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different approaches, the interpretation of performance differences of bias adjustment methods and
changes to the climate model trend and ensemble through bias adjustment. Through this perspec-
tive, we aim to situate bias adjustment in the discussion around usable climate information and
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impact researchers and climate service practitioners working with bias adjustment methods.
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1. Introduction

Global and regional climate models (GCMs and RCMs), based on a numerical implementa-
tion of physical laws such as thermodynamics and fluid dynamics, are a primary source of
information on the future response of the climate system to anthropogenic greenhouse gas
emissions and other forcings. Coordinated in the Coupled Model Intercomparison Project
(CMIP), for example, projections by different GCMs provide an envelope of plausible future
climate changes and the basis for motivating climate mitigation policies and developing
adaptation strategies.

Due to the parameterization of subgrid cell processes and other unmodeled or unresolved
processes, both global and regional climate models necessarily suffer from shortcomings
in the representation of key climatic processes. These shortcomings manifest in discrepan-
cies between the model statistics and the corresponding observational statistics over the
historical period, so-called biases (Maraun 2016a). For example, a climate model might
have biases in the amount of annual rainfall observed in a particular location due to defi-
ciencies in the representation of the extratropical Atlantic storm track (Maraun et al. 2017;
Priestley et al. 2023).

Aside from generating fundamental insights about the climate system, climate science
is also called to deliver usable climate information to society (Lemos et al. 2012; Kirchhoff
et al. 2013). Climate information is said to be usable if it is simultaneously credible, salient
or relevant to the needs of users of climate information, and legitimate, meaning that the
production of the information is fair (Cash et al. 2002; Jebeile and Roussos 2023; Jebeile
2024). However, the biases of climate models in representing meteorological variables rel-
evant to societal impacts call into question the credibility and relevance—and, therefore,
the usability—of climate model output, especially at the local level. This is particularly
important if one is interested not only in evaluating changes relative to the model climatol-
ogy, i.e., in terms of anomalies, but also in assessing changes in absolute threshold metrics
such as frost days, dry days, or wind speed extremes that are important for most societally
relevant impacts.

One widespread way of addressing the biases in both global and regional climate model
outputs is statistical bias adjustment, hereafter simply referred to as bias adjustment. Bias
adjustment has become a near-standard preprocessing step for using the output of climate
models across climate service applications (Fung 2018; Kahlenborn et al. 2021), climate impact
studies (Jagermeyr et al. 2021; Laux et al. 2021), and extreme event and impact attribution
(Philip et al. 2020; TradowsKky et al. 2023).

Bias adjustment can, in the most general manner, be described as an empirical mapping
of a climate model statistic onto the corresponding observational statistic, calibrated over
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the historical period and applied to a future period (Maraun 2016a). Bias adjustment meth-
ods implement this empirical mapping in different ways, ranging from simple adjustments
to the mean or variance (e.g., linear scaling), to adjustments by quantile (e.g., parametric
or nonparametric quantile mapping), to methods that aim to preserve the trend in specific
parts of the distribution [e.g., Inter-Sectoral Impact Model Intercomparison Project, Phase 3
Bias-Adjustment and Statistical Downscaling (ISIMIP3BASD)—Lange 2019; quantile delta
mapping—Cannon et al. 2015]. Another approach, which is often listed alongside bias
adjustment methods, is the so-called delta change method, which adds the mean trend
in the climate model to historical observations. In addition to these univariate methods
that are implemented at each grid cell independently, more advanced bias adjustment
methods exist that also correct multivariable or spatial structure in climate models (see
Francois et al. 2020 for an overview). We refer to Spuler et al. (2024) for a more detailed
overview of commonly used bias adjustment methods and key choices that distinguish
available methods.

However, all bias adjustment methods described above come with fundamental is-
sues and rely on strong assumptions that have been highlighted and discussed in the
literature. Bias adjustment methods are prone to misuse if only calibrated aspects are
evaluated and rely on the assumption that biases are stationary over time (Ehret et al.
2012; Maraun et al. 2017). Furthermore, bias adjustment methods can impair the spatio-
temporal consistency of variables and modify the climate change trend and multimodel
ensemble spread without physical justification. Table 1 provides a brief overview of the
most prevalent issues.

Tase 1. Fundamental issues with the bias adjustment of climate model output.

Possible
overcalibration and
evaluation of
noncalibrated
aspects

Bias adjustment can make any unrelated variable or even random fields look similar to target
observations in terms of the marginal (locationwise) statistical structure. Chandel et al. (2024)
illustrate this by bias adjusting a random field as a stand-in for GCM output, and Maraun et al.
(2017) by bias adjusting daily temperature over the Southern Ocean to daily precipitation over
Europe. In both cases, the authors show that the bias-adjusted fields look statistically similar
to the target observational field. Therefore, evaluating improvements in the locationwise
correspondence of observational and climate model fields—or in general, calibrated
aspects—is nonindicative of successful bias adjustment application and cannot detect
“misuse,” even when the evaluation is out of sample (Maraun and Widmann 2018a). This
issue is even more acute for multivariate methods, where more aspects are explicitly
calibrated. Despite this, the evaluation of noncalibrated aspects of bias adjustment is not
common in current applications.

Modification of the
climate change trend
and spatiotemporal
consistency

Stationarity
assumption and
sensitivity to the
choice of
calibration period

Use for downscaling

All bias adjustment methods—even so-called trend-preserving methods—modify future
trends projected by the raw output of GCMs or RCMs, especially in impact-relevant metrics
(Casanueva et al. 2020; Chandel et al. 2024; Dosio 2016; Spuler et al. 2024). This modification
of the model trend cannot be justified generally and can lead to implausible future trends
(Maraun et al. 2017) as well as unrealistic modifications to climate model ensemble spreads
(often interpreted as uncertainty). This will be further discussed in section 4b and the example
in this section. In addition, bias adjustment will alter spatiotemporal and intervariable
relationships in a climate model; Ehret et al. (2012) and Chandel et al. (2024) argue that this
impairs the advantage of using a GCM or RCM and removes the physical insights that can be
gained from it.

The application of bias adjustment also rests on strong assumptions, such as the stationarity
(time invariance) of biases or the minor role of spatiotemporal field covariances that can, in
practice, be hard to verify (Ehret et al. 2012) and have been heavily criticized in the literature.
In addition, many variables exhibit strong decadal variability, and the bias adjustment can be
highly sensitive to the choice of historical calibration and evaluation period (Chen et al. 2015;
Hui et al. 2019; Nahar et al. 2017; Van de Velde et al. 2022).

Last, the practice of using (deterministic) bias adjustment for downscaling projections is based
on the implicit assumption that local-scale variability is governed entirely by the large-scale
driving field. This assumption is often not met, and the use of bias adjustment methods for
downscaling has, therefore, been criticised in past literature (Maraun 2013, 2016a,b).
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Despite these fundamental issues, the application of bias adjustment remains widespread
in current practice to produce information that is seen as relevant for a user or impact study.
For example, and importantly, the majority of workflows using climate model projections to run
impact models require the use of bias-adjusted climate model data. Impact models, coordinated,
for example, in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP; Frieler et al.
2017), are used to assess the impacts of climate change on wildfires, crop yields, biodiversity,
or the water cycle. They provide the basis for a large body of scientific literature and research,
the IPCC Working Group (IPCC WG II), and decision-relevant outputs such as National Adapta-
tion Plans and central banks’ climate risk scenarios [Network for Greening the Financial System
(NGFS) 2021]. Recent studies, however, have shown a large sensitivity of relevant results to the
choice of bias adjustment method (e.g., Chae and Chung 2024; Chen et al. 2013a,b; lizumi et al.
2017; Laux et al. 2021; Padulano et al. 2025; Teutschbein and Seibert 2012).

In this tension between the widespread use of bias adjustment to improve the relevance
of climate information and fundamental issues that call into question its credibility, dif-
ferent approaches to bias adjustment have developed in current practice. Each of these
approaches is based on a different way of addressing the fundamental assumptions and
issues that come with bias adjustment, as well as a different perspective on what usable
climate information is and who it is generated for.

In this paper, we use the concept of usability as a framework to evaluate these prevalent
approaches to bias adjustment. Focusing primarily on two aspects of usability, credibility
and salience, we examine how both methodological assumptions and implicit value judg-
ments, as recommended notably by Pulkkinen et al. (2022), shape current approaches to
bias adjustment. While most literature on bias adjustment has focused largely on aspects
of credibility, we argue that it is the interplay between credibility and salience that not only
influences current practice but can also inform future research and development. Through
this analysis, we aim to situate bias adjustment in the discussion around usable climate
information and the production of climate services, while offering a practical discussion of
assumptions for climate impact researchers and climate service practitioners working with
bias adjustment methods.

The two lead authors of the paper have developed the ibicus software package (Spuler et al.
2024) for the bias adjustment of climate model output and associated evaluation, which is
now used by various researchers and organizations. This perspective paper is informed by
resulting engagements with users of bias adjustment, method developers, and impact model-
ers over the past 3 years.

The remainder of the paper is structured as follows. We first present different approaches
to bias adjustment in section 2. Section 3 introduces usability as an evaluative framework
to investigate bias adjustment, and section 4 examines, from a methodological perspective,
two fundamental issues around bias adjustment, which forms the basis for the subsequent
discussion of usability. We then investigate the four approaches to bias adjustment in terms
of their methodological assumptions and interpretation of usability in section 5 and provide
a discussion and conclusion in section 6.

2. Background: Approaches to bias adjustment in current practice

When selecting the bias adjustment strategy for a given project, researchers and practitioners
alike are often guided by a methodological understanding of bias adjustment alongside prac-
tical considerations. In the following, we propose a categorization of different approaches to
bias adjustment prevalent in both academic and climate service contexts. This categorization
is based on a review of existing literature as well as extended engagement with users of bias
adjustment methods and is intended to provide a starting point for discussing the assump-
tions underlying these strategies in the next sections.
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The most widely used approach to bias adjustment in current practice is what in this paper
is called the consistency approach, that is, to use a single bias adjustment method con-
sistently across regions and impacts studied. This is implemented either by working with a
published bias-adjusted dataset or adhering to an organizational policy regarding the choice
of bias adjustment method.

Examples of this approach include the publication of a bias-adjusted dataset for specific
regions (e.g., Dumitrescu et al. 2020; Gergel et al. 2024; Lavoie et al. 2024; Mishra et al.
2020; Navarro-Racines et al. 2020; Xu et al. 2021) or global datasets often published by
larger research groups or institutional actors: e.g., NASA Earth Exchange Global Daily
Downscaled Projections (NEX-GDDP) (Thrasher et al. 2022), Carbonplan Deep Learning for
Statistical Downscaling (DeepSD) (Vandal et al. 2017), and Ensemble Generalized Analog
Regression Downscaling (En-GARD) (Gutmann et al. 2022). The adherence to a single bias
adjustment method for impact model intercomparison, such as that conducted in ISIMIP
based on the ISIMIP3BASD bias adjustment method (Lange 2019, 2021), as well as sister
projects such as Fire Modeling Intercomparison Project (FireMIP) (Rabin et al. 2017) or
Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al.
2013), is another example of the consistency approach. Published datasets are often used
in hundreds of publications, looking at different regions and using bias-adjusted data for
different applications.

In most cases, this consistency approach is justified based on a general-purpose evaluation
of the chosen method. This means that the method is determined to be fit for purpose by the
provider of the dataset based on an evaluation of one or a selected few applications. Often,
this evaluation consists of a published case study and subsequent evaluation of global aver-
age properties [see e.g., the published evaluation in Lange (2021)]. In most cases, no further
evaluation of the bias-adjusted results is conducted when the dataset is applied by the user,
which could be a researcher or climate service practitioner.

However, recent comparison and evaluation of bias adjustment methods show that the
performance of a bias adjustment method depends on the use case, i.e., region, climate model
variable and impact studied (Casanueva et al. 2020; Chandel et al. 2024; Chen et al. 2013a,b;
Lafon et al. 2013; Maraun 2016a; Padulano et al. 2025; Spuler et al. 2024; Teutschbein and
Seibert 2012; Zscheischler et al. 2019), which will be discussed in more detail in section 4.
In light of this finding, several publications advocate for a use-case-specific evaluation of
multiple methods and selection of the bias adjustment method that performs best in terms
of reducing biases of calibrated aspects and preserving or modifying trends in line with the
assumptions of the case study. We call this approach to bias adjustment the use-case-specific
evaluation approach. In this approach, the choice of bias adjustment method depends on
a specific-purpose evaluation, that is, the variable and impact studied, as well as the physi-
cal source of bias in the climate model (Addor et al. 2016; Eden et al. 2012; Gudmundsson
et al. 2012; Maraun 2016a; Maraun et al. 2017), which can include so-called process-based
bias adjustment (Maraun et al. 2017). This recommendation has been followed in a range of
publications applying bias adjustment in practice, for example, Olschewski et al. (2023) and
Tootoonchi et al. (2023).

Another approach to interpreting performance differences of bias adjustment methods is
what is here called the ensembling approach. This approach is motivated by recent find-
ings that show that the choice of bias adjustment method can lead to large differences in the
resulting ensemble of bias-adjusted climate model projections (e.g., Ho et al. 2012; Lafferty
and Sriver 2023). In the ensembling approach, these differences are understood as an addi-
tional source of uncertainty in local-scale future climate projections. The proposed response
based on this understanding is to “sample" the additional uncertainty by applying several
bias adjustment methods to the ensemble of climate models used and interpret these results
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probabilistically. This approach has so far primarily been proposed in academic publications
such as Laux et al. (2021), Lafferty and Sriver (2023), Chen et al. (2013b), Iizumi et al. (2017),
Liess et al. (2022), Wootten et al. (2017), Senatore et al. (2022), and others.

Given the fundamental issues with currently available bias adjustment, another possible
strategy is to attempt to circumvent the use of bias adjustment methods altogether, called
the no bias adjustment approach in this paper. Available strategies for circumventing bias
adjustment include working only with climate change trends and anomalies (the difference
between projected and historical values). This can be considered a form of implicit bias adjust-
ment; however, challenges arise when absolute values are required to drive impact models.
Calculated trends can be reported as such, used to drive downstream models such as (change
factor) weather generators (Maraun et al. 2010; Maraun and Widmann 2018b), or in principle
integrated into different approaches that start from a specific impact or vulnerability and
assess plausible futures in a scenario-based or scenario-neutral approach (Guo et al. 2017;
Prudhomme et al. 2010; Shepherd et al. 2018; Wilby and Dessai 2010). Another group of meth-
ods explicitly links present-day biases in climate models to future uncertainty, formulating
statistically coherent models to capture (and constrain) future uncertainty independently of
possible model biases. This encompasses statistical work on multimodel ensembles (Chandler
2013; Sansom et al. 2021) as well as approaches based on emergent constraints (Hall et al.
2019; Williamson and Sansom 2019). Similarly, model weighting that is in some way based
on present-day performance can, depending on the specific method, be interpreted as an
implicit bias adjustment (Knutti et al. 2017; Sippel et al. 2016).

3. Usability as an evaluative framework

Usability has been conceptualized in different ways in the climate services literature as well
as the environmental social science and philosophy of science literature (e.g., Bremer et al.
2019; Kirchhoff et al. 2013; Maraun et al. 2010; Maraun and Widmann 2018c; Skelton
etal. 2017). Here, we define usable climate information as information that simultaneously
meets the requirements of credibility, salience, and legitimacy (following Cash et al. 2002,
2003). Credibility requires that the knowledge production process, in particular modeling,
meets the standards of rationality and scientific plausibility as defined by the scientific
community. Salience, in turn, means that information meets the needs of the downstream
users. Finally, information is legitimate if its production is unbiased, i.e., does not serve
the interests of some groups only, and if its production is fair, i.e., justice oriented, and,
thereby, addresses the needs and the values of different stakeholders; this carries an ethi-
cal component.

The following analysis will focus primarily on the aspects of salience and credibility.
Concerns regarding the production of legitimate climate information, especially regarding
the underrepresentation of researchers and stakeholders from the Global South (Dike et al.
2018; Rodrigues 2021; Schipper et al. 2021; Tandon 2021), require further attention from the
climate research community and are discussed in the conclusion of this paper in so far as
they relate to issues distinguishing different approaches to bias adjustment.

To apply the concept of usability for the evaluation of bias adjustment, we further refine
the concepts of credibility and salience, as different aspects of both concepts can be more
or less important in different contexts. Epistemic and nonepistemic values that are part of
credibility and salience will be italicized throughout the paper. We also note that a clear
separation between credibility as relating to the knowledge production process and salience
as relating to the user considerations is to some extent artificial. As we will discuss later,
the two concepts are interdependent to some degree, meaning that credibility in a specific
application context can be dependent on what is considered relevant in this context, i.e.,
conditional on salience criteria.
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In the context of bias adjustment, credibility covers our justificatory capacity of the method.
This means that the assumptions underlying many bias adjustment methods require justifica-
tion and testing for the method to be seen as credible. Related is also the notion of physical
interpretability, which is a necessary condition for, for example, using future climate projec-
tions beyond the observed period. The concept of credibility also covers representational and
empirical accuracy of the method. Empirical accuracy encompasses the match of individual
variables or their interdependence to observations. Representational accuracy covers the
fidelity of the bias adjustment method to the understanding of the sources of bias, as well as
the faithfulness to the laws of physics of both the bias-adjusted variable and its relationship
to large-scale drivers or other variables. Credibility also comes with the possibility of clearly
delimiting the domain of validity of the method and, therefore, the context specificity of the
method application. It can also include reproducibility to allow independent verification of
a method. Intercomparability and standardization across applications are also often seen as
implying credibility: If one uses the same method as everyone else, one can appear scientifi-
cally more credible. But social conformism within science is certainly not a genuine mark
of scientificity. Finally, capturing the full uncertainty could also be interpreted as enhancing
scientific credibility through sampling.

Salience, for one, requires that data are relevant for users in their application context.
For example, climate model output that is biased in terms of extreme precipitation occur-
rence will in general—without further processing such as bias adjustment—be inadequate
to study changes in flooding probabilities. On the other hand, data that have been bias
adjusted in such a way that the physical consistency between temperature and precipita-
tion is broken will not provide relevant or adequate information for studying hot and dry
compound extremes. Salience thus requires that information meets users’ demands on
adequacy for specific use cases.

Salience, as defined in this paper, also requires ease of use of the method or information,
meaning that it can be practically understood and applied by the users. Ease of use encom-
passes several components. It includes the rapidity of the provided method or information, that
is, how fast the data can be downloaded or how much computational resources the method
takes up and how fast it runs. These considerations can be crucial for determining whether the
information or method can be used in specific applications or to answer certain impact-related
research questions. It may also include the possible opacity of the method to the users. Opac-
ity here refers to the extent to which the internal workings or underlying mechanisms of a
method are hidden from, or not directly understandable by, the user. While epistemic opac-
ity of simulations (Humphreys 2009) is often considered as epistemically detrimental as it
hampers scientists’ understanding of their models, and thereby of the target phenomena,
epistemic opacity may still be in practice beneficial for the users that can work more efficiently
with the model as a black box and do not have to spend too much time engaging themselves
with the details of the model (Dowling 1999). Ease of use also encompasses the integrability
of the provided method into the existing workflow of a user. Finally, it includes simplicity of
usage, which concerns the straightforwardness of the practical applications. For example,
users might prefer downloading data rather than running code in a specific programming
language, and different data sources might be more or less accessible.

The quest for credibility and the quest for salience may conflict with one another if, for
instance, meeting the needs of users generates additional uncertainties within the cascade of
uncertainty that already characterizes the model chain of climate impact research. There is,
therefore, no universal good and useful way of representing the climate system, in the sense
of maximizing both credibility and salience across use cases. In what follows, we will explore
the priorities and the resulting trade-offs made by different approaches to bias adjustment
regarding these two aspects.
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4. Fundamental issues underlying credibility considerations

In this section, we discuss two fundamental assumptions which underlie credibility justifica-
tions of the different strategies in technical detail. This discussion then provides the basis
for evaluating the different approaches to bias adjustment in terms of their understanding of
usability along the multiple dimensions of the concept in the next section.

Given the issues mentioned in Table 1, the evaluation of a bias adjustment method to
establish its credibility can be based on different lines of evidence: 1) the evaluation of the
performance of the method over a historical validation period, 2) the validity of structural
assumptions underlying the method, and 3) evaluation of the preservation or nonpreserva-
tion of the future climate trend. Pseudo-reality experiments can also provide additional
evidence for or against the usage of a method (Hui et al. 2019; Maraun 2012; Velazquez
et al. 2015). Here, we first discuss the ability of a general-purpose evaluation, as defined
in section 2 to provide evidence for (1) and (2). Justifications of trend modifications (3) are
discussed in section 4b.

a. Performance differences of bias adjustment methods and implications for general-
purpose evaluation. Various publications have pointed out that the performance of a bias
adjustment method depends on the variable, region, and climate model of interest (Chen
et al. 2013a,b; Lafon et al. 2013; Maraun et al. 2017; Spuler et al. 2024; Teutschbein and
Seibert 2012; Velazquez et al. 2015; Volosciuk et al. 2017). One reason for the observed
differences in performance is that the ability of a bias adjustment method to correct a bias
depends on the physical sources of the bias—a large-scale circulation bias might be more
difficult to correct using conventional methods than a local-scale bias due to orographic
resolution. This means that methods will perform differently across use cases, depending
on the source of the bias (Addor et al. 2016; Eden et al. 2012; Maraun et al. 2017, 2021).
Furthermore, the assumptions underlying different bias adjustment methods might be
adequate or not, depending on the variable and impact studied. For example, a method
based on a parametric distribution fit might be robust in some situations but fail in other
cases when the distributional assumption—such as the choice of a (censored) gamma dis-
tribution to fit daily precipitation data—is not met (see e.g., Lafon et al. 2013). Bias adjust-
ment methods are commonly applied over a running window, the length of which depends
on the variable studied and possible rapid changes in this variable through, for example,
monsoon onsets. However, if running window lengths are chosen too short, this might
impede robust distributional fits. A nonparametric correction might work well for the body
of the distribution but might not be appropriate for extremes. Methods based on statisti-
cal extreme value theory in return can be more appropriate in the tails but difficult to
automate across locations (e.g., Volosciuk et al. 2017; Scarrott and MacDonald 2012). In
addition, the assumption that biases are stationary is more problematic for some variables
(e.g., precipitation) than for others (e.g., temperature) (Chen et al. 2015; Christensen et al.
2008; Hui et al. 2019, 2020; Maraun 2012; Van de Velde et al. 2022). This means that
depending on the variable, impact, and region studied, different bias adjustment methods
might perform better over the validation period (1) and be more suitable in terms of struc-
tural assumptions made (2).

These findings challenge the ability of a general-purpose evaluation, that is, the evaluation
of a bias-adjusted data product by the provider detached from the application, to identify the
method that best fulfils evaluation criteria (1) and (2). However, general-purpose evaluation
could still be justified if differences between methods are small enough not to impact down-
stream results or if the overall adjustment made by the method is small.

Comparing different bias adjustment methods globally, Lafferty and Sriver (2023) demon-
strate that performance differences between methods lead to large differences in the resulting
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Fic. 1. Ensemble spread of a 25-member CMIP6 ensemble for future monthly average precipitation over
Sicily under SSP58.5, under different bias adjustment methods.

bias-adjusted data. Building on the approach proposed by Hawkins and Sutton (2009), they
decompose the variance of an ensemble of climate models and bias adjustment/downscal-
ing methods into uncertainty coming from the choice of scenario, model, downscaling/bias
adjustment method, and internal variability. In their selected examples, the uncertainty of
the choice of bias adjustment and downscaling method combined contributes up to 70% of
the total variance, depending on the region and variable studied. Investigating the effect
of these differences on downstream results, Laux et al. (2021) find large sensitivities in the
results of agricultural impact models to the choice of method (up to twice as large as the vari-
ance introduced by the GCM-RCM), while Chen et al. (2013a,b) and Wang et al. (2020) find
similar sensitivities for hydrological models. To illustrate this issue, Fig. 1 in the example in
the next subsection shows a CMIP6 ensemble spread for future average precipitation over
Sicily under different bias adjustment methods. The individual methods significantly alter
the CMIP6 ensemble spread, in some cases substantially inflating, reducing, or shifting the
CMIP6 ensemble nonuniformly across months.

Finally, Ehret et al. (2012) further argue that if climate model biases are on a scale that
makes direct model output unusable for impact modeling, then the modifications made by
bias adjustment will be of equal magnitude and, therefore, not small. Even if the model biases
at each grid cell are indeed small, or large only in a small number of cases, Ehret et al. (2012)
argue that the magnitude of the bias and the impact of bias adjustment require specific evalu-
ation. This means that an evaluation that is indiscriminate across use cases or regions will
in general not provide adequate justificatory capacity for the application of a given method.

ExAmpLE 1: IMPLICATIONS OF PERFORMANCE DIFFERENCES OF BIAS ADJUSTMENT METHODS. Figure 3
shows the monthly average precipitation (2070-2100) projected by a 25-member CMIP6
ensemble (see the appendix) under shared socioeconomic pathway (SSP) 585 over Sicily
before and after the application of four different bias adjustment methods. The choice of
bias adjustment method significantly alters the spread across climate models—which is of-
ten interpreted as uncertainty in future projections. The spread can be increased using some
methods, such as the cumulative distribution function transform (CDFt) method in this case,
and decreased using other methods, e.g., the ISIMIP3BASD method. This effect is nonuni-
form across months. For example, ensemble spreads in July are often maintained but shifted
and inflated in October.
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As average monthly precipitation is a fairly aggregate metric, strong changes to the ensemble
spread through bias adjustment raise questions about the interpretation of uncertainty in
future projections. Individual analysts consistently employing one bias adjustment method
might get very different indications about the scale and the uncertainty in future projections
than users of a different method. This highlights the challenges of a general-purpose evalu-
ation of bias adjustment methods.

b. Justificatory capacity and physical interpretability of trend modifications through bias
adjustment. The modification of the simulated climate change trend is often an unintended
but critical side effect of bias adjustment. Examining plausible future changes in the cli-
mate system caused by anthropogenic climate change is the key reason for generating future
projections in the first place. Therefore, any modification of this simulated trend and the
implications for the credibility of the resulting information need to be carefully investigated.

Simple bias adjustment methods such as linear scaling or quantile mapping modify
projected trends, i.e., the forced response to anthropogenic emissions, simulated by a cli-
mate model. More advanced, so-called trend-preserving methods exist that often build on
quantile mapping and attempt to preserve trends in the mean, individual quantiles or the
whole distribution (Maraun 2016a). These include methods such as the CDFt (Michelangeli
et al. 2009; Vrac et al. 2016), quantile delta mapping (Cannon et al. 2015; Li et al. 2010), or
ISIMIP3BASD (Lange 2019).

However, even so-called trend-preserving methods frequently modify the climate
change trend for several reasons. For one, all methods are based on some assumptions
about which trends to preserve and how to represent them. For example, a method such
as linear scaling, which subtracts a bias in the mean from a climate model (or the related
delta method), will preserve trends in the mean but not trends in the rest of the distribu-
tion. Similarly, a method such as ISIMIP3BASD might aim to preserve trends in certain
quantiles but will still modify trends in threshold-based impact metrics such as dry days
or heat wave days or in spatiotemporal metrics such as dry spells, or higher moments of the
distribution, as discussed by Casanueva et al. (2020) and Spuler et al. (2024), which another
method might aim to preserve. Second, any trend-preserving method is necessarily based
on assumptions about how to parameterize trends. For example, trends can be assumed
additive or multiplicative, they can be assumed constant or varying over an application
period/with seasonality, and the bias correction can be based on distributional or other
structural assumptions. The success of any trend preservation is contingent on how well
these assumptions match the underlying data, which can depend on the variable, impact,
and region studied. Third, even if most assumptions are met, empirically trends are not
guaranteed to be preserved as assumptions in other parts of the bias adjustment methods
might not be entirely adequate and model fits might be imperfect. Thus, trend-preserving
methods frequently modify trends in certain attributes of interest (see, e.g., Cannon
et al. 2015; Spuler et al. 2024; Padulano et al. 2025; Astagneau et al. 2025).

Trend modifications through different bias adjustment methods can have large impacts on
downstream results and impact models, as illustrated in example 1. In addition, the analysis
presented in example 2 below shows that bias adjustment not only changes the climate change
trend but also impedes the physical interpretability of this trend by altering the relationship
between local variables such as precipitation and their large-scale dynamical drivers. The
resulting climate model spread after bias adjustment is, therefore, not only modified but also
made physically less interpretable and coherent which has implications, for example, for the
study of compound risks.

Trend modifications can be justified either pragmatically by arguing that certain climate
model trends are not relevant for a specific application—for example, trends in the upper
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tail of precipitation might not be relevant when studying dry spells—or based on physical
and statistical reasoning. The former, pragmatic, justification will only be valid for a specific
use case. Similarly, any physical or statistical justification of a trend modification through
bias adjustment relies on the assumption that gridcell-level biases in historical simulations
directly relate to the gridcell-level validity of future projections. However, this assumption is
not valid generally. Rather, it can be justified only based on a (physical) understanding of the
sources of model bias that are specific to a certain variable and region: For example, Gobiet
et al. (2015) argue that climate models have intensity-dependent biases in the temperature
trend over Europe relevant for their chosen application that can be improved through quantile
mapping. However, in the absence of a physical justification or knowledge of the source of
the bias, Maraun et al. (2017) argue that trend modifications through bias adjustment should
be avoided.

ExAampLE 2: IVIODIFICATION OF THE PHYSICAL INTERPRETATION OF THE CLIMATE MODEL ENSEMBLE
SPREAD. As an example of how bias adjustment alters the physical interpretability of climate
model trends, we analyze dynamical storylines of future precipitation before and after bias
adjustment. Physical storylines represent plausible unfoldings of future trends conditional
on the evolution of large-scale drivers in the climate system such as the strength of future
Arctic amplification (Shepherd et al. 2018; Zappa and Shepherd 2017), allowing a dynami-
cal interpretation of the spread in an ensemble of climate models.

We bias adjust precipitation over the Mediterranean region in 30 CMIP6 models under
SSP585 using seven methods (CDFt, scaled distribution mapping, the ISIMIP3BASD method,
linear scaling, quantile mapping, the latter two both with and without running window (RW)
implementation—described in detail in Spuler et al. 2024). We then follow the approach as
presented in Zappa and Shepherd (2017): Based on a pattern scaling assumption, we regress
the ensemble anomaly of the pattern of precipitation change (scaled by the global-mean
temperature change) onto large-scale drivers, namely, tropical warming, polar warming, and
change in stratospheric polar vortex strength. The results show the influence of each of the
drivers on the difference of the model projection from the ensemble mean, or in other words
the physical contribution of the large-scale driver to the ensemble spread. More information
on the data and method can be found in the appendix.

Figure 2 compares the resulting influence of tropical warming on the ensemble spread
between the raw climate model and the model bias adjusted with one of the seven methods
(plots for the other drivers can be found in the appendix). We find that the influence of the
remote driver on the ensemble spread changes strongly depending on the bias adjustment
method used. The influence can be strengthened, weakened, or fully removed in some regions,
and this effect appears to be nonuniform across bias adjustment methods.
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Fic. 2. Influence of tropical warming on the climate model ensemble spread for precipitation [mm (K day)-"] for the raw climate
model ensemble and for the bias-adjusted climate models in a storyline approach (see the appendix).
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To some extent, this result is to be expected, as all bias adjustment methods investigated
here calibrate the model to observations on a gridcell by gridcell basis. By doing so, they
also change the multivariate structure of the precipitation (Spuler et al. 2024) as well as
its relationship to dynamical drivers such as the zonal wind and associated storm-track
location, which in Zappa and Shepherd (2017) was shown to mediate the response of
Mediterranean precipitation to the three large-scale drivers investigated. However, this
implication of bias adjustment is often not appreciated in practice. This example illustrates
that bias adjustment not only modifies the climate change trend but also impedes the dy-
namical interpretation and understanding of future ensemble spread and its multivariate
structure which is relevant in particular for the study of spatial, temporal, or multivariate
compound events (Zscheischler et al. 2020) in future climate.

5. Evaluating approaches to bias adjustment through the lens of usability

The four approaches to bias adjustment introduced in section 2 navigate the tension between
fundamental issues of bias adjustment and closing the usability gap of climate information
in different ways. Based on the discussion of two key methodological issues in the previous
section, we now apply usability as introduced in section 3 as an evaluative framework to ex-
amine how different methodological assumptions and value judgments about usable climate
information shape the choice of approach to bias adjustment.

Figure 3 illustrates the credibility assumptions made by different approaches to bias ad-
justment. In particular, it highlights how the different credibility assumptions relate to each
other and how the two fundamental issues which were discussed in the previous section—the
interpretation of modifications to the climate change trend and performance differences of
bias adjustment methods—are addressed in different approaches.

a. Consistency approach. In the consistency approach to bias adjustment, a single bias
adjustment method is selected either at institutional level or by a data provider based on
a general-purpose evaluation as defined in section 2 and then applied across regions and
impacts.

In terms of salience considerations, this strategy prioritizes the ease of use of the
bias-adjusted information, in particular in terms of integrability into existing workflows,
simplicity of usage, and opacity of the method. If a consistent method is decided across use
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Fic. 3. Assumptions that underly credibility considerations of different approaches to bias adjustment
and their relationships.
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cases, the burden of engaging with the complexities of bias adjustment is removed from the
user which facilitates integration of bias adjustment with subsequent tasks such as downscal-
ing or impact modeling. This choice is not uniquely made in the case of bias adjustment—the
intricacies involved in the different steps of the climate modeling chain already necessitate
dividing labor and expertise across teams and institutions. For example, most users of climate
models have no detailed knowledge of subcomponents of the global or regional climate models
used. This has led to a considerable drive toward standardized datasets through coordinated
model experiments such as CMIP and Coordinated Regional Climate Downscaling Experiment
(CORDEX). Similarly, the consistency approach argues that not every user has the technical
knowledge to select the most appropriate bias adjustment method. An already bias-adjusted
dataset or preselected method is, therefore, suitable as it assigns the responsibility for the
choice of method to experts’ external to the use case.

However, the consistency approach to bias adjustment thereby assumes that a
general-purpose evaluation by the data provider or institution can sufficiently ensure
credibility in terms of both the justificatory capacity of modifications to the climate change
trend as well as the representational and empirical accuracy of the resulting information.
However, based on the discussion of existing literature and the examples analyzed in section
4, we find that neither of these assumptions holds in practice. Arguments made for justify-
ing modifications to the climate change trend hold only conditional on the context of the
application. Similarly, the performance of a bias adjustment method depends on the impact,
region, and variable studied.

Prioritizing standardization and comparability of methods across use cases in the
consistency approach can be taken as furthering credibility; however, as discussed in
section 3, these two aims are not genuine criteria for scientific credibility. Standardization
can, on the other hand, be argued to increase the relevance of the data for the user. However,
this holds primarily if the use case is global or involves model intercomparison—either across
regions in a global assessment or across use cases within a region. If the aim of a given user
is to produce the most accurate set of (local) climate projections in a specific application,
standardization in line with the consistency approach will not necessarily produce the most
relevant information.

The choice to prioritize salience, specifically ease of use, therefore, comes at a cost to the
credibility of the resulting climate information as neither justificatory capacity of modifica-
tions to the climate change trend or representational and empirical accuracy can be guaranteed
based on general-purpose evaluation. However, if the use case is global or involves model
intercomparison, standardization of the bias adjustment method improves its relevance for
the user, another salience consideration.

b. Use-case-specific evaluation. The use-case-specific evaluation approach to bias adjust-
ment encourages the choice of method based on the consideration of context-specific as-
sumptions and subsequent evaluation of bias-adjusted results.

The focus of this approach is to improve the credibility and relevance of the resulting climate
change information. By situating the evaluation of bias adjustment methods in a specific use
case, the context-specific assumptions of individual methods can be justified. In addition,
when comparing multiple methods, the most appropriate method in terms of empirical perfor-
mance, trend preservation, and use-case-specific assumptions can be selected. This enhances
both representational and empirical accuracy as well as justificatory capacity. Furthermore,
by considering specific user demands, this ensures that the information is relevant for the
downstream analysis.

To identify the best-performing bias adjustment method for a given use case, evaluation
needs to be based on multiple lines of evidence, as outlined in section 4a. This, however,
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comes with challenges. Evaluating the performance of a bias adjustment method requires
selecting the climate metrics relevant to the impact studied. However, impact models, such
as hydrological or fire models, can depend on a range of climate metrics, where the sen-
sitivity of the model output to biases in the different metrics is not always known a priori.
Furthermore, uncertainty in the results of historical evaluation is introduced through
observational uncertainty, as well as the choice of validation period due to climate vari-
ability (Casanueva et al. 2020; Chen et al. 2015; Jain et al. 2023). Structural assumptions
underlying the different methods, such as the suitability of a selected parametric distri-
bution or assumptions about the nature of climate change trends, can be hard to verify
and require judgments on the side of the researcher applying bias adjustment. This means
that multiple methods can be adequate under somewhat equally defensible assumptions
(Ho et al. 2012).

Furthermore, the use-case-specific evaluation approach currently comes at the cost of
ease of use in most applications. To enable the implementation of this evaluation by the
user, different bias adjustment methods have to be readily available and use-case-targeted
evaluation needs to be straightforward enough to be conducted within the time frame of the
research or climate services project. The publication of several bias-adjusted datasets, for
example, by CORDEX (2022) and evaluation frameworks such as these developed as part of
the VALUE project (Gutiérrez et al. 2019; Maraun et al. 2015, 2019) or sector-specific protocols
(e.g., Galmarini et al. 2019) support this. In addition, open software tools such as climate4R
framework (Iturbide 2019), the xclim library (Bourgault et al. 2023), or the ibicus software
package (Spuler et al. 2024) can help users to easily implement different methods and con-
duct evaluation. However, even given the current availability of open software, evaluation
frameworks, and datasets, the task of evaluating and selecting the bias adjustment method
best suited to a use case requires some familiarity and knowledge with the approach that
users might not necessarily have.

In addition, the limitations of currently available bias adjustment methods imply that
a credibility gap remains, for example, if trends in certain metrics are still modified in an
undesirable manner or if relevant metrics are not calibrated by the bias adjustment method.
These persistent limitations motivate research into new bias adjustment methods, as well as
alternatives to bias adjustment which are discussed in section 5d.

¢. Ensembling approach. Performance differences across bias adjustment methods can
also be interpreted as uncertainty, which underlies the ensembling approach to bias
adjustment.

On first glance, the ensembling approach appears to prioritize credibility. It propagates
the lack of knowledge about the most suitable bias adjustment method down to the user,
presenting it as uncertainty about future projections, which the user needs to engage with
when using the information. It can be argued that it thus maximizes the likelihood of the
truth falling within the spread, while potentially compromising the relevance of the result-
ing output.

However, the interpretation of performance differences between bias adjustment methods
as a source of epistemic uncertainty (see e.g., Chen et al. 2015; Ho et al. 2012; Hui et al. 2019;
Velazquez et al. 2015; Wang et al. 2018) can be disputed when considering on what basis
the application of any particular bias adjustment method can be justified. As discussed in
section 4, each bias adjustment method is justified only by assumptions which are use-case
dependent. These can include assumptions about which quantiles or threshold-based climate
impact drivers to correct based on the climate impact studied, which distribution to choose
based on the variable and region studied, and what kind of trends to preserve in which
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statistics. There is, therefore, no general justification for a bias adjustment method, in the
way physical laws can be argued to provide for GCMs (Baumberger et al. 2017; Knutti 2008;
Oreskes et al. 1994).

Therefore, when different bias adjustment methods are used in an ensemble, it is not
an ensemble of equally justified methods that is considered but rather an ensemble of
statistical assumptions, some of which can be more or less justified. For example, mod-
els with very different assumptions—such as trend-preserving and nontrend-preserving
methods—are often bundled together in an ensemble, or methods whose assumptions
are clearly disputable are included. In particular, recent applications of the ensembling
approach did not conduct any (published) prior evaluation of the methods included in the
ensemble (see e.g., Lafferty and Sriver 2023; Laux et al. 2021), which raises the question
whether this lack of evaluation on the researchers’ side should be interpreted as uncer-
tainty. On the contrary, including methods with opposing assumptions might make the
resulting climate model spread less interpretable—and thereby less credible—and pos-
sibly overly large.

Furthermore, the ease of use, in particular rapidity, is impeded by the computational
cost associated with running an impact model several times using different bias adjust-
ment methods. However, as little to no modification of existing impact modeling pipelines
is required by the approach, this poses mostly a resource challenge rather than a challenge
to the researcher as both simplicity of usage and epistemic opacity are relatively unaffected.
Particularly in well-resourced application contexts, the ease of use is, therefore, arguably
only marginally impacted.

d. No bias adjustment approach. Finally, the no bias adjustment approach assumes that
the potential gains in salience achieved through bias adjustment in terms of relevance to
the user do not outweigh the credibility lost in the process of bias adjusting climate model
projections. Possible alternative approaches to bias adjustment are outlined in section 2 and
include working directly with trends, scenario-neutral, or storyline approaches and local
weather generators or constraining an ensemble of climate models based on their perfor-
mance over the historical period.

However, these approaches also come with several limitations and assumptions: For ex-
ample, working with trends is difficult if spatiotemporal fields or many climatic variables with
adequate dependence structure are required to drive complex impact models (see e.g., Best
etal. 2011; Clark et al. 2011 for an example of what is required to drive a state-of-the-art land
surface model). Scenario-neutral approaches are often computationally expensive and can be
difficult to scale for larger application areas (e.g., Broderick et al. 2019; Bennett et al. 2021),
impeding relevance and ease of use. Finally, constraining model ensembles on the basis of
performance over the historical period is an active area of research. Obstacles to operation-
alizing existing approaches widely include the significant role of observational uncertainty
and internal variability (Jain et al. 2023), as well as the fact that detailed research is often
required to understand whether a certain climate model is getting the correct distribution
for the right reasons. Furthermore, alternative approaches require rethinking the scales and
starting points to produce climate information. Weather generators driven by the output of
climate models, for example, produce local information and do not lend themselves well to
global intercomparison assessments.

Available alternatives to bias adjustment, therefore, in many applications, fail to close the
salience gap which arises due to prevailing biases in climate models. As will be discussed
in section 6, the approach chosen to address this usability gap depends on the considered
starting point for producing climate information.
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6. Discussion and conclusions

The most general justification for applying bias adjustment to the output of climate model data
is that it makes the resulting information more usable. In the tension between fundamental
issues and practical considerations, different approaches to bias adjustment have developed,
from consistent application to use-case-specific evaluation, ensembling, and no bias adjust-
ment. In this paper, we evaluate these different approaches through the lens of usability,
examining underlying methodological assumptions and value judgments.

The consistency approach prioritizes standardization for intercomparison projects and ease
of use of bias adjustment. This comes at the cost of the credibility of the resulting information,
in particular as empirical accuracy and justificatory capacity cannot be guaranteed based on
a general-purpose evaluation. The use-case-specific evaluation approach, on the other hand,
focuses on ensuring the credibility and relevance of bias-adjusted information for a specific
application, but this comes at a cost to ease of use, given available tools. The ensembling ap-
proach aims to address credibility through “sampling” of different bias adjustment methods
in an ensemble. However, the credibility gained by including many bias adjustment methods
in an ensemble can be disputed, and the approach also compromises on relevance and ease
of use. Finally, the no bias adjustment strategy argues that the gains in salience through bias
adjustment do not outweigh the losses in credibility, but alternatives proposed are largely not
operational and come with open issues of their own.

Overall, none of the currently available approaches to bias adjustment produces cli-
mate information that closes the usability gap in the sense of being both credible and
salient across use cases. For some applications, it is, therefore, questionable whether
the demands of credibility and salience can simultaneously be met. An example of this
can be found in the physical risk scenarios published by NGFS (2021), which use the
consistency strategy, in particular the ISIMIP3BASD method, and produce scenarios
used by central banks across the world to stress test their financial systems to climate
risks. A consistent bias adjustment method is necessary as it implies comparability of
results when assessing risks across regions for organizations such as the International
Monetary Fund. However, as demonstrated by Laux et al. (2021), the choice of bias
adjustment method can significantly impact downstream results. Therefore, the indis-
criminate application of a method across variables and regions risks the distortion of the
information on future impacts and associated risks to financial stability. Here, salience
demands stand in opposition to credibility ones, pointing to potential limits of relevance
imposed by scientific integrity.

The discussion in this paper shows that the choice of bias adjustment approach and the
associated best available climate information in terms of usability depends on which aspects
of usability are deemed important in the production of climate information and which assump-
tions are accepted. To some extent, the difference between prioritizing relevance for global
studies or model intercomparison in the consistency approach, as opposed to locally relevant
and credible information in the use-case-specific evaluation approach, can be mapped to
the distinction between “top-down” climate information which starts from a GCM/RCM in a
specific scenario and “bottom-up” climate information which starts from a specific vulner-
ability and prioritizes the relevance of the information to the impacted community (Kelly and
Adger 2000; O’Brien et al. 2007). In this distinction, different approaches to bias adjustment
also take different views on the legitimacy of the resulting climate information as the third
component of usability, specifically in the sense of “taking into account the values, interests,
and concerns of different stakeholders.” While bottom—up approaches are, in many cases,
preferred when developing local climate information, the time and skill required, given
currently available tools, to apply bias adjustment prevent the use-case-specific evaluation
approach from being easily applicable in local contexts.
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The evaluation conducted in this paper raises important questions on how to address this
existing usability gap—through changes in current practice, tool development and deploy-
ment, and future research into method development.

In terms of changes to current practice, examples of best practice exist that could already,
given available methods and tools, be adopted more widely. So-called process-oriented
bias adjustment methods, which take into account physical sources of bias, could be more
widely used. For example, Manzanas and Gutiérrez (2019) condition their bias adjustment
on phases of ENSO, and Verfaillie et al. (2017) adjust dependent on synoptic weather types.
Also, there are good examples of published evaluation; for example, Lehner et al. (2023)
assess a number of bias adjustment methods over Austria, and the authors are aware of at
least one meteorological service which is currently comprehensively evaluating a number of
different bias adjustment methods for data provision for a range of different use cases. These
examples primarily fall under the use-case-specific evaluation approach. Available tools can
support their implementation, including software tools such as ibicus (Spuler et al. 2024) and
the climate4R framework (Iturbide et al. 2019) or evaluation frameworks as developed by the
VALUE project (Gutiérrez et al. 2019).

However, implementing this best practice requires some technical expertise on the side
of the user, which can be a climate impact research or climate service practitioner, as well
as time and associated funding spent on bias adjustment. Moving forward, the shortfall in
the ease of use of the use-case-specific evaluation approach can be addressed by continu-
ing the development of available tools for comparing and evaluating existing bias adjust-
ment methods and mainstreaming them into widely used pipelines for processing climate
information.

Finally, further method development guided by the usability framework presented in
this paper can support closing the usability gap in different application areas. Machine
learning approaches are able to improve the multivariate structure which can be valuable
especially for studying compound extremes (e.g., Hess et al. 2023). However, they still
rely on many of the same assumptions as existing methods and can be much harder to
evaluate in the presence of fewer uncalibrated aspects (Maraun 2016a). Process-based
bias adjustment methods, as well as some of the approaches listed in the no bias adjust-
ment approach such as constraining an ensemble of future projections based on historical
performance, can be improved through further research. On the other hand, bottom-up
climate information that is, for example, coproduced with local actors might require dif-
ferent approaches that can be integrated into information pipelines working backward
from a local context, or “intermediate technologies” called for by Rodrigues and Shepherd
(2022). These local requirements might favor the advancement of methods beyond bias
adjustment, such as methods that link local weather generators directly with changes in
large-scale drivers.

The aim of this contribution was to situate bias adjustment in the discussion on the us-
ability of climate information, provide theoretical foundations for choices and assumptions
often made implicitly in practice, and offer a guide for researchers and practitioners working
with bias adjustment. With this contribution, we hope to support the reflection on the dif-
ferent choices when approaching bias adjustment as well as its subsequent evaluation and
offer a perspective on possible ways forward considering the interpretation of the usability
of climate information.
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APPENDIX

Storyline Approach and Physical Interpretation of the Climate Model Spread
[Section 4b]

We follow the approach presented in Zappa and Shepherd (2017) to investigate the connec-
tion between remote drivers and model spread, before and after bias adjustment. The three
remote drivers for each model (cm) analyzed are

e tropical warming AT;;‘)WI: temperature change (2070-2100 SSP58.5 compared to 1960-90
hist) at 250 hPa averaged between 30°S and 30°N,

e polar warming AT;;‘ar: temperature change (2070-2100 SSP58.5 compared to 1960-90
hist) at 850 hPa averaged between 60° and 90°N, and

* change in stratospheric polar vortex strength AUZ” : zonal wind change (2070-2100

SSP58.5 compared to 1960-90 hist) at 20 hPa averaged between 70° and 80°N.

We scale each of the remote drivers by the model-simulated global-mean temperature
(GMT) change AT*™ and compute anomalies (-)’ corresponding to the multimodel mean. Un-
der a pattern-scaling assumption, we then regress the multimodel anomaly in precipitation
change [change in extended winter, November—April (NDJFMA), gridcell average precipitation
2070-2100 compared to 1950-90], standardized by AT*™ onto driver anomalies:

! ! ! ’

cm cm TClTl cm
be _ + 5 tropical polar strat
ATcm bc bc ATcm bc ATcm bc ATcm CIIl,bC ‘

Here,e .~ N(0, o) is Gaussian noise. This approach enables us to capture (and possibly
attribute) the influence of remote drivers on the multimodel spread in precipitation trends.
In a second step, the large-scale drivers can then be clustered to define categories of future
precipitation responses (or storylines, see Zappa and Shepherd 2017). The CMIP6 models
used are listed in Table A1.

Regressions at each grid point are fitted to the raw model as well as all bias-corrected mod-
els (bc). To assess the differences between the regression coefficients of raw and bias-corrected
precipitation, we also fit regressions to the differences:

’ ’ !
cm cm

cm cm cm
APbC B Aljraw —a + ﬂ tropical polar strat
ATcm ATcm bc bc ATcm bc ATcm bc ATcm cm,bc .

The sensitivity of the European precipitation response to the uncertainty in each of the
three remote driver responses is shown in Fig. A1l for the raw climate model as well as the
different bias-adjusted ones. While the response patterns identified in the raw, i.e., not bias
adjusted, ensemble shows a similarity to the response patterns identified by Zappa and
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Taee A1. CMIP6 models used for the analysis in section 4a and the storyline analysis in the appendix
and section 4b.

1 AS-RCEC__TaiESM1 * *
2 BCC__BCC-CSM2-MR *

3 CAS__FGOALS-g3 * *
4 CCCR-IITM__IITM-ESM * *
5 CCCma__CanESM5 * *
6 CMCC__CMCC-CM2-SR5 * *
7 CMCC__CMCC-ESM2 * *
8 CNRM-CERFACS__CNRM-CM6-1 * *
9 CNRM-CERFACS__CNRM-CM6-1-HR * *
10 CNRM-CERFACS__CNRM-ESM2-1 * *
1 CSIRO-ARCCSS__ ACCESS-CM2 *

12 EC-Earth-Consortium__EC-Earth3-CC * *
13 EC-Earth-Consortium__EC-Earth3-Veg *
14 EC-Earth-Consortium__EC-Earth3-Veg-LR * *
15 INM__INM-CM4-8 * *
16 INM__INM-CM5-0 * *
17 IPSL__IPSL-CM6A-LR * *
18 KIOST__KIOST-ESM *
19 MIROC__MIROC-ES2L * *
20 MIROC__MIROC6 *

21 MOHC__HadGEM3-GC31-LL *
22 MOHC__HadGEM3-GC31-MM *
23 MOHC__UKESM1-0-LL *
24 MPI-M__MPI-ESM1-2-LR * *
25 MRI__MRI-ESM2-0 * *
26 NCAR__CESM2 * *
27 NCAR__CESM2-WACCM * *
28 NCC__NorESM2-LM *
29 NCC__NorESM2-MM * *
30 NIMS-KMA__KACE-1-0-G *
31 NOAA-GFDL__GFDL-CM4 *
32 NOAA-GFDL__GFDL-ESM4 * *
33 NUIST__NESM3 * *

Shepherd (2017), some differences emerge, the most prominent of which is the response to
tropical warming in the western Mediterranean. These differences are likely due to the dif-
ferent models and model generation (CMIP5 vs CMIP6) investigated.

In addition, Fig. A2 showcases the difference between the bias-adjusted response patterns
and the response pattern in the raw ensemble. Depending on the bias adjustment method,
the influence of the remote drivers onto model spread can be quite substantially different.
This appears to be nonhomogeneous across bias adjustment methods.

Table A1 provides an overview of climate models participating in CMIP6, which were used
in the analysis in this paper. We did not apply any other criteria for the inclusion of a model
other than their participation in CMIP and the availability of the required data through the
Centre for Environmental Data Analysis (CEDA) archive.
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Fic. A1. Regression R2 as well as the influence of stratospheric vortex strength, tropical warming, and polar warming on the
climate model ensemble spread for precipitation [mm (day K)-'] for the raw climate model ensemble and for the bias-adjusted
climate models.
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Fic. A2. Difference in response pattern between bias-adjusted and raw climate model for the influence of stratospheric vortex
strength, tropical warming, and polar warming on the climate model ensemble spread for precipitation [mm (day K)-].
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