and carboxyl and amine groups, in the peptide. The

charge on each group depends on whether its dissociation constant pKa is smaller

or larger than the pH value. The isoelectric point (I) is an associated measure

corresponding to the pH at which the net charge of the peptide is zero (Hamley,

2020).

Penetration depth (D) and tilt angle (O) represent the location of a peptide relative

to the membrane bilayer of a microbe. More specifically D measures the distance of

the geometrical centre of the peptide from the membrane surface, and O is the angle

between the peptide helical axis and the normal of the membrane surface. The values

of D and O are defined using the depth-dependent potentials developed by Senes et

al. (2007).

The final two physicochemical properties of peptides introduced here are propensity to

disordering (R) and aggregation in solution, or in vitro aggregation, (A). Many short

cationic peptides were experimentally shown to have disordered structures in water

environments. Their propensity to disordering (R) is estimated using the Uversky’s

formula

R = 2.785 ⟨H⟩ − 1.151− ⟨C⟩ ,

where ⟨H⟩ and ⟨C⟩ are the mean hydrophobicity and net charge of the peptide, re-

spectively (Uversky et al., 2000). Disordered peptides have negative R values. Finally,

the in vitro propensity to aggregation (A) is evaluated using the TANGO software

developed by Fernandez-Escamilla et al. (2004) that predicts protein aggregation in
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solution by considering only sequence-based structural parameters.

The first five descriptors can be conveniently applied to discriminate and predict the

antimicrobial capability of peptides based on the common properties expected for

AMPs, i.e., being cationic (C and I), hydrophobic (H) and amphiphilic (M and L),

while the other four descriptors (D, O, R and A) can help deduce the mechanisms of

action (Vishnepolsky & Pirtskhalava, 2014). It is noted that these descriptors are not

fully independent of each other. For example, the net charge of a peptide C at a given

pH is determined by the isoelectric point I, and the latter four features listed above

could be closely connected to, or even determined by, the net charge, hydrophobicity

and amphiphilicity of the peptides. This is relevant when constructing and evaluating

the classification models.

2.3 Peptide Activity Studies

This section provides an overview of the application of contemporary machine learning

(ML) methods in peptide activity studies. Acknowledging the extensive body of

literature employing ML techniques and algorithms to comprehend peptide activity,

provided here is a glimpse into the diverse application through a curated selection of

publications.

Neural network models

The neural network method has been consistently and successfully used over the past

two decades in predicting antimicrobial peptide activity. Cherkasov et al. (2008) used
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this method to create antibiotic activity models based on small peptides (nine aa pep-

tides) that are effective against a broad spectrum of antibiotic-resistant superbugs, to

predict the activity of 100, 000 virtual peptides and novel antibacterial peptides. The

authors claim their approach is effective for designing highly active broad-spectrum

peptides smaller than those found in nature and addressed the lack of effective com-

putational approaches for the rational design of antimicrobial peptides on a large

scale.

Fjell et al. (2009) used the neural network method to identify antibacterial peptides

based on synthetic peptides of nine aa length. The model, built using quantitative

structure-activity relationships (QSAR) descriptors to predict and rank the relative

activities of antibacterial peptides, was reported to have achieved 94% accuracy in

identifying highly active peptides. The authors used the traditional principal com-

ponent regression (PCR) and partial least squares regression (PLSR) data reduction

methods to address the multicollinearity of some QSAR descriptors. From a total of

77 QSAR descriptors, the authors’ approach reduced the number of predictor vari-

ables to 44 linear combinations of the descriptors.

Torrent et al. (2011) used data obtained from the CAMP (www.camp.bicnirrh.res.in)

and Uniprot (www.uniprot.org) databases to build a neural network model to predict

antimicrobial peptides and to assess their potency based on isoelectric point, length,

α-helix propensity, β-sheet propensity, turn propensity, in-vitro and in-vivo aggrega-

tions, and hydrophobicity. The authors suggest that the predictor variables used are

all important for classifying antimicrobial peptides (AMPs) and non-antimicrobial

peptides (non-AMPs). In addition, they compared the neural network approach with

a support vector machine approach and presented results suggesting that the former
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approach is more accurate than the latter.

Mooney et al. (2013) built a neural network model to predict bioactive peptides

within protein sequences based on protein having bioactive peptides of length ⩽50

residues from the PeptideDB (www.peptides.be) databases. Their method classifies

bioactive peptides into six groups: antifreeze, antimicrobial, cytokines and growth

factor, peptide hormones, toxins and venom, and unique/other with an AUC of over

86%. Also, the authors built a model that can predict the bioactivity status (bioactive

or non-bioactive) of small (15 aa length) peptides with an accuracy of about 82%.

Support vector machine models

The support vector machine (SVM) method has also been a widely used method for

predicting antimicrobial peptide activity over the past two decades. Lata et al. (2010)

used the SVM approach to develop the predictive model using antibacterial peptides

from the APD database at theN and C terminus residues. The model was constructed

based on peptide amino acid composition to predict and classify antibacterial and

non-antibacterial peptides. The authors reported to have achieved 92.14% accuracy

in identifying antibacterial peptides.

Porto et al. (2012) used the SVM approach with three kernels: linear, polynomial

and radial kernels to construct prediction models for predicting antimicrobial activity

for cysteine-stabilized peptides. The prediction models were developed based on nine

structural/physicochemical properties such as average charge, average hydrophobicity,

hydrophobic moment, amphipathicity, α-helix propensity, the flexibility of α-helix,

indexes of α-helix, β-sheet and loop formation from the APD database and a subset
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of the protein data bank (PDB). The APD database was used to generate the positive

data set, while a subset of the PBD was used to generate the negative data set. Both

datasets consist of sequences ranging from 16 to 90 amino acid residues. The authors

suggest that the five sequence descriptors, indexes of α-helix, loop formation, average

charge, average hydrophobicity and flexibility of α-helix are key factors for predicting

antimicrobial activity. To simplify the analysis and reduce the dimensionality of these

predictor variables, they used principal component analysis (PCA). Also, the authors

reported the model from the polynomial and radial kernels achieved 90% accuracy,

while the linear model achieved 89.33%.

Ng et al. (2015) used the SVM classification method to predict antimicrobial and

non-antimicrobial peptides sequences. A pairwise (or one-vs-one) strategy was im-

plemented to decompose the multi-class problem into multiple binary classification

problems, while the LZ complexity algorithm (Lempel & Ziv, 1976), which measures

the number of distinct substrings encountered as a sequence is parsed from left to

right, was used for sequences that were not identifiable through the sequence align-

ment method. The authors constructed a predictive model using LIBSVM (a library

for SVMs) and based on feature vectors from the CAMP (Collection of Anti-Microbial

Peptides) database. Two training sets were used; one had normal sequences while the

other comprised sequences with less than 70% similarity. Test datasets were created

from the CAMP database and using data from Wang et al. (2011). The authors also

evaluated the proposed algorithm’s performance using a jackknife test on the two

training datasets. The jackknife approach comprises systematically removing one ob-

servation at a time from the dataset and recomputing the statistic(sensitivity here).

Sensitivity for normal sequences was reported as 95.28% based on jacknife and 87.59%
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using the test data, while for sequences with less than 70% similarity, the jackknife

and test data sensitivity estimates are 88.74% and 78.70% respectively.

Meher et al. (2017) used the SVM method to predict the propensity of a peptide se-

quence as antibacterial, antiviral and antifungal peptides using three different sample

sizes: small (100 samples), medium (500 samples) and large (983 samples for bacterial,

738 samples for viral, and 1383 samples for fungal), in which the positive and negative

sets contain an equal number of samples. The SVM prediction model for identifying

antimicrobial peptides was developed using the compositional (consisting of amino

acid composition (AAC) with 20 features, pseudo amino acid composition (PAAC)

with 20 features and normalized amino acid composition (NAAC) with 20 features),

physicochemical properties (consisting of hydrophobicity, net charge and isoelectric

point) and structural features of the peptides (consisting of α-helix propensity, β-sheet

propensity and turn propensity), derived from benchmark datasets. The authors used

the radial kernel with hyperparameter γ equal to the reciprocal of the number of pre-

dictor variables, and cost C=1 when fitting the SVM model. They suggest that large

sample sizes are more accurate for predicting peptide activity than small sample sizes.

The authors reported accuracies of more than 90% for the prediction of AMPs, and

that accuracies for predicting antibacterial and antifungal peptides were higher than

those for antiviral peptides. They found that physicochemical and structural proper-

ties of peptides were more important in the prediction of antibacterial peptides than

antiviral and antifungal peptides. Also, physicochemical properties were more impor-

tant than structural properties in predicting peptide activity in general. Additionally,

they discovered that net charge was the most important property in predicting an-

tibacterial and antifungal peptides, followed by isoelectric point, while Cysteine (and
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C) composition was the most important in predicting antiviral peptides. However,

they reported the amino acids K (Lysine), P (Proline) and I (Isoleucine) were also

important for predicting AMPs.

The final paper reviewed in this section, Lata et al. (2007), is one where both neural

network and support vector machine methods were used to compare performances in

predicting antibacterial peptides. Models were developed focusing on the residues at

the N -terminus, C-terminus, and both N - and C-terminus from the antibacterial pep-

tide database (APD). The authors reported accuracies of 83.63%, 87.85% and 84.78%

for predicting antibacterial peptides using N -terminal residues for the neural network

and SVM models and a method called quantitative matrices (QM) (Lata et al., 2007)

which computes matrices of propensities of each residue at a particular position. The

accuracy of prediction antibacterial peptides for C-terminal residues using the NN,

QM, and SVM methods were 77.34%, 82.03%, and 85.16%, respectively. Finally, the

accuracy of prediction antibacterial peptides for N - and C-terminal residues using the

NN method is 81.17%, the QM method is 90.37%, and the SVM method is 92.11%.

The authors suggest that the N - and C-terminal residues are important features of

peptides, and the SVM method performs best in predicting antibacterial peptides,

followed by the QM and NN methods.

Random forests models

The random forest (RF) method is also now frequently utilised to predict AMP activ-

ity. Maccari et al. (2013) used the random forest approach to predict the peptide α-

helix structure and/or antimicrobial activity (a natural and a non-natural amino acid

residue/an AMP and a non-AMP). Two predictive models were constructed based on
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two different datasets of peptides called Dataset A and Dataset B, both characterized

by quantitative structure-activity relationship (QSAR) descriptors. Dataset A con-

tains the function properties for AMP activity consisting of AMPs with 11-40 amino

acid residues from the YADAMP (www.yadamp.unisa.it) and CAMP databases (the

positive dataset) and from the UniProt databases without antimicrobial annotation

(the negative dataset). Dataset B contains the structural characteristics of α-helix

AMPs using all-α helical peptide fragments (the positive dataset) and peptide frag-

ments in all-coli, all-sheet and mixed conformation (the negative dataset) from the

CB513 dataset, which is a well-defined non-redundant set of proteins. The authors

reported that they have achieved 89.9% accuracy for Dataset A and 87.1% accuracy

for Dataset B in predicting the peptide sequence based on the optimal features set.

Additionally, their cluster analysis identified five different clusters; clusters 1 and

2 have a significant average net charge with a different distribution of the charged

residues, while clusters 3, 4 and 5 have a lower net charge, indicating a higher inci-

dence of negatively charged residues. The authors also designed novel AMP sequences

(called ab-initio AMP) with non-natural amino acids based on the physicochemical

properties of AMPs. Their results showed that using the physicochemical descriptors

to analyze and predict non-natural amino acid insertions enhances flexibility in pep-

tide design, and this approach successfully transformed a non-antimicrobial peptide

(non-AMP) into a highly active AMP by using non-natural amino acids.

Bhadra et al. (2018) developed a highly accurate random forest classifier to predict

AMPs by analyzing distribution patterns of physicochemical properties, which enables

the design of novel peptide sequences with potential antimicrobial and therapeutic
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effects. The prediction model was constructed based on the physicochemical prop-

erties using the positive dataset from the APD3 (https://aps.unmc.edu), CAMPR3

(www.camp3.bicnirrh.res.in), and LAMP databases and the negative dataset from

the UniProt databases. The authors discovered that the prediction model can classify

with high accuracy (96%) and found that charge was the key factor for antimicrobial

activity. They also recommend exploring more modern ensemble learning techniques

for training the classifier, as they feel that an advanced and intelligent feature selec-

tion strategy can help to improve the model.

Lira et al. (2013) used a tree model with nine nodes, eight predictor variables and ten

leaves to represent the level of activity of synthetic peptides, and to predict antimicro-

bial activity and peptide construction for several therapeutic uses. They developed

the model using the physical and chemical properties of antimicrobial peptides from

the APD database. The eight predictor variables are net charge, hydrogen, oxygen,

isoelectric point, log(P ) of non-ionic species, ASA-P, balaban index and dreiding en-

ergy. The jackknife was used to validate the model, which has a classification accuracy

of 0.70 for peptide activity. Peptide activity was classified into four categories: none,

low, medium, and high.

Youmans et al. (2017) used the long short-term memory (LSTM) recurrent neural

networks, random forests (RF) and k-nearest neighbours (KNN) methods to classify

antibacterial and non-antibacterial peptides. The authors reported the features used

in the LSTM model are simpler and easier to generate compared to the RF model.

Moreover, both the LSTM and RF techniques performed better than the KNN clas-

sifier.
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Logistic regression models

A recent example of use of logistic regression and the Boruta wrapper algorithm for

feature selection is Clark et al. (2021), who synthesised peptides comprising all possi-

ble sequences up to seven aa length that can be produced from the positively charged

amino acid Arginine (R) and the hydrophobic Tryptophan (W), see Figure 2.2, and

assessed their inhibitory, microbiocidal and hemolytic activities against the gram-

positive bacterium Staphylococcus aureus, the gram-negative bacterium Pseudomonas

aeruginosa, and a yeast Candida albicans. Bayesian logistic regression models were

fitted using 267 features determined from the peptide sequences.

Other methods

Xiao et al. (2013) used a fuzzy K-Nearest Neighbour (fKNN) method to build a

prediction model based on the five physicochemical peptides; hydrophobicity, pK1

(Cα-COOH), pK2 (NH3), PI (25◦C) and molecular weight, to identify AMPs and

non-AMPs. The authors used the Jackknife test to estimate accuracy, reported as

86.32%, of detecting AMPs and non-AMPs. Wang P. et al. (2011) used KNN to

predict antimicrobial peptides based on the physicochemical and biochemical prop-

erties of amino acids consisting of five features; codon diversity, electrostatic charge,

molecular volume, polarity, and secondary structure. The predictive model was de-

veloped using an integrated method that combines sequence alignment with feature

selection techniques. The authors performed the Jackknife test to determine the ac-

curacy of predicting antimicrobial peptides, achieving an accuracy rate of 80.23%.
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They also compared the model with the SVM, RF and discriminant analysis meth-

ods, and reported that the KNN method has a higher sensitivity value than each of

these methods.

Vishnepolsky et al. (2014) developed a simple approach for discriminating between

AMP and non-AMP and to predict the linear cationic antimicrobial peptides (LCAP)

based on their membrane interaction properties. Their prediction model was devel-

oped using several key characteristics: hydrophobicity, amphiphaticity, the peptide’s

location relative to the membrane, charge density, propensities to disordered struc-

ture and aggregation. A threshold for each characteristic was determined by a point

closest to the point (0,1) on the ROC curve of sensitivity against specificity and

prediction of the existence of antimicrobial activity of the peptide was done based

on these thresholds. The authors compared their approach with more complicated

discrimination SVM, RF, NN and discriminant analysis techniques. Their approach

uses the LCAP set selection from the APD2 database for the positive dataset, while

the negative dataset is obtained from the UniProt database. The authors reported

that three descriptors can be used as discriminators of LCAP prediction: hydrophobic

moment, charge density, and peptide position along the membranes. They also claim

that their approach is comparable to the CAMP prediction methods on the training

set while demonstrating superior accuracy on the test set.

Khamis et al. (2015) used k-means clustering with Euclidean distance to classify

AMPs into antimicrobial families using features selected by a genetic algorithm.

The families and sub-families of peptides that have antimicrobial activity (positive

dataset), which has 753 non-redundant natural mature peptides, were obtained from

the DAMPD database. In contrast, the negative dataset has 288 peptides obtained
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from the UniProt database. The authors claim that they can classify AMPs into 14

families and sub-families.

Jenssen et al. (2008) used principal component analysis (PCA) and the partial least

squares (PLS) to analyze the structure-activity relationship of the peptides in the

Bac034 and Bac2A libraries and to verify the value of contact energy and inductive

and conventional QSAR descriptors, which has amino acid and charge as specific

description values. The two models for peptide antibacterial action were reported to

have predicted activity of 85% and 71% accuracy.

Machine learning has become a central tool for predicting the antimicrobial activity

of peptides, with methods ranging from the traditional logistic regression to the more

contemporary neural networks, random forests and support vector machines. Many

models rely on features like amino acid composition, hydrophobicity, net charge, and

secondary structure propensity, often achieving strong classification performance in

distinguishing antimicrobial peptides (AMPs) from non-AMPs. Despite these ad-

vances, existing methods also highlight major gaps in our understanding of how pep-

tides act against microbes. Models trained on general AMP datasets often fail to

generalize across microbial species, reflecting how context-specific activity is poorly

captured. Furthermore, current methods often capture correlations rather than un-

derlying biological mechanisms and highlight a need for better integration of struc-

tural and biophysical information and interpretable modelling approaches to bridge

prediction with true mechanistic understanding.
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2.4 Density-Based Spatial Clustering and Peptide

Activity

Presented in this section is a description of the use of DB-SCAN by Vishnepolsky et

al. (2018) to cluster linear antimicrobial peptides active against the Gram-negative

bacteria Escherichia coli ATCC 25922 and hence to predict the physicochemical

properties of these peptides. Using the dbscan( ) function of package dbscan (Hahsler

et al., 2019) in R (R Core Team, 2021), clusters were constructed based on the nine

physicochemical properties introduced in Section 2.1, that is normalized hydrophobic

moment (M ), normalized hydrophobicity (H ), net charge (C ), isoelectric point (I ),

penetration depth (D), tilt angle (O), propensity to disordering (R), linear moment

(L) and propensity to aggregation (A). Next, the analysis is reproduced using a larger

dataset obtained from the DBAASP (www.dbaasp.org) data repository in an effort

to validate the findings of this paper.

2.4.1 Vishnepolsky’s method

Using the DBAAP database, training and test data sets were created based on use

of the minimum inhibitory concentration (MIC) criterion to decide whether or not

a linear AMP is active against E. coli ATCC 25922. Active peptides had MIC<25

µg/ml and inactive peptides had MIC>100 µg/ml. In addition, all selected peptides

were without intrachain bonds and without non-standard amino acids (or without

modification). Two separate sets of clustering models were constructed, one set for

peptides of sequence lengths 10-16 aa and the other set for sequences of length 18-27

aa. The training data set for each set of models consisted of a positive set of peptides
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and a negative set. The positive set was of peptides active against E. coli ATCC 25922

and the negative set were of peptides inactive against the same bacteria. Altogether

the full training dataset for the model for peptides of sequence lengths 10-16 aa had

a total of 174 active peptides and the same number of inactive peptides. The full

training dataset for sequence lengths 18-27 aa had 118 active and the same number of

inactive peptides. Each full training set comprised data on the nine physicochemical

properties listed above.

Instead of using the full training datasets when building the clustering models, 5

equally-sized subsets of the training data, called validation sets and denoted here by

RTSk; k = 1, . . . , 5, were randomly selected from the training data using sampling

without replacement. Thus, for peptide sequence lengths 10-16 aa, models were

constructed using 140 active peptides and the same number of inactive peptides while

models of peptides of sequence lengths 18-27 aa were constructed from 100 active

peptides and the same number of inactive peptides. For peptide sequence lengths

10-16 aa, a test set was constructed using 34 active peptides and the same number

of inactive peptides, while for peptide sequence lengths 18-27 aa, the test set had 18

active peptides and the same number of inactive peptides.

Clustering algorithms were run for each of the 511 possible combinations of the nine

predictor variables in a training dataset. Also, instead of selecting a single set of

values for the DB-SCAN parameters ϵ and for MinP , the authors used the range

from 0.2 to 2.0 in steps of 0.2 for ϵ and 3 to 15 in steps of 1 for MinP , giving a total

of 130 combinations of both parameters. Combined with the use of the 5 validation

sets, this gave a total of 5×130 clustering models for a given combination of predictor

variables and sequence length.
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For a given combination of predictor variables and sequence length, the machine

learning algorithm for identifying properties of peptides active against ATCC 25922

comprised three steps. First, for the kth validation set RTSk; k = 1, . . . , 5, and

combination of ϵ and for MinP , DB-SCAN was run using only active peptides and

the training set of active peptides filtered to include only those clusters of size greater

than 10 active peptides. Inactive peptides were then taken as belonging to a particular

cluster if the values of their features were within an interval determined by the values

of the features of the active peptide in the said cluster. A second filtering removed

those clusters with less than 75% active peptides. In other words, the retained clusters

satisfied a positive predicted value,

PPV =
TP

TP + FP
≥ 0.75,

where TP is the number of true positives, or active peptides, and FP is the number of

false positives, or inactive peptides. The set of retained clusters over all combinations

of ϵ and MinP and using training set RTSk is denoted here by {Cik} where i =

1, . . . , number of clusters with PPV ≥ 0.75.

The second step is concerned with finding stable clusters in the five sets {Cik}; k =

1, . . . , 5. A cluster Cik in set {Cik} is considered similar to a cluster Cjℓ in set

{Cjℓ}, k ̸= ℓ if the number Nij of peptides that fall in both clusters is large relative

to the larger of the two clusters. In particular, cluster Cik is similar to Cjℓ (k ̸= ℓ) if

Sij =
Nij

max(Ni, Nj)
> 0.85,

where Ni is the number of peptides in Cik and Nj is the number of peptides in Cjℓ.
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A cluster is stable if similar clusters are found in all five sets. The sets created at

this stage are overlapping as they are created using different combinations of ϵ and

MinP .

In the third and final step of the algorithm, the overlapped sets obtained in the second

step are used to construct combinations of non-overlapping stable clusters (CSC). It

is unclear from the paper how the combinations were constructed. Clarification was

sought via personal communication with the authors but this did not help. In the

paper, prediction of activity was done using physicochemical properties of the peptides

in the CSC with the highest Pi, defined as

Pi =

ℓi∑
j=1

(SNijPPVij), (2.1)

where SNij and PPVij are the sensitivity and positive predictive value for the jth

cluster of the ith CSC with ℓi clusters. A region of the feature space based on the

means and standard deviations of the physicochemical characteristics of peptides

forming this optimal cluster is constructed and a new peptide is predicted active if the

values of its features fall within this region (personal communication with authors).

For peptides with sequence lengths 10-16 aa, Vishnepolsky et al. (2018) reported

three clusters for prediction, with two in the space of 7 predictor variables and the

third in the space of 3 predictor variables. The largest cluster, with 108 peptides,

was found in the 7D space formed by hydrophobic moment (M ), hydrophobicity (H ),

isoelectric point (I ), tilt angle (O), linear moment (L), propensity to disordering (R)

and propensity to aggregation (A). The second largest, with 21 peptides, was found

in the space formed by M, H, I, O, R, A and penetration depth (D). The smallest
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cluster, with 18 peptides, was found in the space formed by I, O, and D.

For peptides with sequence lengths 18-27 aa, Vishnepolsky et al. (2018) reported four

clusters for prediction. The largest was found in the 6D space M, I, D, O, L and net

charge (C ). The next was found in 1D space I. The third was found in 2D space I

and A. The final cluster was found in 4D space M, I, R and A.

Vishnepolsky et al. (2018) evaluated their model for predicting activity status of the

shorter peptides using a test dataset of 34 active and 34 inactive peptides. The test set

of longer peptides had 18 active and the same amount of inactive peptides. Table 2.1

shows the confusion matrices obtained based on results provided in the paper. The

test error rates are calculated as respectively 14/68 or 20.6% for shorter peptides and

8/36 or 22.2% for the longer peptides, while the sensitivities are respectively 25/30

or 83.3% and 14/18 or 77.8%.

Table 2.1: Counts of actual and predicted activity status of peptides against E coli
ATCC 25922 obtained using a density-based spatial clustering method (Vishnepolsky
et al., 2018) and test datasets.

10-16 aa length 18-27 aa length

Actual Actual

Active Inactive Active Inactive

Predicted
Active 25 5 14 4

Inactive 9 29 4 14
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2.4.2 A replication study

In an attempt to establish consistency of the above findings, the method described

above is programmed in R, using the dbscan function for clustering and implemented

using the same set of peptides as in Vishnepolsky et al. (Vishnepolsky et al., 2018).

Thus the full datasets, downloaded from the DBAASP repository, consisted of 174

active peptides of 10-16 aa length, 118 active peptides of 18-27 aa length, a set of 173

inactive peptides of 10-16 aa length and 118 inactive peptides of 18-27 aa length. One

inactive, 10-16 aa length peptide was not available at the site. As in the paper, a test

set for peptide sequence lengths 10-16 aa was constructed from the full dataset using

34 active peptides and 33 inactive peptides, while the test set for 18-27 aa peptides

had 18 active peptides and 18 inactive peptides.

Stable clusters were generated as in steps one and two of the Vishnepolsky et al. (Vish-

nepolsky et al., 2018) algorithm. As the third step of the Vishnepolsky et al. algo-

rithm is vague, implemented here is a reasoned framework for constructing the pre-

diction model. The set of stable clusters of peptides obtained over all combinations of

DB-SCAN parameters ϵ and MinP and over all combinations of predictor variables

were first partitioned into subsets based on whether or not they shared peptides in

common in such a way that every stable cluster in a subset shared peptides (over-

lap) with at least one other stable cluster in said subset and shared no peptide with

clusters outside its subset. The partitioned subsets therefore define disjoint regions

of the 9D feature space containing active peptides. Next for each overlapping subset

of stable clusters and following Vishnepolsky et al. the cluster with the highest Pi,

see equation (2.1), was selected for predicting activity status.
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Results for replication study

ML model for 10-16 aa length peptides

Considering the analysis for peptides of 10-16 aa length, a total of 521 stable clusters

forming two disjoint subsets of overlapping clusters were found. The first disjoint

subset comprises only 2 clusters in the 4D space MCIL while the second had 519

distributed across 2D to 9D space. These findings are summarised in Table 2.2. The

cluster with maximum Pi within each subset is selected for use in prediction. For

the first subset, this cluster is clearly the one in the 4D space MCIL. Among all

clusters in the second subset, the cluster in 6D space HCIDOL and in the 7D space

HCIDOLA had joint maximum Pi of 1.51, and the cluster in 6D space is therefore

selected, using the principle of parsimony. Unlike Vishnepolsky et al. who found a

cluster with 108 peptides, clusters found here all have less than 20 peptides. Contrary

to Vishnepolsky et al. (2018) who found stable clusters in the 3D space IDO and in

7D spaces MHIORLA and MHIDORA, net charge C is now found to be an important

predictor variable for AMP activity status whereas propensity to disordering R is not.

This is further explored in Table 2.3.

Table 2.3 shows the mean values and standard deviation of nine physicochemical prop-

erties for the optimized clusters for 10-16 aa peptides used for prediction compared

with results of Vishnepolsky et al. (2018). As can be seen from the table, peptides

from the re-analysis results have similar values as those found by Vishnepolsky et

al. The two clusters in the re-analysis differed most strongly from each other by net

charge (C ), isoelectric point (I ) and linear moment (L). While Vishnepolsky et al.

reported that clusters differed most strongly from each other by I and tilt angle (O).
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Table 2.2: Number (n) of stable clusters of peptides 10-16 aa length and properties
of the cluster with maximum Pi within subspaces of the 9D physicochemical space.

All stable clusters Properties of cluster with maximum Pi

Dimension n Pi Predictors Size

Subset 1

4D 2 0.12 MCIL 14

Subset 2

2D 5 0.59 MO 17

3D 28 0.72 HCL 15

4D 73 1.20 HCDL 14

5D 127 1.34 HCIOL 15

6D 141 1.51 HCIDOL 15

7D 94 1.51 HCIDOLA 15

8D 40 1.12 HCIDORLA 15

9D 11 1.04 MHCIDORLA 15

Total 521

ML model for 18-27 aa length peptides

Table 2.4 summarises the single set of 243 overlapping stable clusters found for the

18-27 aa length peptides, and the dimension of the spaces where these clusters were

formed. The cluster of 88 peptides in 5D space defined by predictor variables HIDOL

is selected for use in predicting AMP activity. This is in contrast to the four active

regions found by Vishnepolsky et al. (2018) in 1D space I, 2D space IA, 4D space

MIRA and 6D spaceMCIDOL. The smallest of these clusters comprise 10 peptides

while the largest had 41. Notable differences between the two analyses, apart from

the number of active regions found, is that hydrophobicity (H ) was not identified by

Vishnepolsky et al. as an important classifier, whereas hydrophobic moment (M ),



101

Table 2.3: Mean values and standard deviation of nine physicochemical properties for
the optimized clusters for peptides of 10-16 aa length using Vishnepolsky’s method.
Mean values and standard deviation of the key physicochemical properties in the
clusters are highlighted in blue.

mean values ± SD of properties

Re-analysis results Vishnepolsky et al. (2018) results

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3

(MCIL) (HCIDOL) (MHIORLA) (IDO) (MHIDORA)

M ± SD 1.0 ± 0.1 1.4 ± 0.5 1.5 ± 0.6 0.6 ± 0.2 1.4 ± 0.2

H ± SD -0.7 ± 0.2 0.5 ± 0.3 -0.5 ± 0.7 -0.4 ± 0.5 -0.6 ± 0.4

C ± SD 3.0 ± 0.0 8.4 ± 0.6 5.4 ± 2.1 4.9 ± 1.5 3.2 ± 1.7

I ± SD 11.1 ± 0.2 12.5 ± 0.3 13.8 ± 0.5 12.7 ± 0.8 10.9 ± 0.4

D ± SD 13.9 ± 2.3 16.4 ± 0.8 14.2 ± 4.5 17.6 ± 2.1 13.8 ± 1.2

O ± SD 92.2 ± 18.8 94.7 ± 7.3 90.9 ± 15.6 162.6 ± 12.9 94.0 ± 9.8

R± SD 0.2 ± 0.2 -0.7 ± 0.2 -0.1 ± 0.5 -0.5 ± 0.3 0.3 ± 0.2

L± SD 0.3 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1

A± SD 6.3 ± 12.2 0.0 ± 0.0 2.1 ± 8.8 64.4 ± 157.8 5.7 ± 10.3

net charge (C ), propensity to disordering (R) and propensity to aggregation (A) were

not identified as important in the re-analysis.

Means and standard deviations of the physicochemical properties for the optimized

clusters for 18-27 aa peptides in Table 2.5 show that the cluster found in the re-analysis

have similar values to those found by Vishnepolsky et al. apart from propensity to

aggregation A which is higher for the former. However, as A is not one of the predictor

variables in the ML model from the re-analysis, but is closely linked to C, H and L,

it is not obvious at this stage what differentiates the performances of the two sets

of models in predicting activity status. This is further examined by evaluating the
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Table 2.4: Number (n) of stable clusters of peptides 18-27 aa length and properties
of the cluster with maximum Pi within subspaces of the 9D physicochemical space.

All stable clusters Properties of cluster with maximum Pi

Dimension n Pi Predictors Size

2D 15 2.06 CL 16

3D 67 8.81 HIO 94

4D 72 13.29 HIDO 89

5D 62 19.60 HIDOL 88

6D 27 6.51 HIDORL 89

Total 243

models on the test datasets.

Evaluation on test sets

The test sets used in the replication analysis here comprise the same peptides as used

in Vishnepolsky et al. (2018), but the values of the physicochemical properties can

be different as the DBAASP database was updated since publication of their paper

(personal communication). The test set data for 10-16 aa length peptides, consisting

of 34 active and 33 inactive peptides, are used to estimate the error rates of the re-

analysis model using the values coloured blue in Table 2.3 to define active regions.

These values are appropriate for defining the active regions, as the use of mean and

standard deviation are consistent with the previous analysis by Vishnepolsky et al.,

to define active regions. Error rates are also obtained using the Vishnepolsky et al.

classification model. The results reported here are for active regions defined as three

standard deviations from the mean. It is unclear how many standard deviations were

used in the original paper. Here, three standard deviations provided a good balance
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Table 2.5: Mean values and standard deviation of nine physicochemical properties for
the optimized clusters for peptides of 18-27 aa length using Vishnepolsky’s method.
Mean values and standard deviation of the key physicochemical properties in the
clusters are highlighted in blue.

mean values ± SD of properties

Re-analysis results Vishnepolsky et al. (2018) results

Cluster 1 Cluster 1 Cluster 2 Cluster 3 Cluster 4

(HIDOL) (MCIDOL) (I ) (IA) (MIRA)

M ± SD 1.1 ± 0.4 1.2 ± 0.2 0.9 ± 0.4 1.2 ± 0.5 0.5 ± 0.1

H ± SD -0.3 ± 0.4 -0.4 ± 0.4 -0.4 ± 0.6 -0.3 ± 0.5 -0.7 ± 0.3

C ± SD 5.3 ± 2.4 4.2 ± 1.2 7.9 ± 1.6 7.2 ± 2.6 6.1 ± 1.4

I ± SD 11.7 ± 0.7 11.4 ± 0.5 12.6 ± 0.2 14.0 ± 0.0 11.7 ± 0.2

D ± SD 14.4 ± 1.9 13.8 ± 0.8 20.4 ± 7.3 15.4 ± 6.1 13.6 ± 4.6

O ± SD 86.5 ± 10.8 88.3 ± 5.8 91.3 ± 30.3 88.5 ± 22.6 75.1 ± 22.7

R± SD 0.0 ± 0.3 0.1 ± 0.2 -0.4 ± 0.3 -0.1 ± 0.4 0.0 ± 0.1

L± SD 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.4 ± 0.1

A± SD 51.4 ± 166.4 40.1 ± 161.2 23.5 ± 46.9 10.1 ± 24.4 31.3 ± 26.9

between sensitivity (SN) on the one hand and positive predictive value (PPV ) on

the other. A similar approach was adopted for 18-27 aa length peptides using a test

data set of 18 active and 18 inactive peptides and with active regions defined by the

mean and standard deviations coloured blue in Table 2.5.

Results of prediction on the test set of peptides of 10-16 aa length are provided in

Table 2.6. However, the sensitivity, positive predictive value and error rates for the

Vishnepolsky et al. model in Table 2.6 were calculated using the test sets from the

replication study. The two models demonstrate similar error rates but they differ

in terms of sensitivity and positive predictive value, with the Vishnepolsky et al.

model being more likely to correctly predict active peptides. Performances for both
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Table 2.6: Vishnepolsky method performance metrics calculated using replication
study and Vishnepolsky et al. models and a test set of peptides of 10-16 aa length.

Clusters TP TP + FN FP TN + FP SN PPV ER

Re-analysis model

Cluster 1 (MCIL) 2 34 1 33

Cluster 2 (HCIDOL) 4 34 0 33

All clusters 6 34 1 33 0.18 0.86 0.43

Vishnepolsky et al. model

Cluster 1 (MHIORLA) 9 34 3 33

Cluster 2 (IDO) 1 34 2 33

Cluster 3 (MHIDORA) 9 34 5 33

All clusters 19 34 10 33 0.56 0.66 0.37

models here are not as good as in the original paper where the positive predictive

value (0.83) was similar, but sensitivity was higher (0.73) and error rate was lower

(0.20). Better performances were recorded for the 18-27 aa length peptides, compared

with the shorter peptides. As Table 2.7 shows, the two models demonstrate similar

sensitivities but they now differ in terms of error rates, with the Vishnepolsky et al.

model being more likely to correctly predict peptide activity status. Also, the Vish-

nepolsky et al. model re-evaluation here is consistent with the metrics obtained in the

original paper, where both PPV and SN were 0.78 and the overall error rate was 0.22.

Additional comments on replication study findings

For 10-16 aa peptides, the largest stable clusters found contain 17 peptides and are in

2D and 3D space. Compared with Vishnepolsky et al., who found a cluster with 108

peptides for peptides of 10-16 aa length, this lack of stable clusters with a large number
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Table 2.7: Vishnepolsky’s method performance metrics calculated using replication
study and Vishnepolsky et al. models and a test set of peptides of 18-27 aa length.

Clusters TP TP + FN FP TN + FP SN PPV ER

Re-analysis model

Cluster 1 (HIDOL) 16 18 11 18

All clusters 16 18 11 18 0.89 0.59 0.36

Vishnepolsky et al. model

Cluster 1 (MCIDOL) 9 18 4 18

Cluster 2 (I ) 7 18 1 18

Cluster 3 (IA) 0 18 0 18

Cluster 4 (MIRA) 0 18 0 18

All clusters 16 18 5 18 0.89 0.76 0.19

of peptides is likely to have negatively impacted the re-analysis model’s performance.

Conversely, for 18-27 aa peptides, the largest stable clusters found contain 95 peptides

and are in 4D space. In fact, 13 stable clusters that have between 87 to 95 peptides

were found, two of which are in 3D space, three in 4D space, five in 5D space and

three in 6D space. In contrast, Vishnepolsky et al. largest cluster had 41 peptides.

Information obtained in the replication study provides insight into the properties that

are relevant for predicting active peptides. Table B.1 in Appendix B lists the predictor

variables forming the sub-spaces where stable clusters of active 10-16 aa peptides were

found. Comparing physicochemical properties comprising the spaces, it can be seen

that net charge (C ) is present in the majority of (77) of the 89 subspaces with stable

clusters, followed by hydrophobicity (H ) which is present in 71. Linear moment (L)

found in 63 subspaces, and tilt angle (O) and propensity to disordering (R), found in

52, are the next most common predictor variables. These are followed by penetration
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depth (D) and isoelectric point (I ), found in 50 and 49 subspaces, respectively. On

the other hand, aggregation (A) and hydrophobic moment (M ) are present in less

than half the subspaces.

Table B.2 lists the 30 subspaces where stable clusters of active 18-27 aa peptides were

found. Isoelectric point I is present in the majority (25) of these subspaces, O with

22 occurrences is next, followed by L, H and D present in 17, 16 and 15 subspaces,

respectively. Aggregation A, which is in the subspaces containing Clusters 3 and 4 in

Table 2.7, is present in only 5 of the subspaces found in the re-analysis.

While the findings of the replication study do not support the consistency of Vish-

nepolsky’s method, evidence is nevertheless provided that this method is potentially

promising. To investigate whether the possible lack of consistency can be attributed

to the relatively small datasets used to train the ML model, the method is next imple-

mented on larger training datasets. It should also be noted that a substantial number

of peptides have been added to the DBAASP repository since the publication of the

Vishnepolsky et al. manuscript.

2.4.3 Vishnepolsky method with larger training datasets

Downloaded from DBAASP was a set of 898 active peptides of 10-16 aa length, 508

active peptides of 18-27 aa length, a set of 644 inactive peptides of 10-16 aa length and

406 inactive peptides of 18-27 aa length. These numbers were obtained after removal

of duplicates. Next, following the approach in Vishnepolsky et al. (2018) of balancing

the active and inactive peptides, the same number of active and inactive peptides

were randomly selected for both 10-16 aa length and 18-27 aa length. Consequently,
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644 active and 644 inactive 10-16 aa peptides, and 406 active and the same number

of inactive 18-27 aa peptides were available to the study. Test sets were constructed

using a random selection of 20% of the available data. Thus for 10-16 aa lengths, each

of the five validation sets RTSk; k = 1, . . . , 5 in Vishnepolsky’s method had 515 active

peptides and the same number of inactive peptides in the training set. For 18-27 aa

lengths, the number was 324 peptides each. The test set for peptide sequence lengths

10-16 aa comprised 129 active peptides and the same number of inactive peptides,

while for lengths 18-27 aa, the test set had 82 active peptides and the same number

of inactive peptides.

Vishnepolsky ML models trained on larger datasets

Three non-overlapping subsets of stable clusters were obtained for peptides of 10-16

aa length after partitioning the set of stable clusters. The cluster with maximum Pi in

the first subset comprises 18 peptides in the 5D subspace MHCDR. The cluster with

maximum Pi in the second had 15 peptides and was in the 5D subspaceMCIDO, while

the third, in the 3D subspace CIR had 17 peptides. As obtained in the replication

and unlike Vishnepolsky’s model, no large, active clusters of 10-16 aa length were

found. All stable clusters found for 18-27 aa length peptides were overlapping and

hence only one stable cluster is produced by the method for use in prediction. This

cluster has 26 peptides and is in the HCIOLA subspace.

Table 2.8 shows the mean values and standard deviation of nine physicochemical

properties for the optimized clusters for 10-16 and 18-27 aa lengths of peptides. The

clusters of 10-16 aa length active peptides are seen here to differ most strongly from

each other by C, and less so by I, which uses the minimum distance between clusters
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Table 2.8: Mean values and standard deviation of nine physicochemical properties for
the optimized clusters of peptides 10-16 and 18-27 aa lengths, found by Vishnepolsky’s
method and using larger training sets. Mean values and standard deviation of the
key physicochemical properties in the clusters are highlighted in blue.

mean values ± SD of properties

Results (10-16 aa length) Results (18-27 aa length)

Cluster 1 Cluster 2 Cluster 3 Cluster 1

(MHCDR) (MCIDO) (CIR) (HCIOLA)

M ± SD 1.62 ± 0.13 0.51 ± 0.14 0.65 ± 0.52 1.10 ± 0.32

H ± SD -1.20 ± 0.14 -0.45 ± 0.63 0.23 ± 0.42 -0.34 ± 0.18

C ± SD 2.00 ± 0.00 4.50 ± 0.63 6.00 ± 0.00 3.50 ± 0.71

I ± SD 10.99 ± 0.41 12.46 ± 0.34 12.68 ± 0.13 10.84 ± 0.33

D ± SD 12.05 ± 0.69 19.75 ± 1.65 17.47 ± 4.00 13.69 ± 2.24

O ± SD 84.60 ± 5.82 170.69 ± 4.21 76.53 ± 16.53 88.27 ± 6.91

R± SD 0.43 ± 0.07 -0.54 ± 0.28 -0.78 ± 0.07 0.16 ± 0.13

L± SD 0.33 ± 0.04 0.33 ± 0.06 0.22 ± 0.09 0.17 ± 0.02

A± SD 1.94 ± 2.69 49.15 ± 104.61 0.00 ± 0.00 4.60 ± 9.34

to quantify these differences. A comparison with the values provided in Tables 2.6

and 2.7 show that both sets of analyses identify clusters of active peptides with similar

features, but defined in slightly different subspaces. For 10-16 aa peptides, propensity

to aggregation A is again not found to be a relevant predictor variable for predicting

activity status, but now propensity to disordering R is relevant, while L is not rele-

vant. In the case of the larger peptides, M and D are no longer relevant but now,

consistent with the Vishnepolsky et al. model, A is relevant.

Performance metrics for Vishnepolsky method using larger datasets.

Results of prediction on the test sets of peptides of 10-16 aa length and 18-27 aa length
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Table 2.9: Results of prediction on the test set of peptides of 10-16 aa length and
18-27 aa length for large datasets.

Clusters TP TP + FN FP TN + FP SN PPV ER

10-16 aa length

Cluster 1 (MHCDR) 1 129 1 129

Cluster 2 (MCIDO) 4 129 3 129

Cluster 3 (CIR) 3 129 1 129

All clusters 8 129 5 129 0.06 0.62 0.49

18-27 aa length

Cluster 1 (HCIOLA) 6 82 2 82

All clusters 6 82 2 82 0.07 0.75 0.48

are shown in Table 2.9. Sensitivity (SN) values of all clusters were calculated as 0.06

and 0.07, positive predictive values (PPV) were 0.62 and 0.75, and error rates were

0.49 and 0.48 for peptides of 10-16 and 18-27 aa length, respectively. These metrics

are consistent with the replication study findings in Tables 2.6 and 2.7. Comparing

the quality of the prediction here with Vishnepolsky et al. findings, it is clear that it

was not possible to replicate the performances obtained.

Vishnepolsky’s method uses an unsupervised clustering algorithm first to identify

“regions of active peptides” in the physicochemical space of the predictors, then

checks whether inactive peptides also fall into those same regions. So, essentially, the

method is borrowing unsupervised structure to inform a supervised discrimination

task. Clustering can reveal natural groupings of active peptides, which can reduce

the problem from a “black-box classification” to something interpretable. Further,

active peptides clustering tightly in certain regions suggest strong feature activity

relationships that a classifier can exploit. However, biological data can be noisy, and
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the regions found might consequently reflect artefacts of the data rather than true

functional activity patterns. Additionally, Vishnepolsky’s method does not optimise

for separating active and inactive peptides but simply employs a post-hoc check, and

so potentially underutilises the full information in the training set. A supervised

method (logistic regression, random forest, support vector machines, etc.) would

directly exploit all available information to build decision boundaries.

In summary, Vishnepolsky’s approach is a sensible exploratory strategy but not the

most direct or optimal way to solve a supervised problem. Clustering can highlight

potential “active regions” in the physicochemical space, but since activity prediction

is inherently a supervised task, the method risks underutilising valuable information

in the training data.

2.5 Discussion

The structure of peptides is critical for their biological activity, such as antimicrobial

capabilities. Peptides often adopt specific chemical structures such as α-helices or

β-sheets, characteristic of naturally occurring amino acid sequences that are essential

for effective interaction with microbial membranes. However, the amphipathic nature

of peptides is particularly important for disrupting bacterial membranes. Machine

learning (ML) approaches are increasingly being used to predict antimicrobial peptide

(AMP) activity by learning the behaviour of peptide sequences and their correspond-

ing antimicrobial activities via the large dataset. These ML approaches improve

AMP activity identification by analyzing sequence patterns, structural features, and

physicochemical properties with higher accuracy and efficiency.
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This chapter provided the underlying structure and properties of peptides used in

predicting anti-microbial peptide activity by describing the fundamentals of peptides

in nature, including the chemical structures of peptides. The structure of a peptide

refers to the sequence of amino acids, which influences its stability, binding affin-

ity, physicochemical properties and biological activity. This thesis investigates nine

physicochemical properties and biological activity to classify AMPs. These proper-

tiesare normalized hydrophobicity (H ), normalized hydrophobic moment (M ), net

charge (C ), isoelectric point (I ), penetration depth (D), tilt angle (O), propensity

to disordering (R), linear moment (L) and propensity to aggregation (A), as inspired

by Vishnepolsky et al. (2018).

This chapter also presented DB-SCAN approaches used by Vishnepolsky et al. (2018),

in a replication study using the same set of peptides as in this paper, and a re-analysis

with larger datasets. The results of the replication studies with small and large

datasets were not consistent. For instance, for peptides of 10-16 aa length, not only

were a different number of clusters found, (2 clusters for small datasets and 3 clusters

for large datasets), but these were in different regions of the predictor space. While

for peptides of 18-27 aa length, one active cluster each was found in the small and

large datasets, and these were also in different regions of the predictor space. Also,

while the cluster in the small dataset had 88 peptides, no large cluster was found in

the large dataset (only 26 peptides).

Comparing the performance between the two datasets, large datasets exhibit a slightly

higher error rate of 0.49 compared to 0.43 for small datasets for peptides of 10-16 aa

length. The models for peptides of 18-27 aa length exhibited a higher error rate in

large datasets (0.48) compared to small datasets (0.36). For large datasets comprising
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peptides of 10-16 aa in length, the sensitivity and positive predictive values were

0.06 and 0.62, respectively. These values were lower than those observed in smaller

datasets, with a sensitivity of 0.18 and a positive predictive value of 0.86. In contrast,

for peptides 18-27 aa in length within large datasets, the sensitivity and positive

predictive values were 0.07 and 0.75, respectively. The sensitivity was substantially

lower than for smaller datasets (0.89), whereas the positive predictive value was higher

than for small datasets (0.59). Overall, there is minimal difference in performances

of models constructed using small and large datasets.

The DB-SCAN approach by Vishnepolsky et al. (2018), mentioned in subsection 2.4.1,

implements an embedded variable selection method via finding the cluster with the

highest Pi to predict peptide activity. For shorter peptides and the small dataset,

only three features, net charge (C ), isoelectric point (I ), and linear moment (L)

are common to the spaces of the two clusters. While for the large dataset, only one

feature, net charge C is common to the spaces of the three clusters found. Thus there

is evidence in favour of C being an important feature for predicting AMP activity

in 10-16 aa length peptides, in keeping with current theoretical understanding. For

peptides of 18-27 aa length four features, namely hydrophobicity (H ), isoelectric point

(I ), tilt angle (O), and linear moment (L) are common to the spaces of the clusters

found in the small and large datasets, but C is not.



113

M
-3

0
3

4
8

0
10
0

0.
0

0.
4

0.0 1.5

-3 0 3

-0.07

H

0.01

0.73

C

0 10

4 8 12

-0.02

0.45

0.71

I

-0.31

0.55

0.41

0.17

D

5 15 30

0 100

0.03

-0.03

-0.03

-0.03

0.00

O

0.27

-0.82

-0.82

-0.56

-0.66

0.01

R

-2.0 0.0

0.0 0.3 0.6

-0.16

-0.37

-0.48

-0.21

-0.25

-0.06

0.43

L

0.
0

1.
5

-0.15

-0.20

0
10

-0.15

-0.12

5
20-0.22

-0.14

-2
.0

0.
5

0.23

0.31

0 400

0
60
0

A

Figure 2.4: Matrix and correlation plots of physicochemical properties for peptides
10-16 aa length.

The findings of the replication study on both small and large datasets do not sup-

port the consistency of Vishnepolsky’s approach. The misclassification error rates

of 49% and 48% obtained for the shorter and longer peptides in larger datasets are

much larger than the rates reported by Vishnepolsky et al. (2018), which were 20.6%

and 22.2%, respectively. The overall poor performance observed here for the larger

datasets is not surprising, given that Vishnepolsky’s method found only a handful

of small active clusters, thus providing a poor fit to the training data. Note that

personal communication with the authors of Vishnepolsky et al. (2018) indicates that

the results in the paper are not reproducible because they modified the prediction
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Figure 2.5: Matrix plot and correlation plot between the physicochemical properties
for a raw peptide 18-27 aa length dataset.

algorithm in their database, and previously held only a small amount of data. The au-

thors also claim that existing machine learning methods are inadequate for predicting

peptide activity.

Matrix plots of predictor variables illustrating the relationships between physicochem-

ical properties and activity status of peptides with active coded blue and inactive

coded red are used to further explore the poor performances observed. From plots of

515 active and 515 inactive peptides for peptides 10-26 amino acid length, shown in

Figure 2.4, it can be seen some pairs are related together, for example, H and C, and

C and I are highly positively correlated. On the other hand, some pairs are highly
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negatively correlated, such as H and R, and C and R. Plots for 324 active and 324

inactive peptides, 18-27 amino acid length are shown in Figure 2.5. Here, again it

is clear that some pairs are related together, such as C and I, while some pairs are

negatively correlated, for example, H and R, and C and R have correlation values.

Based on theoretical reasoning and previous studies, high correlations are often an-

ticipated between variables such as M and L, H and D, or C and I. However, the

actual results observed can show quite a divergence from these expectations due to

the complexity of biological systems, and multiple variables can influence and obscure

these relationships. Here, correlation values between M and L are -0.16 for shorter

peptides and -0.24 for longer peptides, and correlation values between H and D are

0.36 for longer peptides.

The matrix plots for each length peptide appear to be similar. More importantly,

from these plots, it is clear that distinguishing between regions of active and inactive

peptides is not straightforward. As demonstrated in this chapter, several researchers

have used machine learning techniques to identify and analyze clusters of peptide

activity, such as neural networks, support vector machines, random forests, and logis-

tic regression methods. We next explore how well these methods work in predicting

activity status of peptides active against Gram-negative bacteria Escherichia coli

ATCC 25922.



Chapter 3

An Evaluation of Machine Learning

Methods for AMP Activity

Five widely used classification methods-Logistic Regression (LR), Elastic Net (ENET)

Logistic Regression, Support Vector Machines (SVM), Random Forest (RF), and Neu-

ral Network (NN)-are assessed here for their effectiveness in predicting antimicrobial

peptide (AMP) activity. These methods offer diverse approaches to building machine

learning (ML) models by employing distinct mathematical and algorithmic frame-

works. In LR, the probability of an outcome (e.g., AMP activity status) is modelled

as a linear function of predictor variables on the logit scale, with parameters esti-

mated by maximizing the likelihood function of the observed data. ENET extends

LR by incorporating regularization constraints (L1 and L2 penalties) during parame-

ter optimisation to improve model generalizability and handle multicollinearity among

predictor variables. SVM, in contrast, classifies data by constructing a hyperplane in

a transformed predictor space, optimized to maximize the margin (distance) between

classes (active vs. inactive peptides). RF builds classification models through an

116
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ensemble of decision trees, where each tree partitions the predictor space into binary

splits by optimizing measures of homogeneity, such as cross-entropy or the Gini Index,

and aggregates their outputs for robust predictions. NN uses a network of intercon-

nected layers to model complex relationships, where the outcome is represented as a

weighted combination of the predictor variables, with weights iteratively adjusted to

minimize an error metric (e.g., cross-entropy loss). The performance of these methods

is evaluated in this chapter using both simulated datasets and comprehensive AMP

datasets, derived from the DBAASP data repository and introduced in Chapter 2.

3.1 Simulation Evaluation of Five Common Clas-

sification Methods

The performance of the five machine learning (ML) methods is evaluated across four

distinct scenarios, each reflecting different data distribution and sampling conditions.

These scenarios are designed to illustrate the ML methods’ behaviour under varying

complexities and challenges inherent in real-world AMP data and to provide insight

into how well the methods can capture the complex relationships between predictor

variables and AMP activity status. This first scenario examines how the five ML

methods perform when the training dataset consists of clearly separated active and

inactive regions. This setting serves as a baseline to understand the methods’ capa-

bilities under ideal conditions with minimal overlap between classes. In the second

scenario, the focus shifts to a more challenging situation where the predictor variables

are subject to measurement inaccuracies, and the sampling density varies across the

predictor space. Specifically, some inactive regions are sampled more densely than
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others, potentially introducing biases and highlighting the methods’ robustness to

uneven sampling and noisy data. The third scenario builds on the second scenario

by introducing variation in sampling density across both active and inactive regions.

This setting tests the ability of the ML methods to handle uneven sampling distribu-

tions that affect all parts of the predictor space, simulating real-world complexities

where both active and inactive regions may be unequally represented. Motivated

by observed patterns in the relationship between activity status and key predictor

variables hydrophobicity (H) and net charge (C), shown in Figures 2.4 and 2.5, the

fourth scenario explores a data distribution reflecting these empirical patterns.

3.1.1 Data generation

The simulation study assumes four predictor variables, X1, X2, X3, X4, with values

distributed within a four-dimensional unit hypercube (unit tesseract). Predictor vari-

ables are generated using Beta B(α, β) distributions,

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1; 0 ≤ x ≤ 1,

encompassing the uniform distribution as a special case. The activity status Y of

an observation is determined by whether it falls within a predefined region of the

predictor space. Specifically, these regions are defined by ellipses in the space of

X1, X2 while X3, X4 are unassociated with activity status. This approach provides a

nonlinear relationship between Y and predictor variables X1, X2, X3, X4. The data

simulated here are designed to serve as idealised representations of the patterns in

the AMP datasets used in this thesis, illustrated in Figures 2.4 and 2.5. However, the
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elliptical structure shown in Figure 3.1 is consistent with the empirical AMP datasets,

most notably in the patterns observed between H and R and between C and R shown

in Figure 2.5

As described above, the simulation evaluation explores four different data patterns,

defined by varying the sampling density and distribution of the simulated data used

for training the models. In keeping with Vishnepolsky et al. (2018) findings of more

than one active region, the predictor space in the first three scenarios described above

has two active regions defined by,

(X1 − 0.10)2

0.032
+

(X2 − 0.85)2

0.102
≤ 1,

rotated 4π/3 radians relative to the X1 axis, and

(X1 − 0.80)2

0.152
+

(X2 − 0.30)2

0.052
≤ 1, (3.1)

rotated π/3 relative to the X1 axis. See top right plot in Figure 3.1.

The predictor space in the fourth scenario has one active region defined by

(X1 − 0.50)2

0.352
+

(X2 − 0.55)2

0.102
≤ 1,

rotated π/3.5, and one inactive region,

(X1 − 0.40)2

0.402
+

(X2 − 0.25)2

0.722
≤ 1, (3.2)

rotated π/4, both relative to the X1 axis. See top right plot in Figure 3.2. In this
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scenario, there is no distinct separation between active and inactive regions, reflect-

ing a more complex and realistic situation where the mechanism of action for some

observations is influenced by unobserved or latent factors. This overlap suggests that

the observed features alone are insufficient to fully capture the underlying dynamics

governing activity status. Such situations are likely in real-world AMP data, where

hidden variables, noise, or interactions between physicochemical properties introduce

ambiguity, complicating the classification task.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
3

0.0 0.2 0.4 0.6 0.8 1.0
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X2

X
3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X2

X
4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X3

X
4

Figure 3.1: Test dataset for Scenario 1. Matrix plots of predictor variables
X1, X2, X3, X4 for 500 active (blue) and 500 inactive (red) observations in the sim-
ulated test dataset for Scenario 1 described in the text. Variables X1 and X2 are
associated with activity status whereas X3 and X4 are not.

Each training dataset is constructed to have 500 active and 500 inactive observations
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by randomly generating 4-tuples X1, X2, X3, X4 and establishing whether or not they

fall within an active region. Sizes of these datasets were guided by the number of

peptides in the AMP dataset. Situations where predictor variables are inaccurately

measured are evaluated by randomly perturbing observed values of X1, X2, X3, X4 in

the training sets after activity status is assigned.
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Figure 3.2: Test dataset for Scenario 4. Matrix plots of predictor variables
X1, X2, X3, X4 for 500 active (blue) and 500 inactive (red) observations in the sim-
ulated test dataset for Scenario 4 described in the text. Variables X1 and X2 are
associated with activity status whereas X3 and X4 are not. The overlap between ac-
tive and inactive regions shown in the plots reflects a situation where the mechanism
of action for some observations is influenced by unmeasured, or latent, factors.

Test datasets are generated to mirror the composition of the training datasets in terms
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of X1 and X2, maintaining an equal number of active and inactive observations. This

balance ensures consistency between the training and testing phases, enabling an

unbiased evaluation of model performance.

Unlike the training data, where potential noise or errors may occasionally affect the

predictor variables or activity status, the test datasets are constructed under ideal-

ized conditions, with no measurement errors in either the predictor variables or the

activity labels, and with uniform sampling over the active and inactive regions. This

design allows for an assessment of the model’s predictive capabilities under optimal

conditions, isolating the effects of model architecture and parameter tuning from con-

founding influences of data quality. A matrix plot of the simulated test dataset used

in the first scenario is illustrated in Figure 3.1; the test sets used in the second and

third scenarios are similarly distributed. The test set used in the fourth scenario is

illustrated in Figure 3.2.

3.1.2 Model training

Polynomial models are used in the LR, ENET and NN methods to address the non-

linearity in the relationship between activity status and predictor variables. In par-

ticular, orthogonal polynomials (see Appendix A.2) are used to avoid multicollinear-

ity problems in the model fitting as a result of the correlation between powers of

a predictor variable. Preliminary investigations using simulated data for all four

datasets indicated that polynomials of degree d ≤ 4 were sufficient for the evaluation.

Higher-degree polynomials, in contrast, cause the fitting algorithms to fail to con-

verge. The SVM and RF methods inherently capture nonlinearity. So too does the
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NN method through its layered architecture, but introducing polynomial variables to

its input layer can enhance performance, particularly for NN models with one hidden

layer (vanilla NN). Best subset variable selection, with misclassification error on a

test dataset as evaluation criteria, is used to determine the best model for each ML

method.

Logistic Regression

For i = 1, . . . , N let outcome,

Yi =

1 if active;

0 if inactive.
(3.3)

Also let xi = (x1i, . . . , xpi) be the observed predictor values for the d degree polyno-

mial model, and denote the probability that Yi = 1 conditional on xi as P (xi; β0,β),

where β0,β = (β1, . . . , βp)
T are unknown model parameters. The logistic regression

model

logit(P (xi; β0,β)) = β0 + xiβ, (3.4)

is fitted to the training data using the glm() function after computing the orthogonal

polynomial basis matrix using the polym() function (R Core Team, 2021). Denote the

inverse logit of the fitted model as P
(
x; β̂0, β̂

)
, where β̂0, β̂ are estimates of β0,β.

The logistic regression prediction for new observation x0 is

Ŷ0 =

active, if P
(
x0; β̂0, β̂

)
> 1

2
;

inactive, otherwise.
(3.5)
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Elastic Net Regression

As outlined in Section 1.1.3 of Chapter 1, the elastic net regression model combines lo-

gistic regression with both lasso and ridge regularization. The model is here expressed

as

logit(P (xi; β0,β)) = β0 + xiβ − λ

(
α

2

p∑
j=1

β2
j + (1− α)

p∑
j=1

|βj|

)
, (3.6)

where xi is the vector obtained in the orthogonal polynomial transformation described

above. The train() function from the caret (Kuhn, 2008) package is used to set up

a grid for the hyperparameters α and λ, and to fit models over this grid using the

glmnet() function (Tay et al., 2023). The model to be selected for prediction has

the lowest misclassification error, estimated via 5-fold cross-validation on the training

dataset. The elastic net prediction for new observation x0 follows the above approach

for logistic regression.

Support Vector Machine

The separating boundary for the fitted support vector machine here is

f̂(x) =
N∑
i=1

λ̂iyiK(x,xi) + β̂0, (3.7)

where, for i = 1, . . . , N ,

yi =

 1 if active;

−1 if inactive,
(3.8)

the parameters λi are model coefficients and

K(x,xi) = exp
(
−γ∥x− xi∥2

)
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is the radial kernel, where γ is a positive constant. This kernel fits an implicit infi-

nite dimensional polynomial; details of the support vector machine are provided in

Section 1.1.6 of Chapter 1. The svm() function, in conjunction with the tune.svm()

function from the e1071 package (Meyer et al., 2024), is used to fit models over a

100× 100 grid of γ and cost (C) values ranging from 0.1 to 10, and to construct the

final predictive model by selecting the hyperparameter combination that yielded the

lowest misclassification error. Similar to the approach used for ENET, misclassifica-

tion error in the model training process is estimated using 5-fold cross-validation on

the training dataset. The prediction for new observation x0 is

Ŷ0 =

active, if f̂(x0) > 0;

inactive, otherwise.
(3.9)

Random Forest

The randomForest() function from the randomForest package (Liaw & Wiener,

2002) is used to construct the predictive model of the RF method. The prediction for

new observation x0 is the most common prediction among 500 trees, each grown to

their maximum possible size. Trees are constructed using the default settings of the

randomForest() function. Here, default settings are appropriate because the algo-

rithm is inherently robust, the defaults strike a balance between variance reduction

and tree strength, and extensive testing has shown these values to work well across

many problems. And also optimizing the overall default parameter is computionary

very demanding. Both foundational theory and empirical evidence support the appro-

priateness of default random forest parameters (for example, Breiman, 2001). Thus

trees are constructed using bootstrap samples of the same size as the training data
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while at each binary split within a tree, two of the four variables (X1, X2, X3, X4) are

randomly sampled as candidates for splitting.

Neural Network

The neuralnet() function of the neuralnet package (Fritsch et al., 2019) is used

to construct the predictive neural network (NN) models. Sigmoid activation and

output functions, with predictor variables orthogonal polynomial transformations of

(X1, X2, X3, X4), are used in constructing the models. Based on preliminary inves-

tigations, a single hidden layer with the number of neurons equal to 0.6p, where p

represents the number of predictor variables at the input layer, is selected for the

simulation study. This configuration is found to be sufficient for achieving reliable

results in the simulated environment, striking a balance between model complexity

and computational efficiency. Furthermore, default settings of the neuralnet() func-

tion are robust, empirically validated starting points that balance stability, speed,

and accuracy (for example, Weerts et al., 2020). Note that a more rigorous approach

is employed to determine the optimal architecture of the neural network models for

the real data analyses in this thesis. Specifically, the number of hidden layers and

the number of neurons within each layer are chosen based on a systematic evaluation

using 5-fold cross-validation to assess the misclassification error across a predefined

grid of possible configurations.
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3.1.3 Results

Following the best subset selection approach, model fitting is performed for each of

the 15 possible combinations of predictor variables X1, X2, X3, X4, excluding cases

where only a single predictor variable was used (resulting in 11 distinct cases). As

mentioned earlier, to capture the nonlinear relationship, orthogonal polynomials of

varying degrees are employed in models fitted by the logistic regression (LR), logistic

elastic net regression (ENET) and neural network (NN) methods. These polynomials

are chosen to provide a flexible representation of the data while preserving orthogo-

nality, and minimizing multicollinearity issues. Initial results reveal that increasing

the degree of the polynomial beyond d = 4 does not lead to improved error rates. For

exsample, using the LR method with d = 5 in Scenario 4, the best model in the space

defined by X2 and X3 shows an error rate of 0.105, and at least 2 models failed to con-

verge, including the best model. In fact, use of higher-degree polynomials frequently

leads to convergence issues, potentially due to overfitting. Thus, reported here are

the results for quadratic (d = 2), cubic (d = 3), and quartic (d = 4) polynomials.

Scenario 1

In this scenario, the training dataset is generated uniformly across the space defined

by X1, X2, X3 and X4. As described in Section 3.1.1, the active outcomes are associ-

ated with specific values of X1 and X2, determined by the elliptic functions described

by equations (3.1). These functions define regions of activity, while the inactive out-

comes are distributed outside these elliptical regions. Importantly, a deliberate buffer

zone, an area of free space, is introduced between the active and inactive regions, as
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depicted in Figure 3.3. This design choice allows investigation of the learning meth-

ods’ ability to discern and accurately classify active and inactive peptides within the

buffer zone. By constructing training data with clear separation between active and

inactive regions, a controlled scenario to evaluate the methods’ capacity to general-

ize and handle transitional or ambiguous regions in the predictor space is created.

This setup ensures that the methods’ performances are tested not only within well-

defined active and inactive zones but also in intermediate spaces where classification

boundaries are less explicit.

Models are fitted to the training data displayed in Figure 3.3 using the techniques out-

lined in Section 3.1.2 and evaluated against the test dataset illustrated in Figure 3.1.

The misclassification test error rates and misclassification rate standard error for all

models fitted for each of the five methods evaluated are summarized in Tables 3.1

and 3.2, respectively. For each of the eleven combinations of methods and polynomial

models assessed, the best-performing models, determined by the lowest misclassifica-

tion error rates (highlighted in blue in the table), consistently include the variables

X1 and X2. Notably, six of these models, LR (d=2), ENET (d=2), SVM, RF, NN

(d=3) and NN (d=4), exclusively use X1 and X2. In contrast, the poorest-performing

models fail to include either X1 or X2. This is consistent with the data generation.
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Figure 3.3: Training dataset for Scenario 1. Matrix plots of predictor variables
X1, X2, X3, X4 for 500 active (blue) and 500 inactive (red) observations in the sim-
ulated training dataset for Scenario 1 described in the text. Variables X1 and X2

are associated with activity status whereas X3 and X4 are not. Observations are
uniformly sampled over the active and inactive regions, but with separation between
the two regions.
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With regard to the polynomial model degree, the trends are less uniform. While

quartic polynomial models outperform quadratic and cubic models for the LR and

ENET methods, quadratic models yield superior results when the NN method is

employed. This suggests that the optimal polynomial degree may depend on the

specific fitting method used, rather than following a universal trend. For example,

the inherently more complex and flexible NN method does not require the high-

degree polynomials needed for the LR method. When comparing the methods, it

is evident that the ENET regularization of LR enhances performance relative to

unregularized LR. However, despite these improvements, ENET’s error rates remain

higher than those observed for SVM, RF, and NN. These findings emphasize the

advantages of more flexible methods like SVM, RF, and NN in scenarios with non-

linear classification boundaries.

Next, the top-performing models are further evaluated using the performance metrics

detailed in Section 1.4. The parsimony principle is used in cases where there is a

tie for best model. The results of this evaluation are summarized in Table 3.3. The

findings reveal high sensitivity rates (SN) and a substantial number of true positives

(TP) across all methods, with the exception of ENET (d = 3), indicating that most

models are highly effective in accurately predicting active outcomes. Additionally,

low false positive (FP) counts and correspondingly high specificity rates (SP) are ob-

served for the majority of models, although LR and the related ENET models exhibit

weaker performance in this regard. Overall, the methods and models demonstrate

consistently strong performance across the evaluated metrics.
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Table 3.3: Scenario 1. Performance measures for the optimal models identified using
the best subset selection method, for each of the eleven combinations of methods and
polynomial models assessed.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=2) 0 500 147 353 1.00 0.71 0.85 0.77 0.147 X1X2

LR (d=3) 3 497 145 355 0.99 0.71 0.85 0.77 0.148 X1X2X4

LR (d=4) 0 500 87 413 1.00 0.83 0.91 0.85 0.087 X1X2X3

ENET (d=2) 7 493 87 413 0.99 0.83 0.91 0.85 0.094 X1X2

ENET (d=3) 92 408 38 462 0.82 0.92 0.87 0.91 0.130 X1X2X3X4

ENET (d=4) 0 500 39 461 1.00 0.92 0.96 0.93 0.039 X1X2X4

SVM 0 500 41 459 1.00 0.92 0.96 0.92 0.041 X1X2

RF 0 500 22 478 1.00 0.96 0.98 0.96 0.022 X1X2

NN (d=2) 0 500 23 477 1.00 0.95 0.98 0.96 0.023 X1X2X4

NN (d=3) 0 500 32 468 1.00 0.94 0.97 0.94 0.032 X1X2

NN (d=4) 0 500 33 467 1.00 0.93 0.97 0.94 0.033 X1X2

Figure 3.4, which presents matrix scatterplots of the predictions from the five clas-

sification methods for the variables, X1 and X2, provides additional insight into the

predictive capabilities of the methods and their sources of error. In these plots, cor-

rectly predicted positive (TP) and negative (TN) outcomes are represented by dark

blue and red points, respectively. Negative outcomes incorrectly predicted as posi-

tive (FP) are shown in blue, while positive outcomes incorrectly predicted as negative

(FN) are depicted in green. The plots demonstrate that ENET with a quartic polyno-

mial (d = 4) model, SVM, RF and NN construct highly accurate prediction regions,
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Figure 3.4: Scenario 1. Matrix scatterplots of predictions of activity status, by the
five classification methods, for outcomes in the simulated test dataset, by variables
X1 and X2.
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effectively capturing both active and inactive outcomes for this scenario. In these

cases, the decision boundaries are well-defined, leading to minimal misclassification

errors observed and clear separation of active and inactive regions. In contrast, the

plots also reveal that the LR method, when applied with quadratic and cubic poly-

nomial models, struggles to construct the curved boundaries of the active regions.

This is demonstrated by the number of False Positives shown in Figure 3.4 for the

LR method.

Scenario 2

This scenario is designed to evaluate the performance of the methods under condi-

tions where inaccuracies in the measurement of predictor variable values are present.

Specifically, the predictor variables are subjected to different noise and distributional

characteristics to simulate realistic challenges in data collection and measurement.

Values for X1 and X2 are initially generated uniformly across the defined space to

ensure an even spread. Next, to mimic measurement errors, the simulated values are

perturbed by adding random noise sampled from a Normal N(0, 0.01) distribution.

This leads to training data with unclear boundaries between active and inactive out-

comes. The variance used here (0.01) is of a similar order of magnitude reported in

the literature for H, C and I (Audain et al., 2015; Gavva et al., 2023). Values for

X3 and X4 are generated using Beta distributions, in particular B(0.5, 0.5), which

results in uneven sampling across the variable space. This choice reflects scenarios

where certain ranges of these predictor variables are more densely represented than

others, introducing additional complexity for the methods to handle. The true active

regions and observations used for testing the models are simulated as in Scenario 1,
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ensuring a consistent framework for comparison.

The process for fitting and evaluating models mirrors the approach used in Scenario

1. The misclassification test error rates and misclassification rate standard error for

all fitted models, reported in Tables 3.4 and 3.5, respectively, are larger than the

values obtained for Scenario 1, provided in Table 3.1. This consistent elevation in

test error rates is not surprising and highlights the greater complexity and challenge

of accurately predicting outcomes in the current scenario where there is reduced

separability of the active and inactive classes in the training data.
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Figure 3.5: Training dataset for Scenario 2. Matrix plots of predictor variables
X1, X2, X3, X4 display the relationships between 500 active (blue) and 500 inactive
(red) observations from the simulated training dataset for Scenario 2, as described in
the text. Variables X1 and X2 are associated with activity status whereas X3 and X4

are not. The scatterplot of X1 against X2 reveals the absence of well-defined bound-
aries separating active and inactive observations. The uneven sampling is illustrated
by the patterns in the scatterplots.



137

T
ab

le
3.
4:

S
ce
n
ar
io

2
m
is
cl
as
si
fi
ca
ti
on

te
st

er
ro
r
ra
te
s
fo
r
al
l
fi
tt
ed

m
o
d
el
s.

R
at
es

fo
r
th
e
to
p
-p
er
fo
rm

in
g
m
o
d
el
s

fo
r
ea
ch

m
et
h
o
d
an

d
p
ol
y
n
om

ia
l
d
eg
re
e,

w
h
er
e
re
le
va
n
t,
ar
e
h
ig
h
li
gh

te
d
in

b
lu
e.

M
o
d
el
s

L
R

E
N
E
T

S
V
M

R
F

N
N

d
=
2

d
=
3

d
=
4

d
=
2

d
=
3

d
=
4

d
=
2

d
=
3

d
=
4

X
1
,X

2
0.
19
6

0.
16
5

0.
11
1

0.
12
3

0.
11
9

0.
07
9

0.
12
6

0.
12
4

0.
09
8

0.
11
2

0.
19
5

X
1
,X

3
0.
28
7

0.
26
8

0.
20
0

0.
28
6

0.
26
9

0.
20
6

0.
31
0

0.
31
8

0.
24
6

0.
30
6

0.
37
2

X
1
,X

4
0.
28
8

0.
27
1

0.
21
6

0.
27
9

0.
27
6

0.
19
5

0.
30
3

0.
33
2

0.
26
1

0.
38
6

0.
37
4

X
2
,X

3
0.
45
2

0.
34
9

0.
24
3

0.
44
6

0.
35
0

0.
25
9

0.
30
4

0.
35
0

0.
24
4

0.
43
4

0.
40
4

X
2
,X

4
0.
41
7

0.
32
6

0.
23
6

0.
41
7

0.
32
4

0.
25
9

0.
30
7

0.
37
9

0.
26
8

0.
36
9

0.
40
3

X
3
,X

4
0.
49
0

0.
51
8

0.
50
8

0.
49
0

0.
51
2

0.
51
2

0.
49
8

0.
47
7

0.
49
1

0.
49
9

0.
51
0

X
1
,X

2
,X

3
0.
19
2

0.
16
4

0.
12
0

0.
12
4

0.
12
0

0.
08
8

0.
14
5

0.
12
1

0.
10
6

0.
25
1

0.
26
5

X
1
,X

2
,X

4
0.
19
7

0.
17
3

0.
11
7

0.
12
3

0.
12
0

0.
08
6

0.
12
4

0.
12
0

0.
21
8

0.
32
8

0.
28
0

X
1
,X

3
,X

4
0.
28
7

0.
27
4

0.
23
2

0.
27
9

0.
27
5

0.
20
9

0.
32
2

0.
30
7

0.
24
8

0.
39
6

0.
34
9

X
2
,X

3
,X

4
0.
45
6

0.
35
1

0.
28
9

0.
44
7

0.
34
6

0.
25
9

0.
35
9

0.
36
9

0.
26
5

0.
41
3

0.
47
5

X
1
,X

2
,X

3
,X

4
0.
19
6

0.
17
6

0.
23
1

0.
12
4

0.
12
0

0.
08
4

0.
15
4

0.
11
8

0.
25
2

0.
26
1

0.
20
9



138

T
ab

le
3.
5:

S
ce
n
ar
io

2
M
is
cl
as
si
fi
ca
ti
on

ra
te

st
an

d
ar
d
er
ro
r
fo
r
al
l
fi
tt
ed

m
o
d
el
s,
b
as
ed

on
10
0
re
p
li
ca
ti
on

s.

M
o
d
el
s

L
R

E
N
E
T

S
V
M

R
F

N
N

d
=
2

d
=
3

d
=
4

d
=
2

d
=
3

d
=
4

d
=
2

d
=
3

d
=
4

X
1
,X

2
0.
02
4

0.
01
2

0.
01
2

0.
02
2

0.
01
4

0.
01
3

0.
01
1

0.
01
3

0.
02
3

0.
03
6

0.
01
8

X
1
,X

3
0.
01
8

0.
01
9

0.
01
8

0.
01
7

0.
02
1

0.
02
1

0.
02
2

0.
02
6

0.
03
9

0.
05
3

0.
08
8

X
1
,X

4
0.
01
8

0.
02
0

0.
01
7

0.
01
7

0.
02
0

0.
02
0

0.
02
4

0.
02
5

0.
02
9

0.
04
7

0.
04
2

X
2
,X

3
0.
02
3

0.
01
8

0.
02
5

0.
02
7

0.
02
6

0.
02
6

0.
02
2

0.
02
4

0.
04
2

0.
04
5

0.
01
8

X
2
,X

4
0.
02
5

0.
01
9

0.
02
5

0.
02
7

0.
02
8

0.
02
7

0.
02
8

0.
03
2

0.
05
5

0.
05
0

0.
08
2

X
3
,X

4
0.
01
7

0.
01
8

0.
01
4

0.
01
6

0.
01
6

0.
01
5

0.
01
6

0.
01
8

0.
01
4

0.
01
5

0.
03
2

X
1
,X

2
,X

3
0.
02
4

0.
01
3

0.
01
3

0.
02
0

0.
01
4

0.
01
3

0.
01
3

0.
01
2

0.
05
3

0.
05
6

0.
03
3

X
1
,X

2
,X

4
0.
02
3

0.
01
2

0.
01
4

0.
01
8

0.
01
3

0.
01
2

0.
01
5

0.
01
4

0.
05
0

0.
05
5

0.
01
7

X
1
,X

3
,X

4
0.
01
9

0.
02
1

0.
01
6

0.
01
8

0.
02
0

0.
02
0

0.
02
6

0.
02
9

0.
02
6

0.
03
4

0.
01
6

X
2
,X

3
,X

4
0.
02
2

0.
02
2

0.
02
4

0.
02
4

0.
02
9

0.
02
5

0.
02
5

0.
03
3

0.
04
1

0.
02
9

0.
01
7

X
1
,X

2
,X

3
,X

4
0.
02
2

0.
01
3

0.
02
8

0.
01
6

0.
01
3

0.
01
2

0.
02
2

0.
01
5

0.
04
0

0.
03
2

0.
05
4



139

Considering the best-performing models, highlighted in blue, once again these models

consistently incorporate the variables X1 and X2 but notably, the best SVM and

RF models do not now exclusively include X1 and X2. It is also noteworthy that

the majority of models utilizing only X1 and X2 achieve error rates that are close

(within one standard error) to the minimum observed for their respective methods,

see Table 3.5 for standard errors. On the other hand, the poorest performing models

again fail to include either X1 or X2.

Table 3.6: Scenario 2. Performance measures for the optimal models identified using
the best subset selection method, for each of the eleven combinations of methods and
polynomial models assessed.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=2) 0 500 192 308 1.00 0.62 0.81 0.72 0.192 X1X2X3

LR (d=3) 4 496 160 340 0.99 0.68 0.84 0.76 0.164 X1X2X3

LR (d=4) 0 500 111 389 1.00 0.78 0.89 0.82 0.111 X1X2

ENET (d=2) 0 500 123 377 1.00 0.75 0.88 0.80 0.123 X1X2

ENET (d=3) 0 500 119 381 1.00 0.76 0.88 0.81 0.119 X1X2

ENET (d=4) 0 500 79 421 1.00 0.84 0.92 0.86 0.079 X1X2

SVM 0 500 124 376 1.00 0.75 0.88 0.80 0.124 X1X2X4

RF 0 500 118 382 1.00 0.76 0.88 0.81 0.118 X1X2X3X4

NN (d=2) 0 500 98 402 1.00 0.80 0.90 0.84 0.098 X1X2

NN (d=3) 0 500 112 388 1.00 0.78 0.89 0.82 0.112 X1X2

NN (d=4) 96 404 99 401 0.81 0.80 0.81 0.80 0.195 X1X2
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Figure 3.6: Scenario 2. Matrix scatterplots of predictions of activity status, by the
five classification methods, for outcomes in the simulated test dataset, by variables
X1 and X2.
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Table 3.6 presents the performance metrics of the top-performing models, highlighting

that all models, with the exception of NN (d = 4), achieve almost perfect sensitivity

(SN) values. This indicates that, with the exception of NN (d = 4), all models are

highly effective at predicting active outcomes. The results also reveal that the higher

overall error rates (ER) observed in this scenario, as compared to Scenario 1, can be

attributed primarily to an increase in false positive (FP) predictions. This surge in

false positives results in a noticeable decline in specificity, relative to Scenario 1. The

plots in Figure 3.6 reveal that the overall error rates of the top-performing models for

the LR method is largely a consequence of lack of flexibility of the polynomial model,

but that the flexibility improves with increasing degree. The plots also reveal that

ENET regularisation helps to improve flexibility, more so for the quadratic polynomial

model. It is also observed that NN (d = 4) produces clusters of false negative (FN)

predictions; why this occurs is unclear.

Scenario 3

This scenario introduces an additional layer of complexity to the training data com-

pared to Scenario 2 by simulating X1, X2 from Beta B(0.5, 0.5) distributions, X3

from B(0.2, 0.8) and X4 from a B(0.1, 0.5) distribution. A notable change is that

the training data, plotted in Figure 3.7, is now unevenly sampled across the space

of X1 and X2, the two predictor variables associated with activity. Creating varying

densities of training observations across both active and inactive regions allows ex-

amination of the performance of the ML methods when faced with imbalanced and

nonuniform training data, a situation commonly encountered in real-world datasets.

In particular, the setup in this Scenario permits evaluation of robustness of the ML



142

methods to learn from regions with high and low data density while still capturing the

underlying patterns that distinguish active and inactive outcomes. As in Scenario 2,

random noise sampled from a Normal distribution, N(0, 0.01), is added to the simu-

lated values to mimic measurement errors in the predictor variables. The true active

regions and testing observations are simulated following the same framework as in

the previous scenarios. This consistency ensures that comparisons between scenarios

are fair and focused on the effects of the introduced complexities.
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Figure 3.7: Training dataset for Scenario 3. Matrix plots of predictor variables
X1, X2, X3, X4 displaying the relationships between 500 active (blue) and 500 inactive
(red) observations from the simulated training dataset for Scenario 3, as described in
the text. Variables X1 and X2 are associated with activity status whereas X3 and
X4 are not. The scatterplot of X1 against X2 reveals the absence of well-defined
boundaries separating active and inactive observations. The uneven sampling across
all four predictor variables is illustrated by the patterns in the scatterplots.
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Results of the test misclassification error rates and misclassification rate standard

error for all models fitted using the best subset selection approach, as summarized

in Tables 3.7 and 3.8, reveal interesting trends across the different methods. For the

neural network (NN) method, the best-performing models consistently identify only

X1 and X2 as predictors of activity status, aligning with their known association

with the true active regions. This pattern is also observed in the best models for

logistic regression (LR) with d = 4 and elastic net (ENET) with d = 3, where the

inclusion of X1 and X2 alone appears sufficient to optimize predictive performance.

In contrast, the support vector machine (SVM) and random forest (RF) methods

exhibit different behaviour. While these methods produce models with lower overall

error rates compared to the others, the best-performing models for both methods

include the spurious variable X4 as a predictor variable. This suggests that SVM and

RF may be more prone to overfitting or leveraging noise in the data, especially when

the spurious variable coincidentally correlates with the outcome in certain regions of

the predictor space.

The findings here highlight the varying tendencies of different machine learning meth-

ods in balancing model complexity and generalization. While NN, LR, and ENET

effectively exclude irrelevant predictor variables, SVM and RF appear to benefit

from more flexible modelling, albeit at the cost of occasionally incorporating non-

informative variables. This distinction underscores the importance of carefully eval-

uating model selection criteria, and understanding the trade-offs between error min-

imisation and predictor interpretability.
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Table 3.9: Scenario 3. Performance measures for the optimal models identified using
the best subset selection method, for each of the eleven combinations of methods and
polynomial models assessed.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=2) 2 498 301 199 0.99 0.40 0.70 0.62 0.303 X1X2X3X4

LR (d=3) 0 500 259 241 1.00 0.48 0.74 0.66 0.259 X1X2X3

LR (d=4) 0 500 180 320 1.00 0.64 0.82 0.74 0.180 X1X2

ENET (d=2) 35 465 208 292 0.93 0.58 0.76 0.69 0.243 X1X2X3

ENET (d=3) 46 454 184 316 0.91 0.63 0.77 0.71 0.230 X1X2

ENET (d=4) 0 500 127 373 1.00 0.75 0.87 0.80 0.127 X1X2X3

SVM 0 500 145 355 1.00 0.71 0.86 0.78 0.145 X1X2X4

RF 7 493 117 383 0.98 0.77 0.88 0.81 0.124 X1X2X4

NN (d=2) 113 387 96 404 0.77 0.81 0.79 0.80 0.209 X1X2

NN (d=3) 175 325 110 390 0.65 0.78 0.72 0.75 0.285 X1X2

NN (d=4) 39 461 104 396 0.92 0.79 0.86 0.82 0.143 X1X2

The performances of the methods are further examined using metrics obtained for

the optimal best subset selection models and summarized in Table 3.9. As expected,

the added complexity in the training data resulted in higher test error rates (ER)

compared to Scenario 2. This increase is particularly pronounced for logistic regres-

sion (LR), elastic net (ENET), and neural networks (NN), while the error rates for

support vector machines (SVM) and random forests (RF) are less affected by the

added complexity. These differences reflect the varying levels of robustness among

the methods when dealing with uneven sampling and noise in the data. A closer
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analysis of the sensitivity and specificity measures provides further insights. Most

methods, with the exception of NN, exhibit very high sensitivity values. This in-

dicates that LR, ENET, SVM, and RF are effective at correctly identifying active

outcomes under the data conditions evaluated here. However, these methods tend to

compromise on specificity, meaning they are more prone to falsely labelling inactive

outcomes as active. In contrast, the NN models demonstrate superior performance in

specificity, suggesting that they are less likely to generate false positives by labelling

inactive outcomes as active. However, the trade-off is lower sensitivity, indicating

that NN is likely to adopt a more conservative approach to classification under added

complexity in the training data.

The scatterplots in Figure 3.8 provide a visual comparison of the predictive patterns

across the different methods, showcasing their ability to capture active and inactive

regions under conditions of unevenly sampled training data and noise in measuring

predictor values. As observed in previous scenarios, SVM and RF are better able

to capture the boundaries between active and inactive regions. LR also performs

reasonably well in identifying active outcomes, but consistent with its behaviour in

earlier scenarios, its limited flexibility results in imprecise boundaries, especially in

regions requiring more complex decision-making. While addition of regularisation via

ENET again slightly improves the boundary definitions, this improvement comes at

the cost of a marginal increase in false negatives near the boundaries of active regions.

The neural network (NN) method, in contrast, produces less well-defined boundaries

compared to the other methods, reflecting its potential lack of robustness to uneven

sampling and noise in the training data.
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Figure 3.8: Scenario 3. Matrix scatterplots of predictions of activity status, by the
five classification methods, for outcomes in the simulated test dataset, by variables
X1 and X2.
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Scenario 4

The training dataset in this scenario, illustrated in Figure 3.9, was simulated to closely

replicate the active and inactive regions observed in the plots of Hydrophobicity (H)

and net charge (C) in relation to activity status within the peptide data used in

this study. Figures 2.4 and 2.5 presents two-dimensional (2D) projections of this

relationship. One active and one inactive region were constructed as elliptic functions

of X1 and X2 and, as in Scenario 3, the four predictor variables X1, X2, X3 and

X4 in the training dataset were simulated to represent uneven sampling over the

regions. Additionally, to reflect the assumption that separation between active and

inactive regions cannot be perfectly defined in practice, noise was introduced into the

boundary between the active and inactive regions for both the training dataset and

test dataset, shown in Figure 3.2. This decision aligns with biological realities, where

subtle variations in molecular properties can result in overlapping or transitional zones

of activity.

Tables 3.10 and 3.11 present the test misclassification error rates and misclassification

rate standard error for all models fitted using the best subset selection approach. The

logistic regression (LR) method with quadratic and quartic polynomials achieved

minimum error rates of 0.023 and 0.035, respectively, in the space of X1 and X2.

Similarly, for the elastic net (ENET) method with a quadratic polynomial model,

a minimum error rate of 0.023 was achieved in the space of X1 and X2, while for

the neural network (NN) method, minimum error rates of 0.023, 0.054, and 0.086,

respectively were produced in the space of these two predictor variables. The support

vector machine (SVM) and random forest (RF) methods yielded minimum error rates
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of 0.061 each in spaces incorporating a third predictor variable.
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Figure 3.9: Training dataset for Scenario 4. Matrix plots of predictor variables
X1, X2, X3, X4 display the relationships between 500 active (blue) and 500 inactive
(red) observations from the simulated training dataset for Scenario 4, as described in
the text. Variables X1 and X2 are associated with activity status whereas X3 and
X4 are not. The scatterplot of X1 against X2 reveals the absence of a well-defined
boundary separating active and inactive observations. The uneven sampling across
all four predictor variables is illustrated by the patterns in the scatterplots.

The above findings are consistent with previous scenarios in that models incorporating

both X1 and X2 exhibit lower error rates compared to those that exclude one or both

variables. This emerging pattern, that predictor variables strongly associated with

the outcome are consistently included among the best-performing models in the best

subset selection approach, will be exploited in this thesis to refine the variable selection

procedure, and thereby enhance the effectiveness of the model selection process.
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The performance metrics for all methods evaluated in this scenario are notably high,

see Table 3.12. Sensitivity values across all methods exceed 0.85, indicating strong

performance in correctly identifying true positives. Specificity values are similarly

robust, with most achieving values above 0.90, demonstrating the methods’ effective-

ness in accurately identifying true negatives. Accuracy and positive predictive value

(PPV) metrics further highlight the strong performance of the five methods. Accura-

cies and PPVs for all exceed 0.90, with one exception: the accuracy of the RF method

is 0.89. Despite this slight deviation, the RF method still demonstrates a high level

of performance, remaining competitive with the other four classification methods.

In terms of error rates, the minimum values observed for the five classification meth-

ods show only slight variation. This consistency suggests that the models are robust

and perform reliably across various scenarios, with no single method showing sub-

stantial under-performance. In particular, unlike the previous scenarios, here LR

demonstrates strong performance. Interestingly, the impact of regularization on the

LR error rates is minimal, suggesting that the polynomial models are appropriate for

this Scenario, without substantial overfitting or underfitting.

The plots of predictions against X1 and X2 for the five classification methods, includ-

ing polynomial models are presented in Figure 3.10. These plots visually illustrate

the prediction regions for active and inactive outcomes, providing insight into the

accuracy of the methods and the challenges in the boundary region. In most cases,

the predicted areas align well with the true active and inactive regions, demonstrating

the methods’ effectiveness in correctly classifying the majority of outcomes.

The plots in Figure 3.10 also highlight specific patterns of incorrect predictions. Areas
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where negative outcomes were incorrectly predicted as positive are marked in blue,

while areas where positive outcomes were incorrectly predicted as negative are marked

in green. Not unexpectedly, misclassifications are prominent along the boundary be-

tween active and inactive outcomes, reflecting the classification challenges in this

transitional region due to the overlapping characteristics of the two classes. Overall,

the visualization in Figure 3.10 underscores the effectiveness of the five classifica-

tion methods while also highlighting the challenges posed by low-density transitional

regions.

Table 3.12: Scenario 4. Performance measures for the optimal models identified
using the best subset selection method, for each of the eleven combinations of methods
and polynomial models assessed.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=2) 19 481 4 496 0.96 0.99 0.98 0.99 0.023 X1X2

LR (d=3) 6 494 19 481 0.99 0.96 0.97 0.96 0.025 X1X2X3

LR (d=4) 2 498 33 467 0.99 0.93 0.96 0.94 0.035 X1X2

ENET (d=2) 19 481 4 496 0.96 0.99 0.98 0.99 0.023 X1X2

ENET (d=3) 23 477 5 495 0.95 0.99 0.97 0.99 0.028 X1X2X4

ENET (d=4) 21 479 6 494 0.96 0.99 0.97 0.99 0.027 X1X2X3X4

SVM 61 439 0 500 0.88 1.00 0.94 1.00 0.061 X1X2X3

RF 60 440 1 499 0.88 0.99 0.89 0.99 0.061 X1X2X4

NN (d=2) 15 485 8 492 0.97 0.98 0.98 0.98 0.023 X1X2

NN (d=3) 28 472 26 474 0.94 0.95 0.95 0.95 0.054 X1X2

NN (d=4) 44 456 42 458 0.91 0.92 0.91 0.91 0.086 X1X2
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Figure 3.10: Scenario 4. Matrix scatterplots of predictions of activity status, by the
five classification methods, for outcomes in the simulated test dataset, by variables
X1 and X2.
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3.2 Summary of the Simulation Study Findings

The performance of the five classification methods in predicting outcomes is influenced

by the complexity of the data. Logistic regression, while straightforward and inter-

pretable, can struggle with flexibility in capturing the underlying data pattern, result-

ing in comparatively higher misclassification error rates. Elastic net regularization

can offer improvements by enhancing model adaptability, particularly for quadratic

polynomial models, but these gains are insufficient to match the performance of more

flexible methods in challenging scenarios. Both LR and ENET tend to exhibit high

sensitivity and true positive rates, effectively identifying active outcomes. However,

they are less effective in maintaining specificity, with elevated false positive rates un-

dermining their overall performance in accurately distinguishing inactive outcomes.

The neural network method can demonstrate the contrasting behaviour of prioritizing

specificity at the cost of increasing the chance of missing active outcomes. As the

data complexity increases, encompassing uneven sampling and measurement errors,

the misclassification error rates for LR, ENET, and NN tend to increase as the meth-

ods struggle somewhat to adapt. In contrast, by leveraging their intrinsic flexibility,

support vector machines and random forests maintain comparatively lower error rates

and consistent performance across scenarios.

Regarding variable selection, for LR, ENET and NN methods, the best-performing

models tend to include only those predictor variables associated with the outcome,

achieving optimal predictive performance while excluding irrelevant predictor vari-

ables. In contrast, the SVM and RF methods exhibit a different behaviour. Al-

though these methods achieve lower overall error rates compared to the others, their
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best-performing models tend to include spurious variable(s) as predictor(s).

These findings emphasise the varying tendencies of machine learning methods in bal-

ancing model complexity and generalization. The simulation results suggest that

while NN, LR, and ENET tend to focus on relevant predictor variables, SVM and

RF demonstrate a preference for more flexible modelling, occasionally at the expense

of interpretability, by incorporating non-informative variables. Nevertheless, for all

five methods, models incorporating predictor variables associated with the outcome

consistently achieve error rates that are close to the minimum observed among the

set of models fitted using the best subset selection approach. Conversely, the poorest-

performing models tend to exclude one or more predictor variables that are critical

to explaining the outcome.

Overall, the simulation results highlight the trade-offs inherent in each method.

Among the five methods, SVM and RF tend to excel in boundary precision but

may include spurious variables in their models. LR and ENET provide interpretable

solutions with comparable performance, while NN demonstrates potential for non-

linear modelling but may struggle with boundary clarity. Based on these findings,

the decision was made to evaluate the potential of all five methods for predicting

antimicrobial peptides.

3.3 Five Models of AMP Activity

The five classification methods, LR, ENET, SVM, RF and NN are here employed

to construct machine learning models for predicting antimicrobial peptide (AMP)

activity using the larger datasets obtained from the DBAASP database, as detailed
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in Section 2.4.3. As a reminder, after data cleaning and balancing the active and

inactive peptide classes, these datasets contained 644 active and 644 inactive peptides

of 10-16 amino acid (aa) lengths, and 406 active and 406 inactive peptides of 18-27

aa lengths. As before, training and test sets were generated with an 80 : 20 split

giving, for 10-16 aa peptides, a training set consisting of 515 active and 515 inactive

peptides, and a test set with 129 active and 129 inactive peptides. Similarly, for the

18-27 aa peptides, the training set comprised 324 active and 324 inactive peptides,

while the test set contains 82 active and 82 inactive peptides.

Each ML model is constructed using the training datasets, following the methodology

outlined in Section 3.1.2. Thus, best subset variable selection is employed, using

misclassification error as evaluation criterion to identify the optimal model for each

ML method and orthogonal polynomials were utilized to construct models for the LR,

ENET and NN methods. Indeed only quadratic polynomials are fitted as, given the

sizes of the training datasets and the total number of non-constant terms in a degree

d polynomial with p predictor variables is calculated as

(
p+ d

d

)
− 1,

fitting models with d > 2 is likely to lead to overfitting and was deemed computation-

ally impractical. For illustration, the cubic polynomial model with p = 9 predictor

variables and fitted using LR has 219 parameters to be estimated, along with the

intercept term. Furthermore, the results of the simulation study suggest that the

optimal model among the set of possible quadratic polynomial models is likely to

contain predictor variables relevant for predicting outcome, and that the quadratic
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polynomial models have only slightly higher error rates than cubic and quartic mod-

els. The models obtained from each of the five methods are evaluated on the test

datasets.

3.3.1 Results for 10-16 aa length peptides

Table 3.13 presents the performance metrics for the optimal models for predicting

the activity status of peptides of 10-16 aa length using the five classification methods.

For comparison, the DB-SCAN results from Table 2.9 are also included. Among the

first five methods, the RF model achieves the lowest misclassification error rate of

0.1240 from a model in six-dimensional space MHCIRA of physicochemical proper-

ties, followed by the SVM method, with an error rate of 0.1550 derived from a model

in the six-dimensional space MHCIDL. The NN method has next lowest error rate

of 0.2016, based on a model in the six-dimensional space MHCIDR, followed by the

ENET method with a slightly higher error rate of 0.2093 and employing a model in

a five-dimensional feature space MIDLA. Finally, the LR method demonstrates the

highest error rate of 0.2171 and the model constructed in the five-dimensional space

MCIDR. All misclassification error rates are however much less than obtained using

DB-SCAN.

Sensitivity values for the first five methods are over 0.80, with the RF method having

the highest value of 0.91 while the other four methods have values between 0.81 and

0.85. On the other hand, DB-SCAN has very low sensitivity. Conversely, with a

specificity of 0.97, DB-SCAN is highest among all methods. The other five methods

have lower specificity, with values ranging between 0.73 and 0.86. Among this lot,
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SVM has the highest value of 0.86, followed by RF having a specificity value of 0.84,

which is not much different from the SVM method.

Accuracies of the first five methods are between 0.78 and 0.88, with the RF method

having the highest value of 0.88, followed by the SVM method having an accuracy

value of 0.85. At a value of 0.52, accuracy of the DB-SCAN method is comparatively

low. Positive predictive values of the first five methods are between 0.76 and 0.86,

with the SVM method having the highest value of 0.86, followed by the RF method

having a specificity value of 0.85, which is not much different from the SVM method.

Lowest PPV is obtained using the DB-SCAN method.

Table 3.13: Model performance measures using five different methods and the DB-
SCAN method to construct models for predicting activity of 10-16 aa length peptides.
The bootstrap standard error (SE) of the misclassification rate, calculated from 100
iterations, are in the brackets.

Methods FN TP FP TN SN SP AC PPV ER (SE) Models

10-16 aa length

LR 21 108 35 94 0.84 0.73 0.78 0.76 0.2171 (0.01) MCIDR

ENET 20 109 34 95 0.85 0.74 0.79 0.76 0.2093 (0.00) MIDLA

SVM 22 107 18 111 0.83 0.86 0.85 0.86 0.1550 (0.02) MHCIDL

RF 11 118 21 108 0.91 0.84 0.88 0.85 0.1240 (0.02) MHCIRA

NN 25 104 27 102 0.81 0.79 0.80 0.79 0.2016 (0.01) MHCIDR

DB-SCAN 121 8 5 124 0.06 0.97 0.52 0.62 0.4884 MHCDR1

MCIDO2

CIR3

1 Cluster 1;
2 Cluster 2;
3 Cluster 3.

Comparing physicochemical properties appearing in the optimal models identified
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using best subset variable selection, for the first five methods shown in Table 3.13, it

can be seen that hydrophobic moment (M) and isoelectric point (I) are identified by

all methods. In terms of physicochemical structure (see Chapter 2, Section 2.2), M

is related to linear moment (L), which occurs in the ENET and SVM models. Also,

I is related to net charge (C), which occurs in all, except the ENET model. On the

other hand, penetration depth (D) occurs in all models, except the one constructed

using RF. In terms of physicochemical structure, D is related to hydrophobicity (H),

which occurs in all models, except ENET. In addition, propensity to disordering

(R) occurs in the LR, RF, and NN models, while propensity to aggregation (A)

occurs in the ENET and RF methods. In contrast, tilt angle (O) did not show

important physicochemical properties for shorter peptides. Compared with the DB-

SCAN clusters, the other five ML models have two features consistent with cluster 2,

that is M and I, one feature, i.e. M , consistent with cluster 1 and one feature, i.e.

I, consistent with cluster 3.

Figure 3.11 presents 3D plots illustrating the physicochemical propertiesM , I, and C

alongside the predicted activity status of peptides 10-16 aa length in the test dataset.

In these visualizations, correctly predicted active peptides are represented in dark

blue, while correctly predicted inactive peptides are shown in red. False positives,

where inactive peptides are incorrectly predicted as active, are coloured blue, and

false negatives, where active peptides are incorrectly predicted as inactive, are de-

picted in green. An examination of the plots generated by the five methods suggests

clustering of active peptides within specific regions of the 3D space defined by the

physicochemical properties. However, these clusters are not clearly distinguishable

from the inactive peptides, indicating potential overlap between active and inactive
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Figure 3.11: 3D scatterplots of predictions of activity status by hydrophobic moment
M , isoelectric point I and net charge C for 10-16 aa length peptides.

peptide distributions and regions of the physicochemical space where correct predic-

tion of activity status is more challenging.
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3.3.2 Results for 18-27 aa length peptides

Provided in Table 3.14 are performance measures of the five methods for predict-

ing activity of 18-27 aa length peptides. As was the case for the 10-16 aa pep-

tides, the RF method has the lowest misclassification error rate from a model in

six-dimensional space MHCDOL, followed by the SVM method with model in the

five-dimensional space HCILA. The LR method with model in five-dimensional fea-

ture space MHCOR, and ENET and NN methods with models in five-dimensional

spaces MHCDL and HCIDL follow. With values between 0.1037 and 0.1341, the

misclassification error rates for these five methods are less variable than those for

10-16 aa peptides and substantially less than the error of the DB-SCAN model.

Table 3.14: Model performance measures using five different methods and the DB-
SCAN method to construct models for predicting activity of 18-27 aa length peptides.
The bootstrap standard error (SE) of the misclassification rate, calculated from 100
iterations, are in the brackets.

Methods FN TP FP TN SN SP AC PPV ER (SE) Models

18-27 aa length

LR 9 73 12 70 0.89 0.85 0.87 0.86 0.1280 (0.02) MHCOR

ENET 7 75 15 67 0.91 0.82 0.87 0.83 0.1341 (0.00) MHCDL

SVM 11 71 8 74 0.87 0.90 0.88 0.90 0.1159 (0.02) HCILA

RF 11 71 6 76 0.87 0.93 0.90 0.92 0.1037 (0.02) MHCDOL

NN 12 70 10 72 0.85 0.88 0.87 0.88 0.1341 (0.00) HCIDL

DB-SCAN 76 6 2 80 0.07 0.98 0.52 0.75 0.4756 HCIOLA

Exploring the performances further, the sensitivity of all five methods is more than

or equal to 0.85, with the ENET method having the highest value of 0.91 while LR,

SVM, RF and NN have values between 0.85 and 0.89. The specificity values of all
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five methods are over 0.80, with the RF method having the highest value of 0.93,

followed by the SVM method having a specificity value of 0.90 and LR, ENET and

NN methods having values between 0.82 and 0.88. Accuracies of all five methods

are values between 0.87 and 0.90, with the RF method having the highest value of

0.90, which is not much different from other methods. Positive predictive values of

all five methods are over 0.80, with the RF method having the highest value of 0.92,

followed by the SVM method having a specificity value of 0.90 and other methods

having values between 0.83 and 0.88. Conversely, the DB-SCAN model again has the

highest sensitivity but its other performance measures are much lower than those of

the other methods.

Comparing the predictor variables used to construct the models shown in Table 3.14,

we can see that hydrophobicity (H) and net charge (C) occur in all six cases. As

outlined Section 2.2 of Chapter 2, H is related to penetration depth (D) and C is

related to the isoelectric point (I). The predictor variable D occurs in the ENET,

RF and NN methods, and I occurs in the SVM and NN methods. Also, it can

be seen that linear moment (L) occurs in the ENET, SVM, RF and NN methods,

and is related to the hydrophobic moment (M) that occurs in the LR, ENET and RF

methods. In addition, tilt angle (O) occurs in the LR and RF methods, the propensity

to disordering (R) occurs in the LR method, and the propensity to aggregation (A)

occurs in the SVM method.

The 3D scatterplots of the physicochemical properties M , H, and C alongside the

predicted activity status of peptides 18-27 aa length in Figure 3.12 suggest a similar

narrative as observed for the shorter peptides in that all five methods suggest the

existence of clusters of active peptides but with some overlap between the two classes.
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As for the shorter peptides, it is important to recognize that these 3D scatterplots are

projections of the 9-dimensional space constituted by the full set of physicochemical

properties utilized in the analysis and therefore caution is warranted in interpreting

the apparent clustering and overlap.
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Figure 3.12: 3D scatterplots of predictions of activity status by hydrophobic moment
M , hydrophobicity H and net charge C for 18-27 aa length peptides.
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3.4 Discussion

Evaluating the performance of DB-SCAN in comparison to the LR, ENET, SVM, RF

and NN classification methods it is evident that, while DB-SCAN demonstrates high

specificity, indicating a low likelihood of falsely predicting inactive peptides as active,

it falls short in replicating the overall performance achieved by the other five methods.

Notably, the sensitivity of DB-SCAN is relatively low, leading to a higher probability

of missing active peptides. This high specificity coupled with low sensitivity can be

attributed to the fact that the DB-SCANmethod is based on identifying dense clusters

of active peptides which limits its ability to accurately classify new, unseen peptides.

In contrast, as the simulations demonstrate, supervised classifiers such as LR, ENET,

SVM, RF, and NN are able to learn complex decision boundaries that better separate

active from inactive peptides, even in cases of overlapping distributions.

With regards to the performances of LR, ENET, SVM, RF and NN, while it is

clear that the flexibility of SVM and RF is advantageous and leads to a reduction

in misclassifications in this setting, comparable performances are possible from the

other three methods, as demonstrated in the models of activity for 18-27 aa length

peptides and in scenarios 1 and 4 in the simulation study. Further, the simulation

study also indicates that SVM and RF may inadvertently include spurious predictor

variables in the models, which can hamper interpretability, whereas LR, ENET and

NN are likely to exclude these predictor variables.

Clearly each method has strengths and limitations, complicating the selection of

the most appropriate approach for predicting AMP activity. To address this issue,

the next chapter evaluates methodology to mitigating individual limitations while
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leveraging the complementary strengths of the five methods. The goal is to develop

a more accurate and reliable prediction framework for antimicrobial peptide activity.



Chapter 4

Ensemble Prediction of AMP

Activity

This chapter explores the integration of the five classification methods in the previous

chapter within an ensemble framework to enhance predictive accuracy and deepen sci-

entific insights into the key determinants of antimicrobial peptide (AMP) activity. By

harnessing the complementary strengths of the methods, the ensemble approach aims

to mitigate individual model biases, improve generalization, and provide a more ro-

bust understanding of the biological and physicochemical factors that influence AMP

efficacy. The chapter begins by evaluating the majority vote method as a strategy for

combining base predictors via theory and empirical testing through simulations, with

a focus on scenarios involving a small number of base predictors. Special attention

is given to the role of variable selection in optimizing the ensemble’s performance,

as well as potential challenges posed by the lack of independence among base pre-

dictors and their heterogeneous performance levels. The impact of these factors is

quantified, providing a foundation for understanding how they influence the overall

168
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predictive accuracy and reliability of the ensemble. Following this, the proposed en-

semble approach is applied to the DBAASP datasets to map the active regions within

the physicochemical space that are associated with AMP activity and the results are

compared with previous findings.

While many ensemble methods have been widely and successfully deployed in various

application areas (Polikar, 2006), a review of the literature suggests that the specific

approach proposed in this study has not yet been evaluated within the context of

AMP activity. However, ensemble variable selection and prediction methods have

been proposed for improved identification of anti-cancer peptides. For instance, Hu

et al. (2011) evaluated accuracy of an ensemble of four base predictors, three of which

were neural network (NN) models while the fourth utilised a stabilization matrix

alignment method SMM-align (Nielsen et al., 2007), in an investigation to improve

prediction of the binding affinity of peptides to Human Leukocyte Antigen Class I

molecules. Akbar et al. (2017) ensemble classification of anti-cancer peptides consisted

of five base predictors, two of which were neural network (NN) models with the

remaining three being support vector machine (SVM), random forest (RF) and K-

nearest neighbours (KNN) models. More recently, Ge et al. (2020) introduced a

two-stage ensemble for anti-cancer peptide identification whereby a gradient boosting

decision tree algorithm LightGBM (Ke et al., 2017) is used for variable selection and

initial prediction in the first stage then the initial predictions as taken as input for

a SVM in the second stage, while Liang et al. (2021) proposed a stacking ensemble

consisting of KNN, Naive Bayes, LightGBM and SVM models, and combining the

base predictions using logistic regression (LR).
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A crucial issue for designing a good ensemble method is selection of the base predic-

tors (Polikar, 2006). Each base predictor is designed to capture certain patterns or

relationships in the data, but it might not be able to capture all the complexities of

the underlying problem. To ensure base predictions that are independent and correct

with high probability, base predictors should be both diverse and accurate. Thus, a

base predictor could be a simple decision tree, support vector machine, logistic re-

gression, linear regression, or other regression algorithms. Another crucial issue for

designing a good ensemble method is the combination rule for integrating the outputs

of the base predictors (Polikar, 2006).

Methods for combining predictions can be conceptually reasonable, uncomplicated

and straightforward to implement. For example, consider a set of m models fitted

using training data and denote by yk the predicted value for outcome Y using the

kth model; k = 1, . . . ,m. For a continuous outcome, a combined prediction may

be obtained using the average yc = sm/m where sm =
∑m

k=1 yk, while the most

frequent (mode) of them predictions, or a majority vote, may be used for a discrete or

categorical outcome. Support for this combination method in the case of a continuous

outcome is provided by the fact that the variance of the combined prediction tends to

be less than the variance of any individual prediction. Support in the discrete case is

provided by the Jury Theorem in an article by Marquis de Condorcet (1784) entitled

“an essay on the application of analysis to the probability of decisions rendered by

plurality of votes”. Developed for situations with a binary outcome, this theorem

establishes conditions under which a majority vote is optimal.
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4.1 Majority Vote

Suppose M methods are individually used to make a decision between two alterna-

tives. Let the random variables Ym; m = 1, . . . ,M denote the set of decisions and let

random variable YMV denote the combined (majority vote) decision. Without loss of

generality, the two alternatives can be denoted by 0 and 1 in which case

Definition 4.1.

YMV =


1, if SM

M
> 1

2
;

0, if SM

M
< 1

2
;

0 or 1 with equal probability, if SM

M
= 1

2
,

where

SM =
M∑

m=1

Ym, (4.1)

is the sum of the M random variables.

Theorem 4.1 (Condorcet’s Jury Theorem). If the individual decisions Ym, m =

1, . . . ,M are independent of each other, and each method makes the correct decision

with common probability p > 1
2
, then as M → ∞, the probability that the majority

vote (MV) decision is correct tends to 1.

Proof. Without loss of generality, assuming the correct decision is 1 the Ym are iid

Bernoulli random variables with parameter p and hence by Khintchine’s Weak Law

of Large Numbers (Chung, ), SM

M
converges in probability to p. Next, by definition

of convergence in probability (Chung, ), given any ϵ, δ > 0 there exists an integer M ′
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such that for every M > M ′,

P
(∣∣∣∣SM

M
− p
∣∣∣∣ < ϵ

)
> 1− δ.

Choosing ϵ = p − 1
2
and using the fact that the set

{
SM

M
:
∣∣SM

M
− p
∣∣ < p− 1

2

}
is a

subset of
{

SM

M
: SM

M
> 1

2

}
gives

P (YMV = 1) ≥ P
(
SM

M
>

1

2

)
≥ P

(∣∣∣∣SM

M
− p
∣∣∣∣ < p− 1

2

)
> 1− δ, (4.2)

which completes the proof.

The above proof underscores several critical aspects of the Jury Theorem, shedding

light on its underlying principles and implications. While the theorem’s conclusion is

an asymptotic result, meaning it is guaranteed to hold as the number of methods (M)

approaches infinity, its validity for small values of M is not established. Additionally,

the required conditions of pairwise independence of the predictions, homogeneity

(across methods) in the probabilities of a correct decision, and that each method is

more likely than not to make the correct decision, may not hold in many practical

problems. Explored next is the majority vote (MV) method when the Jury Theorem’s

conditions are relaxed. Of particular interest is identifying conditions under which

an ensemble MV predictor provides a lower prediction error rate than any of its

constituent methods.
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4.1.1 Monotone properties

Consider a binary classification problem, a set of methods that provide independent

predictions with a common probability of a correct prediction and, to emphasise

dependence on M and p, write the probability that the majority vote decision is

correct as P(YMV = 1;M, p). Then by Definition 4.1, as the sum SM in equation (4.1)

follows a binomial distribution,

P(YMV = 1;M, p) = P
(
SM ≥

⌈
M

2

⌉)
+

1

2
P
(
SM =

M

2

)
, (4.3)

where
⌈
M
2

⌉
= inf

m
{m : m ∈ Z, m > M

2
} denotes the smallest integer greater than

M/2. As shown below, this probability is monotone in both M and p. These two

properties are potentially useful when exploring the majority vote method under finite

conditions.

Theorem 4.2 (Monotonicity in p). If p1 ≤ p2 then P(YMV = 1;M, p1) ≤ P(YMV =

1;M, p2) with equality iff p1 = p2.

Proof. First note that either M = 2r+ 1 or M = 2r gives
⌈
M
2

⌉
= r+ 1; r = 1, 2, . . ..

Considering equation (4.3) when M is odd, P
(
SM = M

2

)
= 0 and therefore P(YMV =

1; 1, p) = p and

P(YMV = 1; 2r + 1, p) =
2r+1∑
k=r+1

(
2r + 1

k

)
pk(1− p)2r+1−k for r = 1, 2, . . . . (4.4)
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On the other hand, when M is even, equation (4.3) may be written as

P(YMV = 1; 2r, p) = P(S2r ≥ r + 1) +
1

2
[P(S2r ≥ r)− P(S2r ≥ r + 1)] ,

=
1

2
[P(S2r ≥ r + 1) + P(S2r ≥ r)] .

Since S2r follows a binomial distribution this becomes,

=
1

2

[
2r∑

k=r+1

(
2r

k

)
pk(1− p)2r−k +

2r∑
k=r

(
2r

k

)
pk(1− p)2r−k

]
. (4.5)

For both the odd and even case, use the relationship between the binomial and in-

complete beta distributions that

M∑
k=r

(
M

k

)
pk(1− p)M−k =

M !

(r − 1)!(M − r)!

p∫
t=0

tr−1 (1− t)M−r dt (4.6)

and replace the sums on the right-hand sides with integrals to get,

P(YMV = 1; 2r + 1, p) =
(2r + 1)!

r! r!

p∫
t=0

tr (1− t)r dt (4.7)

and

P(YMV = 1; 2r, p) =
1

2

(2r)!

r! (r − 1)!

p∫
t=0

tr−1 (1− t)r−1 dt.; r = 1, 2, . . . . (4.8)

Finally noting that for 0 < p1 ≤ p2 < 1,
p2∫

t=p1

tr−1 (1− t)r−1 dt ≥ 0; r = 1, 2, . . . , with

equality iff p1 = p2 completes the proof.

Equation (4.6) is derived in Appendix A.3.
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Note that the above result that P(YMV = 1;M, p) is strictly monotone increasing in

p for fixed M may be inferred given that with larger p each method is more likely

to produce a correct prediction and, as a consequence, the majority vote prediction

is more likely to be correct. Also, while Condorcet’s Jury Theorem guarantees that

P(YMV = 1;M, p) increases in M for fixed p > 1
2
, it does not require the sequence of

probabilities of a correct majority vote decision to be monotone. Next, results on the

probability of a correct majority vote decision for M finite are stated and proved.

Theorem 4.3 (Monotonicity in M). If M1 < M2 then

P(YMV = 1;M1, p) ≤ P(YMV = 1;M2, p) for p >
1

2
,

P(YMV = 1;M1, p) ≥ P(YMV = 1;M2, p) for p <
1

2
,

and when p = 1
2
,

P
(
YMV = 1;M, p =

1

2

)
=

1

2
for all M = 1, 2, . . . .

Proof. First, for any 0 < p < 1,

P(YMV = 1;M − 1, p) = P(YMV = 1;M, p), when M is an even number. (4.9)

To see this whenM = 2 simply note that, by the definition provided in equation (4.3),

P(YMV = 1;M = 2, p) = 2p(1 − p)/2 + p2 = p = P(YMV = 1;M = 1, p). For M > 2

consider equation (4.8) with = 2r + 2; r = 1, 2, . . . , to get

P(YMV = 1; 2r + 2, p) =
1

2

(2r + 2)!

(r + 1)! r!

p∫
t=0

tr (1− t)r dt,



176

which by writing (2r + 2)! = (2r + 2) × (2r + 1)! and (r + 1)! = (r + 1) × r! and

simplifying leads to

P(YMV = 1; 2r + 2, p) =
(2r + 1)!

r! r!

p∫
t=0

tr (1− t)r dt = P(Yc = 1; 2r + 1, p). (4.10)

Hence, to complete the proof, it is sufficient to consider the sequence of probabilities

when M is odd.

Now whenM = 3, P(YMV = 1; 3, p) =
3∑

k=2

(
3
k

)
pk(1−p)3−k = 3p2(1−p)+p3 and when

M = 1, P(YMV = 1; 1, p) = p, so the difference is,

P(YMV = 1; 3, p)− P(YMV = 1; 1, p) = 3p2(1− p) + p3 − p = p(p− 1)(1− 2p).

Thus as p(p− 1) < 0,

P(YMV = 1; 3, p)− P(YMV = 1; 1, p)


< 0, for 1− 2p > 0;

= 0, for 1− 2p = 0;

> 0, for 1− 2p < 0.

(4.11)

Next consider P(YMV = 1; 2r+3, p) = P(S2r+3 ≥ r+2), r = 1, 2, . . .. Recalling that

S2r+3 is the sum of 2r + 3 Bernoulli random variables, the event {s : S2r+3 ≥ r + 2}

can be written as the union of disjoint sets {s : S2r+3 ≥ r + 2 and S2r+1 ≥ r + 2},

{s : S2r+3 ≥ r + 2 and S2r+1 = r + 1} and {s : S2r+3 ≥ r + 2 and S2r+1 = r}, where

S2r+1 is the sum of 2r + 1 Bernoulli random variables. Consider each disjoint set in

turn.

First, as S2r+1 ≥ r+2 implies S2r+3 ≥ r+2 and P (S2r+1 ≥ r + 2) = P (S2r+1 ≥ r + 1)−
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P (S2r+1 = r + 1), applying the chain rule for conditional probability gives

P (S2r+3 ≥ r + 2, S2r+1 ≥ r + 2)

= P (S2r+3 ≥ r + 2 | S2r+1 ≥ r + 2)P (S2r+1 ≥ r + 2) ,

= P (S2r+1 ≥ r + 2) ,

= P (S2r+1 ≥ r + 1)−
(
2r + 1

r + 1

)
pr+1(1− p)r.

Second, given that S2r+1 = r+1, the sum S2r+3 will be greater than or equal to r+2

if either Y2r+2 or Y2r+3, or both, equals one. Thus, by the chain rule for probability,

P (S2r+3 ≥ r + 2, S2r+1 = r + 1) =
(
2p(1− p) + p2

)(2r + 1

r + 1

)
pr+1(1− p)r.

By a similar argument,

P (S2r+3 ≥ r + 2, S2r+1 = r) = p2
(
2r + 1

r

)
pr(1− p)r+1.

Therefore, summing these three probabilities and using that
(
2r+1
r

)
=
(
2r+1
r+1

)
give,

P(YMV = 1; 2r + 3, p) = P(YMV = 1; 2r + 1, p)+(
2r + 1

r

)[
−1 + 2p(1− p) + p2 + p(1− p)

]
pr+1(1− p)r,

= P(YMV = 1; 2r + 1, p) +

(
2r + 1

r

)
(p− 1)(1− 2p)pr+1(1− p)r,
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and hence for r = 1, 2, . . .,

P(YMV = 1; 2r + 3, p)− P(YMV = 1; 2r + 1, p)


< 0, for 1− 2p > 0;

= 0, for 1− 2p = 0;

> 0, for 1− 2p < 0,

(4.12)

which completes the proof.
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Figure 4.1: Probability of a correct prediction p of a base predictor in a majority vote
ensemble against the probability of a correct majority vote prediction P(YMV = 1)
for various ensemble sizes M .

An immediate consequence of Theorem 4.3 is that majority vote is expected to lead
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to a lower error probability than the single method with probability p of a correct

prediction, provided that the base predictors in the MV ensemble are pairwise inde-

pendent and with each having p greater than one-half. Plots of the probability of

a correct MV prediction against p in Figure 4.1 illustrate how quickly and by how

much the MV probability changes with the number of methods M , generated based

on equation (4.3). In particular, for an ensemble of M = 5 base predictors with in-

dividual probability of a correct prediction p = 0.80, the probability of the majority

vote (MV) yielding a correct prediction exceeds 94%, and when individual probabil-

ities increase to p = 0.90, MV probability approaches near certainty at 99%. Given

that the accuracy estimates of the learning methods used to analyse the DBAASP

datasets (Section 3.3, Chapter 3) falls within the range of approximately 0.80 to 0.90,

it is reasonable to expect that a majority vote ensemble could significantly enhance

prediction accuracy. Also, it is worthwhile to note that, as the plots in Figure 4.1

show, with accuracy p between 0.80 and 0.90, there is very little gain from increasing

the number of models M to more than five.

4.2 Effect of Base Predictors on Majority Vote En-

semble Properties

The fundamental properties of the majority vote method, established above, serve

here as the basis for exploring the small-sample (i.e., small M) behaviour of the MV

method in predicting active and inactive peptides under relaxed conditions of the Jury

Theorem. Consider M binary classification methods with accuracies p1, . . . , pM and

write the accuracy of the mth method pm as the weighted average of the method’s
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performance on active and inactive outcomes with weights corresponding to their

prevalence in the population. That is write,

pm = pA,mP(A) + pO,mP(O), (4.13)

where pA,m represents the probability of correctly predicting an active outcome, pO,m

represents the probability of correctly predicting an inactive outcome, and P(A),P(O)

are the respective proportions of active and inactive outcomes in the population. How

the MV performance measures are impacted under different scenarios for the base

predictors are quantified here. In practice, these probabilities are unknown and have

to be estimated. For instance, accuracy AC is an estimate of p, while sensitivity SN

and specificity SP provide respective estimates of pA and pO.

4.2.1 Independent base predictors

In scenarios where the base predictors are independent, accuracy of the MV method

is provided by equation (4.3),

pMV = P
(
SM ≥

⌈
M

2

⌉)
+

1

2
P
(
SM =

M

2

)
, (4.14)

where SM is the number of correct (active or inactive) predictions among the M

methods, and follows a Poisson-binomial distribution with probability mass function,

P(SM = k) =
∑
F∈Fk

∏
m∈F

pm
∏

m′∈F c

(1− pm′). (4.15)

Here Fk is the set of all subsets of k integers that can be selected from the set

{1, . . . ,M}, and F c = {1, . . . ,M}\F is the set of integers in {1, . . . ,M} that are not
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in F . Sensitivity of the MV method pA,MV is similarly defined by equation (4.16) with

SM now the number of correct active predictions and accuracy pm in equation (4.15)

replaced by base predictor sensitivity pA,m. Specificity of the MV method pO,MV is

similarly defined.

Homogeneous base predictors

In circumstances when all M base predictors in the ensemble are independent with

common accuracy p, the Poisson-binomial probability mass function in equation (4.15)

reduces to that of a binomial distribution and the results derived in the previous

section are directly applicable. Thus for M > 1,

pMV =


M∑

k=M+1
2

(
M
k

)
pk(1− p)M−k, for M odd;

M∑
k=M

2

(
M
k

)
pk(1− p)M−k + 1

2

(
M
M
2

)
p

M
2 (1− p)M

2 , for M even.

(4.16)

The red curve in Figure 4.2 (on the left side), which represents the probability gain

(pMV − p) achieved by the MV ensemble of M = 5 base predictors with p > 0.5,

demonstrates that MV consistently outperforms an individual base predictor. More-

over, for p within the range 0.6 to 0.9, MV improves accuracy by over 10%. Figure 4.2

(on the right side) also includes plots of the probability that an estimate of p̂MV is

lower than an estimate of p̂,

P(p̂MV < p̂), (4.17)

for sample sizes of N = 80, 125, 160, and 250. Both plots are generated by applying

equation (4.16) for probability p within the range 0.5 to 1 across various data sizes
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Figure 4.2: Plot of (pMV − p) against values of p (red line on the left side) when
M = 5. Also shown are probabilities P(p̂MV < p̂) against p for selected test data sizes
N (black lines on the right side).

N . These values correspond to the test data sizes used in the AMP dataset analyses.

These plots provide insight into the likelihood of an evaluation where MV is observed

to under-perform relative to a single base predictor. The probability is computed

under the assumption that the estimated proportion p̂MV follows a normal distribution

with mean pMV and variance pMV (1− pMV )/N . A similar assumption is made for p̂.

Heterogeneous base predictors

Accuracy of the MV ensemble of M = 5 base predictors with varying levels of per-

formance pm; m = 1, . . . , 5 is evaluated here. The values of pm (0.5 to 1) used in the

evaluation were motivated by the ranges of the estimates of accuracy, sensitivity and

specificity (0.52 to 0.98) obtained in the AMP data analyses, provided in Section 3.3
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of Chapter 3. Here, the probability of a correct majority vote decision pMV is calcu-

lated as for the homogeneous case, but with the binomial probabilities replaced with

Poisson-binomial probabilities in equation (4.15). These probabilities are calculated

using the poisbinom package (Olivella & Shiraito, 2017), for pm evenly distributed

over a range of values.
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Figure 4.3: Plots of (pMV − pmax) against values of p, where pmax is accuracy of the
best performing among M = 5 base predictors, for selected ranges of values for base
predictor probability pm.

Figure 4.3, which illustrates the difference between pMV and pmax = maxm{pm}, sheds

light on conditions under which the majority vote strategy may underperform relative
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to the best-performing predictor in the ensemble. For instance, as the long-dashed

line in the figure illustrates, MV consistently performs worse than the best-performing

base predictor when pm is approximately evenly distributed over the interval (0.5, p),

where p > 0.5. Moreover, the performance gap widens as this interval expands. This

is confirmed by the violet (interval width 0.3) and blue (interval width 0.25) dotted

lines. Thus MV is more likely to underperform relative to the best base predictor

when individual performances are spread over a wide range. On the other hand, the

performance of MV improves as the range of individual performances narrows, high-

lighting the importance of homogeneity in predictor performance for the effectiveness

of the MV strategy.

4.2.2 Dependent base predictors

First, consider the scenario where all base predictions are identical and thus the set of

base predictors are completely dependent. For M homogeneous base predictors, each

with individual performances p, it is clear that the performance of the MV ensemble

pMV is equal to p when the number of completely dependent base predictors exceeds

M/2. In such a situation there is no benefit in using the ensemble for prediction.

Next, suppose less than half of the base predictors are completely dependent. Then

form2 ≤M/2 dependent predictors, the number of correct predictions S∗
M equals k in

two scenarios: when the dependent set and k−m2 of the independent predictors are

correct, or when the dependent set is incorrect and k of the independent predictors

are correct. This leads to,

P(S∗
M = k) = pP(SM−m2 = k−m2) + (1− p)P(SM−m2 = k); M = 3, 4, 5, . . . , (4.18)
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where SM−m2 represents the sum of M −m2 independent base predictors and follows

a binomial distribution with parameters M −m2 and p.

Theorem 4.4. Consider an ensemble with M base predictors with homogeneous per-

formance p and assume a given pair of base predictors is completely dependent but

independent of the remaining M − 2. Assume further that the remaining M − 2 are

mutually independent. Then for M odd, the performance of the majority vote ensem-

ble is equivalent to that of the ensemble that excludes one predictor from the dependent

pair.

Proof. Writing M = 2r+1 and using equation (4.18) with m2 = 2 gives performance

of the ensemble as

pMV =
2r+1∑
k=r+1

P(S∗
2r+1 = k),

=
2r+1∑
k=r+1

[pP(S2r−1 = k − 2) + (1− p)P(S2r−1 = k)] .

Extracting the first and last terms from the first sum, and noting that the maximum

possible value of S2r−1 is 2r − 1, this can be written as,

=pP(S2r−1 = r − 1) + pP(S2r−1 = 2r − 1)

+
2r∑

k=r+2

pP(S2r−1 = k − 2) +
2r−1∑
k=r+1

(1− p)P(S2r−1 = k). (4.19)
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Using that S2r−1 has a binomial distribution the first term in the above sum is

pP(S2r−1 = r − 1) =p

(
2r − 1

r − 1

)
pr−1(1− p)r = (2r − 1)!

(r − 1)!r!
pr(1− p)r,

=
(2r)!

(r)!r!

r

2r
pr(1− p)r = 1

2
P(S2r = r), (4.20)

while the second term,

pP(S2r−1 = 2r − 1) = p

(
2r − 1

2r − 1

)
p2r−1 = p2r = P(S2r = 2r). (4.21)

Next, shifting the summation index k in the first sum by one unit right, the two sums

in equation (4.19) can be merged to get,

=
2r−1∑
k=r+1

[pP(S2r−1 = k − 1) + (1− p)P(S2r−1 = k)] ,

=
2r−1∑
k=r+1

[
p

(
2r − 1

k − 1

)
pk−1(1− p)2r−k + (1− p)

(
2r − 1

k

)
pk(1− p)2r−k−1

]
,

=
2r−1∑
k=r+1

[
(2r − 1)!

(k − 1)!(2r − k)!
+

(2r − 1)!

k!(2r − k − 1)!

]
pk(1− p)2r−k,

=
2r−1∑
k=r+1

[
(2r − 1)!

k!(2r − k)!
(k + 2r − k)

]
pk(1− p)2r−k =

2r−1∑
k=r+1

P(S2r = k). (4.22)

Finally, put the expressions obtained in equations (4.20), (4.21) and (4.22) in equa-

tion (4.19) to get,

pMV =
1

2
P(S2r = r) +

2r∑
k=r+1

P(S2r = k),

which, by equation (4.16), is the majority vote performance with 2r independent and

homogeneous base predictors.

A similar result does not hold when M is even, but instead, the ensemble with two
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completely dependent base predictors performs slightly worse than the ensemble with

one of the dependent pairs removed.

Proof. To see this, first writeM = 2r and use equations (4.16) and (4.18) withm2 = 2

to get,

pMV =
2r∑

k=r+1

P(S∗
2r = k) +

1

2
P(S∗

2r = r),

=
2r∑

k=r+1

[pP(S2r−2 = k − 2) + (1− p)P(S2r−2 = k)]

+
1

2
[pP(S2r−2 = r − 2) + (1− p)P(S2r−2 = r)] .

Next, following a similar approach as in the above proof,

2r∑
k=r+1

[pP(S2r−2 = k − 2) + (1− p)P(S2r−2 = k)] = P(S2r−1 ≥ r+1)+pP(S2r−2 = r−1).

Now it can also be shown that,

pP(S2r−2 = r − 1) + (1− p)P(S2r−2 = r) = P(S2r−1 = r),

so substituting for pP(S2r−2 = r − 1) gives,

pMV = P(S2r−1 ≥ r) +
1

2
[pP(S2r−2 = r − 2)− (1− p)P(S2r−2 = r)] .

The result follows by noting that P(S2r−1 ≥ r) is the majority vote performance with

2r − 1 independent and homogeneous base predictors, and that the deviation from
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this probability,

pP(S2r−2 = r − 2)− (1− p)P(S2r−2 = r) =

(
2r − 2

r − 2

)
pr−1(1− p)r−1(1− 2p),

is less than zero for p > 1/2.

The results presented above quantify the performance of the MV ensemble when

using homogeneous base predictors and confirm that achieving independence among

the base predictors is a critical requirement for optimizing ensemble performance.

However, the results also strongly suggest that an ensemble composed of homogeneous

base predictors will generally not underperform relative to any individual predictor

within the ensemble and implies that, even in the absence of perfect independence,

the ensemble approach will provide a form of risk mitigation, ensuring that the MV

prediction is at least as reliable as that of an individual base predictor.

The emerging pattern for homogeneous base predictors observed here, when combined

with the results from the previous section, suggests that in the case of heterogeneous

base predictors, the MV ensemble will exhibit a bias towards base predictors that

are dependent on one another. This dependency-driven bias can lead to a situation

where the ensemble’s performance falls short of the best-performing individual base

predictor. However, despite this limitation, the ensemble will outperform the worst-

performing base predictor.
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4.3 Majority Vote with Five Common Classifica-

tion Methods

This section evaluates the majority vote ensemble method with Logistic Regression,

Elastic Net Logistic Regression, Support Vector Machines, Random Forests and Neu-

ral Network base predictors, providing further insights into its strengths and limita-

tions. First, the robustness and reliability of the method in a controlled environment

is assessed by its performances in the four simulated scenarios introduced in Chap-

ter 3. The base predictors used in this evaluation are the best-performing models

identified in Chapter 3, ensuring that the ensemble is built on strong individual com-

ponents. Next, the MV method is applied to the problem of predicting AMP activity

using the DBAASP datasets analysed in Chapter 3 and its performance is compared

with those of the five base predictors.

4.3.1 Evaluation of majority vote using simulated scenarios

Recall that the simulation scenarios explored in Chapter 3 involve four predictor

variables X1, X2, X3, X4 and that best subset selection was employed to identify the

optimal model for each of the five methods considered. Additionally, quadratic, cubic,

and quartic models were fitted for the Logistic Regression (LR), Elastic Net (ENET),

and Neural Network (NN) methods to capture non-linear relationships in the data.

Here, a comparative analysis is conducted to evaluate the performance of these five

individual models against the aggregated performance of the MV ensemble. In partic-

ular, this evaluation provides valuable insights into the relationship between the MV

ensemble’s performance and the dependency and heterogeneity of its base predictors.
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The dependence between base predictors is evaluated using Fisher Exact Test (1922),

a widely-used statistical significance test to determine if there are nonrandom associa-

tions between two categorical variables in a contingency table. This test is particularly

useful for small sample sizes or when the data is sparse, as it calculates the exact prob-

ability of observing the data which, under the assumption of independence, follows

a hypergeometric distribution. In the implementation of this test, it is important to

note that not all predicted outcomes are included for the following reason. Two base

predictors are considered dependent if they produce identical predictions. However,

in the evaluations conducted here, many outcomes are correctly predicted by all five

base predictors and these ”easy-to-predict” outcomes can bias the hypothesis test

results towards indicating dependence, even when it may not exist. To mitigate this

bias, such outcomes are excluded from the independence test procedures.

Table 4.1: Cross-tabulated predictions of two base predictors.

Base predictor 1

Correct Wrong

Base predictor 2
Correct na nb

Wrong nc nd

Similarity in performance of pairs of base predictors is tested using McNemar test (1947),

a widely used hypothesis test procedure to determine if there is a difference in a

dichotomous outcome between two related groups. Here this test compares the pre-

dictive capabilities of two base predictors by focussing on the number of times the

two disagree, shown by nb and nc in Table 4.1. The test statistic, with continuity
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correction, and which follows a χ2 distribution with 1 degree of freedom, is given by

T =
(|nb − nc| − 1)2

nb + nc

.

The null hypothesis of similar predictive performance is rejected for large p-values.

Note that the sensitivity rates of the base predictors are exceptionally high in the eval-

uation here, reaching perfect or near-perfect levels across all four scenarios. Such per-

formances leave little room for further improvement in sensitivity and consequently,

the evaluation in this section primarily focuses on specificity and overall accuracy. As

these metrics are equally able to provide meaningful insights into the performance of

the ensemble method, this shift in focus does not detract from the primary objective

of this section.

Scenario 1

Table 4.2 presents the performance metrics for the best-fitting model from each

method based on accuracy alongside the corresponding MV ensemble performance

Table 4.2: Scenario 1. Performance measures for the majority vote ensemble and
its five base predictors.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=4) 0 500 87 413 1.00 0.83 0.91 0.85 0.087 X1X2X3

ENET (d=4) 0 500 39 461 1.00 0.92 0.96 0.93 0.039 X1X2X4

SVM 0 500 41 459 1.00 0.92 0.96 0.92 0.041 X1X2

RF 0 500 22 478 1.00 0.96 0.98 0.96 0.022 X1X2

NN (d=2) 0 500 23 477 1.00 0.95 0.98 0.96 0.023 X1X2X4

MV 0 500 31 469 1.00 0.94 0.97 0.94 0.031
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for Scenario 1 dataset. Specifically, the best models are as follows: for LR, a quartic

polynomial in X1, X2, X3; for ENET another quartic polynomial but in X1, X2, X4;

for NN the quadratic in X1, X2, X4; and for SVM and RF, models using predictor

variables X1, X2.

Table 4.3: Scenario 1: Cross tabulations of correct (C) and incorrect (W) pre-
dictions of inactive outcomes for pairs of base predictors. The p-values of tests
assessing similarity in predictive capability using McNemar’s test procedure are given
in brackets.

LR ENET SVM RF

C W C W C W C W

ENET
C 413 48

W 0 39

(0.0000)

SVM
C 412 47 451 8

W 1 40 10 31

(0.0000) (0.8137)

RF
C 413 65 461 17 459 19

W 0 22 0 22 0 22

(0.0000) (0.0001) (0.0000)

NN
C 413 64 461 16 459 18 471 6

W 0 23 0 23 0 23 7 16

(0.0000) (0.0002) (0.0001) (1.0000)

Results in Table 4.2 demonstrate that with a specificity (SP) of 0.94 and accuracy

(AC) of 0.97, performance of MV ensemble is comparable to the best-performing

base predictors. However, MV does not demonstrate superior performance over these

individual predictors. This outcome can be further understood by examining the

homogeneity and independence of the base predictors.
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Results of the pairwise tests for similar capability pO in predicting an inactive out-

come provided in Table 4.3 show that the LR model has significantly lower specificity

than the other four base predictors. Additionally, the ENET and SVM models ex-

hibit similar specificity, though both are significantly lower than that of the RF and

NN models. Furthermore, the p-values of the independence tests for Scenario 1 in

Table 4.4 indicate that, while there is no evidence of dependence between LR and

the other four methods, the prediction models constructed by ENET, SVM, RF and

NN are highly significantly dependent. This strong interdependence among four of

the five models, and to a lesser extent the heterogeneity in predictive capability, are

likely contributors to the observed performance of the MV ensemble in this scenario.

Table 4.4: P-values from Fisher Exact Tests of independence between pairs of base
predictors across four scenarios.

Pairs of P-value

methods Scenario 1 Scenario 2 Scenario 3 Scenario 4

(LR, ENET) 1.0000 0.0000 0.0000 0.0000

(LR, SVM) 0.4659 0.0008 0.7146 0.0012

(LR, RF) 1.0000 0.0768 0.0629 0.0495

(LR, NN) 1.0000 0.0002 0.6145 0.0000

(ENET, SVM) 0.0000 0.0005 0.5762 0.0012

(ENET, RF) 0.0000 0.0001 0.0013 0.0495

(ENET, NN) 0.0000 0.0000 0.0012 0.0000

(SVM, RF) 0.0000 0.0000 0.0000 0.0198

(SVM, NN) 0.0000 0.0025 0.0140 0.1746

(RF, NN) 0.0000 0.0013 0.1693 0.3406
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Scenario 2

As discussed in Chapter 3, a key difference in the training data here compared to

Scenario 1 is that certain regions of the variable space are now densely sampled,

while others are sparsely sampled. Additionally, the observed predictor variables are

subject to measurement errors, resulting in training data with ambiguous boundaries

between active and inactive outcomes. Table 4.5 presents the performance metrics

for the MV ensemble and its base predictors in this scenario. First, focusing on the

estimated specificity, MV exhibits a four percentage point reduction compared to the

best-performing base predictor. The impact on overall accuracy is however minimal

as all models achieve perfect sensitivity.

To delve deeper into this performance analysis, Table 4.6 reveals that while there

is no evidence for differences in specificity of the LR, SVM and RF models, the

ENET model stands out with significantly higher specificity compared to all other

base predictors. While this heterogeneity in specificity among the base predictors may

have contributed to the observed performance of the MV ensemble, a more plausible

Table 4.5: Scenario 2. Performance measures for the majority vote ensemble and
its five base predictors.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=4) 0 500 111 389 1.00 0.78 0.89 0.82 0.111 X1X2

ENET (d=4) 0 500 79 421 1.00 0.84 0.92 0.86 0.079 X1X2

SVM 0 500 124 376 1.00 0.75 0.88 0.80 0.124 X1X2X4

RF 0 500 118 382 1.00 0.76 0.88 0.81 0.118 X1X2X3X4

NN (d=2) 0 500 98 402 1.00 0.80 0.90 0.84 0.098 X1X2

MV 0 500 102 398 1.00 0.80 0.90 0.83 0.102
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Table 4.6: Scenario 2: Cross tabulations of correct (C) and incorrect (W) pre-
dictions of inactive outcomes for pairs of base predictors. The p-values of tests
assessing similarity in predictive capability using McNemar’s test procedure are given
in brackets.

LR ENET SVM RF

C W C W C W C W

ENET
C 389 32

W 0 79

(0.0000)

SVM
C 356 20 365 11

W 33 91 56 68

(0.0993) (0.0000)

RF
C 354 28 370 12 363 19

W 35 83 51 67 13 105

(0.4497) (0.0000) (0.3768)

NN
C 367 35 387 15 341 61 343 59

W 22 76 34 64 35 63 39 59

(0.1120) (0.0101) (0.0107) (0.0549)

explanation is revealed by an examination of the p-values of the independence tests for

Scenario 2 in Table 4.4. The table shows that there are highly significant dependencies

between all pairs of models, except for LR and RF, which is likely to have amplified the

impact of the collective predictions, thereby overshadowing the individual strength of

the ENET model and ultimately shaping the ensemble’s performance.
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Scenario 3

While the MV ensemble’s estimated specificity for this scenario is four percentage

points lower than that of the NN model and two points lower than the RF model, as

shown in Table 4.7, its overall accuracy remains comparable to the best-performing

base predictors. This is primarily driven by the perfect sensitivity achieved by the

ensemble, which stems from the flawless performance of the LR, ENET, and SVM

models in correctly identifying all active outcomes in the test dataset.

A possible contributing factor to the MV ensemble’s performance in the scenario

here is the significantly lower specificity of the LR model compared to the other base

predictors, see Table 4.8. This weaker performance potentially directly impacts the

ensemble’s overall specificity, as the majority vote mechanism aggregates predictions

from all base predictors, including those with suboptimal performance. Additionally,

as the p-values for Scenario 3 in Table 4.4 show, the independence of the LR model

from the RF and NNmodels, the two best-performing base predictors, possibly further

exacerbates the issue. Since the LR model’s predictions are not correlated with those

Table 4.7: Scenario 3. Performance measures for the majority vote ensemble and
its five base predictors.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=4) 0 500 180 320 1.00 0.64 0.82 0.74 0.180 X1X2

ENET (d=4) 0 500 127 373 1.00 0.75 0.87 0.80 0.127 X1X2X3

SVM 0 500 145 355 1.00 0.71 0.86 0.78 0.145 X1X2X4

RF 7 493 117 383 0.98 0.77 0.88 0.81 0.124 X1X2X4

NN (d=4) 39 461 104 396 0.92 0.79 0.86 0.82 0.143 X1X2

MV 0 500 126 374 1.00 0.75 0.87 0.80 0.126
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Table 4.8: Scenario 3: Cross-tabulations of correct (C) and incorrect (W) pre-
dictions of inactive outcomes for pairs of base predictors. The p-values of tests
assessing similarity in predictive capability using McNemar’s test procedure are given
in brackets.

LR ENET SVM RF

C W C W C W C W

ENET
C 316 57

W 4 123

(0.0000)

SVM
C 288 67 307 48

W 23 113 66 79

(0.0006) (0.1113)

RF
C 301 82 330 53 349 34

W 19 98 43 74 6 111

(0.0000) (0.3583) (0.0000)

NN
C 304 92 346 50 332 64 349 47

W 16 88 27 77 23 81 34 70

(0.0000) (0.0122) (0.0000) (0.1824)

of RF and NN, its errors are not likely to be offset by the stronger performance of these

models, but instead, independence possibly allows the LR model’s lower specificity

to have a more pronounced negative influence on the ensemble’s results.

Scenario 4

The performance of the MV ensemble in this scenario, produced in Table 4.9, is pri-

marily driven by the LR, ENET and NN models. These models exhibit a high degree

of homogeneity in their predictive capabilities, as evidenced by the results presented
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Table 4.9: Scenario 4. Performance measures for the majority vote ensemble and
its five base predictors.

Methods FN TP FP TN SN SP AC PPV ER Models

LR (d=2) 19 481 4 496 0.96 0.99 0.98 0.99 0.023 X1X2

ENET (d=2) 19 481 4 496 0.96 0.99 0.98 0.99 0.023 X1X2

SVM 61 439 0 500 0.88 1.00 0.94 1.00 0.061 X1X2X3

RF 60 440 1 499 0.88 0.99 0.89 0.99 0.061 X1X2X4

NN (d=2) 15 485 8 492 0.97 0.98 0.98 0.98 0.023 X1X2

MV 21 479 4 496 0.96 0.99 0.98 0.99 0.025

in Table 4.10. Furthermore, the p-values for Scenario 4 in Table 4.4 indicate that

these models are highly significantly dependent on one another. This interdepen-

dence is particularly pronounced between the LR and ENET models, which produce

identical predictions on the test dataset (see Table 4.10). Additionally, the results in

Table 4.10 reveal no significant difference in the predictive capabilities of the SVM

and RF models. These two models also demonstrate a high level of dependence, as

supported by the statistical evidence provided in Table 4.4. The high dependence

among the two sets of base predictors observed in this scenario, combined with their

strong individual performance, highlights the limited potential for further improve-

ment in the MV ensemble’s predictive accuracy. However, it also underscores the

reliability and stability of the ensemble in leveraging the collective strength of its

constituent models.
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Table 4.10: Scenario 4: Cross tabulations of correct (C) and incorrect (W) predic-
tions of all outcomes for pairs of base predictors. The p-values of tests assessing
similarity in predictive capability using McNemar’s test procedure are given in brack-
ets.

LR ENET SVM RF

C W C W C W C W

ENET
C 977 0

W 0 23

( )

SVM
C 935 4 935 4

W 42 19 42 19

(0.0000) (0.0000)

RF
C 934 5 934 5 919 20

W 43 18 43 18 20 41

(0.0000) (0.0000) (1.0000)

NN
C 970 7 970 7 930 47 930 47

W 7 16 7 16 9 14 9 14

(1.0000) (1.0000) (0.0000) (0.0000)

4.3.2 Majority vote prediction of AMP activity

The preceding evaluations of the majority vote ensemble indicate that its performance

is optimal under conditions of homogeneity and independence and, moreover, it has

the ability to align with stronger base predictors and remain competitive even in

less-than-ideal scenarios. This motivates the exploration in this section of applying

the MV method to predict AMP activity using the DBAASP datasets analysed in

Chapter 3. Table 4.11 presents the performance metrics for the MV method with base
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predictors the optimal models for predicting activity status of peptides. The perfor-

mance metrics of these base predictors, provided in Tables 3.13 and 3.14 respectively,

are reproduced in Table 4.11 for ease of comparison.

With an estimated sensitivity (SN) of 0.85, specificity (SP) of 0.81, and accuracy

(AC) of 0.83, the overall performance of the MV ensemble in predicting the activity

of 10-16 aa length peptides is surpassed by RF, the best-performing base predictor in

terms of overall error rate (ER), but it outperforms the NN model. Compared to the

other three models, its performance is mixed. The SVM and MV models demonstrate

comparable SN, but SVM achieves higher SP and, consequently, a higher estimated

AC. Additionally, while the MV ensemble’s SN is comparable to that of the LR and

ENET methods, its improved SP results in a higher overall AC.

While the MV method exhibits reasonable performance in predicting the activity of

10-16 aa length peptides, its performance improves when applied to longer 18-27 aa

length peptides. Notably, as Table 4.11 shows, its overall estimated ER of 0.1037

now matches that of the best-performing base predictor, RF. Moreover, the MV

method achieves a higher sensitivity (SN) of 0.91, though at the cost of a slightly

lower specificity (SP) of 0.88. This improvement in SN appears to result from MV

leveraging the collective strengths of the LR and ENET model, thereby enhancing its

ability to identify active peptides while mitigating individual model weaknesses.

Further insight into the performance of the MV method here is provided in Table 4.12

and 4.13, which contains the p-values from hypothesis tests assessing the pairwise in-

dependence and homogeneity of the base predictors. First, considering the models
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Table 4.11: Performance measures for the majority vote ensemble and its five base
predictors for predicting activity of 10-16 aa and 18-27 aa length peptides.

Methods FN TP FP TN SN SP AC PPV ER Models

10-16 aa length

LR 21 108 35 94 0.84 0.73 0.78 0.76 0.2171 MCIDR

ENET 20 109 34 95 0.85 0.74 0.79 0.76 0.2093 MIDLA

SVM 22 107 18 111 0.83 0.86 0.85 0.86 0.1550 MHCIDL

RF 11 118 21 108 0.91 0.84 0.88 0.85 0.1240 MHCIRA

NN 25 104 27 102 0.81 0.79 0.80 0.79 0.2016 MHCIDR

MV 19 110 25 104 0.85 0.81 0.83 0.81 0.1705

18-27 aa length

LR 9 73 12 70 0.89 0.85 0.87 0.86 0.1280 MHCOR

ENET 7 75 15 67 0.91 0.82 0.87 0.83 0.1341 MHCDL

SVM 11 71 8 74 0.87 0.90 0.88 0.90 0.1159 HCILA

RF 11 71 6 76 0.87 0.93 0.90 0.92 0.1037 MHCDOL

NN 12 70 10 72 0.85 0.88 0.87 0.88 0.1341 HCIDL

MV 7 75 10 72 0.91 0.88 0.90 0.88 0.1037

for predicting 10-16 aa length peptide activity, the results in Table 4.12 show no ev-

idence against the pairwise homogeneity of LR, ENET, NN, and SVM in terms of

sensitivity, with the first three also demonstrating pairwise homogeneity in specificity

and accuracy. Additionally, there is strong statistical evidence for dependence be-

tween LR and ENET. Taken together, these findings suggest that the performance of

the MV ensemble in predicting the activity of 10-16 aa length peptides is influenced

by the dependence between LR and ENET. Extending this, assuming homogeneity

and pairwise independence among the remaining base predictors, the result of Theo-

rem 4.4, in conjunction with equation (4.9) in the proof of Theorem 4.3, implies that
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the effective performance of the MV ensemble in this case corresponds to that of an

ensemble with only M = 3 independent base predictors,

Table 4.12: P-values from Fisher Exact Tests of independence, and McNemar’s test
of similar predictive capability (homogeneity), between pairs of base predictors for
activity of peptides 10-16 aa length.

Pairs of P-value

methods Sensitivity Specificity Accuracy Independence

(LR, ENET) 1.0000 1.0000 0.8551 0.0001

(LR, SVM) 1.0000 0.0030 0.0339 0.6869

(LR, RF) 0.0550 0.0140 0.0011 1.0000

(LR, NN) 0.4533 0.1698 0.6434 0.0724

(ENET, SVM) 0.8137 0.0046 0.0553 0.2257

(ENET, RF) 0.0809 0.0311 0.0036 0.6927

(ENET, NN) 0.3320 0.2482 0.8802 0.1628

(SVM, RF) 0.0371 0.6276 0.2684 0.0261

(SVM, NN) 0.6892 0.0953 0.1124 0.8389

(RF, NN) 0.0037 0.3447 0.0061 0.6892

Table 4.13 reveals that, apart from specificity of the ENET and RF models, there

is very little evidence against pairwise homogeneity in the predictive capabilities of

the base predictors for activity of 18-27 aa length peptides. Consequently, departure

in performance from the idealised conditions is likely due to the strongly significant

dependence observed between the LR and ENET predictors.

The findings thus far suggest that, by leveraging the diversity of its constituent base

predictors, the MV ensemble is able to reduce the risk of systematic errors and enhance

overall predictive accuracy. More importantly, the findings demonstrate that the MV
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Table 4.13: P-values from Fisher Exact Tests of independence, and McNemar’s test
of similar predictive capability (homogeneity), between pairs of base predictors for
activity of peptides 18-27 aa length.

Pairs of P-value

methods Sensitivity Specificity Accuracy Independence

(LR, ENET) 0.6171 0.3711 1.0000 0.0002

(LR, SVM) 0.7893 0.3865 0.8445 0.3588

(LR, RF) 0.7518 0.0771 0.4795 0.2137

(LR, NN) 0.5465 0.6171 1.0000 0.0358

(ENET, SVM) 0.3428 0.0961 0.6767 1.0000

(ENET, RF) 0.3428 0.0159 0.3827 0.5069

(ENET, NN) 0.1306 0.1824 1.0000 0.0492

(SVM, RF) 1.0000 0.7518 0.8445 0.2268

(SVM, NN) 1.0000 0.7518 0.6276 0.2253

(RF, NN) 1.0000 0.3428 0.4234 0.3726

ensemble often remains competitive with its best-performing base predictors, even in

scenarios where the ideal conditions of independence and homogeneity are not fully

met. The next section explores how the ensemble of base predictors can be utilised to

improve the interpretability of the prediction model without sacrificing performance.

4.4 Ensemble Feature Selection

This section evaluates an ensemble feature (variable) selection method that aims to

improve the robustness and accuracy of the best subset selection process by combining

the outputs of the five base predictors used above. The approach aims to identify
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features consistently exhibiting high relevance across the different methods thereby

increasing the robustness of feature selection. By reducing the impact of biases or

limitations associated with the individual methods, the approach also aims to achieve

enhanced selection accuracy, and improved model interpretability and generalisation.

While the best subset selection guarantees the best possible fit to the training data,

it may also include spurious predictor variables, as demonstrated by the simulation

findings in Chapter 3, compromising both the interpretability and generalisability of

the machine learning model. To mitigate this issue, integration of the outcomes of

the five classification methods LR, ENET, SVM, RF and NN using reciprocal rank

is proposed and evaluated here. While this proposed use of best subset selection in

conjunction with an ensemble of ML methods is conceptually straightforward, there

is no documented evidence in the literature of its evaluation or practical application

within this context.

In an evaluation of ensemble feature selection methods (Effrosynidis & Arampatzis,

2021), the authors assert that although reciprocal rank has not been previously

used for feature selection, it outperformed each of five other methods considered

and demonstrated high stability. Equivalent to the harmonic mean, the reciprocal

rank is determined by calculating the final rank r(k) of a model using the following

equation (Effrosynidis & Arampatzis, 2021);

r(k) =
1

M∑
m

1
rm(k)

, (4.23)

where rm(k) is the rank of the kth model according to the mth of M classification

methods; m = 1, 2, . . . ,M . The best model has the lowest final ranking score. In
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the approach implemented here, the combination of predictor variables used to fit

a model serves as a substitute for the model itself and consequently, the goal is to

identify the optimal combination of predictor variables across a set of M machine

learning methods.

4.4.1 Evaluation of reciprocal ranking using simulated sce-

narios

Recall from Chapter 3 that best subset selection was employed to identify the opti-

mal combination of the predictor variables X1, X2, X3, X4 for the five classification

methods, and that activity status was defined in the space of X1, X2 while X3, X4

were unrelated with activity. Results of the best subset selection implementation are

provided in Tables 3.1, 3.4, 3.7 and 3.10 for the four respective simulated scenarios.

Here, the predictor variable combinations in these tables are first ranked according to

the overall error rate (ER) for each method and scenario, before a final ranking score

over the five methods is computed (see example of calculating the final ranking score

in Appendix C). The final scores for the top three predictor variable combinations are

presented in Table 4.14. Note that the optimal degree polynomials (see section 4.3.1)

were used for the LR, ENET and NN methods.

The ranking scores in Table 4.14 indicate that X1 and X2 are the dominant features

in determining activity status in Scenarios 2 and 4. However, in both cases, they

are not top-ranked by either the SVM or RF methods, see Tables 3.4 and 3.10. In

the remaining two scenarios, X1 and X2 rank second, following a three-dimensional

space that includes them. For Scenario 1, Table 3.1 shows that models using only
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Table 4.14: The final ranking score of the four best combination of predictor variables
for four simulation scenarios using reciprocal rank voting.

Order Ranking score Predictors

1st Scenario

1st 0.3158 X1, X2, X4

2nd 0.3333 X1, X2

3rd 0.3871 X1, X2, X3

2nd Scenario

1st 0.2667 X1, X2

2nd 0.3750 X1, X2, X4

3rd 0.4855 X1, X2, X3, X4

3rd Scenario

1st 0.3158 X1, X2, X4

2nd 0.3429 X1, X2

3rd 0.4000 X1, X2, X3, X4

4th Scenario

1st 0.2609 X1, X2

2nd 0.3871 X1, X2, X3

3rd 0.4000 X1, X2, X4

these two predictor variables rank fourth for the ENET and NN methods while, as

can be seen from Table 3.7, in Scenario 3 they rank fourth for ENET and third for

both the SVM and RF methods. These findings support the hypothesis that a single

machine learning method is likely to be more effective than an ensemble approach

in identifying the most relevant predictor variables. They also provide evidence that

high-performing predictive methods, such as RF, may exhibit suboptimal performance

in feature selection tasks and highlight the advantage of combining multiple methods

for more effective feature selection.
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4.5 Ensemble Feature Selection and Prediction of

AMP Activity

The outcomes of five classification methods LR, ENET, SVM, RF and NN are inte-

grated here into a novel ensemble-based feature selection and prediction framework

aimed at enhancing the robustness and accuracy of predictions, and ensuring a more

reliable identification of key determinants of AMP activity. Details of the model build-

ing approach for the five methods, utilising best subset feature selection to identify

the optimal combination of the nine predictor variables of AMP activity, are provided

in Section 3.3, with the corresponding performance analyses reproduced in Table 4.11.

Here, the 502 predictor variable combinations generated through the best subset se-

lection approach are ranked within each method and these individual rankings are

then aggregated using the reciprocal rank vote to determine the optimal combination,

as outlined in the previous section. The MV algorithm is then constructed based on

this optimal combination of predictor variables.

The results of the ensemble feature selection, presented in Table 4.15, show that the

dominant feature combination determining the AMP activity of the shorter peptides

is MHIDLA, whereas for longer peptides, it is MHCDOL. Both combinations

define six-dimensional (6D) feature spaces. Notably, as can be determined from

Table 4.11, the combination MHIDLA was not ranked highest by any individual

method, while MHCDOL was ranked first solely by RF. Furthermore, for shorter

peptides, only the fourth-ranked combination, MHCIDL, and the fifth-ranked com-

bination,MHCIDR, were identified as top-ranked by any of the individual methods.

Similarly, for longer peptides, the third-ranked feature combination, MHCOR, was
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ranked first exclusively by LR.

Table 4.15: The final ranking scores and five best combinations of predictor variables
for AMP activity of peptides 10-16 and 18-27 aa length, using reciprocal rank voting.
The lowest final ranking scores are highlighted in blue.

10-16 aa length 18-27 aa length

Order Ranking score Predictors Ranking score Predictors

1st 0.6270 MHIDLA 0.5288 MHCDOL

2nd 0.6640 MHCIDORL 0.5567 MHCOL

3rd 0.6724 MCIDRL 0.5581 MHCOR

4th 0.6747 MHCIDL 0.6059 MHCDOR

5th 0.7103 MHCIDR 0.6075 MHCORL

An inspection of the optimal feature combinations in Table 4.15 reveals that the four

physicochemical features, hydrophobic moment (M), hydrophobicity (H), penetra-

tion depth (D) and linear moment (L) are key predictors of antimicrobial peptide

(AMP) activity for both the shorter and longer peptides and are therefore likely to

play a fundamental role in determining peptide behaviour. Additionally, distinct

features emerge as important for the two peptide lengths. For shorter peptides, iso-

electric point (I) and propensity to aggregation (A) are selected as relevant predictor

variables, suggesting that charge distribution and aggregation tendencies significantly

impact their activity. In contrast, for longer peptides, net charge (C) and tilt angle

(O) are suggested as key determinants, implying that electrostatic interactions and

peptide orientation within membranes are more influential in this category.

Performance measures of the majority vote ensemble, incorporating the five classifi-

cation methods with the selected predictor variables MHIDLA for peptides of 10-16

and MHCDOL for peptides of 18-27 amino acids, denoted MV-FS, are presented
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Table 4.16: Performance measures for ensemble feature selection and prediction of
10-16 aa and 18-27 aa length peptides activity. The majority vote with the feature
selection method is labelled MV-FS.

Methods FN TP FP TN SN SP PPV ER

10-16 aa length (MHIDLA)

MV-FS 24 105 25 104 0.81 0.81 0.81 0.1899

MV 19 110 25 104 0.85 0.81 0.81 0.1705

DB-SCAN1 121 8 5 124 0.06 0.97 0.62 0.4884

18-27 aa length (MHCDOL)

MV-FS 13 69 12 70 0.84 0.85 0.85 0.1524

MV 7 75 10 72 0.91 0.88 0.88 0.1037

DB-SCAN1 76 6 2 80 0.07 0.98 0.75 0.4756

1 Re-Analysis results

in Table 4.16. For comparative analysis, the table also includes performance metrics

for the MV method without feature selection and results from the re-analysis of the

data using the DB-SCAN clustering approach. Compared to the MV method, the

MV-FS approach exhibits no change in the number of false positives (FP) for shorter

peptides and a slight increase for longer peptides. In the latter case, this results in

a slight decrease in specificity (SP). Additionally, the MV-FS method shows a small

reduction in the number of true positives (TP), leading to a slight decrease in sensi-

tivity (SN) for both peptide lengths. The estimated error rates (ER) of the MV-FS

method show a slight decrease for shorter peptides, while a modest increase of ap-

proximately five percentage points is observed for longer peptides. However, these

changes remain minimal, indicating that incorporation of feature selection does not

significantly impact the overall performance of the MV ensemble. Notably, both the

MV and MV-FS methods consistently outperform the DB-SCAN approach across all
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Table 4.17: Minimum and maximum values of the observed predictor variable data
and grid values, along with the step size and number of steps, for peptides 10-16 aa
length.

Features Raw data Grid Step size (Steps)

min max min max

M 0.02 2.36 0.00 2.40 0.1 (25)

H -3.09 3.82 -3.10 3.90 0.2 (36)

C -3.00 14.00 -6.00 15.00 1 (22)

I 3.01 13.21 2.60 13.40 0.4 (28)

D 5.00 30.00 0.00 30.00 1 (31)

O 3.00 177.00 0.00 180.00 5 (37)

R -2.15 1.02 -2.20 1.10 0.1 (34)

L 0.00 0.59 0.00 0.70 0.02 (36)

A 0.00 799.83 0.00 800.00 20 (41)

performance metrics, except for specificity.

4.5.1 Predicting active regions of the physicochemical space

The machine learning method MV-FS developed in this thesis is next applied to

predict regions of active antimicrobial peptides (AMPs) within the physicochemical

space of selected predictor variables in order to enhance understanding of the key

properties influencing AMP activity, and to provide insights for the identification

and rational design of novel AMPs with optimised properties. To enable a systematic

exploration of the physicochemical space, predicted activity is obtained for a grid

of points designed to encompass the observed data values for each physicochemical

property in the DBAASP dataset. Thus, the grid is constructed based on the observed
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data ranges, with specified step sizes and the number of steps, as detailed in Table 4.17

for peptides of 10-16 amino acids and Table 4.18 for peptides with 18-27 amino acids.

In particular, predictions for the shorter 10-16 aa peptides are obtained over a grid

constructed using M (25 steps), H (36 steps), I (28 steps), D (31 step), L (36 steps)

and A (41 steps), resulting in a total of 1, 153, 051, 200 data points. For the longer

18-27 aa peptides, the grid is constructed over M (25 steps), H (36 steps), C (22

steps), D (31 steps), O (37 steps) and L (36 steps), giving a total of 817, 581, 600

data points.

Table 4.18: Minimum and maximum values of the observed predictor variable data
and grid values, along with the step size and number of steps, for peptides 18-27 aa
length.

Features Raw data Grid Step size (Steps)

min max min max

M 0.00 2.09 0.00 2.40 0.1 (25)

H -2.24 1.74 -3.10 3.90 0.2 (36)

C -6.00 15.00 -6.00 15.00 1 (22)

I 2.68 13.14 2.60 13.40 0.4 (28)

D 0.00 30.00 0.00 30.00 1 (31)

O 2.00 176.00 0.00 180.00 5 (37)

R -1.64 0.85 -2.20 1.10 0.1 (34)

L 0.00 0.61 0.00 0.70 0.02 (36)

A 0.00 1274.19 0.00 1320.00 40 (34)

Figures 4.4 and 4.5 present 2D projections of the predicted activity distributions

across the physicochemical space for peptides of 10-16 amino acids and 18-27 amino

acids, respectively. The contour lines and blue shades in the 2D plots delineate

regions of the physicochemical space with the same probability of activity, where the
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Figure 4.4: Regions of active AMPs predicted by MV-FS for peptides 10-16 aa length,
which are visualized as a 2D projection of some pair of physicochemical features, where
contour lines and blue regions indicate the highest probability of activity. Matrix
plots of predictor variables M , H, I, D and L display the relationships between
active (blue) and inactive (red) peptides from the real AMPs datasets.

probability at each point in the 2D space is estimated by the proportion of predicted

active outcomes at that point. The selected 2D spaces displayed in the figures were

chosen because they reveal regions with the highest predicted activity, which are

indicated by the darker blue regions. To provide additional context, scatterplots of
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the training data are superimposed on the plots.

The top row of Figure 4.4 suggests that active 10-16 aa peptides are most likely to

have isoelectric point (I) around 12 or higher, which is near the boundary of this

predictor variable. Further, that there is more than a 30% probability that these

peptides will have hydrophobicity (H) in the interval (−1, 0) and linear moment (L)

of approximately 0.30. Moreover, the leftmost plot in the bottom row provides mild

evidence that hydrophobic moment around 1 corresponds to a region of lower activity.

Regarding the 18-27 aa peptides, a comparison of Figure 4.5 with Figure 4.4 clearly

demonstrates that active regions of the physicochemical space are now predicted with

greater certainty. This is expected given the performance measures in the previous

section. The rightmost plot on the bottom row of Figure 4.5 indicate that there is

more than a 90% probability that active 18-27 aa peptides will have net charge (C)

in the interval (7, 10) and H in the same interval as the shorter peptides. The tilt

angle (O) of these peptides are more likely in the interval (60 − 100) while L tends

to be 0.2 or less. Also, notice from the leftmost column of plots that, consistent with

observations for the shorter peptides, values of M around 0.5 correspond to a region

with lower probability for active peptides.

Finally, it is important to highlight that the ranges of the physicochemical predic-

tor variables identified through MV-FS in this thesis closely align with the values

associated with active clusters in the original findings by Vishnepolsky et al. (2018),

provided in Tables 2.3 and 2.5 of Chapter 2.
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Figure 4.5: Regions of active AMPs predicted by MV-FS for peptides 18-27 aa length,
which are visualized as a 2D projection of some pair of physicochemical features, where
contour lines and blue regions indicate the highest probability of activity. Matrix
plots of predictor variables M , H, C, O and L display the relationships between
active (blue) and inactive (red) peptides from the real AMPs datasets.

4.6 Discussion

This chapter used both theory and simulations to delve into the integration of the

five classification methods introduced in the previous chapter within an ensemble

framework. A systematic evaluation of ensemble performance and the identification of
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specific conditions under which the framework may become sub-optimal is presented.

By doing so, this chapter offers valuable insights into the strengths and limitations of

the ensemble approach and provides a deeper understanding of the conditions when

it performs best.

Results proving that the majority vote ensemble will consistently outperform its in-

dividual base predictors, provided that the two key conditions of homogeneity and

independence are met, are presented. Homogeneity ensures that base predictors are

similarly accurate, while independence guarantees that their errors are uncorrelated.

When these conditions are satisfied, the ensemble leverages the diversity of its con-

stituent models, reducing the risk of systematic errors and enhancing overall predic-

tive accuracy. Conversely, the behaviour of the MV ensemble can change when these

conditions are not met. For example, the majority vote mechanism can amplify the

influence of base predictors with similar error patterns, potentially undermining the

ensemble’s ability to correct for individual weaknesses. Also, if one or a few base pre-

dictors significantly outperform the others, the ensemble’s performance may closely

align with these stronger models, even in the absence of strict independence. Despite

these limitations, the theoretical and simulation results presented in this chapter show

that the MV ensemble will be competitive with the best-performing base predictors.

The simulation results in this chapter confirm that there is no guarantee that variable

selection approaches implemented with individual methods will exclude irrelevant or

spurious features. Moreover, existing ensemble feature selection techniques primarily

emphasise the individual contributions of features (see Effrosynidis & Arampatzis,

2021, for example), potentially overlooking the importance of feature interactions
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and collective relevance. The approach proposed in this chapter addresses these lim-

itations by integrating best subset selection directly into the ensemble framework.

This ensures that each base predictor is trained on a subset of features that are both

highly relevant and informative, thereby improving model accuracy and robustness.

By doing so, this novel methodology addresses a critical challenge in machine learning

of reducing the likelihood of models incorporating spurious features and simultane-

ously enhancing model interpretability. The approach proposed here is expected to

be particularly impactful in the domain of peptide design and discovery, where sci-

entific understanding of the key drivers behind biological activity is just as crucial as

achieving high predictive accuracy.

The application of the proposed ensemble method presented in this chapter highlights

its practical utility in robustly identifying key physicochemical features of antimi-

crobial peptides that drive antibacterial activity and its ability to capture nuanced

relationships that may not be evident through individual methods. Additionally,

the method enables robust predictions of regions within the physicochemical space

that are linked to functional antimicrobial properties. These predictions provide a

valuable foundation for guiding the rational design of peptides with enhanced and op-

timized antimicrobial properties. By integrating multiple perspectives, the ensemble

framework not only improves predictive accuracy but also offers a more comprehen-

sive understanding of the underlying mechanisms, paving the way for more effective

peptide-based therapeutic development.



Chapter 5

Predicting Conformational

Properties of Charged Polymers

In this chapter, the ML method developed in previous chapters is applied to assist

predictions for conformational properties of charged polymers. Charged polymers are

macromolecules that carry charges along their backbones and/or side groups, which

are abundant in both natural and synthetic forms (Dobrynin et al., 1995, 2004; Do-

brynin & Rubinstein, 2001; Shusharina et al., 2005). These polymers can be classified

into two categories, i.e., polyelectrolytes (PEs) that carry a single type of charges,

such as DNA, and polyampholytes (PAs) that bear both positive and negative charges,

such as proteins and peptides. The long-range electrostatic interactions among the

charged groups give them rich conformational and dynamic properties in compari-

son with neutral polymers, but also significantly increase the computational costs of

using brute force simulations to study these properties. In this work, the potential

of ML methods in facilitating the construction of conformational phase diagrams of

single polyelectrolyte chains is explored. The model system selected to study is the

217
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linear diblock polyampholyte chain that consists of one positively charged and one

negatively charged block end-linked at the joint point (Wang & Rubinstein, 2006).

The training data set is generated using molecular dynamics simulations based on the

bead-spring polymer chain model (Kremer & Grest, 1990). The ML results are ap-

plied to examine the theoretical model predictions and help identify the key features

in controlling the conformational behaviours of charged polymers. The learning out-

comes can also contribute to understanding the mechanisms underlying the activities

of AMP peptides where the electrostatic and hydrophobic interactions are found to

play important roles.

Section 5.1 provides a brief review of the theoretical description of the conformational

properties of diblock polyampholyte chains. Section 5.2 introduces the molecular dy-

namics (MD) simulation method used to simulate these polymers and presents the

simulation results on their conformational properties in terms of a set of physiochem-

ical features, which are used as training data for our ML simulations. Section 5.3

details the implementation of the machine learning (ML) approach, presents the re-

sulting predictions, and utilizes these outcomes to examine the theoretical predictions.

Conclusions and perspectives are given in Section 5.4.

(a) (b)

Figure 5.1: Snapshots of a symmetric diblock polyampholyte chain in the swollen (a)
and associated (b) states, respectively. The total chain length is N = 256, giving the
block lengths N+ = N− = 128. The charge fraction is f = 1/4.
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5.1 Conformational Transitions of Diblock Polyam-

pholyte Chains Theory

In the coarse-grained (CG) bead-spring model, a linear polymer chain is represented

by a sequence of spherical beads or monomers of diameters σ connected by elastic

bonds or springs with their near neighbours, see Figure 5.1. The conformations of

a neutral polymer chain are determined by the chain connectivity and stiffness, the

short-range excluded volume interactions between monomers, and the environmental

factors, including the temperature, solvent quality, polymer density, etc.

For a polymer chain composed of N beads located at the Cartesian coordinates

{ri}, i = 1, . . . , N , its overall size can be measured by the end-to-end distance Ree

defined as

Ree =
〈
(rN − r1)

2〉1/2 (5.1)

where r1 and rN are the positions of the two end monomers of the chain and the angle

brackets “<>” stand for ensemble average, meaning that this physical quantity is cal-

culated by averaging over a sufficiently large number of polymer chain conformations

in the equilibrium state, and the radius of gyration Rg defined as

Rg =
〈 1

2N2

N∑
i,j=1

(ri − rj)
2
〉1/2

. (5.2)

In dilute solutions where the polymers are far away from each other and so can be

considered as being isolated, the chain size R (i.e., a general representation of Ree
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and Rg) follows the scaling law of (Rubinstein & Colby, 2003)

R ≈ N νb (5.3)

where b = ⟨(ri+1 − ri)
2⟩1/2 is the average bond length and the value of the Flory

exponent ν depends on the quality of the solvent.

For an ideal chain where the beads are connected by harmonic springs and do not

have excluded volumes (i.e., no short-range interactions), its conformations can be

described by the three-dimensional (3D) random walks of N steps with the step size

equal to the average bond length b. Its end-to-end distance is then given by (Doi &

Edwards, 1988)

Ree = N1/2b

and the radius of gyration Rg = Ree/6. In experiments, polymer chains in the so-

called Θ−solvent behave very similarly to the ideal chain and so have size

R ≈ N1/2b, (5.4)

giving the Flory exponent ν = 0.5. In equation (5.4), the approximation sign indicates

that the two sides differ by a constant whose value is system-dependent and can be

determined in experiments or computer simulations. For polymers in a good solvent,

the excluded volume interactions between the monomers lead the chains to take the

conformations of swollen coils. The corresponding chain sizes scale as R ≈ N0.588b,

i.e., ν = 0.588 (Rubinstein & Colby, 2003).

The long-range electrostatic or Coulombic interactions between charged groups strongly
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alter the conformational properties of charged polymers from their neutral coun-

terparts. The extra controlling factors include the charge distribution along the

polymer backbones and the strength of the electrostatic interactions. For exam-

ple, polyampholytes carry both positive and negative charges which can distribute

in random, alternative, or blocked patterns (Imbert et al., 1999; Wang & Rubin-

stein, 2006; Akinchina & Linse, 2007; Linse, 2007; Ulrich et al., 2007; Narayanan

Nair et al., 2014, 2017; Palariya & Singh, 2024). Only considered in this chapter

are the linear symmetric diblock polyampholytes composed of one positively and one

negatively charged blocks, see Figure 5.1(a) for an example studied by Wang and Ru-

binstein (2006). The two blocks have an equal number of monomers N+ = N− = N/2

and equal charge fraction f ≤ 1. The net charge per chain is thus zero.

The diblock PA studied in Figure 5.1 has f = 1/4, meaning that one out of every four

monomers is charged either positively (red coloured) or negatively (blue coloured).

The electrostatic repulsion between likely charged monomers in each block leads to

swelling of the individual block, while the attractions between the oppositely charged

monomers in the two different blocks pull them towards each other, leading to chain

folding and monomer association (Wang & Rubinstein, 2006).

The electrostatic interaction (or Coulomb) potential between two monomers is

UCoul(rij) = kBT
lBqiqj
rij

, (5.5)

where qi is the charge valence of the ith particle, equal to +1 (−1) for the monovalent

positive (negative) charges and 0 for the neutral monomers. rij is the distance between

the centers of mass of Particles i and j. The strength of the electrostatic interaction
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is represented by the Bjerrum length lB that is defined as the distance at which

the electrostatic interaction energy between two elementary charges is equal to the

thermal energy kBT , i.e.,

lB = e2/(ϵkBT ), (5.6)

where e is the elementary charge, ϵ the dielectric constant, kB the Boltzmann constant

and T the temperature. Wang and Rubinstein (2006) found that with the increase of

the electrostatic interaction strength, the conformations of a diblock PA can undergo

transitions from the swollen coil, to folding, weak association and ion binding states,

see Figure 1 in that paper. The authors constructed the diagram of conformational

states of symmetric diblock polyampholytes in terms of Bjerrum length lB and charge

fraction f using scaling theory and MD simulations.

Briefly summarized below are the theoretical predictions on the boundaries between

different conformational states, which will be used to guide the construction of classi-

fication boundaries using our machine learning method. For details please see Wang

and Rubinstein (2006) and the references therein.

Consider a flexible symmetric diblock polyampholyte with N monomers and charge

fraction f . If the electrostatic interaction strength, as measured by lB, is very small,

the polymer behaves as a neutral chain and takes the conformation of a swollen coil,

see Figure 5.1(a). The chain size is given by equation (5.3), i.e.,

Rg ≈ N νσ, (5.7)

where bond length b is replaced by the monomer size σ for flexible chains, without

affecting the scaling law. Recall that the Flory exponent ν is 0.5 for Θ−solvent and
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0.588 for good solvent.

The electrostatic interactions start to perturb the chain conformation when the total

electrostatic energy of the whole chain is comparable with the thermal energy kBT ,

corresponding to the condition on the chain size,

Rg ≈ σ(lBf
2/σ)−ν/(2−ν). (5.8)

The electrostatic attractions between the two oppositely charged blocks pull them to

fold towards each other. Substituting equation (5.7) into equation (5.8), we get the

boundary between the onset of the folding and the unperturbed coil

lfoldB = Cff
−2N ν−2σ (5.9)

where the value of the numerical coefficient Cf depends on the quality of the solvent.

The size of the chain in the folding regime can be calculated numerically, see Appendix

in Wang and Rubinstein (2006). The folding mechanism of a diblock polyampholyte

can be explained using a simple mean-field model. In this model, the diblock chain

is depicted as two equally sized, oppositely charged objects connected by an entropic

spring at their centres of mass. The electrostatic attraction between the charged

objects and the spring’s elastic energy are balanced by the short-range repulsion

arising from monomer interactions in the overlapping regions of the blocks. The

average distance between the centres of mass of the two objects (block) is denoted as

rcm.

When the two blocks completely overlap with each other such that the size of the

whole chain coincides with that of each block, i.e., Rg = Rg,blk, the diblock PA enters
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the globular or weak association regime. The boundary between the folding and weak

association regimes is

lweak
B = Cwf

−2N ν−2σ. (5.10)

In this regime, the diblock PA takes the globular conformation, see Figure 5.1(b),

which can be described by a dense packing of the so-called electrostatic blobs (Ru-

binstein & Colby, 2003). The electrostatic blobs are globules whose sizes ξe are

determined by the balance between the electrostatic and thermal energies,

ξe ≈ σ(lBf
2/σ)−ν/(2−ν). (5.11)

It is noticed that the onset of the folding regime is at the point when Rg = ξe. The

picture of densely packed electrostatic blobs can be checked by requiring the average

distance between two nearest oppositely charged monomers in the chain

ξ1st+− ≡

〈
2

fN

fN/2∑
k=1

(rk − rneark )2

〉1/2

≈ ξe (5.12)

where rk is the position of charged monomer k and rneark is the location of the oppo-

sitely charged monomer nearest to monomer k. The resulting size of the diblock PA

globule in the weak association regime is

Rg ≈ σN1/3(lBf
2/σ)(1−3ν)/[3(2−ν)]. (5.13)

The upper boundary of the weak association regime is reached when the electrostatic

blob size reduces to the size of the chain section containing only one charge, giving

lupB ≈ f−νσ. (5.14)
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The system enters the ion binding or strong association regime when the electrostatic

attractions between oppositely charged monomers are strong enough to overcome the

entropic penalty and steric repulsion between neutral chain sections and lead them to

form stable charge pairs or dipoles. The onset of this regime can be found from the

indication that the average distance between nearest oppositely charged monomers is

on the order of the monomer size, i.e.,

ξ1st+− ≈ σ.

The Bjerrum length lbindB at this onset point is estimated to be

lbindB ≈ −σ ln f. (5.15)

With increasing lB, there is a cascade of multiple formation transitions, from dipoles

to quadrupoles, hexapoles and octupoles. These transitions can be identified by

calculating the average distances between the charged monomers with their first,

second and third nearest likely or oppositely charged neighbours.

5.2 Molecular Dynamics Simulations

From the above section, it can be seen that the conformational transitions of the

symmetric diblock polyampholytes in a given solvent are determined by three features

or predictor variables: charge fraction f , Bjerrum length lB and chain length N . The

conformational properties in each conformational regime are characterised by the

chain (or block) size, Rg (or Rg,blk), and the average distance between oppositely (or

likely) charged monomers, ξ+− (or ξ++(−−)). The training data sets for investigating
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use of the MV-FS method here will then be the outputs Rg(,blk) and ξ+−(++,−−) in

terms of the input parameters f, lB, and N . These data are generated using molecular

dynamics simulations of isolated diblock PA chains (Wang & Rubinstein, 2006).

In the bead-spring chain model used (Kremer & Grest, 1990), all monomers interact

via a truncated-shifted Lennard-Jones (LJ) potential,

ULJ(r) =


4εLJ

[(
σ
r

)12 − (σ
r

)6 − ( σ
Rc

)12
+
(

σ
Rc

)6]
; r < Rc;

0; r ≥ Rc,

(5.16)

where r is the distance between the centers of two monomers, Rc is the cutoff radius,

εLJ is the LJ interaction strength and σ the monomer diameter. The parameter

σ is used to set the length scale. Mainly simulated is the good (athermal) solvent

condition, for which the cutoff Rc = 21/6σ (at the minimum of the LJ potential),

thus presenting a purely repulsive potential ULJ . The interaction parameter of this

potential is chosen to be εLJ = 1.0kBT . If simulating the Θ solvent condition, a larger

cutoff Rc = 2.5σ is taken so as to include the attractive tail in the LJ potential and

εLJ = 0.34kBT .

The monomers are connected by the finite extensible nonlinear elastic (FENE) po-

tential (Kremer & Grest, 1990)

UFENE(r) = −
1

2
kFENER

2
0 ln(1−

r2

R2
0

), (5.17)

where the spring constant kFENE = 7kBT/σ
2 and the maximum bond length R0 = 2σ

at which the elastic energy of the bond becomes infinite. The solvent is modelled as

a continuous dielectric medium with dielectric constant ϵ and no added salt. The
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charged monomers are thus interacting with each other via the unscreened Coulomb

potential given in equation (5.5). For simulating isolated symmetric diblock PAs with

zero net charge and no counterions, there is no need to apply the periodic boundary

conditions. The Coulomb interaction forces are summed over all charged monomers

on the chain directly.

The Langevin equations of motion of the monomers are (Kremer & Grest, 1990),

m
d2ri
dt2

= −∇U(ri)− ζ
dri
dt

+ Γi(t), (5.18)

where ri is the coordinate of the ith particle, m is the particle mass, and ζ is the

friction coefficient equal to ζ = 10(mkBT )
1/2/σ. The stochastic force Γi is given by

a δ-correlated Gaussian noise source. These equations are solved numerically using

the velocity Verlet method (Allen & Tildesley, 2017) with a time step ∆t = 0.0125τ

in most of the simulations here, where τ = (mσ2/kBT )
1/2 is LJ time unit. For

simulating systems with very strong electrostatic interactions, the time step is reduced

to ∆t = 0.003τ .

The details about the initialisation, equilibration and data collection processes can

be found in Wang and Rubinstein (2006). For each given set of parameters f , lB,

and N several independent simulation runs using different initial configurations were

carried out to get reliable results with good statistics. Note that systems subject to

very strong ionic binding can be trapped in metastable states, and the simulation

results show some dependence on the initial configurations. In this case, a much

larger ensemble average is needed.
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5.3 Predicting Conformational Transitions of Di-

block Polyampholytes

Due to the high computational cost of the MD simulations, especially for the systems

with long-range electrostatic interactions, it is impractical to cover the entire param-

eter phase space and construct a complete conformational phase diagram with well-

defined boundaries between different regimes. Machine learning has been increasingly

employed as a data-driven approach for simulating, modelling and designing soft mat-

ter materials (Jackson et al., 2019; Wang et al., 2020; Noé et al., 2020; Zhang et al.,

2024). In an effort to contribute to this exciting field, the potential of the MV clas-

sification method developed in Chapter 4 to assist the prediction of conformational

properties of diblock PAs is investigated here.

5.3.1 Result of charged polymer simulations

The five classification methods, LR, ENET, SVM, RF and NN and the related MV en-

semble without feature selection, are employed to construct machine learning models

for building the phase diagram of conformational states of a diblock polyampholyte

in a given solvent using MD simulations. Three features determine these conforma-

tional states: charge fraction f , Bjerrum length lB and chain length N . The training

dataset consists of 107 chains, each with a length of N = 256 monomers and charge

fractions of f = 1, 1
2
, 1
4
, 1
8
, 1
16

and 1
32
. The value of Bjerrum length lB runs from lB = 0

for neutral chains, and increases incrementally from 1
2048

, 1
1024

, . . . , up to lB = 64.

Shown in Figure 5.2 are plots of the normalised radius of gyration for a whole chain
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Rg/Rg0 and one block of the chain Rg,blk/Rg0 against lB(fN)2, where Rg0 is the

radius of gyration for a neutral chain with the same chain length. The point in the

graph where Rg/Rg0 begins to change in value defines the boundary between coil and

folding conformational regimes. The point where Rg,blk/Rg0 begins to decrease defines

the boundary between folding and weak association regimes for whole chains. As a

preliminary investigation, the objective here is to evaluate the effectiveness of the

ML ensemble method in reconstructing the boundaries between these regions within

the parameter space defined by f and lB, as well as to assess the reliability of this

approach in the given context.

As can be seen from Figure 5.2, the boundary between the coil and folding regimes

happens when Rg/Rg0 deviates from 1. Specifically, the coil regime is defined by

Rg/Rg0 > 0.95, whereas the folding regime is defined by 0.65 < Rg/Rg0 ⩽ 0.95, with

Rg,blk/Rg0 remaining roughly unchanged. In addition, the boundary between the

folding and weak association regimes happens when Rg/Rg0 ≈ Rg,blk/Rg0. Therefore,

the weak association regime is defined by Rg/Rg0 and Rg,blk/Rg0 ⩽ 0.65, whereas the

coil plus folding regime in one block of the chain is defined by Rg,blk/Rg0 > 0.65.

Here, the boundary between the two regimes is determined differently from that of

Wang and Rubinstein (2006) because this study uses only a subset of their data,

specifically the case of N=256 monomers. Thus, the boundary values are adjusted

to ensure consistency with the training data and to facilitate the construction of a

complete conformational phase diagram.

Table 5.1 displays the five-fold cross-validation (CV) estimates of the error rate (ER)

for models classifying dichotomised values of Rg/Rg0 and Rg,blk/Rg0 using f and

lB as predictor variables. A one-versus-all approach was employed to build each
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Figure 5.2: Normalized radius of gyration of the whole chain (blue) and one block
(red) of diblock polyampholyte chains.

model. Thus, for example, the error rates in the second column are for models

distinguishing outcomes classified as “coil” from those classified as either “fold” or

“weak association”, for a whole chain. The error rates in the last column are for

models that classify outcomes as either in a coil plus folding or weak association

regime, for one block of the chain.

The results presented in Table 5.1 demonstrate that the five methods employed to

delineate the boundary between the coil and folding regimes exhibit comparable per-

formances, each achieving an estimated prediction accuracy of approximately 95%.

With prediction accuracies ranging approximately between 90% to 95%, the methods
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Table 5.1: Cross-validation (CV) estimates of the error rate (ER) for ML models
of dichotomised values of normalized radius of gyration of the whole chain (Rg/Rg0),
and normalized radius of gyration of one block of the chain (Rg,blk/Rg0) of the diblock
polyampholyte chains.

Methods Error Rate (ER)

coil vs (fold+weak) (coil+fold) vs weak (coil+fold) vs weak (block)

LR 0.0563 0.1026 0.1117

ENET 0.0558 0.0732 0.0550

SVM 0.0468 0.0636 0.0641

RF 0.0654 0.1013 0.0922

NN 0.0563 0.0550 0.0554

also showed comparable performances in defining the boundary between the folding

and weak association regimes for entire chains of the diblock polyampholyte. Similar

performances are also observed for the methods when used to define the boundary

between the coil plus folding and weak association regimes for a single block of the

diblock polyampholyte.

Investigating the performances further, results of the pairwise tests for comparable

predictive capability in determining the conformational phase diagram of the whole

chain of the diblock polyampholyte chains, as presented in Table 5.2, indicate that the

five models exhibit similar predictive performance across all pairs of base predictors,

confirming the above suggestion. Moreover, the p-values of the independence tests for

the whole chain of the diblock polyampholyte chains in terms of accuracy, as shown

in Table 5.4, reveal highly significant dependencies between all pairs of models. The

only exception is the pair comprising LR and RF, for which no evidence of dependence

is observed.
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Table 5.2: The whole chain of the diblock polyampholyte chains: Cross tabu-
lations of correct (C) and incorrect (W) predictions of all outcomes for pairs of base
predictors. The p-values of tests assessing similarity in predictive capability using
McNemar’s test procedure are given in brackets.

LR ENET SVM RF

C W C W C W C W

ENET
C 84 9

W 6 8

(0.6056)

SVM
C 86 9 93 9

W 4 8 0 12

(0.2673) (0.4795)

RF
C 81 8 82 7 84 5

W 9 9 11 7 11 7

(1.0000) (0.4795) (0.2113)

NN
C 88 7 91 4 92 3 84 11

W 2 10 2 10 3 9 5 7

(0.1824) (0.6831) (1.0000) (0.2113)

The results presented in Table 5.3 illustrate the pairwise tests for comparable predic-

tive capability in determining the conformational phase diagram of a single block of

the diblock polyampholyte chains. These findings reveal that the five models exhibit

similar predictive performance across all pairs of base predictors, consistent with the

results observed for the whole chain. Furthermore, the p-values of the independence

tests for a single block of the diblock polyampholyte chains, evaluated in terms of

accuracy and presented in Table 5.4, demonstrate that there is no evidence of de-

pendence between ENET and the other two methods, SVM and NN. However, the



233

Table 5.3: A single block of the diblock polyampholyte chains: Cross tabula-
tions of correct (C) and incorrect (W) predictions of all outcomes for pairs of base
predictors. The p-values of tests assessing similarity in predictive capability using
McNemar’s test procedure are given in brackets.

LR ENET SVM RF

C W C W C W C W

ENET
C 91 10

W 4 2

(0.1814)

SVM
C 91 9 100 0

W 4 3 1 6

(0.2673) (1.0000)

RF
C 91 6 95 2 94 3

W 4 6 6 4 6 4

(0.7518) (0.2888) (0.5050)

NN
C 93 8 99 2 98 3 96 5

W 2 4 2 4 2 4 1 5

(0.1138) (1.0000) (1.0000) (0.2207)

prediction models derived from all other pairs exhibit highly significant dependencies.

Next, a comparison of the LR, ENET, SVM, RF, and NN methods in predicting

the conformational phase diagram is conducted by generating predictions over a grid

constructed with the range of f from log 0.001 to log 1 in increments of 0.01, and the

range of lB from log 0.01 to log 10 in increments of 0.01, resulting in a total of 90, 601

data points. Figures 5.3 and 5.4 present the predicted conformational state diagrams

for the entire chain and a single block of the diblock polyampholyte, respectively, in

a good solvent, as obtained from these methods. From Figure 5.3, it is evident that
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Table 5.4: P-values from Fisher Exact Tests of independence, between pairs of base
predictors for two cases of the diblock polyampholyte chains.

Pairs of P-value of Accuracy

methods The whole chain A single block of chain

(LR, ENET) 0.0012 0.1716

(LR, SVM) 0.0001 0.5327

(LR, RF) 0.2571 1.0000

(LR, NN) 0.0000 1.0000

(ENET, SVM) 0.0000 0.0049

(ENET, RF) 0.0111 0.5221

(ENET, NN) 0.0000 0.0429

(SVM, RF) 0.0046 0.2778

(SVM, NN) 0.0000 0.2451

(RF, NN) 0.0468 0.3260

the LR, ENET, SVM, and NN methods construct a linear relationship in the log-log

plot between the charge fraction f and the Bjerrum length lB for both the boundary

separating the coil and folding regimes and the boundary between the folding and

weak association regimes. Similarly, Figure 5.4 shows that the LR, ENET, and SVM

methods construct a linear boundary between the coil plus folding and weak associa-

tion regimes, while the NN method displays a slight curvature, closely approximating

a linear trend. Although the weak association regime boundary constructed by the

LR method differs from the other three methods in both cases, likely due to the is-

sue of high multicollinearity which can lead to unstable coefficient estimates, it still

captures the expected linear behaviour. In contrast, the RF method demonstrates

a non-linear relationship in both cases, reflecting the inherent nature of the random
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forest modelling process.

The findings in the above paragraph, combined with the similar accuracies observed

for the five methods, suggest that, in the absence of prior knowledge, which is fre-

quently the case in such analyses, it is not immediately evident which of the five

classification methods is most appropriate for this problem. Integrating the predic-

tions using the majority vote (MV) ensemble method not only resolves this issue

but also mitigates the risk associated with selecting a suboptimal method. Indeed,

the consistency in accuracy observed across the five methods suggests that the MV

ensemble will likely enhance overall prediction accuracy.

The boundary lines in Figures 5.3 and 5.4 were obtained using linear regression on

the data points in the log-log plot. Standard error estimates were obtained by fitting

a linear regression model to observed data points defining the predicted boundary of

the regime. Line I in Figure 5.3 is the boundary between the coil and folding regimes

based on the MV prediction of the conformational state diagram for whole chains

in a good solvent and with N = 256. Theory predicts a power law dependence of

lfoldB on f at this boundary, for example, lfoldB ∼ f−2, see equation (5.9). Line I in

Figure 5.3 illustrates the relationship log lfoldB = −1.992 log f − 2.693, or equivalently

lfoldB ≈ 10−2.693f−1.992, where the exponent −1.992 has a standard error of 0.001. The

coefficient Cf can be estimated by dividing the coefficient 10−2.693 by N ν−2, with

N = 256 and ν = 0.588, yielding Cf ≈ 5.10. This value is notably close to Cf ≈ 4.70

as reported byWang and Rubinstein (2006), based on fitting the theoretical prediction

to the simulation data. The MV ensemble method thus demonstrates a satisfactory

prediction power in describing the boundary between the coil and folding regimes.

Line II in Figure 5.3 represents the MV prediction for the boundary between the
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Figure 5.3: Predictions of conformational states of a diblock polyampholyte in a
good solvent based on dichotomisation of the normalized radius of gyration of the
whole chain Rg/Rg0. Line I in the MV plot is the boundary between the coil and
folding regimes while line II is the boundary between the folding and weak association
regimes. Matrix plots of the predictor variables f and lB illustrate the conformational
regions identified from MD simulations, categorized into distinct regimes: coil (blue
points), folding (orange points), and weak association (red points).
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Figure 5.4: Predictions of conformational states of a diblock polyampholyte in a good
solvent based on dichotomisation of the normalized radius of gyration of one block
of the chain Rg,blk/Rg0. The solid line in the MV plot is the boundary between the
coil+folding and weak association regimes. Matrix plots of the predictor variables
f and lB illustrate the conformational regions identified from MD simulations, cat-
egorized into distinct regimes: coil+folding (blue points) and weak association (red
points).
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folding and weak association regimes, that is, log lweak
B = −1.618 log f − 1.194, or

equivalently lweak
B ≈ 10−1.194f−1.618. The exponent −1.618 has a standard error of

0.006. It shows a relatively large discrepancy from the theoretically predicted value of

−2, see equation (5.10). Consequently, the extracted coefficient, Cw ≈ 160.84, differs

significantly from Cw ≈ 60.00 reported by Wang and Rubinstein (2006) whose data

fitting was performed using the −2 power law. Such discrepancy can be related to the

limited number of simulation data points in the training data set and the assumptions

made in the theoretical predictions. The MV prediction for the boundary between

the combined coil plus folding regime and the weak association regime is shown as

Line I in Figure 5.4. It represents log lweak
B = −1.685 log f − 1.280, or equivalently

lweak
B = 10−1.280f−1.685, where the exponent −1.685 has a standard error 0.009. The

corresponding coefficient is Cw ≈ 131.95. It can be seen that the inclusion of the coil

regime data points has led to slightly different power law exponents and Cw values

from those obtained from Line II in Figure 5.3 for the boundary between the folding

and weak association regimes. It is noted that the individual blocks of the PA chains

undergo a small swelling behaviour close to the end of the folding regime, leading to

an increase in the Rg,blk values. This swelling effect near the boundary between the

folding and weakly association regime was not considered in the theoretical model,

which may cause some discrepancy between the theoretical and ML predictions.

5.4 Discussion

In this chapter, the application of the majority vote (MV) ensemble method, intro-

duced in Chapter 4, to predict the conformational regimes of single polyelectrolyte
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chains has shown that while some of the base predictors within the ensemble produced

boundaries deviating from theoretical expectations, integrating their prediction val-

ues using the MV ensemble effectively resolved these discrepancies. Similar to the

AMP analysis, this application highlights that combining the outputs of multiple

methods not only circumvents the challenge of selecting an optimal method but also

mitigates the individual limitations of each approach, potentially leading to more

accurate and theoretically consistent predictions. The findings here underscore the

utility of the proposed ensemble method in addressing complex problems in polymer

physics, demonstrating its ability to enhance predictive reliability and robustness in

the face of methodological uncertainties.

Note that the criteria used in our ML models for determining the dichotomised values

of the diblock polyampholyte chain sizes in different regimes are based on prior knowl-

edge of the conformational behaviours of such chains in the descriptor space. Further

study in this direction will involve predicting the true values of the chain sizes over

the interested descriptor space and using them to identify different conformational

regimes without relying on the prior knowledge of the system. This will help reveal

conformational behaviours not captured by analysing a limited amount of simulation

data points, examining the prediction power of existing theories and if needed guiding

the development of new theoretical models.

This study did not attempt to predict the transition boundary between weak and

strong association regimes due to insufficient training data from MD simulations,

hindered by the high energy barriers in the strong association regime. This problem

can potentially be resolved by combining efforts from two aspects: generating more

reliable MD simulation data with the assistance of statistical sampling algorithms for
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exploring rare events, and experimenting with MV and ML methods that can work

with small training datasets.



Chapter 6

Conclusions

The research presented in this thesis advances the field of ensemble learning for binary

classification by introducing a scalable and adaptable framework with broad applica-

bility across diverse domains. By seamlessly integrating interpretability, robustness,

and high predictive accuracy, the proposed methodology has proven to be a powerful

and reliable tool for addressing complex classification challenges with precision and

confidence. This chapter provides a summary of the work undertaken. Additionally,

this chapter critically examines the limitations of the research, acknowledging areas

where further refinement or exploration is needed. Finally, it outlines promising di-

rections for future work, providing a roadmap for researchers to extend, refine and

enhance the proposed methodology.

241
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6.1 Summary

Presented and evaluated in this thesis is a novel method that strategically combines

the strengths of diverse machine learning (ML) methods while addressing their indi-

vidual limitations, to enhance predictive accuracy and strengthen variable selection

in binary classification tasks. The proposed method was shown in this thesis to offer

a robust framework for improved performance and interpretability of ML models.

Inspired by the work of Vishnepolsky et al. (2018), this ensemble learning method

is applied to explore the relation between physiochemical features and activities of

antimicrobial peptides (AMPs), aiming to facilitate the design of effective AMPs. To

the best of our knowledge, such a method has not been reported in the literature

within this specific context.

The study of Vishnepolsky et al. (2018) distinguishes itself in the field of peptide re-

search by explicitly incorporating variations in the mechanisms of action of AMPs, via

factors such as charge, hydrophobicity, tilt angle and aggregation, and implementing

a novel use of a density-based clustering method (DB-SCAN) to develop ML models

for AMPs of 10-16 and 18-27 amino acid (aa) lengths active against specific strains

of Gram-negative bacteria (E.coli ATCC 25922). While this approach for predicting

AMP activity acknowledges the diversity in how AMPs interact with bacterial targets

and provides a more nuanced representation of their antibacterial effects, a replica-

tion study using the same data and ML methodology as the authors used failed to

reproduce the results reported in their paper.

The application of DB-SCAN by Vishnepolsky et al. (2018) within a supervised learn-

ing framework represents an innovative approach, the reported performance metrics
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were promising, and the method was able to clearly define clusters of active peptides

in the space of its predictor variables (feature space). However, when the DB-SCAN

approach was applied to larger datasets, consisting of 644 active and 644 inactive

10-16 aa peptides, and 406 active and the same number of inactive 18-27 aa peptides

obtained from the DBAASP data repository, the resulting ML models demonstrated

a high likelihood of correctly identifying inactive peptides (high specificity) but per-

formed poorly in accurately detecting active peptides (low sensitivity). This inability

to reliably distinguish active AMPs, which is essential for practical applications, un-

derscores a critical limitation of the clustering method.

A review of the literature showed that typical ML methods for predicting antimicro-

bial peptide (AMP) potency and aiding in peptide design include neural networks

(NN) (Cherkasov et al., 2008; Fjell et al., 2009; Torrent et al., 2011; Mooney et al.,

2013), support vector machines (SVMs) (Lata et al., 2007, 2010; Porto et al., 2012; Ng

et al., 2015; Meher et al., 2017), random forests (RF) (Lira et al., 2013; Maccari et al.,

2013; Youmans et al., 2017; Bhadra et al., 2018), and logistic regression (Clark et al.,

2021), with the latter being particularly valued for its interpretability. These four

methods, along with the logistic elastic net regression (ENET) method, which incor-

porates regularisation via a combination of both L1 and L2 penalties on its parameter

estimates, were evaluated for their ability to predict clusters of active and inactive

regions within the feature space under controlled conditions, and to deepen under-

standing about their comparative performances. Findings revealed that performance

is varied and heavily influenced by both the complexity of the data and the model.

Evaluations using simulated data scenarios suggest LR and ENET are effective at

identifying clusters of active outcomes but struggle with specificity, leading to higher
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false positive rates and misclassification errors, especially in complex scenarios. While

ENET improves adaptability of LR, particularly for more complex models, its per-

formance still falls short of more flexible methods. The findings also suggest that,

for clusters of active outcomes, NN prioritizes specificity but risks missing active out-

comes, and its performance degrades with increasing data complexity. In contrast,

due to their intrinsic flexibility, SVM and RF maintain lower error rates and consistent

performance across diverse scenarios.

Regarding variable selection, the simulations revealed that LR, ENET, and NN tend

to include only relevant predictor variables, and therefore optimize interpretability

and scientific understanding of the problem. Conversely, SVM and RF, despite achiev-

ing lower error rates, occasionally include spurious variables, sacrificing some model

interpretability for flexibility. All methods, however, demonstrated good performance

when predictor variables associated with the outcome were included in the model,

while excluding critical predictor variables led to poor performance. Overall, the

simulation evaluations did not provide a clear understanding about which of these

methods was preferable for modelling and interpreting data with clustered active

outcomes, as each demonstrated distinct strengths and limitations, depending on the

data distribution.

An evaluation of the five classification methods for predicting peptide activity using

the larger DBAASP datasets yielded sensitivity and accuracy estimates ranging ap-

proximately between 80−90%, with slightly lower specificities in the range of 75−85%

for peptides of 10 − 16 amino acids. For the longer 18 − 27 aa peptides, sensitivi-

ties, specificities, and accuracies were consistently higher, falling within the 85− 90%

range. These results demonstrate that all five methods substantially outperform the
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DB-SCAN approach overall and have performances that are competitive with those

reported in similar studies on peptide behaviour. Furthermore, considered alongside

insights from the simulation studies, there is minimal performance differences among

the methods themselves, which prompted an investigation into the potential value of

integrating these methods into an ensemble framework.

Commonly used in classification tasks, the majority vote (MV) is a simple, yet pow-

erful ensemble method used to combine the predictions of multiple base predictors in

order to improve overall performance. Although its general effectiveness is widely ac-

knowledged, there remains a lack of detailed understanding regarding its performance

and nuanced behavior in practical scenarios. Addressing this gap, this thesis presents

a comprehensive theoretical evaluation of the MV method under finite conditions.

The analysis not only confirmed that optimal performance is achieved when base

predictors are independent and exhibit similar accuracy levels, but more importantly

provides valuable insights for ensemble building and a framework for understanding

and predicting ensemble behaviour in scenarios where ideal assumptions may not

hold.

A theoretical foundation for optimizing base predictor selection in practical applica-

tions is provided by the results established in this thesis that removing two entirely

dependent predictors from an ensemble with an odd number of base predictors does

not compromise performance. Additionally, the finding that the MV ensemble, while

potentially biased towards dependent base predictors and occasionally falling short

of the best individual base predictor, consistently outperforms the weakest predictor

in the ensemble, underscores its reliability and resilience, and promotes confidence in

this approach, even in less-than-ideal conditions.
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A simulation-based evaluation of the MV ensemble, with LR, ENET, SVM, RF and

NN base predictors, revealed that the majority vote mechanism can amplify the in-

fluence of base predictors with similar error patterns, which may compromise the

ensemble’s ability to mitigate individual model weaknesses. Also, if one or a few base

predictors significantly underperform, the ensemble’s performance may align more

closely with these weaker predictors, particularly if the underperforming predictors

are independent of the stronger ones. In such cases the errors of the weaker models

are less likely to be offset by the stronger predictors, as their independence means

their mistakes do not correlate with those of the better-performing predictors. This

highlights the importance of ensuring that all base predictors, even if not equally

accurate, maintain a reasonable level of performance and diversity to prevent the

ensemble from being disproportionately affected by the weaker ones. Despite these

limitations, the results demonstrated that the MV ensemble remains competitive with

the best-performing base predictors, and reinforced the value of the majority vote as

a reliable and versatile tool in ensemble learning.

The implementation of the best subset selection method within the ensemble frame-

work in this thesis introduces a novel and innovative approach to enhancing optimal

feature selection, addressing a significant challenge in machine learning. The proposed

method, termed MV-FS to differentiate it from the MV ensemble, was developed in

response to the observation that while individual base predictors in the best sub-

set selection method may not consistently identify the most relevant set of features

(predictor variables), this set frequently emerges as one of the top-performing candi-

dates. Additionally, conventional ensemble methods tend to identify relevant features

one at a time, overlooking the potential synergistic effects of feature combinations,
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which can be critical for optimizing model performance. By integrating best subset

selection based on models with interactions within an ensemble framework, the pro-

posed MV-FS method addresses these issues by leveraging the individual strengths of

the base predictors while simultaneously capturing the collective influence of feature

combinations.

The proposed ensemble feature selection method offers other key advantages. By se-

lecting the feature subset that is collectively most informative, the method reduces the

likelihood of individual base predictors relying on spurious associations or irrelevant

features, thereby providing a mechanism that mitigates the risk of overfitting. This

improvement in feature selection accuracy through the use of an ensemble represents

an important first step toward developing interpretable machine learning methods as

it not only strengthens confidence in the chosen set of predictor variables, but also pro-

vides more reliable insights into the underlying structure of the data. Interpretability

is essential for uncovering the physical mechanisms that govern the structural and

dynamical behaviours of soft matter systems, as it transforms complex data into in-

sights that are understandable to humans. This enables scientists to verify, trust,

and build upon model findings, making the understanding of physical mechanisms as

important as achieving high predictive accuracy.

Application of the MV-FS ensemble with base predictors LR, ENET, SVM, RF, and

NN for predicting peptide activity using the larger DBAASP datasets resulted in

only marginal changes to the overall performance of the MV ensemble that relied on

the optimal model selected individually by each base predictor. Thus, the MV-FS

method demonstrated its ability to maintain competitive accuracy while introducing
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a more robust approach to feature selection. Furthermore, the MV-FS method consis-

tently outperformed the DB-SCAN approach by Vishnepolsky et al. (2018) across all

performance metrics, with the exception of specificity. Also, the ranges of the physic-

ochemical predictor variables identified through MV-FS closely align with the values

associated with active clusters identified by Vishnepolsky et al. (2018), validating

robustness of the method.

To further explore the utility of the proposed MV approach, the method was applied

to predicting the conformational regions of single diblock polyampholyte chains. The

findings revealed that while some individual base predictors produced boundaries

inconsistent with theoretical expectations, integrating their predictions through the

MV ensemble effectively resolved these inconsistencies. Similar to its application

in AMP analysis, this approach demonstrated that combining outputs from multiple

methods not only eliminates the challenge of selecting the best single method but also

mitigates the limitations inherent in individual predictors, yielding more accurate and

theoretically aligned results. These outcomes underscore the value of the proposed

ensemble method in addressing complex challenges and highlights its capacity to

improve predictive accuracy and its resilience, despite methodological uncertainties.

6.2 Limitations and Further Work

In the majority vote (or “hard voting”) method implemented in this thesis, each base

predictor in the ensemble casts a single vote for a class, and the class with the majority

of votes is selected as the final prediction. While this approach is straightforward

and computationally efficient, it may not fully leverage the predictive capabilities of
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individual base predictors, particularly when some base predictors are more confident

in their predictions than others. An alternative approach, known as “soft voting”,

allows each base predictor to provide a probability distribution over all possible classes

rather than a single class label. The final prediction is then determined by selecting

the class with the highest average probability across all models. This method has the

potential to improve ensemble performance, as it incorporates the confidence levels

of individual base predictors into the decision-making process. For instance, if one

base predictor is highly confident in its prediction while others are uncertain, the soft

voting approach can give more weight to the confident predictor, leading to more

accurate and reliable predictions.

Soft voting is particularly beneficial when the base predictors are well-calibrated,

meaning their predicted probabilities accurately reflect the true likelihood of each

class. In such cases, averaging probabilities can lead to a more nuanced and robust

aggregation of predictions, especially in scenarios where the decision boundaries be-

tween classes are ambiguous or overlapping. However, if the base predictors are poorly

calibrated, soft voting may introduce bias or noise, potentially degrading performance

compared to hard voting. One potential avenue for further exploration is a theoretical

evaluation of how soft voting impacts the MV-FS ensemble performance. Such an

analysis would provide valuable insights into the advantages and limitations of soft

voting compared to hard voting, as well as a deeper understanding of the conditions

under which soft voting may be preferred.

Assigning probability distributions to base predictors’ performances opens up new

avenues for evaluating the ensemble performance beyond the complete dependence

case examined in this thesis. Additionally, the use of probability distributions enables
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the exploration of more sophisticated ensemble techniques, such as weighted voting

or stacking. In weighted voting, the contributions of base predictors can be adjusted

based on their performance or confidence levels. Stacking, on the other hand, involves

training a meta-model to combine the predictions of the base predictors, potentially

accounting for the complex interactions and dependencies among them.

Another promising approach to enhance the performance of the MV-FS method is

to expand the ensemble size by incorporating additional classification methods, such

as K-Nearest Neighbours (KNN) and Naive Bayes (NB), that bring unique strengths

to the ensemble. However, it is important to ensure that base predictors have in-

dependent errors and comparable performance, as combining methods with highly

dependent errors may degrade performance, while including predictors with vastly

different performance levels dilutes the ensemble’s effectiveness. To address this, it

is proposed to conduct extensive simulation experiments across a wide range of con-

trolled scenarios and datasets with varying characteristics, such as different data sizes,

feature dimensions, and class distributions. This would help identify the optimal com-

bination of base predictors for specific data structures and problem domains, and to

develop guidelines for selecting the most effective set of base predictors tailored to

specific data types and application contexts.

Being able to reliably identify relevant features and to characterise their role in the

decision of a machine learning model, in other words to produce a more explainable

model, is key to the development of a machine-learning system that is capable of

explaining the rationale for its decision, that can critically evaluate its strengths and

weaknesses, and that can convey an understanding of how/why decisions in the future

will be made. While the findings in this thesis demonstrate that use of an ensemble
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can aid in this regard, the current best subset selection approach is constrained to a

reasonable number of predictors. Extending this approach to accommodate a larger

number of predictors presents a promising direction for future research, but it also

introduces the challenge of ensuring compatibility across base predictors in terms of

the features used to build their individual models when combining them in an ensem-

ble. One obvious approach to addressing this challenge is to develop a unified feature

representation framework that ensures all base predictors operate on a consistent set

of features, even as the number of predictors scales. This could involve techniques

such as feature embedding or dimensionality reduction, using methods like Principal

Component Analysis (PCA) to transform the original features into a shared space

that preserves their predictive power while maintaining compatibility across mod-

els, but this approach complicates interpretability. Another approach, which is to

be developed and evaluated, integrates a method such as forward selection into the

ensemble framework to dynamically identify the most relevant set of features across

all base predictors simultaneously.

The proposed MV-FS method in this thesis demonstrated strong and competitive

predictive power and instilled confidence in the physicochemical properties identified

as being involved in the antimicrobial activities of AMPs, as well as pinpointing

regions of the feature space where active peptides are likely to be found. Further

work involves integrating it with molecular simulation methods to reveal microscopic

mechanisms of action underlying antimicrobial behaviours, and to provide guidance

for designing novel antimicrobial materials with optimised compositions to fulfil the

desired functions. Additionally, it is also planned to apply the methodology on other

subsets of peptides in the DBAASP database as well as on a series of block peptide like
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molecules with blocks of arginine sequences attached to non-ionic residues (Edwards-

Gayle et al., 2019, 2020). In the latter case, it will be challenging to see if the MV-FS

method can deal with these very artificial sequences which do not resemble those

typically present in databases.

While the method is able to predict a partitioning of the feature space into ac-

tive and inactive regions, extending this to include indeterminate clusters of pep-

tides and to construct confidence regions for these clusters will be investigated. To

achieve this, resampling methods such as bootstrap sampling and the Jackknife-after-

bootstrap (Efron, 1979) technique will be explored. Bootstrap sampling involves re-

peatedly resampling the dataset with replacement to generate multiple subsets of

the data, from which clusters of peptides can be constructed. In the basic Jack-

knife method, an estimator is obtained by deleting one observation from the data

and recalculating the estimate using this reduced dataset. Repeating this process

N times results in N Jackknife estimates from which an empirical variance can be

obtained. Its extension, the Jackknife-after-bootstrap, uses bootstrap samples to gen-

erate initial estimates and then applies the Jackknife method to assess the stability

and variability of these estimates. Although it is not immediately clear how these

methods can be directly applied to construct confidence regions for peptide clusters

in this specific problem, their key advantage lies in their non-parametric nature, as

they do not require any assumptions about the underlying data distribution.

The preliminary test of the MV method in predicting the conformational transitions

of the diblock polyampholyte chains also elucidated the potential of ensemble learn-

ing in predicting the structural and even dynamical properties of soft matter systems,
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including biological and synthesised polymers, and colloidal systems, over a large pa-

rameter (descriptor) space. This is essentially important when the descriptor space is

of high-dimensional and has wide ranges of parameter values, because the high com-

putational costs prevent the brute force simulations from generating sufficient data

points for clearly defining the boundaries between different structural or dynamical

regimes. To achieve such goals, it requires the incorporation of ML methods in the

ensemble that can produce model predictions with continuous output values, rather

than the dichotomised values as used in the current work, and also base predictors

that can work well with small datasets.

In conclusion, the MV ensemble was shown in this thesis to be a reliable and compu-

tationally efficient method for combining predictions, particularly in settings where

the base predictors exhibit a balance of accuracy and diversity. While it may not

always achieve optimal performance, its simplicity and competitive results make it a

valuable tool in ensemble learning. The integration of best subset selection within the

ensemble framework here represents a novel advancement in feature selection and en-

semble learning that combines the strengths of both approaches to improve predictive

performance and enhance interpretability. The resulting MV-FS ensemble framework

creates not only a more comprehensive and reliable approach to enable deeper un-

derstanding of the underlying drivers of peptide activity, but can also be applied to

tackle challenges in feature selection and predictions of physical properties of other

soft matter systems, such as bio-mimicking charged polymers, and self-healing and

self-oscillating gel systems.



Appendix A

Mathematics Results

A.1 Optimization

A.1.1 Gradient descent methods

Some common optimization methods for optimizing a differentiable, scalar function

f(x) of the vector x =


x1

...

xn

 are described here. Optimization by gradient descent

methods, which choose a search direction and a step size at each iteration. The search

direction has two simple choices: the negative gradient and the conjugate gradient

algorithms.

The negative gradient algorithm

The negative gradient approach is optimised by moving in the direction of the negative

gradient at the current position, which points towards the steepest decrease in the

254
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function value. Suppose we wish to minimize the function f(x). Write x = x0 + tv,

where x0 =


x1,0

...

xn,0

 is some fixed vector, t is a scalar and v =


v1

...

vn

 is a vector with

unit norm, and consider the function

g(t) = f(x).

Using the chain rule to differentiate g(t) with respect to t gives

dg(t)

dt
=

∂f

∂x1

∂x1
∂t

+ . . .+
∂f

∂xn

∂xn
∂t

.

Now as

x1 = x1,0 + tv1, we get
∂x1
∂t

= v1.

Similarly,

∂x2
∂t

= v2, . . . ,
∂xn
∂t

= vn,

and hence we can write

dg(t)

dt
=

∂f

∂x1
v1 + . . .+

∂f

∂xn
vn = ∇f(x) · v,

where ∇f(x) =


∂f
∂x1

...

∂f
∂xn

 . As we selected v satisfying ∥v∥ = 1, the inner product

∇f(x) · v = ∥∇f(x)∥ cos(θ) and hence we get

dg(t)

dt
= ∥∇f(x)∥ cos(θ),
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where θ is the angle between ∇f(x) and v. By definition, the norm is non-negative

and hence dg(t)
dt

will be a minimum when cos(θ) = −1 (its minimum value). In other

words, dg(t)
dt

is a minimum when the angle between ∇f(x) and v is π or 180◦. This

occurs when

v = − ∇f(x)
∥∇f(x)∥

.

If t is small then x ≈ x0 and

v ≈ − ∇f(x0)

∥∇f(x0)∥
,

and we can reduce the problem of minimizing the function f(x) over several variables

to minimizing g(t) over the single variable t, for this choice of v. In particular, for

some starting value x0, we find the value t0 that minimizes

g0(t) = f(x0 − t∇f(x0)).

Next, we set

x1 = x0 − t0∇f(x0),

find the value t1 that minimises,

g1(t) = f(x1 − t∇f(x1)),

and set

x2 = x1 − t1∇f(x1).

Continuing in this way we generate a sequence x1,x2,x3, . . . that converges to the

minimum of f(x). This is the steepest descent method.
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The conjugate gradient algorithm

The conjugate gradient in principle is similar to the method of orthogonal vectors

for solving linear systems proposed by Fox et al. (1948). Optimization using the

conjugate gradient algorithm is as follows.

First note that two vectors x and y are said to be conjugate with respect to some

positive semi-definite matrix A if xTAy = 0, which a positive semi-definite matrix

A satisfies xTAx ≥ 0 for all vectors x.

Now, we just saw that the kth iteration of the steepest gradient method minimizes

f(xk − tk∇f(xk)).

Thus at the kth iteration this method searches for the minimum of f(x) in the di-

rection −∇f(xk). The conjugate gradient method is a modification of the steepest

descent method to improve the rate of convergence. In particular, at the kth itera-

tion, the conjugate gradient method searches for the minimum in a direction that is

conjugate to the previous search direction. Let the initial search direction by

d0 = −∇f(x0).

In the next step, the conjugate gradient method minimizes

f(x1 − t1d1),

where d1 is conjugate to d0. In the second iterate, the search direction d2 is chosen to

be conjugate to both of the previous directions d0 and d1. Continuing in this way, at
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the kth iterate, the search direction dk is chosen to be conjugate to previous directions

d0,d1, . . . ,dk−1.

The conjugate gradient method can be regarded as being between the method of

steepest descent, which is based on a first-order approximation of f(x), and Newton’s

method which is based on a second-order approximation.

A.1.2 Lagrange multipliers method

The Lagrange multiplier method is a mathematical methodology for determining

the local maxima and minima of a function subject to constraints. To convert

a constrained optimisation problem to an unconstrained one by introducing extra

variables called Lagrange multipliers. Given an objective function f(x1, x2, . . . , xn),

we want to find the local maximum and minimum values. There is a constraint

g(x1, x2, . . . , xn) = 0, for which there may be multiple such constraints. Optimization

of the Lagrange multiplier is as follows.

First, we define the Lagrangian function L, which combines the objective function

and the constraint by introducing a new variable λ, known as the Lagrange multiplier.

The Lagrangian is defined as,

L(x1, x2, . . . , xn, λ) = f(x1, x2, . . . , xn) + λg(x1, x2, . . . , xn),

where λ is the Lagrange multiplier, which shows how the constraint influences the

optimization of f . Next, find the critical points that maximize and minimize the

function f subject to the constraint g, we need to solve the system of equations
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formed by setting the gradient of L equal to zero,

∇L(x1, x2, . . . , xn, λ) = 0.

Thus, the system of equations is 

∂L
∂x1

= 0

∂L
∂x2

= 0

...

∂L
∂λ

= 0.

Then, solve the system of equations, which has a system of n+1 equations with n+1

unknown variables x1, x2, . . . , xn and λ. To find the solutions of the system, we solve

the system to identify the potential points where the function may be maximized or

minimized, subject to the constraint. Finally, interpret the results by representing

the critical points consisting of maximum, minimum or saddle points. We also need

to further analyze or test points to determine the nature of the solutions.

A.2 Construction of Orthogonal Polynomial

Orthogonal polynomials have a crucial role in classification methods by construct-

ing more efficient models, mitigating overfitting, and improving interpretability by

capturing essential data features. A common approach to generating a set of orthog-

onal polynomials is the Gram-Schmidt process, an orthogonalization technique that

converts a set of linearly independent vectors into an orthogonal set.

Consider a dataset X consisting n paired observations (yi,xi), where yi ∈ {1,−1}
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represents the binary class label for the i-th observation, and xi ∈ Rd denotes the

corresponding feature vector with d features. Next, we define a set of polynomial

basis functions {p0(x), p1(x), p2(x), . . . , pm(x)}, which will be orthogonalized using

the Gram-Schmidt process. A common choice for the basis functions is to use the

monomials of x, such as:

p0(x) = 1, p1(x) = x, p2(x) = x2, p3(x) = x3. . . .

The original basis functions {q0(x), q1(x), q2(x), . . . , qm(x)}, are defined as polyno-

mials or other features derived from the dataset.

The Gram-Schmit process is used to orthogonalize these functions. The procedure

is as follows: start with the first polynomial p0(x). This is the first orthogonal

polynomial,

ϕ0(x) = p0(x).

The second step, orthogonalize the second polynomial p1(x). This is the second

orthogonal polynomial,

ϕ1(x) = p1(x)−
⟨p1(x), ϕ0(x)⟩
⟨ϕ0(x), ϕ0(x)⟩

· ϕ0(x)

where ⟨·, ·⟩ denotes the inner product. The inner product can be defined as,

⟨f(x), g(x)⟩ =
n∑

i=1

f(xi)g(xi),

which measures the similarity between the two polynomials evaluated at each sample

point. The third step, orthogonalize subsequent polynomials p2(x), p3(x), . . .. For
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each k-th polynomial, subtract the projection of pk(x) onto all previously orthogo-

nalized polynomials,

ϕk(x) = pk(x)−
k−1∑
j=1

⟨pk(x), ϕj(x)⟩
⟨ϕj(x), ϕj(x)⟩

· ϕj(x).

This guarantees that each new polynomial ϕk(x) is orthogonal to all previously con-

structed polynomials. The final step is to normalize the polynomials to ensure they

are of unit length,

ψk(x) =
ϕk(x)

∥ϕk(x)∥
.

This step may be necessary if you wish to maintain the orthonormality of the basis

functions.

A set of orthogonal polynomials {ψ0(x), ψ1(x), ψ2(x), . . . , ψm(x)}, is prepared and

ready for use in classification. Transforming the original datasetX into a new dataset

Z by evaluating each orthogonal polynomial on the input features xi,

Z =



ψ0(x1) ψ1(x1) ψ2(x1) · · · ψm(x1)

ψ0(x2) ψ1(x2) ψ2(x2) · · · ψm(x2)

...
...

...
...

...

ψ0(xn) ψ1(xn) ψ2(xn) · · · ψm(xn)


This transformed dataset Z has features that are orthogonal to each other.
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A.3 Proof of the Relationship between Binomial

and Beta Distributions

Result A.3.1. For positive integers α < β and 0 < p < 1,

p∫
t=0

tα−1(1− t)β−αdt =
Γ(α)Γ(β − α + 1)

Γ(β + 1)

β∑
k=α

(
β

k

)
pk(1− p)β−k.

The above integral is known as the incomplete Beta function and is related to the Beta

function, or Euler’s integral of the first kind, which is defined as
∫ 1

0
tα−1(1− t)β−1 dt

for α, β > 0.

Proof. Use integration by parts with u = (1− t)β−α and dv = tα−1 to get

p∫
t=0

tα−1(1− t)β−αdt =
1

α
pα(1− p)β−α +

β − α
α

p∫
t=0

tα(1− t)β−(α+1)dt,

which can be rewritten as

=
(α− 1)!(β − α)!

β!

(β
α

)
pα(1− p)β−α +

β!

α! (β − (α + 1))!

p∫
t=0

tα(1− t)β−(α+1)dt

 .
(A.1)

Using Γ(n + 1) = n! for n a non-negative integer, and noting that if β = α + 1 the

integral on the right-hand side evaluates to 1
α+1

pα+1 gives,

p∫
t=0

tα−1(1−t)β−αdt =
Γ(α)Γ(β − α + 1)

Γ(β + 1)

[(
β

α

)
pα(1− p)β−α +

(
β

α + 1

)
pα+1(1− p)β−(α+1)

]
,

and the proof is complete. Otherwise, another application of integration by parts to
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the second term of equation (A.1) gives,

p∫
t=0

tα(1− t)β−(α+1)dt =
1

α + 1
pα+1(1−p)β−(α+1)+

β − (α + 1)

α + 1

p∫
t=0

tα+1(1− t)β−(α+2)dt,

and hence

p∫
t=0

tα−1(1− t)β−αdt =
Γ(α)Γ(β − α + 1)

Γ(β + 1)

[(
β

α

)
pα(1− p)β−α +

(
β

α + 1

)
pα+1(1− p)β−(α+1)

+
β!

(α + 1)!(β − (α + 2))!

p∫
t=0

tα+1(1− t)β−(α+2)dt

]
.

If β = α + 1 the above integral evaluates to 1
α+2

pα+2 and, as above, the proof is

complete. Otherwise, continue integrating by parts to get, after r steps,

p∫
t=0

tα−1(1− t)β−αdt =
Γ(α)Γ(β − α + 1)

Γ(β + 1)

[
α+r−1∑
k=α

(
β

k

)
pk(1− p)β−k

+
β!

(α + r − 1)!(β − (α + r))!

p∫
t=0

tα+r−1(1− t)β−(α+r)dt

]
,

and the proof is complete when the power of 1− t in the integral reduces to zero.

Result A.3.2. For integers r = 0, 1, 2, . . .,

2r+1∑
k=r+1

(
2r + 1

k

)
= 22r.

Proof. Writing

2r+1∑
k=0

(
2r + 1

k

)
=

r∑
k=0

(
2r + 1

k

)
+

2r+1∑
k=r+1

(
2r + 1

k

)
,
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and then increasing the index of the first sum on the right hand side by r + 1 gives

2r+1∑
k=0

(
2r + 1

k

)
=

2r+1∑
k=r+1

(
2r + 1

2r + 1− k

)
+

2r+1∑
k=r+1

(
2r + 1

k

)
,

which, as
(
2r+1
k

)
=
(

2r+1
2r+1−k

)
, becomes

= 2
2r+1∑
k=r+1

(
2r + 1

k

)
.

Hence, using the binomial theorem (a+ b)2r+1 =
2r+1∑
k=0

(
2r+1
k

)
akb2r+1−k with a = b = 1,

2r+1∑
k=r+1

(
2r + 1

k

)
=

1

2

2r+1∑
k=0

(
2r + 1

k

)
=

1

2
22r+1 = 22r.

Result A.3.3. For integers r = 1, 2, . . .,

2r∑
k=r+1

(
2r

k

)
+

2r∑
k=r

(
2r

k

)
= 22r.

Proof. Again, splitting the sum
2r∑
k=0

(
2r
k

)
=

r−1∑
k=0

(
2r
k

)
+
(
2r
r

)
+

2r∑
k=r+1

(
2r
k

)
and using

(
2r
k

)
=(

2r
2r−k

)
gives,

2r∑
k=0

(
2r

k

)
= 2

2r∑
k=r+1

(
2r

k

)
+

(
2r

r

)
,

which, by including
(
2r
r

)
under the summation, can also be written as

2r∑
k=0

(
2r

k

)
= 2

2r∑
k=r

(
2r

k

)
−
(
2r

r

)
.
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The result is obtained by adding these two equations and using the binomial theorem.



Appendix B

Supplementary Tables

B.1 Re-analysis of Small Datasets

Table B.1: Stable clusters of peptides 10-16 aa length by physicochemical properties
forming the space and cluster size.

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

2D C1 ∗ ∗ 17

3D C2 ∗ ∗ ∗ 17

C3 ∗ ∗ ∗ 16

C4 ∗ ∗ ∗ 15

C5 ∗ ∗ ∗ 14

C6 ∗ ∗ ∗ 15

C7 ∗ ∗ ∗ 14

Continued on next page

266
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Table B.1: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

4D C8 ∗ ∗ ∗ ∗ 15

C9 ∗ ∗ ∗ ∗ 14

C10 ∗ ∗ ∗ ∗ 14

C11 ∗ ∗ ∗ ∗ 15

C12 ∗ ∗ ∗ ∗ 16

C13 ∗ ∗ ∗ ∗ 11

C14 ∗ ∗ ∗ ∗ 14

C15 ∗ ∗ ∗ ∗ 15

C16 ∗ ∗ ∗ ∗ 14

C17 ∗ ∗ ∗ ∗ 14

C18 ∗ ∗ ∗ ∗ 14

C19 ∗ ∗ ∗ ∗ 15

C20 ∗ ∗ ∗ ∗ 15

C21 ∗ ∗ ∗ ∗ 16

C22 ∗ ∗ ∗ ∗ 14

C23 ∗ ∗ ∗ ∗ 14

5D C24 ∗ ∗ ∗ ∗ ∗ 14

C25 ∗ ∗ ∗ ∗ ∗ 15

C26 ∗ ∗ ∗ ∗ ∗ 14

C27 ∗ ∗ ∗ ∗ ∗ 15

Continued on next page
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Table B.1: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C28 ∗ ∗ ∗ ∗ ∗ 14

C29 ∗ ∗ ∗ ∗ ∗ 14

C30 ∗ ∗ ∗ ∗ ∗ 15

C31 ∗ ∗ ∗ ∗ ∗ 14

C32 ∗ ∗ ∗ ∗ ∗ 16

C33 ∗ ∗ ∗ ∗ ∗ 15

C34 ∗ ∗ ∗ ∗ ∗ 14

C35 ∗ ∗ ∗ ∗ ∗ 14

C36 ∗ ∗ ∗ ∗ ∗ 11

C37 ∗ ∗ ∗ ∗ ∗ 14

C38 ∗ ∗ ∗ ∗ ∗ 14

C39 ∗ ∗ ∗ ∗ ∗ 14

C40 ∗ ∗ ∗ ∗ ∗ 14

C41 ∗ ∗ ∗ ∗ ∗ 14

C42 ∗ ∗ ∗ ∗ ∗ 15

C43 ∗ ∗ ∗ ∗ ∗ 11

C44 ∗ ∗ ∗ ∗ ∗ 15

C45 ∗ ∗ ∗ ∗ ∗ 16

C46 ∗ ∗ ∗ ∗ ∗ 14

C47 ∗ ∗ ∗ ∗ ∗ 14

Continued on next page
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Table B.1: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C48 ∗ ∗ ∗ ∗ ∗ 14

6D C49 ∗ ∗ ∗ ∗ ∗ ∗ 15

C50 ∗ ∗ ∗ ∗ ∗ ∗ 15

C51 ∗ ∗ ∗ ∗ ∗ ∗ 14

C52 ∗ ∗ ∗ ∗ ∗ ∗ 14

C53 ∗ ∗ ∗ ∗ ∗ ∗ 14

C54 ∗ ∗ ∗ ∗ ∗ ∗ 15

C55 ∗ ∗ ∗ ∗ ∗ ∗ 15

C56 ∗ ∗ ∗ ∗ ∗ ∗ 15

C57 ∗ ∗ ∗ ∗ ∗ ∗ 14

C58 ∗ ∗ ∗ ∗ ∗ ∗ 15

C59 ∗ ∗ ∗ ∗ ∗ ∗ 14

C60 ∗ ∗ ∗ ∗ ∗ ∗ 15

C61 ∗ ∗ ∗ ∗ ∗ ∗ 16

C62 ∗ ∗ ∗ ∗ ∗ ∗ 15

C63 ∗ ∗ ∗ ∗ ∗ ∗ 14

C64 ∗ ∗ ∗ ∗ ∗ ∗ 14

C65 ∗ ∗ ∗ ∗ ∗ ∗ 14

C66 ∗ ∗ ∗ ∗ ∗ ∗ 14

C67 ∗ ∗ ∗ ∗ ∗ ∗ 15

Continued on next page
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Table B.1: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C68 ∗ ∗ ∗ ∗ ∗ ∗ 11

C69 ∗ ∗ ∗ ∗ ∗ ∗ 15

C70 ∗ ∗ ∗ ∗ ∗ ∗ 14

C71 ∗ ∗ ∗ ∗ ∗ ∗ 14

7D C72 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C73 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C74 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C75 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C76 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C77 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C78 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C79 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C80 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C81 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C82 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C83 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

8D C84 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C85 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C86 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C87 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

Continued on next page
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Table B.1: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C88 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

9D C89 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

Table B.2: Stable clusters of peptides 18-27 aa length by physicochemical properties
forming the space and cluster size.

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

2D C1 ∗ ∗ 16

C2 ∗ ∗ 48

3D C3 ∗ ∗ ∗ 94

C4 ∗ ∗ ∗ 16

C5 ∗ ∗ ∗ 14

C6 ∗ ∗ ∗ 14

C7 ∗ ∗ ∗ 14

C8 ∗ ∗ ∗ 89

C9 ∗ ∗ ∗ 62

4D C10 ∗ ∗ ∗ ∗ 94

C11 ∗ ∗ ∗ ∗ 95

C12 ∗ ∗ ∗ ∗ 89

C13 ∗ ∗ ∗ ∗ 14

Continued on next page
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Table B.2: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C14 ∗ ∗ ∗ ∗ 14

C15 ∗ ∗ ∗ ∗ 14

C16 ∗ ∗ ∗ ∗ 23

5D C17 ∗ ∗ ∗ ∗ ∗ 88

C18 ∗ ∗ ∗ ∗ ∗ 14

C19 ∗ ∗ ∗ ∗ ∗ 87

C20 ∗ ∗ ∗ ∗ ∗ 89

C21 ∗ ∗ ∗ ∗ ∗ 14

C22 ∗ ∗ ∗ ∗ ∗ 89

C23 ∗ ∗ ∗ ∗ ∗ 88

C24 ∗ ∗ ∗ ∗ ∗ 72

6D C25 ∗ ∗ ∗ ∗ ∗ ∗ 21

C26 ∗ ∗ ∗ ∗ ∗ ∗ 88

C27 ∗ ∗ ∗ ∗ ∗ ∗ 14

C28 ∗ ∗ ∗ ∗ ∗ ∗ 87

C29 ∗ ∗ ∗ ∗ ∗ ∗ 89

C30 ∗ ∗ ∗ ∗ ∗ ∗ 14

Evaluation on training sets for small datasets.

The training set used by Vishnepolsky et al. (2018) for peptides of 10-16 aa length
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consists of 140 active peptides and 140 inactive peptides. However, the training sets

used in the re-analysis were similar to Vishnepolsky et al. (2018), each consisting

of 140 active and 140 inactive for 10-16 aa length of peptides. Results of Pi and

properties of a stable cluster of peptides of 10-16 aa length for cluster 1 and cluster 2

are reported in Tables B.3 and B.4, respectively. We see that cluster 1 has only one

stable cluster, the highest value of Pi is approximately 0.12. So, we decided to select

a set of physical-chemical properties in the stable cluster C9 in 4D space for AMP

prediction, consisting of hydrophobic moment (M ), net charge (C ), isoelectric point

(I ) and linear moment (L). Cluster 2 has 88 stable clusters, with stable clusters C54

in 6D space and C79 in 7D space having the highest Pi values of roughly 1.51, the

physical-chemical properties in stable cluster C54 are a subset of stable cluster C79.

So, we decided to select a set of physical-chemical properties in stable cluster C54

in 6D space for AMP prediction, consisting of hydrophobicity (H ), net charge (C ),

isoelectric point (I ), penetration depth (D), tilt angle (O) and linear moment (L).

Table B.3: Results of Pi and properties of a stable cluster of peptides of 10-16 aa
length: cluster 1. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

4D C9 0.12 MCIL

Table B.4: Results of Pi and properties of a stable cluster of peptides of 10-16 aa
length: cluster 2. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

2D C1 0.59 MO

Continued on next page
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Table B.4: continued from previous page

Space Stable Cluster Pi Properties

3D C2 0.59 MOA

C3 0.09 HCI

C4 0.60 HCD

C5 0.56 HCO

C6 0.72 HCL

C7 0.20 CRL

4D C8 0.21 MCIO

C10 0.20 HCIO

C11 0.29 HCIL

C12 0.09 HCIA

C13 0.47 HCDO

C14 1.20 HCDL

C15 0.60 HCDA

C16 0.60 HCOR

C17 1.10 HCOL

C18 0.56 HCOA

C19 0.28 HCRL

C20 0.72 HCLA

C21 0.11 HDRL

C22 0.40 CDRL

C23 0.20 CRLA

Continued on next page
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Table B.4: continued from previous page

Space Stable Cluster Pi Properties

5D C24 0.30 MCIDO

C25 0.21 MCIOA

C26 0.10 MIDRL

C27 0.28 MCIDO

C28 1.10 HCIDL

C29 0.60 HCIOR

C30 1.34 HCIOL

C31 0.20 HCIOA

C32 0.49 HCIRL

C33 0.29 HCILA

C34 0.60 HCDOR

C35 0.70 HCDOL

C36 0.47 HCDOA

C37 0.50 HCDRL

C38 1.20 HCDLA

C39 0.40 HCORL

C40 0.60 HCORA

C41 1.10 HCOLA

C42 0.28 HCRLA

C43 0.31 HIDOL

C44 0.42 HIDRL

Continued on next page
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Table B.4: continued from previous page

Space Stable Cluster Pi Properties

C45 0.11 HDRLA

C46 0.40 CIDRL

C47 0.10 CIORL

C48 0.40 CDRLA

6D C49 0.64 MHCDRL

C50 0.43 MHCORL

C51 0.30 MCIDOA

C52 0.10 MIDRLA

C53 0.60 HCIDOR

C54 1.51 HCIDOL

C55 0.28 HCIDOA

C56 0.61 HCIDRL

C57 1.10 HCIDLA

C58 1.12 HCIORL

C59 0.60 HCIORA

C60 1.34 HCIOLA

C61 0.49 HCIRLA

C62 0.94 HCDORL

C63 0.60 HCDORA

C64 0.70 HCDOLA

C65 0.50 HCDRLA

Continued on next page
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Table B.4: continued from previous page

Space Stable Cluster Pi Properties

C66 0.40 HCORLA

C67 0.76 HIDORL

C68 0.31 HIDOLA

C69 0.42 HIDRLA

C70 0.40 CIDRLA

C71 0.10 CIORLA

7D C72 0.71 MHCIDRL

C73 0.62 MHCIORL

C74 0.64 MHCDORL

C75 0.65 MHCDRLA

C76 0.43 MHCORLA

C77 1.12 HCIDORL

C78 0.60 HCIDORA

C79 1.51 HCIDOLA

C80 0.61 HCIDRLA

C81 1.12 HCIORLA

C82 0.94 HCDORLA

C83 0.76 HIDORLA

8D C84 1.04 MHCIDORL

C85 0.71 MHCIDRLA

C86 0.62 MHCIORLA

Continued on next page
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Table B.4: continued from previous page

Space Stable Cluster Pi Properties

C87 0.64 MHCDORLA

C88 1.12 HCIDORLA

9D C89 1.04 MHCIDORLA

For peptides of 18-27 aa length, the training set used by Vishnepolsky et al. (2018)

consists of 100 active and the same amount of inactive peptides. While the training

sets used in the re-analysis were similar to Vishnepolsky et al. (2018), each consisting

of 100 active and 100 inactive for 18-27 aa length of peptides. Results of Pi and

properties of a stable cluster of peptides of 18-27 aa length only one cluster is reported

in Table B.5. We see that cluster 1 has 30 stable clusters, with stable cluster C23

in 5D space having the highest Pi values of roughly 19.60. So, we decided to select

a set of physical-chemical properties in the stable cluster C23 in 5D space for AMP

prediction, consisting of hydrophobicity (H ), isoelectric point (I ), penetration depth

(D), tilt angle (O) and linear moment (L).

Table B.5: Results of Pi and properties of a stable cluster of peptides of 18-27 aa
length: cluster 1. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

2D C1 2.06 CL

C2 0.91 IO

3D C3 8.81 HIO

C4 4.27 CIL

Continued on next page
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Table B.5: continued from previous page

Space Stable Cluster Pi Properties

C5 1.82 CDL

C6 0.14 COL

C7 1.26 CLA

C8 2.44 IDO

C9 1.80 IOL

4D C10 12.61 MHIO

C11 4.36 MIOR

C12 13.29 HIDO

C13 0.14 CIDO

C14 0.28 CIOL

C15 3.83 CILA

C16 1.34 CRLA

5D C17 0.84 MHIDO

C18 0.28 MHIOL

C19 8.50 HCIDO

C20 4.12 HCIDL

C21 0.28 HCIRL

C22 11.60 HIDOR

C23 19.60 HIDOL

C24 2.80 IDORL

6D C25 0.57 MHCIDO

Continued on next page
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Table B.5: continued from previous page

Space Stable Cluster Pi Properties

C26 0.84 MHIDOR

C27 0.28 MHIOLA

C28 3.40 HCIDOR

C29 6.51 HIDORL

C30 1.26 HIDOLA

Results of the prediction on the training set of peptides of 10-16 aa length and 18-27

aa length is shown in Table B.6. Sensitivities values of all clusters of the prediction

were equal to 0.19 and 0.85, and PPV were equal to 0.90 and 0.97 for peptides of

10-16 and 18-27 aa length, respectively. While the article has sensitivities values of

all clusters of the prediction were equal to 0.84 and 0.79, and PPV were equal to

0.80 and 0.81 for peptides of 10-16 and 18-27 aa length, respectively. If we compare

the quality of the prediction with the article, we can see that the sensitivities of all

prediction clusters are lower for peptides with 10-16 aa lengths than the article but

slightly higher for peptides with 18-27 aa lengths. However, the prediction’s PPV

was higher than the article for peptides with lengths of 10-16 and 18-27 aa.

Table B.6: Results of prediction on the training set of peptides of 10-16 aa length
and 18-27 aa length.

Clusters TP TP + FN FP TN + FP SN PPV ER

10-16 aa length

Cluster 1 11 140 3 140

Continued on next page
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Table B.6: continued from previous page

Clusters TP TP + FN FP TN + FP SN PPV ER

Cluster 2 15 140 0 140

All clusters 26 140 3 140 0.19 0.90 0.42

18-27 aa length

Cluster 1 85 100 3 100

All clusters 85 100 3 100 0.85 0.97 0.09

B.2 Analysis on Large Datasets

Table B.7: Stable clusters of peptides 10-16 aa length by physicochemical properties
forming the space and cluster size for large datasets.

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

2D C1 ∗ ∗ 22

3D C2 ∗ ∗ ∗ 12

C3 ∗ ∗ ∗ 20

C4 ∗ ∗ ∗ 14

C5 ∗ ∗ ∗ 21

C6 ∗ ∗ ∗ 22

C7 ∗ ∗ ∗ 27

C8 ∗ ∗ ∗ 22

Continued on next page
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Table B.7: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C9 ∗ ∗ ∗ 15

C10 ∗ ∗ ∗ 17

C11 ∗ ∗ ∗ 16

C12 ∗ ∗ ∗ 21

4D C13 ∗ ∗ ∗ ∗ 18

C14 ∗ ∗ ∗ ∗ 17

C15 ∗ ∗ ∗ ∗ 17

C16 ∗ ∗ ∗ ∗ 18

C17 ∗ ∗ ∗ ∗ 21

C18 ∗ ∗ ∗ ∗ 15

C19 ∗ ∗ ∗ ∗ 15

C20 ∗ ∗ ∗ ∗ 23

C21 ∗ ∗ ∗ ∗ 15

C22 ∗ ∗ ∗ ∗ 16

C23 ∗ ∗ ∗ ∗ 20

C24 ∗ ∗ ∗ ∗ 19

C25 ∗ ∗ ∗ ∗ 15

C26 ∗ ∗ ∗ ∗ 15

C27 ∗ ∗ ∗ ∗ 16

C28 ∗ ∗ ∗ ∗ 22

Continued on next page
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Table B.7: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C29 ∗ ∗ ∗ ∗ 21

C30 ∗ ∗ ∗ ∗ 23

C31 ∗ ∗ ∗ ∗ 15

C32 ∗ ∗ ∗ ∗ 18

C33 ∗ ∗ ∗ ∗ 14

C34 ∗ ∗ ∗ ∗ 21

C35 ∗ ∗ ∗ ∗ 15

C36 ∗ ∗ ∗ ∗ 21

C37 ∗ ∗ ∗ ∗ 11

C38 ∗ ∗ ∗ ∗ 17

C39 ∗ ∗ ∗ ∗ 23

C40 ∗ ∗ ∗ ∗ 21

5D C41 ∗ ∗ ∗ ∗ ∗ 17

C42 ∗ ∗ ∗ ∗ ∗ 15

C43 ∗ ∗ ∗ ∗ ∗ 16

C44 ∗ ∗ ∗ ∗ ∗ 18

C45 ∗ ∗ ∗ ∗ ∗ 18

C46 ∗ ∗ ∗ ∗ ∗ 15

C47 ∗ ∗ ∗ ∗ ∗ 17

C48 ∗ ∗ ∗ ∗ ∗ 14

Continued on next page
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Table B.7: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C49 ∗ ∗ ∗ ∗ ∗ 18

C50 ∗ ∗ ∗ ∗ ∗ 14

C51 ∗ ∗ ∗ ∗ ∗ 17

C52 ∗ ∗ ∗ ∗ ∗ 15

C53 ∗ ∗ ∗ ∗ ∗ 15

C54 ∗ ∗ ∗ ∗ ∗ 22

C55 ∗ ∗ ∗ ∗ ∗ 15

C56 ∗ ∗ ∗ ∗ ∗ 14

C57 ∗ ∗ ∗ ∗ ∗ 22

C58 ∗ ∗ ∗ ∗ ∗ 21

C59 ∗ ∗ ∗ ∗ ∗ 15

C60 ∗ ∗ ∗ ∗ ∗ 14

C61 ∗ ∗ ∗ ∗ ∗ 15

C62 ∗ ∗ ∗ ∗ ∗ 16

C63 ∗ ∗ ∗ ∗ ∗ 18

C64 ∗ ∗ ∗ ∗ ∗ 18

C65 ∗ ∗ ∗ ∗ ∗ 21

C66 ∗ ∗ ∗ ∗ ∗ 18

C67 ∗ ∗ ∗ ∗ ∗ 11

C68 ∗ ∗ ∗ ∗ ∗ 15

Continued on next page
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Table B.7: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C69 ∗ ∗ ∗ ∗ ∗ 15

C70 ∗ ∗ ∗ ∗ ∗ 11

6D C71 ∗ ∗ ∗ ∗ ∗ ∗ 15

C72 ∗ ∗ ∗ ∗ ∗ ∗ 14

C73 ∗ ∗ ∗ ∗ ∗ ∗ 19

C74 ∗ ∗ ∗ ∗ ∗ ∗ 14

C75 ∗ ∗ ∗ ∗ ∗ ∗ 14

C76 ∗ ∗ ∗ ∗ ∗ ∗ 18

C77 ∗ ∗ ∗ ∗ ∗ ∗ 21

C78 ∗ ∗ ∗ ∗ ∗ ∗ 14

C79 ∗ ∗ ∗ ∗ ∗ ∗ 16

C80 ∗ ∗ ∗ ∗ ∗ ∗ 27

C81 ∗ ∗ ∗ ∗ ∗ ∗ 18

C82 ∗ ∗ ∗ ∗ ∗ ∗ 14

C83 ∗ ∗ ∗ ∗ ∗ ∗ 18

C84 ∗ ∗ ∗ ∗ ∗ ∗ 17

C85 ∗ ∗ ∗ ∗ ∗ ∗ 15

C86 ∗ ∗ ∗ ∗ ∗ ∗ 14

C87 ∗ ∗ ∗ ∗ ∗ ∗ 14

C88 ∗ ∗ ∗ ∗ ∗ ∗ 21

Continued on next page
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Table B.7: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

C89 ∗ ∗ ∗ ∗ ∗ ∗ 15

C90 ∗ ∗ ∗ ∗ ∗ ∗ 14

C91 ∗ ∗ ∗ ∗ ∗ ∗ 11

C92 ∗ ∗ ∗ ∗ ∗ ∗ 14

C93 ∗ ∗ ∗ ∗ ∗ ∗ 12

7D C94 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C95 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18

C97 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C98 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 19

C99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C102 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 21

C103 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 27

C104 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C105 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17

C106 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

C107 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17

C108 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

Continued on next page
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Table B.7: continued from previous page

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

8D C109 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 16

C110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

C111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18

C112 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15

Table B.8: Stable clusters of peptides 18-27 aa length by physicochemical properties
forming the space and cluster size for large datasets.

Physical-chemical properties

Space Stable Cluster M H C I D O R L A Cluster size

2D C1 ∗ ∗ 14

C2 ∗ ∗ 15

3D C3 ∗ ∗ ∗ 15

6D C4 ∗ ∗ ∗ ∗ ∗ ∗ 26

C5 ∗ ∗ ∗ ∗ ∗ ∗ 22

7D C6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12

C7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 14

8D C8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12

While Vishnepolsky et al. (2018) found that clusters differed most strongly from each

other by isoelectric point (I ) and tilt angle (O). One set of stable clusters was found

in longer peptides, the cluster is created in 6D space and includes the hydrophobicity
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(H ), net charge (C ), isoelectric point (I ), tilt angle (O), linear moment (L) and

aggregation (A). Vishnepolsky et al. (2018) found that clusters differed most strongly

from each other by only isoelectric point (I ) for this case. This result is not replicated

in the analysis of both peptides for the large datasets.

Table B.7 lists the 112 subspaces where stable clusters were found for the 10-16

aa peptides. Comparing physical-chemical properties comprising the spaces, we see

that net charge (C ) occurs in the majority of cases which is found in the space

of 95 clusters, followed by hydrophobicity (H ) is found in the space of 76 clusters.

Hydrophobic moment (M ), penetration depth (D) and tilt angle (O) are found in the

space of 74 clusters. On the other hand, aggregation (A), propensity to disordering

(R), linear moment (L) and isoelectric point (I ) occur in less than half of the cases.

The largest clusters contain 27 peptides and are in 3D, 6D and 7D space. Unlike

Vishnepolsky et al. no big clusters were found.

For 18-27 aa length of peptides, we also got only one set of stable clusters in 6D space

from eight overlapping stable clusters found within any set, see Table B.8, compared

with four stable clusters found by Vishnepolsky et al. (2018) in 2D, 3D, 6D, 7D and

8D space. Also, the optimal CSC for a set was simply the stable cluster with maximal

Pi within that set. If we compare physical-chemical properties in all clusters, we see

that hydrophobicity (H ) and propensity to disordering (R) occurs in the majority of

cases which is found in the space of six clusters, followed by net charge (C ), tilt angle

(O), linear moment (L) and aggregation (A) are found in the space of five clusters.

On the other hand, hydrophobic moment (M ) and penetration depth (D) are found

in less than half the cases. The largest clusters contain 26 peptides and are in 6D

space. Like Vishnepolsky et al. (2018), no big clusters were found.
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Evaluation on training sets for large datasets.

The training set was used by randomly selecting peptides 80% from the full datasets

for peptides of 10-16 aa length consisting of 515 active peptides and 515 inactive

peptides. Three stable clusters were found for shorter peptides and hence the optimal

CSC for each set was the stable cluster with maximal Pi for AMP prediction. Results

of Pi and properties of a stable cluster of peptides of 10-16 aa length for cluster 1,

cluster 2 and cluster 3 are reported in Tables B.9, B.10, and B.11, respectively.

Table B.9, we see 78 stable clusters occur in cluster 1 with stable clusters C44 in

5D space and C81 in 6D space having the highest Pi values of roughly 0.61. The

physical-chemical properties in stable cluster C44 are a subset of stable cluster C81,

so we decided to select a set of physical-chemical properties in stable cluster C44 in

5D space for AMP prediction includes the hydrophobic moment (M ), hydrophobicity

(H ), net charge (C ), penetration depth (D) and propensity to disordering (R).

Table B.9: Results of Pi and properties of a stable cluster of peptides of 10-16 aa
length for large datasets: cluster 1. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

2D C1 0.38 MH

3D C2 0.05 MHO

C3 0.03 MCD

C5 0.11 HCD

C6 0.60 HCO

C7 0.09 HCR

Continued on next page
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Table B.9: continued from previous page

Space Stable Cluster Pi Properties

C8 0.58 HCA

C9 0.15 CID

C11 0.29 CIR

C12 0.13 CDO

4D C13 0.25 MHCD

C14 0.31 MHCO

C16 0.23 MHCR

C17 0.22 MHCL

C18 0.06 MHDL

C19 0.12 MHLA

C20 0.22 MCDO

C22 0.08 MCDR

C23 0.03 MCDA

C24 0.03 MCOR

C26 0.11 HCIO

C27 0.36 HCIR

C28 0.25 HCIA

C29 0.48 HCDO

C30 0.19 HCOR

C31 0.12 HCOL

C32 0.59 HCOA

Continued on next page
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Table B.9: continued from previous page

Space Stable Cluster Pi Properties

C33 0.08 HCRA

C34 0.33 HCLA

C36 0.30 CIDO

C37 0.13 CIDA

C39 0.09 CDOA

C40 0.08 CORA

5D C43 0.11 MHCDO

C44 0.61 MHCDR

C45 0.25 MHCDA

C46 0.12 MHCOL

C47 0.31 MHCOA

C49 0.23 MHCRA

C51 0.34 MHDLA

C52 0.15 MHOLA

C54 0.19 MCDOR

C57 0.18 MCDOA

C58 0.38 MCDRA

C60 0.12 HCIDA

C61 0.11 HCIOA

C62 0.41 HCDOR

C63 0.49 HCDOA

Continued on next page
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Table B.9: continued from previous page

Space Stable Cluster Pi Properties

C64 0.24 HCDLA

C65 0.32 HCORA

C66 0.24 HCOLA

C67 0.06 HDORL

C70 0.13 CIDRA

6D C72 0.12 MHCIDR

C73 0.25 MHCIDL

C74 0.11 MHCIOL

C77 0.19 MHCDOL

C79 0.11 MHCDOA

C80 0.38 MHCDRL

C81 0.61 MHCDRA

C84 0.07 MHDORL

C88 0.15 MCDORA

C90 0.16 HCDORA

C91 0.06 HDORLA

C93 0.27 CDORLA

C94 0.08 MHCIDOR

C96 0.19 MHCIDRL

C97 0.12 MHCIDRA

C98 0.25 MHCIDLA

Continued on next page
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Table B.9: continued from previous page

Space Stable Cluster Pi Properties

C99 0.11 MHCIOLA

C100 0.17 MHCDORL

C102 0.19 MHCDOLA

C103 0.38 MHCDRLA

C104 0.03 MHCORLA

C107 0.07 MHDORLA

C110 0.08 MHCIDORA

C111 0.19 MHCIDRLA

C112 0.17 MHCDORLA

Table B.10, we see 31 stable clusters occur in cluster 2 with stable clusters C53

in 5D space having the highest Pi values of roughly 1.57. So we decided to select

a set of physical-chemical properties in stable cluster C53 in 5D space for AMP

prediction including the hydrophobic moment (M ), net charge (C ), isoelectric point

(I ), penetration depth (D) and tilt angle (O).

Table B.10: Results of Pi and properties of a stable cluster of peptides of 10-16 aa
length for large datasets: cluster 2. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

3D C4 0.03 MDO

4D C15 0.10 MHCO

Continued on next page



294

Table B.10: continued from previous page

Space Stable Cluster Pi Properties

C21 0.99 MCDO

C25 0.74 MCOA

C35 0.99 CIDO

5D C41 0.63 MHCIO

C42 0.16 MHCDO

C48 0.08 MHCOA

C53 1.57 MCIDO

C55 0.52 MCDOR

C56 0.33 MCDOL

C59 1.41 MIDOL

C68 0.77 CIDOR

C69 0.33 CIDOL

6D C71 0.20 MHCIDO

C75 0.11 MHCIOA

C76 0.62 MHCDOL

C78 0.08 MHCDOA

C82 0.03 MHCOLA

C83 0.10 MHIDOL

C85 1.15 MCIDOR

C86 1.01 MCIDOL

C87 0.38 MCDORL

Continued on next page
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Table B.10: continued from previous page

Space Stable Cluster Pi Properties

C89 0.83 MIDORL

C92 0.27 CIDORL

7D C95 0.16 MHCIDOL

C101 0.48 MHCDOLA

C105 0.16 MHIDORL

C106 0.09 MHIDOLA

C108 0.54 MCIDORL

8D C109 0.03 MHCIDORL

Table B.11, we see three stable clusters occur in cluster 3 which stable clusters C10

in 3D space and C38 in 4D space having the highest Pi values of roughly 1.17. The

physical-chemical properties in stable cluster C10 are a subset of stable cluster C38,

so we decided to select a set of physical-chemical properties in stable cluster C10 in

3D space for AMP prediction including the net charge (C ), isoelectric point (I ) and

propensity to disordering (R).

Table B.11: Results of Pi and properties of a stable cluster of peptides of 10-16 aa
length for large datasets: cluster 3. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

3D C10 1.17 CIR

4D C38 1.17 CIRA

Continued on next page



296

Table B.11: continued from previous page

Space Stable Cluster Pi Properties

5D C50 0.05 MHDOA

For peptides of 18-27 aa length, we used a training set of 324 active and the same

amount of inactive peptides by randomly selecting peptides 80% from the full datasets.

Results of Pi and properties of a stable cluster of peptides of 18-27 aa length only

one cluster is reported in Table B.12 and the optimal CSC for a set was the cluster

with maximal Pi for AMP prediction. We see that cluster 1 has eight stable clusters,

with stable clusters C4 in 6D space and C7 in 7D space having similar Pi values

of roughly 0.24 and 0.25, respectively. The physical-chemical properties in stable

cluster C4 are a subset of stable cluster C7. Also, the stable cluster C4 has the

most peptides (26 peptides) and the peptides overlap with all other stable clusters,

while the stable cluster C7 has a small number of peptides (14 peptides) and the

peptides do not overlap with some stable clusters. So, we decided to select a set of

physical-chemical properties in the stable cluster C4 in 6D space for AMP prediction,

consisting of hydrophobicity (H ), net charge (C ), isoelectric point (I ), tilt angle (O),

linear moment (L) and aggregation (A).

Table B.12: Results of Pi and properties of a stable cluster of peptides of 18-27 aa
length for large datasets: cluster 1. The highest of Pi is highlighted in blue.

Space Stable Cluster Pi Properties

2D C1 0.08 MH

C2 0.14 MR

Continued on next page
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Table B.12: continued from previous page

Space Stable Cluster Pi Properties

3D C3 0.14 MRA

6D C4 0.24 HCIOLA

C5 0.07 HCORLA

7D C6 0.15 HCIDORL

C7 0.25 HCIORLA

8D C8 0.15 HCIDORLA

Results of the prediction on the training set of peptides of 10-16 aa length and 18-

27 aa length for a large dataset is shown in Table B.13. Sensitivities values of all

clusters of the prediction were equal to 0.10 and 0.08, and PPV were equal to 0.98

and 1.00 for peptides of 10-16 and 18-27 aa length, respectively. While the article

has sensitivities values of all clusters of the prediction were equal to 0.84 and 0.79,

and PPV were equal to 0.80 and 0.81 for peptides of 10-16 and 18-27 aa length,

respectively. If we compare the quality of the prediction with the article, we can see

that the sensitivities of all prediction clusters are lower than the article and PPV of

the prediction higher than the article for both peptides.
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Table B.13: Results of prediction on the training set of peptides of 10-16 aa length
and 18-27 aa length for large datasets.

Clusters TP TP + FN FP TN + FP SN PPV ER

10-16 aa length

Cluster 1 19 515 1 515

Cluster 2 16 515 0 515

Cluster 3 17 515 0 515

All clusters 52 515 1 515 0.10 0.98 0.45

18-27 aa length

Cluster 1 26 324 0 324

All clusters 26 324 0 324 0.08 1.00 0.46



Appendix C

Example of Calculating the Final

Rank Score

C.1 Calculating the final ranking score

The misclassification test error rates for models fitted for each of the five methods

evaluated for Scenario 1 are summarized in Table C.1. Here, the reciprocal rank is

determined by calculating the final rank r(k) of a model using the following equa-

tion 4.23. Firstly, ranked according to the error rate (ER) for each method shown in

Table C.2. Then, calculating the sum of the inverse ranking score of all methods and

computing the inverse value of the sum of the inverse ranking score of all methods

to get the final ranking score shown in Table C.2 in the last two columns. Finally,

the final scores for predictor variable combinations are determined. Apply the same

algorithm to the remaining scenarios.
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Table C.1: Scenario 1 misclassification test error rates for all fitted models.

Models LR ENET SVM RF NN

X1, X2 0.088 0.042 0.041 0.022 0.033

X1, X3 0.182 0.158 0.187 0.172 0.171

X1, X4 0.175 0.170 0.176 0.158 0.163

X2, X3 0.200 0.194 0.205 0.208 0.185

X2, X4 0.203 0.200 0.204 0.205 0.193

X3, X4 0.507 0.506 0.511 0.488 0.483

X1, X2, X3 0.087 0.041 0.043 0.026 0.028

X1, X2, X4 0.093 0.039 0.042 0.025 0.023

X1, X3, X4 0.184 0.158 0.203 0.157 0.181

X2, X3, X4 0.200 0.198 0.221 0.204 0.226

X1, X2, X3, X4 0.095 0.041 0.051 0.022 0.032
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Table C.2: Scenario 1 ranking score of the error rate (ER) for each method. The final
score for each method is its inverse ranking score divided by the sum of all inverse
ranking scores. The final scores for the top three predictor variable combinations are
highlighted in blue.

Models LR ENET SVM RF NN
5∑

m=1

1
rm(k)

1/
5∑

m=1

1
rm(k)

X1, X2 2 4 1 1 4 3.0000 0.3333

X1, X3 6 5 6 7 6 0.8429 1.1864

X1, X4 5 7 5 6 5 0.9095 1.0995

X2, X3 8 8 9 10 8 0.5861 1.7062

X2, X4 10 10 8 9 9 0.5472 1.8274

X3, X4 11 11 11 11 11 0.4545 2.2000

X1, X2, X3 1 2 3 4 2 2.5833 0.3871

X1, X2, X4 3 1 2 3 1 3.1667 0.3158

X1, X3, X4 7 5 7 5 7 0.8286 1.2069

X2, X3, X4 8 9 10 8 10 0.5611 1.7822

X1, X2, X3, X4 4 2 4 1 3 2.3333 0.4286
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