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Climate Information: Methodological 
Assumptions and Value Judgments
Fiona Raphaela Spuler,a,b Jakob Benjamin Wessel ,c Julie Jebeile,d,e,f Jakob Zscheischler,g,h 
and Theodore G. Shepherda

ABSTRACT: Statistical bias adjustment has become a common practice to increase the relevance 
of climate model outputs for impact studies and other societal applications. However, the applica-
tion of bias adjustment raises fundamental issues identified in the literature, calling into question 
the credibility of the adjusted climate information. In the attempt to address the usability gap of 
climate model output despite these unresolved issues, different approaches to bias adjustment have 
emerged—from applying a single consistent method across studies, selecting the most suitable 
method for a given use case, to employing an ensemble of bias adjustment methods. This paper 
examines how these approaches rest on both methodological assumptions and implicit value judg-
ments about what constitutes usable climate information and for whom it is produced. Building on 
recent literature in the philosophy of science, we propose a framework for evaluating the usability 
of climate projections in the context of bias adjustment and apply this framework to evaluate the 
different approaches to bias adjustment. To evaluate the credibility of the adjusted climate informa-
tion, the paper provides a detailed discussion of two key methodological assumptions underlying 
different approaches, the interpretation of performance differences of bias adjustment methods and 
changes to the climate model trend and ensemble through bias adjustment. Through this perspec-
tive, we aim to situate bias adjustment in the discussion around usable climate information and 
the production of climate services, while offering a practical discussion of assumptions for climate 
impact researchers and climate service practitioners working with bias adjustment methods.

SIGNIFICANCE STATEMENT: Statistical bias adjustment of climate model output has become 
common practice but raises fundamental issues unresolved in the literature. Informed by the de-
velopment of the software package ibicus for the comparison and evaluation of bias adjustment 
methods, this perspective provides both a technical discussion of methodological assumptions 
of prevalent approaches to bias adjustment and a philosophical reflection on the associated 
interpretations of usable climate information. Both of these aspects inform the approach to bias 
adjustment chosen in practice. We argue that the discussion of both technical assumptions and 
implicit value judgments conducted here is important to guide future method development and 
can serve as a practical guide to users of bias adjustment and organizations who aim to provide 
actionable climate services.
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1. Introduction
Global and regional climate models (GCMs and RCMs), based on a numerical implementa-
tion of physical laws such as thermodynamics and fluid dynamics, are a primary source of 
information on the future response of the climate system to anthropogenic greenhouse gas 
emissions and other forcings. Coordinated in the Coupled Model Intercomparison Project 
(CMIP), for example, projections by different GCMs provide an envelope of plausible future 
climate changes and the basis for motivating climate mitigation policies and developing 
adaptation strategies.

Due to the parameterization of subgrid cell processes and other unmodeled or unresolved 
processes, both global and regional climate models necessarily suffer from shortcomings 
in the representation of key climatic processes. These shortcomings manifest in discrepan-
cies between the model statistics and the corresponding observational statistics over the 
historical period, so-called biases (Maraun 2016a). For example, a climate model might 
have biases in the amount of annual rainfall observed in a particular location due to defi-
ciencies in the representation of the extratropical Atlantic storm track (Maraun et al. 2017; 
Priestley et al. 2023).

Aside from generating fundamental insights about the climate system, climate science 
is also called to deliver usable climate information to society (Lemos et al. 2012; Kirchhoff 
et al. 2013). Climate information is said to be usable if it is simultaneously credible, salient 
or relevant to the needs of users of climate information, and legitimate, meaning that the 
production of the information is fair (Cash et al. 2002; Jebeile and Roussos 2023; Jebeile 
2024). However, the biases of climate models in representing meteorological variables rel-
evant to societal impacts call into question the credibility and relevance—and, therefore, 
the usability—of climate model output, especially at the local level. This is particularly 
important if one is interested not only in evaluating changes relative to the model climatol-
ogy, i.e., in terms of anomalies, but also in assessing changes in absolute threshold metrics 
such as frost days, dry days, or wind speed extremes that are important for most societally 
relevant impacts.

One widespread way of addressing the biases in both global and regional climate model 
outputs is statistical bias adjustment, hereafter simply referred to as bias adjustment. Bias 
adjustment has become a near-standard preprocessing step for using the output of climate 
models across climate service applications (Fung 2018; Kahlenborn et al. 2021), climate impact 
studies (Jägermeyr et al. 2021; Laux et al. 2021), and extreme event and impact attribution 
(Philip et al. 2020; Tradowsky et al. 2023).

Bias adjustment can, in the most general manner, be described as an empirical mapping 
of a climate model statistic onto the corresponding observational statistic, calibrated over 
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the historical period and applied to a future period (Maraun 2016a). Bias adjustment meth-
ods implement this empirical mapping in different ways, ranging from simple adjustments 
to the mean or variance (e.g., linear scaling), to adjustments by quantile (e.g., parametric 
or nonparametric quantile mapping), to methods that aim to preserve the trend in specific 
parts of the distribution [e.g., Inter-Sectoral Impact Model Intercomparison Project, Phase 3 
Bias-Adjustment and Statistical Downscaling (ISIMIP3BASD)—Lange 2019; quantile delta 
mapping—Cannon et al. 2015]. Another approach, which is often listed alongside bias 
adjustment methods, is the so-called delta change method, which adds the mean trend 
in the climate model to historical observations. In addition to these univariate methods 
that are implemented at each grid cell independently, more advanced bias adjustment 
methods exist that also correct multivariable or spatial structure in climate models (see 
François et al. 2020 for an overview). We refer to Spuler et al. (2024) for a more detailed 
overview of commonly used bias adjustment methods and key choices that distinguish 
available methods.

However, all bias adjustment methods described above come with fundamental is-
sues and rely on strong assumptions that have been highlighted and discussed in the 
literature. Bias adjustment methods are prone to misuse if only calibrated aspects are 
evaluated and rely on the assumption that biases are stationary over time (Ehret et al. 
2012; Maraun et al. 2017). Furthermore, bias adjustment methods can impair the spatio-
temporal consistency of variables and modify the climate change trend and multimodel 
ensemble spread without physical justification. Table 1 provides a brief overview of the 
most prevalent issues.

Table 1.  Fundamental issues with the bias adjustment of climate model output.

Possible  
overcalibration and 
evaluation of  
noncalibrated  
aspects

Bias adjustment can make any unrelated variable or even random fields look similar to target 
observations in terms of the marginal (locationwise) statistical structure. Chandel et al. (2024) 
illustrate this by bias adjusting a random field as a stand-in for GCM output, and Maraun et al. 
(2017) by bias adjusting daily temperature over the Southern Ocean to daily precipitation over 
Europe. In both cases, the authors show that the bias-adjusted fields look statistically similar 
to the target observational field. Therefore, evaluating improvements in the locationwise  
correspondence of observational and climate model fields—or in general, calibrated 
aspects—is nonindicative of successful bias adjustment application and cannot detect  
“misuse,” even when the evaluation is out of sample (Maraun and Widmann 2018a). This  
issue is even more acute for multivariate methods, where more aspects are explicitly  
calibrated. Despite this, the evaluation of noncalibrated aspects of bias adjustment is not  
common in current applications.

Modification of the 
climate change trend 
and spatiotemporal 
consistency

All bias adjustment methods—even so-called trend-preserving methods—modify future 
trends projected by the raw output of GCMs or RCMs, especially in impact-relevant metrics 
(Casanueva et al. 2020; Chandel et al. 2024; Dosio 2016; Spuler et al. 2024). This modification 
of the model trend cannot be justified generally and can lead to implausible future trends  
(Maraun et al. 2017) as well as unrealistic modifications to climate model ensemble spreads 
(often interpreted as uncertainty). This will be further discussed in section 4b and the example 
in this section. In addition, bias adjustment will alter spatiotemporal and intervariable 
relationships in a climate model; Ehret et al. (2012) and Chandel et al. (2024) argue that this 
impairs the advantage of using a GCM or RCM and removes the physical insights that can be 
gained from it.

Stationarity  
assumption and  
sensitivity to the 
choice of  
calibration period

The application of bias adjustment also rests on strong assumptions, such as the stationarity 
(time invariance) of biases or the minor role of spatiotemporal field covariances that can, in 
practice, be hard to verify (Ehret et al. 2012) and have been heavily criticized in the literature. 
In addition, many variables exhibit strong decadal variability, and the bias adjustment can be 
highly sensitive to the choice of historical calibration and evaluation period (Chen et al. 2015; 
Hui et al. 2019; Nahar et al. 2017; Van de Velde et al. 2022).

Use for downscaling Last, the practice of using (deterministic) bias adjustment for downscaling projections is based 
on the implicit assumption that local-scale variability is governed entirely by the large-scale 
driving field. This assumption is often not met, and the use of bias adjustment methods for 
downscaling has, therefore, been criticised in past literature (Maraun 2013, 2016a,b).
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Despite these fundamental issues, the application of bias adjustment remains widespread  
in current practice to produce information that is seen as relevant for a user or impact study.  
For example, and importantly, the majority of workflows using climate model projections to run 
impact models require the use of bias-adjusted climate model data. Impact models, coordinated, 
for example, in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP; Frieler et al. 
2017), are used to assess the impacts of climate change on wildfires, crop yields, biodiversity, 
or the water cycle. They provide the basis for a large body of scientific literature and research, 
the IPCC Working Group (IPCC WG II), and decision-relevant outputs such as National Adapta-
tion Plans and central banks’ climate risk scenarios [Network for Greening the Financial System 
(NGFS) 2021]. Recent studies, however, have shown a large sensitivity of relevant results to the 
choice of bias adjustment method (e.g., Chae and Chung 2024; Chen et al. 2013a,b; Iizumi et al. 
2017; Laux et al. 2021; Padulano et al. 2025; Teutschbein and Seibert 2012).

In this tension between the widespread use of bias adjustment to improve the relevance 
of climate information and fundamental issues that call into question its credibility, dif-
ferent approaches to bias adjustment have developed in current practice. Each of these 
approaches is based on a different way of addressing the fundamental assumptions and 
issues that come with bias adjustment, as well as a different perspective on what usable 
climate information is and who it is generated for.

In this paper, we use the concept of usability as a framework to evaluate these prevalent 
approaches to bias adjustment. Focusing primarily on two aspects of usability, credibility 
and salience, we examine how both methodological assumptions and implicit value judg-
ments, as recommended notably by Pulkkinen et al. (2022), shape current approaches to 
bias adjustment. While most literature on bias adjustment has focused largely on aspects 
of credibility, we argue that it is the interplay between credibility and salience that not only 
influences current practice but can also inform future research and development. Through 
this analysis, we aim to situate bias adjustment in the discussion around usable climate 
information and the production of climate services, while offering a practical discussion of 
assumptions for climate impact researchers and climate service practitioners working with 
bias adjustment methods.

The two lead authors of the paper have developed the ibicus software package (Spuler et al. 
2024) for the bias adjustment of climate model output and associated evaluation, which is 
now used by various researchers and organizations. This perspective paper is informed by 
resulting engagements with users of bias adjustment, method developers, and impact model-
ers over the past 3 years.

The remainder of the paper is structured as follows. We first present different approaches 
to bias adjustment in section 2. Section 3 introduces usability as an evaluative framework 
to investigate bias adjustment, and section 4 examines, from a methodological perspective, 
two fundamental issues around bias adjustment, which forms the basis for the subsequent 
discussion of usability. We then investigate the four approaches to bias adjustment in terms 
of their methodological assumptions and interpretation of usability in section 5 and provide 
a discussion and conclusion in section 6.

2. Background: Approaches to bias adjustment in current practice
When selecting the bias adjustment strategy for a given project, researchers and practitioners 
alike are often guided by a methodological understanding of bias adjustment alongside prac-
tical considerations. In the following, we propose a categorization of different approaches to 
bias adjustment prevalent in both academic and climate service contexts. This categorization 
is based on a review of existing literature as well as extended engagement with users of bias 
adjustment methods and is intended to provide a starting point for discussing the assump-
tions underlying these strategies in the next sections.
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The most widely used approach to bias adjustment in current practice is what in this paper 
is called the consistency approach, that is, to use a single bias adjustment method con-
sistently across regions and impacts studied. This is implemented either by working with a 
published bias-adjusted dataset or adhering to an organizational policy regarding the choice 
of bias adjustment method.

Examples of this approach include the publication of a bias-adjusted dataset for specific 
regions (e.g., Dumitrescu et al. 2020; Gergel et al. 2024; Lavoie et al. 2024; Mishra et al. 
2020; Navarro-Racines et al. 2020; Xu et al. 2021) or global datasets often published by 
larger research groups or institutional actors: e.g., NASA Earth Exchange Global Daily 
Downscaled Projections (NEX-GDDP) (Thrasher et al. 2022), Carbonplan Deep Learning for 
Statistical Downscaling (DeepSD) (Vandal et al. 2017), and Ensemble Generalized Analog 
Regression Downscaling (En-GARD) (Gutmann et al. 2022). The adherence to a single bias 
adjustment method for impact model intercomparison, such as that conducted in ISIMIP 
based on the ISIMIP3BASD bias adjustment method (Lange 2019, 2021), as well as sister 
projects such as Fire Modeling Intercomparison Project (FireMIP) (Rabin et al. 2017) or 
Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al. 
2013), is another example of the consistency approach. Published datasets are often used 
in hundreds of publications, looking at different regions and using bias-adjusted data for 
different applications.

In most cases, this consistency approach is justified based on a general-purpose evaluation 
of the chosen method. This means that the method is determined to be fit for purpose by the 
provider of the dataset based on an evaluation of one or a selected few applications. Often, 
this evaluation consists of a published case study and subsequent evaluation of global aver-
age properties [see e.g., the published evaluation in Lange (2021)]. In most cases, no further 
evaluation of the bias-adjusted results is conducted when the dataset is applied by the user, 
which could be a researcher or climate service practitioner.

However, recent comparison and evaluation of bias adjustment methods show that the 
performance of a bias adjustment method depends on the use case, i.e., region, climate model 
variable and impact studied (Casanueva et al. 2020; Chandel et al. 2024; Chen et al. 2013a,b; 
Lafon et al. 2013; Maraun 2016a; Padulano et al. 2025; Spuler et al. 2024; Teutschbein and 
Seibert 2012; Zscheischler et al. 2019), which will be discussed in more detail in section 4. 
In light of this finding, several publications advocate for a use-case-specific evaluation of 
multiple methods and selection of the bias adjustment method that performs best in terms 
of reducing biases of calibrated aspects and preserving or modifying trends in line with the 
assumptions of the case study. We call this approach to bias adjustment the use-case-specific 
evaluation approach. In this approach, the choice of bias adjustment method depends on 
a specific-purpose evaluation, that is, the variable and impact studied, as well as the physi-
cal source of bias in the climate model (Addor et al. 2016; Eden et al. 2012; Gudmundsson 
et al. 2012; Maraun 2016a; Maraun et al. 2017), which can include so-called process-based 
bias adjustment (Maraun et al. 2017). This recommendation has been followed in a range of 
publications applying bias adjustment in practice, for example, Olschewski et al. (2023) and 
Tootoonchi et al. (2023).

Another approach to interpreting performance differences of bias adjustment methods is 
what is here called the ensembling approach. This approach is motivated by recent find-
ings that show that the choice of bias adjustment method can lead to large differences in the 
resulting ensemble of bias-adjusted climate model projections (e.g., Ho et al. 2012; Lafferty 
and Sriver 2023). In the ensembling approach, these differences are understood as an addi-
tional source of uncertainty in local-scale future climate projections. The proposed response 
based on this understanding is to “sample" the additional uncertainty by applying several 
bias adjustment methods to the ensemble of climate models used and interpret these results 

Unauthenticated | Downloaded 01/13/26 11:32 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J A N UA RY  2 0 2 6 E84

probabilistically. This approach has so far primarily been proposed in academic publications 
such as Laux et al. (2021), Lafferty and Sriver (2023), Chen et al. (2013b), Iizumi et al. (2017), 
Liess et al. (2022), Wootten et al. (2017), Senatore et al. (2022), and others.

Given the fundamental issues with currently available bias adjustment, another possible 
strategy is to attempt to circumvent the use of bias adjustment methods altogether, called 
the no bias adjustment approach in this paper. Available strategies for circumventing bias 
adjustment include working only with climate change trends and anomalies (the difference 
between projected and historical values). This can be considered a form of implicit bias adjust-
ment; however, challenges arise when absolute values are required to drive impact models. 
Calculated trends can be reported as such, used to drive downstream models such as (change 
factor) weather generators (Maraun et al. 2010; Maraun and Widmann 2018b), or in principle 
integrated into different approaches that start from a specific impact or vulnerability and 
assess plausible futures in a scenario-based or scenario-neutral approach (Guo et al. 2017; 
Prudhomme et al. 2010; Shepherd et al. 2018; Wilby and Dessai 2010). Another group of meth-
ods explicitly links present-day biases in climate models to future uncertainty, formulating 
statistically coherent models to capture (and constrain) future uncertainty independently of 
possible model biases. This encompasses statistical work on multimodel ensembles (Chandler 
2013; Sansom et al. 2021) as well as approaches based on emergent constraints (Hall et al. 
2019; Williamson and Sansom 2019). Similarly, model weighting that is in some way based 
on present-day performance can, depending on the specific method, be interpreted as an 
implicit bias adjustment (Knutti et al. 2017; Sippel et al. 2016).

3. Usability as an evaluative framework
Usability has been conceptualized in different ways in the climate services literature as well 
as the environmental social science and philosophy of science literature (e.g., Bremer et al. 
2019; Kirchhoff et al. 2013; Maraun et al. 2010; Maraun and Widmann 2018c; Skelton 
et al. 2017). Here, we define usable climate information as information that simultaneously  
meets the requirements of credibility, salience, and legitimacy (following Cash et al. 2002, 
2003). Credibility requires that the knowledge production process, in particular modeling, 
meets the standards of rationality and scientific plausibility as defined by the scientific 
community. Salience, in turn, means that information meets the needs of the downstream 
users. Finally, information is legitimate if its production is unbiased, i.e., does not serve 
the interests of some groups only, and if its production is fair, i.e., justice oriented, and, 
thereby, addresses the needs and the values of different stakeholders; this carries an ethi-
cal component.

The following analysis will focus primarily on the aspects of salience and credibility. 
Concerns regarding the production of legitimate climate information, especially regarding 
the underrepresentation of researchers and stakeholders from the Global South (Dike et al. 
2018; Rodrigues 2021; Schipper et al. 2021; Tandon 2021), require further attention from the 
climate research community and are discussed in the conclusion of this paper in so far as 
they relate to issues distinguishing different approaches to bias adjustment.

To apply the concept of usability for the evaluation of bias adjustment, we further refine 
the concepts of credibility and salience, as different aspects of both concepts can be more 
or less important in different contexts. Epistemic and nonepistemic values that are part of 
credibility and salience will be italicized throughout the paper. We also note that a clear 
separation between credibility as relating to the knowledge production process and salience 
as relating to the user considerations is to some extent artificial. As we will discuss later, 
the two concepts are interdependent to some degree, meaning that credibility in a specific 
application context can be dependent on what is considered relevant in this context, i.e., 
conditional on salience criteria.
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In the context of bias adjustment, credibility covers our justificatory capacity of the method. 
This means that the assumptions underlying many bias adjustment methods require justifica-
tion and testing for the method to be seen as credible. Related is also the notion of physical 
interpretability, which is a necessary condition for, for example, using future climate projec-
tions beyond the observed period. The concept of credibility also covers representational and 
empirical accuracy of the method. Empirical accuracy encompasses the match of individual 
variables or their interdependence to observations. Representational accuracy covers the 
fidelity of the bias adjustment method to the understanding of the sources of bias, as well as 
the faithfulness to the laws of physics of both the bias-adjusted variable and its relationship 
to large-scale drivers or other variables. Credibility also comes with the possibility of clearly 
delimiting the domain of validity of the method and, therefore, the context specificity of the 
method application. It can also include reproducibility to allow independent verification of 
a method. Intercomparability and standardization across applications are also often seen as 
implying credibility: If one uses the same method as everyone else, one can appear scientifi-
cally more credible. But social conformism within science is certainly not a genuine mark 
of scientificity. Finally, capturing the full uncertainty could also be interpreted as enhancing 
scientific credibility through sampling.

Salience, for one, requires that data are relevant for users in their application context. 
For example, climate model output that is biased in terms of extreme precipitation occur-
rence will in general—without further processing such as bias adjustment—be inadequate 
to study changes in flooding probabilities. On the other hand, data that have been bias 
adjusted in such a way that the physical consistency between temperature and precipita-
tion is broken will not provide relevant or adequate information for studying hot and dry 
compound extremes. Salience thus requires that information meets users’ demands on 
adequacy for specific use cases.

Salience, as defined in this paper, also requires ease of use of the method or information, 
meaning that it can be practically understood and applied by the users. Ease of use encom-
passes several components. It includes the rapidity of the provided method or information, that 
is, how fast the data can be downloaded or how much computational resources the method 
takes up and how fast it runs. These considerations can be crucial for determining whether the 
information or method can be used in specific applications or to answer certain impact-related 
research questions. It may also include the possible opacity of the method to the users. Opac-
ity here refers to the extent to which the internal workings or underlying mechanisms of a 
method are hidden from, or not directly understandable by, the user. While epistemic opac-
ity of simulations (Humphreys 2009) is often considered as epistemically detrimental as it 
hampers scientists’ understanding of their models, and thereby of the target phenomena, 
epistemic opacity may still be in practice beneficial for the users that can work more efficiently 
with the model as a black box and do not have to spend too much time engaging themselves 
with the details of the model (Dowling 1999). Ease of use also encompasses the integrability 
of the provided method into the existing workflow of a user. Finally, it includes simplicity of 
usage, which concerns the straightforwardness of the practical applications. For example, 
users might prefer downloading data rather than running code in a specific programming 
language, and different data sources might be more or less accessible.

The quest for credibility and the quest for salience may conflict with one another if, for 
instance, meeting the needs of users generates additional uncertainties within the cascade of 
uncertainty that already characterizes the model chain of climate impact research. There is, 
therefore, no universal good and useful way of representing the climate system, in the sense 
of maximizing both credibility and salience across use cases. In what follows, we will explore 
the priorities and the resulting trade-offs made by different approaches to bias adjustment 
regarding these two aspects.
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4. Fundamental issues underlying credibility considerations
In this section, we discuss two fundamental assumptions which underlie credibility justifica-
tions of the different strategies in technical detail. This discussion then provides the basis 
for evaluating the different approaches to bias adjustment in terms of their understanding of 
usability along the multiple dimensions of the concept in the next section.

Given the issues mentioned in Table 1, the evaluation of a bias adjustment method to 
establish its credibility can be based on different lines of evidence: 1) the evaluation of the 
performance of the method over a historical validation period, 2) the validity of structural 
assumptions underlying the method, and 3) evaluation of the preservation or nonpreserva-
tion of the future climate trend. Pseudo-reality experiments can also provide additional 
evidence for or against the usage of a method (Hui et al. 2019; Maraun 2012; Velázquez 
et al. 2015). Here, we first discuss the ability of a general-purpose evaluation, as defined 
in section 2 to provide evidence for (1) and (2). Justifications of trend modifications (3) are 
discussed in section 4b.

a. Performance differences of bias adjustment methods and implications for general- 
purpose evaluation. Various publications have pointed out that the performance of a bias 
adjustment method depends on the variable, region, and climate model of interest (Chen 
et al. 2013a,b; Lafon et al. 2013; Maraun et al. 2017; Spuler et al. 2024; Teutschbein and 
Seibert 2012; Velázquez et al. 2015; Volosciuk et al. 2017). One reason for the observed 
differences in performance is that the ability of a bias adjustment method to correct a bias 
depends on the physical sources of the bias—a large-scale circulation bias might be more 
difficult to correct using conventional methods than a local-scale bias due to orographic 
resolution. This means that methods will perform differently across use cases, depending 
on the source of the bias (Addor et al. 2016; Eden et al. 2012; Maraun et al. 2017, 2021). 
Furthermore, the assumptions underlying different bias adjustment methods might be 
adequate or not, depending on the variable and impact studied. For example, a method 
based on a parametric distribution fit might be robust in some situations but fail in other 
cases when the distributional assumption—such as the choice of a (censored) gamma dis-
tribution to fit daily precipitation data—is not met (see e.g., Lafon et al. 2013). Bias adjust-
ment methods are commonly applied over a running window, the length of which depends 
on the variable studied and possible rapid changes in this variable through, for example, 
monsoon onsets. However, if running window lengths are chosen too short, this might 
impede robust distributional fits. A nonparametric correction might work well for the body 
of the distribution but might not be appropriate for extremes. Methods based on statisti-
cal extreme value theory in return can be more appropriate in the tails but difficult to 
automate across locations (e.g., Volosciuk et al. 2017; Scarrott and MacDonald 2012). In 
addition, the assumption that biases are stationary is more problematic for some variables 
(e.g., precipitation) than for others (e.g., temperature) (Chen et al. 2015; Christensen et al. 
2008; Hui et al. 2019, 2020; Maraun 2012; Van de Velde et al. 2022). This means that 
depending on the variable, impact, and region studied, different bias adjustment methods 
might perform better over the validation period (1) and be more suitable in terms of struc-
tural assumptions made (2).

These findings challenge the ability of a general-purpose evaluation, that is, the evaluation 
of a bias-adjusted data product by the provider detached from the application, to identify the 
method that best fulfils evaluation criteria (1) and (2). However, general-purpose evaluation 
could still be justified if differences between methods are small enough not to impact down-
stream results or if the overall adjustment made by the method is small.

Comparing different bias adjustment methods globally, Lafferty and Sriver (2023) demon-
strate that performance differences between methods lead to large differences in the resulting 
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bias-adjusted data. Building on the approach proposed by Hawkins and Sutton (2009), they 
decompose the variance of an ensemble of climate models and bias adjustment/downscal-
ing methods into uncertainty coming from the choice of scenario, model, downscaling/bias 
adjustment method, and internal variability. In their selected examples, the uncertainty of 
the choice of bias adjustment and downscaling method combined contributes up to 70% of 
the total variance, depending on the region and variable studied. Investigating the effect 
of these differences on downstream results, Laux et al. (2021) find large sensitivities in the 
results of agricultural impact models to the choice of method (up to twice as large as the vari-
ance introduced by the GCM–RCM), while Chen et al. (2013a,b) and Wang et al. (2020) find 
similar sensitivities for hydrological models. To illustrate this issue, Fig. 1 in the example in 
the next subsection shows a CMIP6 ensemble spread for future average precipitation over 
Sicily under different bias adjustment methods. The individual methods significantly alter 
the CMIP6 ensemble spread, in some cases substantially inflating, reducing, or shifting the 
CMIP6 ensemble nonuniformly across months.

Finally, Ehret et al. (2012) further argue that if climate model biases are on a scale that 
makes direct model output unusable for impact modeling, then the modifications made by 
bias adjustment will be of equal magnitude and, therefore, not small. Even if the model biases 
at each grid cell are indeed small, or large only in a small number of cases, Ehret et al. (2012) 
argue that the magnitude of the bias and the impact of bias adjustment require specific evalu-
ation. This means that an evaluation that is indiscriminate across use cases or regions will 
in general not provide adequate justificatory capacity for the application of a given method.

Example 1: Implications of performance differences of bias adjustment methods. Figure 3 
shows the monthly average precipitation (2070–2100) projected by a 25-member CMIP6 
ensemble (see the appendix) under shared socioeconomic pathway (SSP) 585 over Sicily 
before and after the application of four different bias adjustment methods. The choice of 
bias adjustment method significantly alters the spread across climate models—which is of-
ten interpreted as uncertainty in future projections. The spread can be increased using some 
methods, such as the cumulative distribution function transform (CDFt) method in this case, 
and decreased using other methods, e.g., the ISIMIP3BASD method. This effect is nonuni-
form across months. For example, ensemble spreads in July are often maintained but shifted 
and inflated in October.

Fig. 1.  Ensemble spread of a 25-member CMIP6 ensemble for future monthly average precipitation over 
Sicily under SSP58.5, under different bias adjustment methods.
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As average monthly precipitation is a fairly aggregate metric, strong changes to the ensemble 
spread through bias adjustment raise questions about the interpretation of uncertainty in 
future projections. Individual analysts consistently employing one bias adjustment method 
might get very different indications about the scale and the uncertainty in future projections 
than users of a different method. This highlights the challenges of a general-purpose evalu-
ation of bias adjustment methods.

b. Justificatory capacity and physical interpretability of trend modifications through bias 
adjustment. The modification of the simulated climate change trend is often an unintended 
but critical side effect of bias adjustment. Examining plausible future changes in the cli-
mate system caused by anthropogenic climate change is the key reason for generating future 
projections in the first place. Therefore, any modification of this simulated trend and the 
implications for the credibility of the resulting information need to be carefully investigated.

Simple bias adjustment methods such as linear scaling or quantile mapping modify 
projected trends, i.e., the forced response to anthropogenic emissions, simulated by a cli-
mate model. More advanced, so-called trend-preserving methods exist that often build on 
quantile mapping and attempt to preserve trends in the mean, individual quantiles or the 
whole distribution (Maraun 2016a). These include methods such as the CDFt (Michelangeli 
et al. 2009; Vrac et al. 2016), quantile delta mapping (Cannon et al. 2015; Li et al. 2010), or 
ISIMIP3BASD (Lange 2019).

However, even so-called trend-preserving methods frequently modify the climate 
change trend for several reasons. For one, all methods are based on some assumptions 
about which trends to preserve and how to represent them. For example, a method such 
as linear scaling, which subtracts a bias in the mean from a climate model (or the related 
delta method), will preserve trends in the mean but not trends in the rest of the distribu-
tion. Similarly, a method such as ISIMIP3BASD might aim to preserve trends in certain 
quantiles but will still modify trends in threshold-based impact metrics such as dry days 
or heat wave days or in spatiotemporal metrics such as dry spells, or higher moments of the 
distribution, as discussed by Casanueva et al. (2020) and Spuler et al. (2024), which another 
method might aim to preserve. Second, any trend-preserving method is necessarily based 
on assumptions about how to parameterize trends. For example, trends can be assumed 
additive or multiplicative, they can be assumed constant or varying over an application 
period/with seasonality, and the bias correction can be based on distributional or other 
structural assumptions. The success of any trend preservation is contingent on how well 
these assumptions match the underlying data, which can depend on the variable, impact, 
and region studied. Third, even if most assumptions are met, empirically trends are not 
guaranteed to be preserved as assumptions in other parts of the bias adjustment methods 
might not be entirely adequate and model fits might be imperfect. Thus, trend-preserving 
methods frequently modify trends in certain attributes of interest (see, e.g., Cannon  
et al. 2015; Spuler et al. 2024; Padulano et al. 2025; Astagneau et al. 2025).

Trend modifications through different bias adjustment methods can have large impacts on 
downstream results and impact models, as illustrated in example 1. In addition, the analysis 
presented in example 2 below shows that bias adjustment not only changes the climate change 
trend but also impedes the physical interpretability of this trend by altering the relationship 
between local variables such as precipitation and their large-scale dynamical drivers. The 
resulting climate model spread after bias adjustment is, therefore, not only modified but also 
made physically less interpretable and coherent which has implications, for example, for the 
study of compound risks.

Trend modifications can be justified either pragmatically by arguing that certain climate 
model trends are not relevant for a specific application—for example, trends in the upper 
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tail of precipitation might not be relevant when studying dry spells—or based on physical 
and statistical reasoning. The former, pragmatic, justification will only be valid for a specific 
use case. Similarly, any physical or statistical justification of a trend modification through 
bias adjustment relies on the assumption that gridcell-level biases in historical simulations 
directly relate to the gridcell-level validity of future projections. However, this assumption is 
not valid generally. Rather, it can be justified only based on a (physical) understanding of the 
sources of model bias that are specific to a certain variable and region: For example, Gobiet 
et al. (2015) argue that climate models have intensity-dependent biases in the temperature 
trend over Europe relevant for their chosen application that can be improved through quantile 
mapping. However, in the absence of a physical justification or knowledge of the source of 
the bias, Maraun et al. (2017) argue that trend modifications through bias adjustment should 
be avoided.

Example 2: Modification of the physical interpretation of the climate model ensemble 
spread. As an example of how bias adjustment alters the physical interpretability of climate 
model trends, we analyze dynamical storylines of future precipitation before and after bias 
adjustment. Physical storylines represent plausible unfoldings of future trends conditional 
on the evolution of large-scale drivers in the climate system such as the strength of future 
Arctic amplification (Shepherd et al. 2018; Zappa and Shepherd 2017), allowing a dynami-
cal interpretation of the spread in an ensemble of climate models.

We bias adjust precipitation over the Mediterranean region in 30 CMIP6 models under 
SSP585 using seven methods (CDFt, scaled distribution mapping, the ISIMIP3BASD method, 
linear scaling, quantile mapping, the latter two both with and without running window (RW) 
implementation—described in detail in Spuler et al. 2024). We then follow the approach as 
presented in Zappa and Shepherd (2017): Based on a pattern scaling assumption, we regress 
the ensemble anomaly of the pattern of precipitation change (scaled by the global-mean 
temperature change) onto large-scale drivers, namely, tropical warming, polar warming, and 
change in stratospheric polar vortex strength. The results show the influence of each of the 
drivers on the difference of the model projection from the ensemble mean, or in other words 
the physical contribution of the large-scale driver to the ensemble spread. More information 
on the data and method can be found in the appendix.

Figure 2 compares the resulting influence of tropical warming on the ensemble spread 
between the raw climate model and the model bias adjusted with one of the seven methods 
(plots for the other drivers can be found in the appendix). We find that the influence of the 
remote driver on the ensemble spread changes strongly depending on the bias adjustment 
method used. The influence can be strengthened, weakened, or fully removed in some regions, 
and this effect appears to be nonuniform across bias adjustment methods.

Fig. 2.  Influence of tropical warming on the climate model ensemble spread for precipitation [mm (K day)−1] for the raw climate 
model ensemble and for the bias-adjusted climate models in a storyline approach (see the appendix).
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To some extent, this result is to be expected, as all bias adjustment methods investigated 
here calibrate the model to observations on a gridcell by gridcell basis. By doing so, they 
also change the multivariate structure of the precipitation (Spuler et al. 2024) as well as 
its relationship to dynamical drivers such as the zonal wind and associated storm-track 
location, which in Zappa and Shepherd (2017) was shown to mediate the response of 
Mediterranean precipitation to the three large-scale drivers investigated. However, this 
implication of bias adjustment is often not appreciated in practice. This example illustrates 
that bias adjustment not only modifies the climate change trend but also impedes the dy-
namical interpretation and understanding of future ensemble spread and its multivariate 
structure which is relevant in particular for the study of spatial, temporal, or multivariate 
compound events (Zscheischler et al. 2020) in future climate.

5. Evaluating approaches to bias adjustment through the lens of usability
The four approaches to bias adjustment introduced in section 2 navigate the tension between 
fundamental issues of bias adjustment and closing the usability gap of climate information 
in different ways. Based on the discussion of two key methodological issues in the previous 
section, we now apply usability as introduced in section 3 as an evaluative framework to ex-
amine how different methodological assumptions and value judgments about usable climate 
information shape the choice of approach to bias adjustment.

Figure 3 illustrates the credibility assumptions made by different approaches to bias ad-
justment. In particular, it highlights how the different credibility assumptions relate to each 
other and how the two fundamental issues which were discussed in the previous section—the 
interpretation of modifications to the climate change trend and performance differences of 
bias adjustment methods—are addressed in different approaches.

a.  Consistency approach.  In the consistency approach to bias adjustment, a single bias 
adjustment method is selected either at institutional level or by a data provider based on 
a general-purpose evaluation as defined in section 2 and then applied across regions and 
impacts.

In terms of salience considerations, this strategy prioritizes the ease of use of the 
bias-adjusted information, in particular in terms of integrability into existing workflows, 
simplicity of usage, and opacity of the method. If a consistent method is decided across use 

Fig. 3.  Assumptions that underly credibility considerations of different approaches to bias adjustment 
and their relationships.
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cases, the burden of engaging with the complexities of bias adjustment is removed from the 
user which facilitates integration of bias adjustment with subsequent tasks such as downscal-
ing or impact modeling. This choice is not uniquely made in the case of bias adjustment—the 
intricacies involved in the different steps of the climate modeling chain already necessitate 
dividing labor and expertise across teams and institutions. For example, most users of climate 
models have no detailed knowledge of subcomponents of the global or regional climate models 
used. This has led to a considerable drive toward standardized datasets through coordinated 
model experiments such as CMIP and Coordinated Regional Climate Downscaling Experiment 
(CORDEX). Similarly, the consistency approach argues that not every user has the technical 
knowledge to select the most appropriate bias adjustment method. An already bias-adjusted 
dataset or preselected method is, therefore, suitable as it assigns the responsibility for the 
choice of method to experts’ external to the use case.

However, the consistency approach to bias adjustment thereby assumes that a 
general-purpose evaluation by the data provider or institution can sufficiently ensure 
credibility in terms of both the justificatory capacity of modifications to the climate change 
trend as well as the representational and empirical accuracy of the resulting information. 
However, based on the discussion of existing literature and the examples analyzed in section 
4, we find that neither of these assumptions holds in practice. Arguments made for justify-
ing modifications to the climate change trend hold only conditional on the context of the 
application. Similarly, the performance of a bias adjustment method depends on the impact, 
region, and variable studied.

Prioritizing standardization and comparability of methods across use cases in the 
consistency approach can be taken as furthering credibility; however, as discussed in 
section 3, these two aims are not genuine criteria for scientific credibility. Standardization 
can, on the other hand, be argued to increase the relevance of the data for the user. However, 
this holds primarily if the use case is global or involves model intercomparison—either across 
regions in a global assessment or across use cases within a region. If the aim of a given user 
is to produce the most accurate set of (local) climate projections in a specific application, 
standardization in line with the consistency approach will not necessarily produce the most 
relevant information.

The choice to prioritize salience, specifically ease of use, therefore, comes at a cost to the 
credibility of the resulting climate information as neither justificatory capacity of modifica-
tions to the climate change trend or representational and empirical accuracy can be guaranteed 
based on general-purpose evaluation. However, if the use case is global or involves model 
intercomparison, standardization of the bias adjustment method improves its relevance for 
the user, another salience consideration.

b. Use-case-specific evaluation. The use-case-specific evaluation approach to bias adjust-
ment encourages the choice of method based on the consideration of context-specific as-
sumptions and subsequent evaluation of bias-adjusted results.

The focus of this approach is to improve the credibility and relevance of the resulting climate 
change information. By situating the evaluation of bias adjustment methods in a specific use 
case, the context-specific assumptions of individual methods can be justified. In addition, 
when comparing multiple methods, the most appropriate method in terms of empirical perfor-
mance, trend preservation, and use-case-specific assumptions can be selected. This enhances 
both representational and empirical accuracy as well as justificatory capacity. Furthermore, 
by considering specific user demands, this ensures that the information is relevant for the 
downstream analysis.

To identify the best-performing bias adjustment method for a given use case, evaluation 
needs to be based on multiple lines of evidence, as outlined in section 4a. This, however, 
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comes with challenges. Evaluating the performance of a bias adjustment method requires 
selecting the climate metrics relevant to the impact studied. However, impact models, such 
as hydrological or fire models, can depend on a range of climate metrics, where the sen-
sitivity of the model output to biases in the different metrics is not always known a priori. 
Furthermore, uncertainty in the results of historical evaluation is introduced through 
observational uncertainty, as well as the choice of validation period due to climate vari-
ability (Casanueva et al. 2020; Chen et al. 2015; Jain et al. 2023). Structural assumptions 
underlying the different methods, such as the suitability of a selected parametric distri-
bution or assumptions about the nature of climate change trends, can be hard to verify 
and require judgments on the side of the researcher applying bias adjustment. This means 
that multiple methods can be adequate under somewhat equally defensible assumptions 
(Ho et al. 2012).

Furthermore, the use-case-specific evaluation approach currently comes at the cost of 
ease of use in most applications. To enable the implementation of this evaluation by the 
user, different bias adjustment methods have to be readily available and use-case-targeted 
evaluation needs to be straightforward enough to be conducted within the time frame of the 
research or climate services project. The publication of several bias-adjusted datasets, for 
example, by CORDEX (2022) and evaluation frameworks such as these developed as part of 
the VALUE project (Gutiérrez et al. 2019; Maraun et al. 2015, 2019) or sector-specific protocols 
(e.g., Galmarini et al. 2019) support this. In addition, open software tools such as climate4R 
framework (Iturbide 2019), the xclim library (Bourgault et al. 2023), or the ibicus software 
package (Spuler et al. 2024) can help users to easily implement different methods and con-
duct evaluation. However, even given the current availability of open software, evaluation 
frameworks, and datasets, the task of evaluating and selecting the bias adjustment method 
best suited to a use case requires some familiarity and knowledge with the approach that 
users might not necessarily have.

In addition, the limitations of currently available bias adjustment methods imply that 
a credibility gap remains, for example, if trends in certain metrics are still modified in an 
undesirable manner or if relevant metrics are not calibrated by the bias adjustment method. 
These persistent limitations motivate research into new bias adjustment methods, as well as 
alternatives to bias adjustment which are discussed in section 5d.

c.  Ensembling approach.  Performance differences across bias adjustment methods can 
also be interpreted as uncertainty, which underlies the ensembling approach to bias 
adjustment.

On first glance, the ensembling approach appears to prioritize credibility. It propagates 
the lack of knowledge about the most suitable bias adjustment method down to the user, 
presenting it as uncertainty about future projections, which the user needs to engage with 
when using the information. It can be argued that it thus maximizes the likelihood of the 
truth falling within the spread, while potentially compromising the relevance of the result-
ing output.

However, the interpretation of performance differences between bias adjustment methods 
as a source of epistemic uncertainty (see e.g., Chen et al. 2015; Ho et al. 2012; Hui et al. 2019; 
Velázquez et al. 2015; Wang et al. 2018) can be disputed when considering on what basis 
the application of any particular bias adjustment method can be justified. As discussed in 
section 4, each bias adjustment method is justified only by assumptions which are use-case 
dependent. These can include assumptions about which quantiles or threshold-based climate 
impact drivers to correct based on the climate impact studied, which distribution to choose 
based on the variable and region studied, and what kind of trends to preserve in which 
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statistics. There is, therefore, no general justification for a bias adjustment method, in the 
way physical laws can be argued to provide for GCMs (Baumberger et al. 2017; Knutti 2008; 
Oreskes et al. 1994).

Therefore, when different bias adjustment methods are used in an ensemble, it is not 
an ensemble of equally justified methods that is considered but rather an ensemble of 
statistical assumptions, some of which can be more or less justified. For example, mod-
els with very different assumptions—such as trend-preserving and nontrend-preserving 
methods—are often bundled together in an ensemble, or methods whose assumptions 
are clearly disputable are included. In particular, recent applications of the ensembling 
approach did not conduct any (published) prior evaluation of the methods included in the 
ensemble (see e.g., Lafferty and Sriver 2023; Laux et al. 2021), which raises the question 
whether this lack of evaluation on the researchers’ side should be interpreted as uncer-
tainty. On the contrary, including methods with opposing assumptions might make the 
resulting climate model spread less interpretable—and thereby less credible—and pos-
sibly overly large.

Furthermore, the ease of use, in particular rapidity, is impeded by the computational 
cost associated with running an impact model several times using different bias adjust-
ment methods. However, as little to no modification of existing impact modeling pipelines 
is required by the approach, this poses mostly a resource challenge rather than a challenge 
to the researcher as both simplicity of usage and epistemic opacity are relatively unaffected. 
Particularly in well-resourced application contexts, the ease of use is, therefore, arguably 
only marginally impacted.

d. No bias adjustment approach. Finally, the no bias adjustment approach assumes that 
the potential gains in salience achieved through bias adjustment in terms of relevance to 
the user do not outweigh the credibility lost in the process of bias adjusting climate model 
projections. Possible alternative approaches to bias adjustment are outlined in section 2 and 
include working directly with trends, scenario-neutral, or storyline approaches and local 
weather generators or constraining an ensemble of climate models based on their perfor-
mance over the historical period.

However, these approaches also come with several limitations and assumptions: For ex-
ample, working with trends is difficult if spatiotemporal fields or many climatic variables with 
adequate dependence structure are required to drive complex impact models (see e.g., Best 
et al. 2011; Clark et al. 2011 for an example of what is required to drive a state-of-the-art land 
surface model). Scenario-neutral approaches are often computationally expensive and can be 
difficult to scale for larger application areas (e.g., Broderick et al. 2019; Bennett et al. 2021), 
impeding relevance and ease of use. Finally, constraining model ensembles on the basis of 
performance over the historical period is an active area of research. Obstacles to operation-
alizing existing approaches widely include the significant role of observational uncertainty 
and internal variability (Jain et al. 2023), as well as the fact that detailed research is often 
required to understand whether a certain climate model is getting the correct distribution 
for the right reasons. Furthermore, alternative approaches require rethinking the scales and 
starting points to produce climate information. Weather generators driven by the output of 
climate models, for example, produce local information and do not lend themselves well to 
global intercomparison assessments.

Available alternatives to bias adjustment, therefore, in many applications, fail to close the 
salience gap which arises due to prevailing biases in climate models. As will be discussed 
in section 6, the approach chosen to address this usability gap depends on the considered 
starting point for producing climate information.
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6. Discussion and conclusions
The most general justification for applying bias adjustment to the output of climate model data 
is that it makes the resulting information more usable. In the tension between fundamental 
issues and practical considerations, different approaches to bias adjustment have developed, 
from consistent application to use-case-specific evaluation, ensembling, and no bias adjust-
ment. In this paper, we evaluate these different approaches through the lens of usability, 
examining underlying methodological assumptions and value judgments.

The consistency approach prioritizes standardization for intercomparison projects and ease 
of use of bias adjustment. This comes at the cost of the credibility of the resulting information, 
in particular as empirical accuracy and justificatory capacity cannot be guaranteed based on 
a general-purpose evaluation. The use-case-specific evaluation approach, on the other hand, 
focuses on ensuring the credibility and relevance of bias-adjusted information for a specific 
application, but this comes at a cost to ease of use, given available tools. The ensembling ap-
proach aims to address credibility through “sampling” of different bias adjustment methods 
in an ensemble. However, the credibility gained by including many bias adjustment methods 
in an ensemble can be disputed, and the approach also compromises on relevance and ease 
of use. Finally, the no bias adjustment strategy argues that the gains in salience through bias 
adjustment do not outweigh the losses in credibility, but alternatives proposed are largely not 
operational and come with open issues of their own.

Overall, none of the currently available approaches to bias adjustment produces cli-
mate information that closes the usability gap in the sense of being both credible and 
salient across use cases. For some applications, it is, therefore, questionable whether 
the demands of credibility and salience can simultaneously be met. An example of this 
can be found in the physical risk scenarios published by NGFS (2021), which use the 
consistency strategy, in particular the ISIMIP3BASD method, and produce scenarios 
used by central banks across the world to stress test their financial systems to climate 
risks. A consistent bias adjustment method is necessary as it implies comparability of 
results when assessing risks across regions for organizations such as the International 
Monetary Fund. However, as demonstrated by Laux et al. (2021), the choice of bias 
adjustment method can significantly impact downstream results. Therefore, the indis-
criminate application of a method across variables and regions risks the distortion of the 
information on future impacts and associated risks to financial stability. Here, salience 
demands stand in opposition to credibility ones, pointing to potential limits of relevance 
imposed by scientific integrity.

The discussion in this paper shows that the choice of bias adjustment approach and the 
associated best available climate information in terms of usability depends on which aspects 
of usability are deemed important in the production of climate information and which assump-
tions are accepted. To some extent, the difference between prioritizing relevance for global 
studies or model intercomparison in the consistency approach, as opposed to locally relevant 
and credible information in the use-case-specific evaluation approach, can be mapped to 
the distinction between “top-down” climate information which starts from a GCM/RCM in a 
specific scenario and “bottom-up” climate information which starts from a specific vulner-
ability and prioritizes the relevance of the information to the impacted community (Kelly and 
Adger 2000; O’Brien et al. 2007). In this distinction, different approaches to bias adjustment 
also take different views on the legitimacy of the resulting climate information as the third 
component of usability, specifically in the sense of “taking into account the values, interests, 
and concerns of different stakeholders.” While bottom–up approaches are, in many cases, 
preferred when developing local climate information, the time and skill required, given 
currently available tools, to apply bias adjustment prevent the use-case-specific evaluation 
approach from being easily applicable in local contexts.
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The evaluation conducted in this paper raises important questions on how to address this 
existing usability gap—through changes in current practice, tool development and deploy-
ment, and future research into method development.

In terms of changes to current practice, examples of best practice exist that could already, 
given available methods and tools, be adopted more widely. So-called process-oriented 
bias adjustment methods, which take into account physical sources of bias, could be more 
widely used. For example, Manzanas and Gutiérrez (2019) condition their bias adjustment 
on phases of ENSO, and Verfaillie et al. (2017) adjust dependent on synoptic weather types. 
Also, there are good examples of published evaluation; for example, Lehner et al. (2023) 
assess a number of bias adjustment methods over Austria, and the authors are aware of at 
least one meteorological service which is currently comprehensively evaluating a number of 
different bias adjustment methods for data provision for a range of different use cases. These 
examples primarily fall under the use-case-specific evaluation approach. Available tools can 
support their implementation, including software tools such as ibicus (Spuler et al. 2024) and 
the climate4R framework (Iturbide et al. 2019) or evaluation frameworks as developed by the 
VALUE project (Gutiérrez et al. 2019).

However, implementing this best practice requires some technical expertise on the side 
of the user, which can be a climate impact research or climate service practitioner, as well 
as time and associated funding spent on bias adjustment. Moving forward, the shortfall in 
the ease of use of the use-case-specific evaluation approach can be addressed by continu-
ing the development of available tools for comparing and evaluating existing bias adjust-
ment methods and mainstreaming them into widely used pipelines for processing climate 
information.

Finally, further method development guided by the usability framework presented in 
this paper can support closing the usability gap in different application areas. Machine 
learning approaches are able to improve the multivariate structure which can be valuable 
especially for studying compound extremes (e.g., Hess et al. 2023). However, they still 
rely on many of the same assumptions as existing methods and can be much harder to 
evaluate in the presence of fewer uncalibrated aspects (Maraun 2016a). Process-based 
bias adjustment methods, as well as some of the approaches listed in the no bias adjust-
ment approach such as constraining an ensemble of future projections based on historical 
performance, can be improved through further research. On the other hand, bottom-up 
climate information that is, for example, coproduced with local actors might require dif-
ferent approaches that can be integrated into information pipelines working backward 
from a local context, or “intermediate technologies” called for by Rodrigues and Shepherd 
(2022). These local requirements might favor the advancement of methods beyond bias 
adjustment, such as methods that link local weather generators directly with changes in 
large-scale drivers.

The aim of this contribution was to situate bias adjustment in the discussion on the us-
ability of climate information, provide theoretical foundations for choices and assumptions 
often made implicitly in practice, and offer a guide for researchers and practitioners working 
with bias adjustment. With this contribution, we hope to support the reflection on the dif-
ferent choices when approaching bias adjustment as well as its subsequent evaluation and 
offer a perspective on possible ways forward considering the interpretation of the usability 
of climate information.
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APPENDIX 
Storyline Approach and Physical Interpretation of the Climate Model Spread  
[Section 4b]
We follow the approach presented in Zappa and Shepherd (2017) to investigate the connec-
tion between remote drivers and model spread, before and after bias adjustment. The three 
remote drivers for each model (cm) analyzed are

•	 tropical warming Ttropical
cmD : temperature change (2070–2100 SSP58.5 compared to 1960–90 

hist) at 250 hPa averaged between 30°S and 30°N,
•	 polar warming Tpolar

cmD : temperature change (2070–2100 SSP58.5 compared to 1960–90 
hist) at 850 hPa averaged between 60° and 90°N, and

•	 change in stratospheric polar vortex strength Ustrat
cmD : zonal wind change (2070–2100 

SSP58.5 compared to 1960–90 hist) at 20 hPa averaged between 70° and 80°N.

We scale each of the remote drivers by the model-simulated global-mean temperature 
(GMT) change ΔTcm and compute anomalies (·)′ corresponding to the multimodel mean. Un-
der a pattern-scaling assumption, we then regress the multimodel anomaly in precipitation 
change [change in extended winter, November–April (NDJFMA), gridcell average precipitation 
2070–2100 compared to 1950–90], standardized by ΔTcm onto driver anomalies:


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Here, cm,bc ∼ N(0, s) is Gaussian noise. This approach enables us to capture (and possibly 
attribute) the influence of remote drivers on the multimodel spread in precipitation trends. 
In a second step, the large-scale drivers can then be clustered to define categories of future 
precipitation responses (or storylines, see Zappa and Shepherd 2017). The CMIP6 models 
used are listed in Table A1.

Regressions at each grid point are fitted to the raw model as well as all bias-corrected mod-
els (bc). To assess the differences between the regression coefficients of raw and bias-corrected 
precipitation, we also fit regressions to the differences:
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The sensitivity of the European precipitation response to the uncertainty in each of the 
three remote driver responses is shown in Fig. A1 for the raw climate model as well as the 
different bias-adjusted ones. While the response patterns identified in the raw, i.e., not bias 
adjusted, ensemble shows a similarity to the response patterns identified by Zappa and 
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Shepherd (2017), some differences emerge, the most prominent of which is the response to 
tropical warming in the western Mediterranean. These differences are likely due to the dif-
ferent models and model generation (CMIP5 vs CMIP6) investigated.

In addition, Fig. A2 showcases the difference between the bias-adjusted response patterns 
and the response pattern in the raw ensemble. Depending on the bias adjustment method, 
the influence of the remote drivers onto model spread can be quite substantially different. 
This appears to be nonhomogeneous across bias adjustment methods.

Table A1 provides an overview of climate models participating in CMIP6, which were used 
in the analysis in this paper. We did not apply any other criteria for the inclusion of a model 
other than their participation in CMIP and the availability of the required data through the 
Centre for Environmental Data Analysis (CEDA) archive.

Table A1.  CMIP6 models used for the analysis in section 4a and the storyline analysis in the appendix 
and section 4b.

Model Analysis section 4a Analysis section 4b

1 AS-RCEC__TaiESM1 * *

2 BCC__BCC-CSM2-MR *

3 CAS__FGOALS-g3 * *

4 CCCR-IITM__IITM-ESM * *

5 CCCma__CanESM5 * *

6 CMCC__CMCC-CM2-SR5 * *

7 CMCC__CMCC-ESM2 * *

8 CNRM-CERFACS__CNRM-CM6-1 * *

9 CNRM-CERFACS__CNRM-CM6-1-HR * *

10 CNRM-CERFACS__CNRM-ESM2-1 * *

11 CSIRO-ARCCSS__ACCESS-CM2 *

12 EC-Earth-Consortium__EC-Earth3-CC * *

13 EC-Earth-Consortium__EC-Earth3-Veg *

14 EC-Earth-Consortium__EC-Earth3-Veg-LR * *

15 INM__INM-CM4-8 * *

16 INM__INM-CM5-0 * *

17 IPSL__IPSL-CM6A-LR * *

18 KIOST__KIOST-ESM *

19 MIROC__MIROC-ES2L * *

20 MIROC__MIROC6 *

21 MOHC__HadGEM3-GC31-LL *

22 MOHC__HadGEM3-GC31-MM *

23 MOHC__UKESM1-0-LL *

24 MPI-M__MPI-ESM1-2-LR * *

25 MRI__MRI-ESM2-0 * *

26 NCAR__CESM2 * *

27 NCAR__CESM2-WACCM * *

28 NCC__NorESM2-LM *

29 NCC__NorESM2-MM * *

30 NIMS-KMA__KACE-1-0-G *

31 NOAA-GFDL__GFDL-CM4 *

32 NOAA-GFDL__GFDL-ESM4 * *

33 NUIST__NESM3 * *
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Fig. A1.  Regression R2 as well as the influence of stratospheric vortex strength, tropical warming, and polar warming on the 
climate model ensemble spread for precipitation [mm (day K)−1] for the raw climate model ensemble and for the bias-adjusted 
climate models.

Fig. A2.  Difference in response pattern between bias-adjusted and raw climate model for the influence of stratospheric vortex 
strength, tropical warming, and polar warming on the climate model ensemble spread for precipitation [mm (day K)−1].
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