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Abstract

Satellite-based precipitation and soil moisture products are often associated with un-
certainties, rendering them less reliable for hydrological applications. The present study
proposes a dual correction scheme employing satellite-based soil moisture estimates to
update satellite-based rainfall and modelled soil moisture states. First, the artificial neu-
ral network (ANN) was utilised to correct TRMM 3B42RT rain rate estimates using
Advanced Scatterometer (ASCAT) soil moisture observations. Subsequently, the same
observations were scaled to root-zone level using the Soil Moisture Analytical Relation-
ship and assimilated into the Soil and Water Assessment Tool model through the ensemble
Kalman filter (EnKF) technique. The correction to the 3B42RT rainfall was evaluated
using observed rainfall data, whereas the modelled streamflow and soil moisture were as-
sessed under three correction schemes: sole rainfall correction (forcing correction), sole
soil moisture assimilation (state correction), and combined forcing and state correction
(dual correction). The results demonstrated that the ANN-based rainfall correction tech-
nique improved the 3B42RT rainfall, with an average reduction in RMSE of 7.5 mm and a
10% improvement in NSE. The streamflow evaluation revealed that the forcing correction
primarily enhanced the quick-flow component of simulated streamflow, with an assimi-
lation efficiency of 17.3%, whereas the state correction scheme improved the base-flow
component (assimilation efficiency of 21.9%). The dual correction combined the benefits
of both schemes to achieve an assimilation efficiency of 28.9% and an NSE improvement
of 0.274 over the open-loop simulation. The forecasting performance indicated that the
dual correction strategy provided maximum improvement of up to two-three lead days in
the selected Wyra catchment, with an NSE increase of 0.16 compared to the open-loop
forecast. Overall, the dual correction strategy based on ANN and the EnKF promotes the
use of satellite-based rainfall and soil moisture data for hydrological applications.
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1 Introduction

Accurate streamflow forecasting is essential for a variety of water resource-related applications,
including flood warning and mitigation [55], disaster management [56], climate change impact
[62, 64], and irrigation practices [21]. Over the years, various improvements have been made
in the hydrological domain, enabling models to mimic real-world scenarios using appropriate
physics-based methods. However, accurate streamflow forecasting remains challenging due
to the unavailability of good-quality input datasets and assumptions or limitations in model
physics [3].

According to [10], one of the key unresolved challenges in hydrology is identifying and
minimising the various sources of errors in hydrological model simulations. These errors can
be broadly classified into three categories: systematic and random errors in forcing variables,
incorrect assumptions within the underlying model structure, and improper model parametri-
sation [54]. These errors collectively propagate, resulting in uncertain model outputs. Un-
certainties in model outputs are a greater concern for ungauged catchments because the only
available data for modelling these catchments comes from satellite-based products or global
(or regional) weather forecasts, both of which possess errors. A rational approach could be
to identify useful information from all available datasets and integrate it optimally for land
surface and hydrological modelling.

In this regard, data assimilation has emerged as a promising method of integrating models
with real-world observations. Data assimilation approaches account for modelling errors by
constraining the model states and parameters to achieve the Best Linear Unbiased Estimate
(BLUE) with observations, thus helping to improve model predictions. The application of
data assimilation in the hydrological field is well-studied and utilised [11, 15, 27]. Ensemble-
based approaches, particularly the Ensemble Kalman Filter (EnKF), have demonstrated their
ability to handle non-linear hydrological models [58, 70].

Among satellite-based meteorological fields, rainfall estimations are available on a near
real-time basis with spatial resolutions ranging from 0.1° x 0.1° to 0.25° x 0.25° and high tem-
poral resolution (~ 3 hours) [30, 31]. However, they are often associated with errors, including
underestimation of light rainfall, timing mismatches, and false detection rates [22, 38, 71].
Moreover, their performance tends to degrade at shorter time scales (e.g. sub-daily), due
to sampling limitations, insufficient temporal sampling by microwave sensors, and smoothing
effects inherent in retrieval algorithms [53, 69]. In addition, topographic or microclimate influ-
ences, and sparse gauge networks hamper bias correction [59]. In many regions, the density of
rain gauges is insufficient to resolve within-pixel heterogeneity, making gauge-based correction
spatially uneven.

Similar to rainfall, soil moisture is a key control variable in hydrological modeling control-
ling infiltration, partitioning of rainfall into runoff or soil storage, and subsequently influencing
hydrologic response. Therefore, accurate characterisation of soil moisture is essential for real-
istic hydrologic predictions. To improve model state estimation, ground-based soil moisture
observations have been assimilated into models using a variety of data assimilation techniques
(e.g. ensemble Kalman filters, particle filters) [40, 46]. However, ground sensors are only avail-
able at discrete locations, with limited spatial representativeness, and are often unavailable
in remote or ungauged regions [12].
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Satellite-based soil moisture, on the other hand, provides globally available, near-daily hy-
drological observation that has shown a strong correlation with in-situ measurements [2, 61].
Over the past two decades, satellite-based soil moisture data assimilation has been exten-
sively used to improve hydrological simulations [44, 65, 66]. Nevertheless, the satellite soil
moisture product is also subject to a few limitations. They provide information at surface or
near-surface level upto few centimeters of soil depth leading to poor representation of deeper
hydrologic states [42]. To effectively utilise the available surface soil moisture information,
they are often translated into subsurface through several translation techniques. the expo-
nential filter [67], linear relationship [2], and Soil Moisture Analytical Relationship (SMAR)
[42]. Past studies have shown that SMAR-based estimations, along with EnKF assimilation,
have the potential to improve streamflow simulations [8, 52]. Therefore, the SMAR technique
was also applied in the current study.

Given the uncertainties in near-real-time satellite-based rainfall products and the indepen-
dently available satellite-based soil moisture information, few studies [13, 16, 17] have used soil
moisture as proxy information to estimate or correct satellite-based rainfall accumulations.
Among these, [13] developed an algorithm, SM2RAIN, to estimate rainfall accumulations
based on changes in satellite-based soil moisture information. These rainfall estimates can
then be combined with satellite-based rainfall to minimise overall errors [45].

In a separate effort, [16, 17] developed the Soil Moisture Analysis Rainfall Tool (SMART)
algorithm to directly correct antecedent rainfall using satellite-based soil moisture within a
data assimilation framework. This method was employed by [4] in a semi-distributed hydrolog-
ical modelling scheme for dual rainfall and soil moisture correction, demonstrating promising
potential for using satellite-based datasets in ungauged catchments. One difficulty in inferring
rainfall from soil moisture is that evapotranspiration and surface runoff are not accounted for.
In practice, a given change in soil moisture can result from many different combinations of
rainfall, evapotranspiration, surface runoff and percolation, so there is no one-to-one map-
ping from soil moisture change to rainfall. The relationship is also highly non-linear and
time-dependent since it depends on antecedent soil moisture conditions, rainfall intensity, soil
properties and vegetation phenology. In addition, satellite products sense only the upper few
centimetres of the soil column, introducing depth mismatches with catchment rainfall and
modelled profile moisture. Therefore, different strategies should be explored for capturing the
dynamic relationship between changes in soil moisture and antecedent precipitation.

In the past, studies have demonstrated the applicability of data-driven approaches to
solving highly non-linear water resources problems [8, 35, 36]. These approaches have shown
promising results in modelling antecedent rainfall using changes in surface soil moisture ob-
servations. While various sophisticated data-driven methods exist, artificial neural networks
(ANNs) with simple structure have shown positive results in improving hydrological predic-
tions [14, 53]. As a result, ANN and nudging-based approach is proposed in this work for
correcting satellite-based rainfall observations using satellite-based soil moisture products.

In this study, we expand upon the dual correction framework using satellite soil moisture
information, as initially proposed by [17] and later eloborated by [4] for flood applications, by
applying it over a unique semi-arid catchment in southern India. This region is characterised
by a highly seasonal rainfall pattern concentrated over a four-month period due to the south-
east Indian summer monsoon, often resulting in flash flooding. For modelling purposes, the
well-established physics-based Soil and Water Assessment Tool (SWAT) hydrological model
was employed. Real-time rainfall estimates from the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA) were used as meteorological forc-
ings.

In this context, the paper addresses two research questions:
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1. How effective is a data-driven approach in reducing errors in satellite-based rainfall
products using satellite-based soil moisture?

2. To what extent can streamflow and soil moisture simulations be improved by a hybrid
ANN-EnKF assimilation framework that corrects both satellite rainfall and modelled
soil moisture states?

To address these questions, three correction schemes were evaluated: (1) forcing correction,
(2) state correction, and (3) dual correction of both rainfall and model-simulated soil moisture.
The Advanced Scatterometer (ASCAT) [68] Level 2 (H113) soil moisture product was utilised
for these correction schemes.

The remaining sections of the paper are structured as follows: Section 2 describes the
study area and datasets used. Section 3 outlines the methodological framework. Section 4
presents the results. Finally, Section 5 summarises the conclusions.

2 Study Area and Datasets

The Wyra River catchment, located in the eastern part of the Krishna River basin in India,
was chosen as the study region (Figure 1). The study area is situated on the Deccan Plateau
in southern India, with a catchment area of 1650 km?, extending up to the Madhira gauging
station. The Wyra River catchment has diverse topography, with altitudes ranging from 49
m to 783 m above mean sea level. The catchment received an average annual rainfall of 1089
mm during the study period, with a minimum of 650 mm in 2007 and a maximum of 1939 mm
in 2010. The southwest monsoon, occurring from June through September, accounts for 74%
of the total rainfall. The most common soil types are clayey loam and clay, with agriculture
accounting for 70% of the land area, followed by dense forest (14%).

Table 1 provides details of the forcing data, land use land cover, digital elevation model,
soil moisture observations, and streamflow gauging data used in this study. The TRMM
Microwave Imager (TMI) is a passive microwave (PMW) sensor that serves as the foundation
for a comprehensive understanding of the global water cycle. As a result, it has established a
clear standard among other PMW sensors, and its error variation can be considered reasonable
[8]. Therefore, the TRMM rainfall dataset was selected from among the available satellite-
based rainfall products for the study period (2008 to 2012).

The TMPA 3B42RT rainfall product, a variant of the TRMM mission (hereinafter referred
to as 3B42RT), was used as input rainfall for all three correction procedures in this study.
As illustrated in Figure 1, the 3B42RT rainfall grid location was shifted by 0.125° relative to
the India Meteorological Department (IMD) rainfall grid. Consequently, the TRMM rainfall
was interpolated to reflect rainfall at all six IMD rain grids using the area-weighted averaging
method.
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Figure 1: The location and spatial extent of the Wyra river catchment in the Krishna river
basin, as well as elevation and river gauge data, are shown. The IMD and TRMM rainfall
observation grids are depicted, with the IMD rain grid numbered from 1 to 6 (the elevation
data was derived from 90-meter SRTM GDEM ([32]).

For data assimilation, ASCAT surface soil moisture observations were used. The acquired
Level 2 product was normalised to a 40-degree incidence angle and then rescaled from 0 to
100 % to represent the soil saturation index. Along with the data, the noise level in the
observations (‘sm noise’) was obtained, which aids in determining observational errors during
assimilation. Table 1 lists the data sources, spatial resolutions, and purposes of the datasets
used in this study.

3 Methodology

A description of the hydrological model setup, model calibration, and validation is provided
in Section 3.1. Sections 3.2-3.4 describe the approaches used for forcing correction, state
correction, and dual correction schemes, respectively. Relevant information about the use of
ANN for rainfall estimation and the approach for integrating estimated rainfall with satellite-
based rainfall accumulations is presented in the forcing correction scheme (Section 3.2). The
implementation of the SMAR-EnKF technique is explained in the state correction scheme
(Section 3.3). Finally, Section 3.4 describes the proposed dual correction scheme, which
combines the forcing and state correction. Figures 2(a-c) show the flowcharts for the forcing,
state, and dual correction schemes, respectively.

3.1 Model Setup and Parameterisation

The present study employs the Soil and Water Assessment Tool hydrological model. SWAT
is a physics-based, semi-distributed modelling approach that efficiently simulates soil mois-
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Table 1: Description of the dataset used for the current study

Data Cate- | Variable Resolution | Source Remarks
gory
Land Use 1:250,000 NRSC [49] Derived from AWiFS
optical data
Thematic Soil 1:5,000,000 |FAO HWSD |Prepared from soil
Data V1.2 [25] survey datasets
Topography 90 m SRTM GDEM | Interferometric SAR
[32] product
Rainfall 0.25° x 0.25° | IMD [50] Interpolated — gauge
data
Forcing Vari- | Rainfall 0.25° x 0.25° | TMPA- Active & passive mi-
ables 3B42RT [30] |crowave remote sens-
ing
Temperature |1° x 1° IMD2 [60] Interpolated  gauge
data
Humidity, 0.25° x 0.25° | NCEP-CFSR | Reanalysis
Wind  Speed, [57]
Radiation
State  Vari- | Soil Moisture |0.25° x 0.25° | ASCAT [6] Active microwave re-
able mote sensing
Output Streamflow - CWC India | Observed river dis-
[18] charge data

Note: NRSC — National Remote Sensing Centre; AWiFS — Advanced Wide Field Sensor; FAO — Food and
Agriculture Organization; HWSD — Harmonized World Soil Database; SRTM — Shuttle Radar Topography
Mission; GDEM — Global Digital Elevation Model; IMD — India Meteorological Department; TMPA — Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis; 3B42RT — TRMM 3B42 Real-
Time; IMD2 — India Meteorological Department, Version 2; NCEP — National Centers for Environmental
Prediction; CFSR — Climate Forecast System Reanalysis; ASCAT — Advanced Scatterometer; CWC — Central
Water Commission.

ture, evapotranspiration, streamflow, sediment flow, and the concentration levels of various
nutrients in the soil at different temporal scales (daily, monthly, and annual) [7]. Previous
studies have demonstrated that assimilating observations into the SWAT model improved
model performance considerably [29, 51]. It should be noted that we have not considered the
irrigation practices and crop phenology during SWAT simulation which can be a key source
of error during simulations. A detailed description of the model is well documented in the
literature [5, 48] and is therefore not discussed here.

For the current study, the Wyra catchment was divided into 33 sub-basins, with areas
varying from 20 km? to 100 km?. The SWAT model was calibrated using a two-stage workflow.
First, following the rule-of-thumb procedures for adjusting highly sensitive parameters in
SWAT as outlined by [5], a manual pre-calibration was performed to narrow the parameter
search space to physically plausible ranges. Subsequently, the Sequential Uncertainty Fitting
algorithm (SUFI-2) [1] was applied. This method performs a global parameter search while
quantifying prediction uncertainty using the 95% prediction uncertainty (95PPU), defined by
the P-factor (coverage) and R-factor (bandwidth).
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Figure 2: Flowchart of the three assimilation experiments (a: forcing correction, b: state
correction, and c: dual correction) conducted in the present study.

The optimisation of model parameters was carried out with the objective of maximising
the Nash-Sutcliffe Efficiency (NSE) of the simulated streamflow. Calibration was performed
using gridded rainfall data from the IMD (Table 1). Further details regarding the selection
and calibration of the 13 sensitive model parameters are available in previous studies [51, 52].

Following calibration, model validation was independently performed by forcing the IMD
and 3B42RT rainfall datasets from June 2010 to May 2012, with a 2-years 5-months spin-up
from January 2008. It should be noted that the model run during the validation period with
3B42RT rainfall forcing was considered an open-loop model run.

3.2 Forcing Correction

In the forcing correction experiment, the satellite-based rainfall was corrected using ASCAT-
retrieved soil moisture observations. An overall schematic illustration of the proposed forcing
correction scheme is shown in Figure 2(a). This study investigated a data-driven approach
based on an artificial neural network to estimate rainfall accumulations from soil moisture
variations. The details of ANN implementation are discussed in Section 3.2.1. Once the
rainfall was estimated from soil moisture variations, it was used to correct the 3B42RT dataset
using the Newtonian nudging assimilation technique [44]. A description of this correction
approach is provided in Section 3.2.2. The calibration of the ANN and rainfall correction
technique was performed using 3B42RT rainfall and ASCAT surface soil moisture data for
the years 2007, 2008, 2009, and 2015. Likewise, from January 2010 to May 2012, validation
was carried out alongside the data assimilation experiments in this study.
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3.2.1 Predicting Rainfall from Satellite-Based Surface Soil Moisture Using ANN

(a) Soil Moisture Data Processing : The ASCAT soil moisture products were provided
in grid format. To match them with each SWAT-simulated sub-basin, an area-weighted
average of the gridded soil moisture was performed. Subsequently, the soil moisture values
were normalised between 0 and 1 by considering the long-term maximum and minimum soil
moisture values. Using the normalised soil moisture, the change in soil moisture was computed
on a daily basis. Given the non-linear relationship between rainfall and soil moisture, the soil
moisture value on a given day—along with the change in soil moisture—was used to predict
the rainfall accumulation for that day.

(b) Artificial Neural Network (ANN) : The ANN structure selected in this study follows
a conventional design widely used in various studies including [34, 35]. It is also known as
a feed-forward neural network or multilayer perceptron. An ANN consists of several hidden
layers, along with an input and an output layer. While the input and output layers can
be directly accessed, the hidden layers remain inaccessible. Each layer consists of multiple
neurons. The output from a hidden layer neuron, ¢;, is given as:

€=/ (Z wjiti + bz‘) (1)
=1

where wj; and b; represent the weights and biases for a given neuron, and f is the non-
linear activation function of the neuron. The final output from the entire network, -, is given
as:

=1 wiej +bo (2)

J=1

Here, wy; and b, represent the weights and bias of the output layer neuron. The network
parameters are calibrated using a set of training data, D = {zy,t,}, by minimising the mean
square error (MSE) between predictions and observations, given as:

N
B= > ) 3)
n=1

To minimise the average errors across all layers, the backpropagation method iteratively
modifies the weights and biases in the network, starting at the output layer. This process
continues until the output error E falls within an acceptable limit.

The network architecture employed in this study consists of three hidden layers, each
containing 15, 15, and 10 neurons, respectively. The input vector x,, consists of two variables,
namely, observed soil moisture (smt) and the daily change in soil moisture (smtagcar: —
smtascaT,—1). Furthermore, it was assumed that a negative change in soil moisture resulted
from a lack of rainfall. Hence, the algorithm was trained only on days with a positive change
in soil moisture.

The ANN was trained using the Levenberg-Marquardt (LM) backpropagation algorithm
[20]. The IMD gridded daily rainfall product [50] was used as observational data for training
the neural network. Of the entire training dataset (2007-2009 and 2015), 60% was used for
training the network, while the remaining 40% was used for cross-validation. Testing of the
trained network was carried out using independent data from 2010 to 2012.
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3.2.2 3B42RT Rainfall Correction

Once the rainfall was estimated using ASCAT soil moisture and ANN, the 3B42RT product
was corrected using the ANN-predicted rainfall. For this purpose, the Newtonian nudging
scheme was applied, following [44]:

Peor(t) = Prupa(t) + G [Psm(t) — Prvpa(t)] (4)

Here, P (t) is the corrected rainfall product, and Psy(t) represents rainfall accumulation
estimates derived from ASCAT soil moisture and ANN. The weighting parameter G was
calibrated to maximise the correlation between the 3B42RT and IMD rainfall data. The
calibration of G was performed for the years 2007 to 2009 and 2015, as stated earlier in
Section 3.2.

3.3 State Correction Scheme

In the state correction scheme, ASCAT soil moisture retrievals were assimilated into an open-
loop SWAT run. This run used uncorrected 3B42RT rainfall as its input. A schematic
illustration of the state correction strategy used in this study is shown in Figure 2(b). Details
of the state correction scheme are discussed in the following subsections.

3.3.1 Soil Moisture Bias Correction

The inherent bias between the model-predicted variable and the corresponding observations is
frequently overlooked by assimilation approaches. This issue is often referred to as ‘bias-blind
assimilation’ [19, 39]. Such biases can result in suboptimal assimilation outcomes, particu-
larly when using remote sensing observations that contain spatially variable biases. Therefore,
the ASCAT soil moisture observations were bias-corrected using the mean-variance correction
technique (Equation 5). This method matches the mean and variance of the model-predicted
soil moisture on a monthly timescale. Although higher-order bias correction approaches (like
CDF matching) are available, they tend to remove more inherent variability in the observa-
tions [41, 43]. Further, for a limited time span of two years, construction of CDF would be
suboptimal, and adopting a simpler method has proved sufficient [41].

Om —
SMcorrected = SMmodel + ﬂ(SMASCAT - SMASCAT) (5)
OASCAT

Here, S M orrected is the bias-corrected soil moisture. S My oqer is the mean SWAT-simulated
soil moisture for a given month, and SMascaT is the observed ASCAT soil moisture value.
The terms opoqel and oascaT represent the standard deviations of the SWAT-simulated and
observed soil moisture values for a given month, respectively.

3.3.2 Soil Moisture Analytical Relationship (SMAR)

The ASCAT soil moisture observation represents only the top few centimetres of the soil
layer (05 cm). Hydrological models, on the other hand, simulate soil water content at much
deeper levels (usually varying between 100 and 200 cm). The assimilation of top-layer soil
moisture has shown limited success in improving soil moisture at deeper layers in previous
studies [29, 51]. Other studies [12, 52] have shown that converting surface soil moisture to
root-zone soil moisture before assimilation into hydrological models improves the accuracy of
root-zone soil moisture and streamflow simulations.

Based on the previous work [52], the SMAR algorithm [42] was used in this study to
convert ASCAT surface soil moisture (SSM) to root-zone soil moisture (RZSM) using the
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model-simulated climatology of RZSM. SMAR estimates RZSM conditions based on a physical
relationship with SSM conditions.

The equations governing this process are derived from the water balance between these
two layers. Water infiltrates into RZSM only when the field capacity of SSM is reached [28].
However, horizontal/lateral water movement is typically neglected due to its insignificant
contribution. The vertical water flux reaching the RZSM is summarised as:

Sl(t')—Sfl, ifsl(t')ZSfl
y(t;) = v = (6)
0, otherwise

Here, s1 is the relative saturation of SSM, and sg.; is the relative soil saturation of SSM
at field capacity. The infiltration of water occurs instantaneously and recharges the RZSM
based on:

a(t) = sz + [ (s2(tj-1) = sw2)e 0750 | £ {1 = s2lby(t)(t — )] ()

Here, sg is the relative saturation of RZSM, and sy9 is the relative saturation of RZSM

at the wilting point. The parameters a and b are estimated as:
V2 niz
“ (1 — Swg)n2Z27 b (1 — SWQ)TLQZQ (8)

In these equations, vo (mm/day) is the soil water loss coefficient, which considers all water
losses occurring at RZSM. The terms n; and ny represent soil porosity for SSM and RZSM,
respectively, while z; (mm) and z3 (mm) are the depths of SSM and RZSM.

The first parameter, a (day~!), represents the water loss coefficient in RZSM. It is the
ratio of water loss in RZSM to its storage. The second parameter, b, represents the diffusivity
coefficient. It is based on the ratio of SSM storage to RZSM storage. Along with these two
parameters, Syo and Sg.1 serve as the physical parameters of SMAR. These parameters can
be measured using in-situ observations or estimated through an optimisation algorithm. In
the current study, all four parameters were calibrated using the Particle Swarm Optimisation
(PSO) algorithm for each SWAT sub-basin to maximise the NSE with respect to simulated
RZSM.

3.3.3 Ensemble Kalman Filter (EnKF)

EnKF belongs to the family of Kalman filtering approaches proposed by [33]. Among its
various variants, it is one of the most widely used sequential assimilation approaches in the
hydrological community. It utilises the Monte Carlo approximation to create samples (also
called ensemble members) in the distribution. EnKF was first introduced by [23] to handle
non-linear models efficiently. It uses two steps to optimally ingest the observation into the
model.

The first step is the ’forecasting step’, where an ensemble of model simulations and ob-
servations is generated (Equation 9) to better represent their respective uncertainties. These
ensembles are generated randomly by perturbing the model forcings and states:

b ; A

Xy = M(Xp* Up) + ve 9)

Here, Xtifl represents the forecasted ensemble state. M is the non-linear SWAT model,

vi+1 represents the Gaussian white noise of the model state, and t represents the timestep.
Similarly, the ensemble generation of observations is given by:

Zpl = HX) + win (10)

10
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Here, ZZfl represents the model-simulated observational counterpart. H; is the obser-
vation operator that connects the observation to the model state, and w41 represents the
observational error.

Once the ensemble is generated, the 'assimilation step’ is performed based on the relative
uncertainties in the model and observation. During this step, the observation is assimilated
into the model using a nudging parameter called the Kalman gain (K), as shown in Equa-
tion 11:

A7 -7b ; ‘7b
Zfl = th+1 + K(ZZH - ZZ+1) (11)

Here, XZf1 represents the assimilated model state, denoted by superscript a. The K
follows the best linear unbiased estimate principle to optimally adjust the observation. For
a given timestep, it calculates the relative error rate in the model states with respect to the
combined uncertainty in the model and observation as:

K = BiH[ (R, + H,B,H/' )™ (12)

In this equation, B; represents the error covariance matrix of the model state before
assimilation, and R; represents the error covariance matrix of the observation.

3.3.4 Ensemble Simulations and SMAR-EnKF Implementation

For generating ensemble model simulations, spatially homogeneous and temporally uncorre-
lated multiplicative Gaussian noise with a zero mean and a standard deviation of 0.3 mm/mm
was applied to the TRMM 3B42RT rainfall data. Similarly, Gaussian noise with a zero mean
and standard deviations of 0.05 mm/mm and 0.10 mm/mm was added to the surface and
subsurface soil moisture layers, respectively, during model simulations. This accounted for
uncertainties due to model parameters. All ensemble simulations in this study were run using
100 members.

The ensemble simulations were initiated with a two-year warm-up phase to ensure an
appropriate ensemble distribution of simulated soil moisture at the start of the assimilation
cycle.

To represent errors in the ASCAT observations, the ASCAT soil moisture was perturbed
using a zero-mean standard deviation of gagcat, given as:

Oascat = CASCAT gy, noise (13)

Here, ASCAT noise represents the uncertainty information provided with Level 2 ASCAT
soil moisture observations, which range from 0.01 to 0.06 in this study region. The scaling
factor a was set to 3 to achieve an average oascat 0f 0.1 mm/mm.

To ensure an efficient ensemble spread, the Latin hypercube sampling technique was em-
ployed to generate random numbers for all forms of sampling [26]. To maintain vertical error
correlation across soil layers, the field capacity of the soil was perturbed using Gaussian noise
with a zero mean and a standard deviation of 0.1 mm/mm for both surface and subsurface
soil layers. The same random numbers were used, as described by [51].

Furthermore, rainfall variables were considered semi-restricted, while soil moisture vari-
ables were treated as fully restricted fields. This was done to maintain the quality of ensemble
simulations, as suggested by [63].

The SMAR-EnKF state estimation technique employed in this study is based on the work
of [52]. The soil moisture of the surface and deeper soil layers was estimated individually
during the state estimation run. First, EnKF was used to update the surface layer soil
moisture using ASCAT observations and error information. The analysis from EnKF was
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then utilised to estimate subsurface soil moisture for each ensemble member using the SMAR
model. This subsurface soil moisture ensemble was subsequently assimilated into the SWAT
subsurface soil layer using EnKF.

3.4 Dual Correction

The dual correction scheme adopted in this study combines the forcing correction scheme
and the state correction scheme, described in Sections 3.2 and 3.3, respectively. A detailed
flowchart of the proposed dual correction scheme is shown in Figure 2(c). In this scheme,
ASCAT soil moisture retrievals were used to correct the 3B42RT rainfall. Furthermore, the
scaled root-zone soil moisture, obtained using the SMAR technique, was assimilated into
SWAT to update the soil moisture states.

We assessed the performance of each of the three assimilation techniques by validating
the modelled streamflow during the validation period (June 2010 to May 2012). It should be
noted that independent in situ observations of evapotranspiration and other water-balance
components are not available for this basin (aside from the outlet discharge) during validation
period. In light of these constraints, we added a qualitative internal-consistency assessment
using the modelled soil moisture at two spatial scales: first, at the outlet location where the
streamflow assessment is conducted, which allows a direct comparison between the modelled
soil moisture and streamflow; and second, a basin-wide assessment across the catchment to
capture spatial patterns and variability.

Correlation (R), Root Mean Square Error (RMSE), Absolute Bias (Bias), Nash—Sutcliffe
Efficiency, and assimilation efficiency (EFF) statistics were used for this purpose. These met-
rics are widely applied in evaluating the performance of hydrological models and, collectively,
they assess different aspects of model performance, including the magnitude of errors, system-
atic bias, and overall predictive skill. Additionally, to evaluate improvements in the 3B42RT
estimates before and after correction, the Probability of Detection (POD) and False Alarm
Ratio (FAR) statistics were used. These statistics are calculated as:

h

POD = 0 (14)
_f

FAR = = (15)

Here, h, m, and f denote the number of hits, misses, and false rainfall events, respectively.
Hits (h) refer to the number of instances where both predicted and reference products indicate
rainfall occurrence. Misses (m) refer to the number of instances where the predicted rainfall
fails to capture rainfall occurrences in the reference product. False alarms (f) refer to the
number of instances where the predicted rainfall reports rainfall occurrence while no rainfall
is recorded in the reference product.

Among others, the NSE metric was chosen as the objective function to optimise the model.
This is due to its ability to normalise performance against the variability of observed data,
although it is known to be sensitive to extreme values.

4 Results and Discussion

Enhancements to the 3B42RT product using the forcing correction technique are discussed in
Section 4.1. The performance of the selected assimilation strategies on model-simulated soil
moisture and streamflow is then discussed in Sections 4.2 and 4.3 respectively. Later, SWAT
performance during forecast period is discussed in Section 4.4.
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4.1 Rainfall Correction

Figures 3(a—e) present the validation metrics (R, RMSE, NSE, POD, and FAR) for 2010-2012.
From Figure 3(a), it can be seen that Pearson’s correlation at all grids improved slightly af-
ter applying the correction. In contrast, the RMSE and NSE of the corrected rainfall at all
grids improved considerably compared to the raw 3B42RT rainfall product (Figures 3(b—c)).
The improvement in R and the reduction in RMSE demonstrate that the ANN-based rainfall
correction scheme successfully reduces random errors in 3B42RT rainfall accumulations. Sim-
ilarly, the improvement in NSE indicates the ability of the proposed forcing correction scheme
to reduce errors in moderate to high rainfall events, as NSE is more sensitive to higher values
in a time series. The probability of detecting rainfall (Figure 3d) improved consistently across
all rainfall grids. At the same instance, an increase in the False Alarm Ratio was observed
across all grids (Figure 3e). A primary reason for this could be noise in the satellite-derived
soil moisture estimates, which triggered rainfall events erroneously classified as rainy days
in the 3B42RT o,y product. Similar issues have been reported in previous studies [4]. Fig-
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Figure 3: Statistical comparison of the uncorrected 3B42RT rainfall product versus the cor-
rected rainfall (3B42RTcorr) with respect to IMD gridded rainfall data (reference dataset) at
all six rainfall grids in the study area. (a) to (e) shows correlation (R), RMSE, NSE, POD,
and FAR respectively. (f) shows the gain parameter (G) of the Newtonian nudging scheme
used for correction in all six rainfall grids. Note: For Figures(a-e), the y-axis shows statistics
of the corrected data and the x-axis shows the same statistics for uncorrected data.

ure 3(f) shows the calibrated gain parameter G at each of the six rainfall grids used in this
study. The gain parameter G describes the relative weight assigned between the 3B42RT and
ANN-derived rainfall estimates while correcting the 3B42RT datasets (Equation 11). The
gain parameter G (Figure 3f) was optimised to be less than 0.5 at all rainfall grids. This im-
plies that the nudging correction (Equation 11) gave more weight to the uncorrected TRMM
3B42RT rainfall estimates than the ANN-generated rain rate estimates in the selected study
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region.

One noteworthy point is that the gain parameter in Equation 11 was calibrated to max-
imise correlation rather than NSE efficiency criteria, as was done for the SWAT and SMAR
model calibration. This decision was made because using NSE as the objective function pro-
duced superior correction for large-magnitude rainfall accumulations (>30 mm/day) due to
its sensitivity to extreme values. However, it resulted in an increase in small-magnitude unob-
served rainfall events (<2 mm/day), which were produced by ANN due to errors in ASCAT
observations (results not shown here). This caused a significant degradation in correlation
and FAR statistics of the corrected rainfall.

Despite using correlation as the objective function during the optimisation of parameter
G, the degradation of FAR was not eliminated completely. It still produced an overall bet-
ter rainfall correction across multiple evaluation criteria (Figures 3 a-d). Nonetheless, the
improvement in RMSE (average decrease of 7.5 mm) and NSE (average increase of 10%)
is substantial for the corrected rainfall product (Psy), thereby instilling confidence in the
proposed approach for improving real-time satellite-based rainfall estimates.

4.2 Soil Moisture Evaluation

Figure 4 displays the surface-layer soil moisture time series for the open-loop and other assim-
ilation experiments. Visually, it is observed that the model captures the ASCAT observations
well. Table 2 shows the same trend, with a correlation coefficient greater than 0.75 across all
experiments.
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Figure 4: Comparison of model simulated soil moisture with ASCAT observation at basin
outlet for all assimilation experiments.

Furthermore, the RMSE and bias are lower, indicating very good agreement with the
observations (Table 2). The forcing correction does not improve the modelled soil moisture.
This likely reflects the agriculture-intensive nature of the catchment, where irrigation, evap-
otranspiration, and soil-plant parameter uncertainties dominate the soil moisture dynamics,
so precipitation correction alone yields minimal improvement. On the other hand, both state
and dual corrections improve SWAT performance in simulating soil moisture. NSE values
increased from 0.375 to 0.728 for the state correction and to 0.732 for the dual correction ex-
periment. The assimilation efficiency score also shows an improvement of approximately 34%
relative to the open-loop case. These results highlight the importance of a dual correction
scheme for model improvement.

14



Visweshwaran et al.

ARC Geophysical Research (2025) 1, 15

Table 2: Comparison of SWAT-simulated soil moisture performance indices with ASCAT
observations for all assimilation experiment runs from June 2010 to May 2012.

Model Run R | RMSE | Bias | NSE | EFF
(-) | (Cm) | (Cm) ()

Open Loop 0.76 | 1.276 0.01 | 0.375 -
Forcing Correction | 0.76 | 1.272 0.03 | 0.374 | -0.03
State Correction | 0.88 | 0.841 | -0.028 | 0.728 | 34.11
Dual Correction 0.88 | 0.836 | -0.056 | 0.732 | 34.52

Figure 5 shows box plots of all metrics across the 33 sub-basins for the experiments. Al-
though forcing correction showed no improvement at the outlet (Figure 4), the box plots reveal
a marginal improvement over the open-loop case across the catchment. The distributions are
tighter, and the median NSE increases from 0.46 to 0.48, and the median bias is reduced from
0.03 to 0.01, indicating a positive effect of rainfall correction across the catchment. For the
state and dual corrections, the median NSE and R improved to 0.72 and 0.88, respectively.
Bias is close to zero (0.02) and RMSE is lower (0.97 cm) for both state and dual corrections,
suggesting a strong impact of the dual correction on the SWAT simulations.
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Figure 5: Boxplot showing evaluation metrics between SWAT simulated soil moisture and
ASCAT observations across 33 sub-basins during different assimilation experiments.
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4.3 Streamflow Evaluation

Figure 6 illustrates the comparison of streamflow data at the Madhira gauging station with
simulated streamflow from all the experiments. From Figure 6, it was observed that the
forcing correction scheme improved model performance over the open-loop run, particularly
during high-flow conditions (as shown in the inset Figure 6a). On the other hand, the state
correction and dual correction schemes were relatively less effective in improving streamflow
during high-flow conditions. It was also observed that the state correction scheme, using
the SMAR-EnKF strategy, suppressed peak flows during both the 2010 and 2011 monsoon
(June-September) seasons.
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Figure 6: Comparison of model simulated streamflow with observed streamflow at basin outlet
for all assimilation experiments.

For low-flow comparisons, different observations were made. The forcing correction did
not improve low flows, as seen in Figures 6 (b—c). In contrast, both the state correction and
dual correction schemes significantly enhanced low flows. A comparison of the performance
statistics for all four model runs, along with a model run (IMD run) forced with reference
rainfall (IMD gridded rainfall) without assimilation, is presented in Table 3. From this table,
it can be observed that some negative bias was introduced during all assimilation experiments.
This is acceptable because sequential data assimilation techniques do not account for model
water balance, and hence, the model can exhibit deviations in long-term biases. However,
the dual correction scheme outperformed the forcing correction and state correction schemes
achieving the highest assimilation efficiency of 28.9%. The NSE obtained during the validation
period when the model was driven using IMD rainfall was 0.3. According to [47], a streamflow
NSE > 0.5 is considered satisfactory at a monthly time scale, although lower values can be
acceptable at shorter time scales (weekly or daily). Similarly, a NSE of 0.05 was obtained
from model simulations utilising 3B42RT rainfall across the validation period. This poor
performance was attributed to the fact that 3B42RT, being a real-time dataset, contains
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significant errors in it [9)].

In addition, the RMSE and NSE of simulated streamflow were better for the dual correc-
tion scheme, which utilised corrected TRMM rainfall and ASCAT soil moisture assimilation,
compared to the model performance when driven by observed IMD rainfall without data as-
similation. This level of improvement was not achieved when the forcing correction and state
correction schemes were applied independently.

Table 3: Comparison of SWAT-simulated streamflow performance indices with observed
streamflow for all model runs from June 2010 to May 2012.

Model Run R RMSE Bias NSE | EFF
(-) | (Cumecs) | (Cumecs) (%)

IMD 0.612 31.724 5.882 0.302 -

Open Loop 0.59 37.026 -0.01 0.05 -
Forcing Correction | 0.6 33.682 -1.48 0.214 | 17.3
State Correction | 0.578 32.719 -5.295 0.258 | 21.9
Dual Correction 0.61 31.227 -6.458 0.324 | 28.9

During high-flow conditions, the forcing correction tends to perform better because ex-
treme rainfall events produce strong signals in soil moisture changes that the ANN can effec-
tively capture and use to correct the satellite rainfall input. In contrast, the state correction
using SMAR-EnKF underperforms in high flows because the model’s internal states are pushed
into regimes where the assumed physical relationships (e.g. linear response via SMAR) may
be violated, leading to less reliable subsurface fluxes. Consequently, the state correction alone
struggles to keep pace with the unmodelled dynamics during intense rainfall events. It was
also evident that the dual correction scheme retained the superior performance observed dur-
ing low flows with the state correction scheme while achieving the highest improvement in
assimilation efficiency.

Additionally, the equivalent performance of the dual correction model run compared to the
model run utilising observed IMD rainfall (Table 3) supports the application of satellite-based
inputs for hydrological modelling in data-scarce catchments.

4.4 Forecasting Performance Evaluation

The long-term durability of the performance gains obtained from each assimilation strategy
in the absence of satellite soil moisture data is analysed in this section. The forecasting skill
of the SWAT hydrological model is evaluated for 0, 1, 3, 5, 10, and 15-day lead times, as
presented in Table 4.
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Table 4: Streamflow forecasting performance of the SWAT model during all three assimilation
schemes.

Model Run Lead Time | RMSE Bias NSE | EFF
(Days) (Cumecs) | (Cumecs) (%)

0 33.939 -1.507 0.210 | 17.2

1 36.643 -1.111 0.079 | 3.5

2 37.305 -0.894 0.045 | 0.0

Forcing Correction 3 37.406 -0.731 0.040 | -0.5
5 37.476 -0.613 0.036 | -0.9

10 37.274 -0.482 0.047 | 0.2

15 37.159 -0.454 0.053 | 0.8

0 32.968 -5.380 0.254 | 21.9

1 32.968 -5.380 0.254 | 21.9

2 34.886 -4.781 0.165 | 12.6

State Correction 3 35.842 -4.381 0.119 | 7.7
5 36.570 -3.934 0.083 | 3.9

10 36.590 -3.385 0.081 | 3.8

15 36.641 -3.030 0.079 | 3.5

0 31.465 -6.560 0.321 | 28.9

1 33.211 -6.229 0.243 | 20.8

2 34.985 -5.416 0.160 | 12.1

Dual Correction 3 35.940 -4.934 0.114 | 7.2
5 36.613 -4.370 0.080 | 3.7

10 36.575 -3.772 0.082 | 3.9

15 36.627 -3.363 0.080 | 3.6

During the forcing correction, it was observed that the assimilation efficiency declined
immediately after day one. This was primarily because the corrected 3B42RT rainfall con-
tributed mainly to improving the quick flow component of the streamflow (as discussed in
Section 4.3), which had little or no effect on simulated streamflow after a one-day forecast.

During the state correction, the assimilation efficiency remained at 21.9% for one-day
forecasts but declined rapidly to 3.9% by the five-day forecast.

For the dual correction scheme, the assimilation efficiency was highest during same-day
forecasts (=~ 28.9%). However, by the one-day forecast, EFF reduced to 20.8%, a value close
to that obtained from the state correction scheme (Table 4). From the three-day forecast
onward, the EFF of the dual correction scheme closely resembled that of the state correction
scheme. Since the dual correction scheme integrates the benefits of both correction strategies,
the highest assimilation efficiency was achieved only on the assimilation day.

It should be noted that the decay rate of assimilation efficiency in this study was higher
than that reported in previous work by [51]. This could be attributed to two factors: 1. The
present study used noisy satellite rainfall estimates, whereas the previous study used observed
IMD rainfall. 2. The catchment area in this study was relatively smaller, resulting in a shorter
concentration time.

As a result, maximum improvement in forecasting performance can be achieved for short
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lead times of up to 1-2 days using the dual correction strategy. Beyond two days, the im-
provement in forecasted streamflow is comparable to that obtained from the state correction
strategy. Comparisons with previous studies suggest that forecasting performance varies de-
pending on catchment size, watershed characteristics, and the ratio of surface to subsurface
runoff. To extend forecast skill beyond 1-2 days in this small basin, such as Wyra, future ef-
forts should drive SWAT with short-range weather forecasts and maintain sequential updates
of states and forcings throughout the forecast window.

5 Summary and Conclusions

This study assessed the capability of satellite-based soil moisture to correct both satellite rain-
fall estimates and modelled soil moisture states through data assimilation. Three correction
strategies were tested: (i) forcing correction, where ASCAT soil moisture information was
used to estimate rainfall accumulations via artificial neural networks that were then merged
with 3B42RT using a Newtonian-nudging scheme; (ii) state correction, in which SMAR cou-
pled with an Ensemble Kalman Filter (SMAR-EnKF) updated SWAT profile soil moisture;
and (iii) dual correction, which combined both approaches to simultaneously correct satellite-
based rainfall estimates and modelled soil moisture states using ASCAT observations.

The evaluation of the corrected 3B42RT rainfall demonstrated that the errors in the
raw 3B42RT product can be effectively corrected using ASCAT soil moisture information,
particularly for moderate to high rainfall events. [37] conducted a similar experiment to
correct the 3B42RT product using support vector regression for a semi-arid catchment in
India. Although the corrected product showed improvement for moderate rainfall values,
its overall performance during high rainfall events remained poor, thereby highlighting the
benefit of the ANN method for rainfall correction. The false alarm rate, on the other hand,
increased slightly for the corrected rainfall, likely due to noise in the ASCAT soil moisture
product used for the correction. Nevertheless, the application of ANNs in this study has
demonstrated their potential for correcting satellite-based rainfall using satellite-based soil
moisture information. The improvement in the performance metrics (Figure 3) reiterates
that ANNs are capable of capturing complex non-linear relationships between soil moisture
dynamics and antecedent rainfall. Future enhancements may involve the use of hybrid models
by combining two machine learning methods [24] or by developing a more comprehensive
ANN framework incorporating additional auxiliary information (including soil types and other
driving variables) as predictors, to facilitate a more generalised correction approach.

Forcing correction had a marginal effect on the improvement of the modelled surface soil
moisture. NSE and R rose by 5 and 0.7 % , respectively (Figure 5). On the other hand, the
state-correction scheme improved the modelled soil moisture considerably, with an increase
of 57.5 and 13.1 % in NSE and R, respectively. This difference is due to the agriculture-
intensive nature of the catchment, which is heavily influenced by local practices and high
evaporative demand. During streamflow evaluation, the forcing-correction scheme improved
the accuracy of satellite-based rainfall estimates, leading to better high-flow simulations in the
hydrological model, improving the NSE value by 328 per cent. In contrast, the SMAR-EnKF-
based state-correction scheme had a stronger influence on subsurface runoff, improving the
baseflow component in SWAT and leading to a 416 % improvement in NSE. [15] and [44]
conducted similar experiments for alternate conceptual hydrological models and reported
that state updates enhance baseflow while forcing correction benefits peak-flow simulation,
reflecting a similar outcome to the current work.

Finally, the dual-correction scheme resulted in the best and most significant improvement
in SWAT simulations. Surface soil moisture and streamflow saw NSE improvements of 57.5
and 548 % , respectively. In addition, the NSE achieved through the dual-correction strategy
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slightly exceeded that of the model run forced with observed rainfall (IMD dataset). In the
streamflow forecast analysis, the improvements from the forcing-correction scheme did not
persist beyond 1-2 days of lead time. Conversely, the state- and dual-correction schemes
maintained skill improvements for up to five days. The highest forecasting skill was observed
during the dual-correction strategy for lead times of 1-2 days, with improvements of 20.8
and 12.1 % in the EFF metric. These results suggest that satellite soil moisture observations
can be used effectively to constrain both model forcings and states, thereby enhancing model
forecasts.

[4] evaluated dual forcing and state correction in data-scarce catchments and reported
sustained improvements in forecasts at short lead times, echoing our findings. Additionally,
we conducted a similar study on the same basin to assess state correction using the SMAR-
EnKF approach on SWAT, with an elongated evaluation period [52]. From that work, it was
evident that the improvement in streamflow simulation was limited when only the model state
was updated. For instance, the EFF for the best-performing SMAR-EnKF scenario was 24.5
% (Table 4, [52]), which is notably lower than the EFF achieved through dual correction in
this study (28.9 % , Table 3). Taken together, these results strongly support the broader
adoption of dual correction strategies in operational flood forecasting and short-term water
allocation planning.

During the forecast period, we acknowledge mismatches between the model and observa-
tions, particularly beyond 5 days’ lead time. A likely contributor is the reliance on a single
soil-moisture sensor (ASCAT) and a single satellite rainfall product (3B42RT). The perfor-
mance of the forcing correction scheme is also constrained by the simplified representation
of irrigation and crop phenology. This is an important limitation in the Wyra catchment,
where ~70 % of land use is agricultural. In light of these factors, future work should test
multi-sensor assimilation (e.g., SMAP /Sentinel-1 soil moisture, gauge-merged rainfall). In
addition, evapotranspiration information should be assimilated alongside soil moisture within
a multivariate framework to improve water-balance closure.

Despite these limitations, the proposed hybrid ANN-EnKF framework allows for correc-
tion of both forcing and model state errors using satellite-derived information. It demon-
strates a balanced combination of physics-informed modeling and data-driven adjustment. In
addition, this approach is dynamic, and suitable for application in data-scarce environments
supporting flood-forecasting applications.
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