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Sarbecoviruses of British horseshoe bats; sequence variation
and epidemiology
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Harrison®“ Elizabeth A. Chadwick®?, Frank Hailer®, Stephen W. R. Harrison®, Matthew Loose?, Fiona Mathews’ and

Rachael Tarlinton'*

Abstract

Horseshoe bats are the natural hosts of the Sarbecovirus subgenus that includes SARS-CoV and SARS-CoV- 2. Despite the dev-
astating impact of the COVID-19 pandemic, there is still little known about the underlying epidemiology and virology of sarbe-
coviruses in their natural hosts, leaving large gaps in our pandemic preparedness. Here we describe the results of PCR testing
for sarbecoviruses in the two horseshoe bat species (Rhinolophus hipposideros and R. ferrumequinum) present in Great Britain,
collected in 2021-22 during the peak of COVID-19 pandemic. One hundred and ninety seven R. hipposideros samples from 33
roost sites and 277 R. ferrumequinum samples from 20 roost sites were tested. No coronaviruses were detected in any samples
from R. ferrumequinum whereas 44 and 56% of individual and pooled (respectively) faecal samples from R. hipposideros across
multiple roost sites tested positive in a sarbecovirus-specific gPCR. Full genome sequences were generated from three of the
positive samples (and partial genomes from two more) using Illumina RNAseq on unenriched samples. Phylogenetic analyses
showed that the obtained sequences belong to the same monophyletic clade, with >95% similarity to previously-reported Euro-
pean isolates from R. hipposideros. The sequences differed in the presence or absence of accessory genes ORF 7b, 9b and 10.
All lacked the furin cleavage site of SARS-CoV-2 spike gene and are therefore unlikely to be infective for humans. These results
demonstrate a lack, or at least low incidence, of SARS-CoV-2 spill over from humans to susceptible GB bats, and confirm that
sarbecovirus infection is widespread in R. hipposideros. Despite frequently sharing roost sites with R. ferrumequinum, no evi-
dence of cross-species transmission was found.

BACKGROUND

The most widely accepted explanation for the origin of the SARS-CoV-2 pandemic is that it arose from animals held in the Wuhan
market in late 2019 [1]. It has been proposed that masked palm civets (Paguma larvatai) acted a bridging host for SARS-CoV
transmission from an unknown ancestral reservoir in a species of horseshoe bats to humans [2, 3], and it is likely that intermediate
hosts were also involved in the emergence of SARS-CoV-2. Widespread onward transmission of SARS-CoV-2 from humans to
other mammals occurred during the human covid pandemic, including large outbreaks in farmed mink (Neovison vison) [4-7],
the establishment of a new reservoir in wild white-tailed deer (Odocoileus virginianus) in the USA [8, 9], and repeated infection
(though without the establishment of endemic transmission) in domestic cats (Felis catus) [10-13]. Reports of transmission
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back to humans from these species have also occurred [6, 14, 15] highlighting the risk of new animal reservoirs developing,
potentially as sources of new viral variants that might evade vaccine-induced immunity. Sporadic cases have also been reported
in domestic dogs (Canis familiaris), hamsters (Mesocricetus auratus), cattle (Bos Taurus) and camels (Camelus dromedarius), and
a large range of primates, non-domestic felids, mustelids, hippos (Hippopotamus amphibius) and manatees (Trichechus manatus)
(reviewed in [16]).

The natural hosts of sarbecoviruses (SARS-like betacoronaviruses) are insectivorous horseshoe bats (represented by a single extant
genus Rhinolophus within the family Rhinolophidae; superfamily Rhinolophoidea; sub-order Yinpterochiroptera) and the related
old world roundleaf bats of the family Hipposideridae which share the same superfamily. There are around 180 known species
of Rhinolophidae and Hipposideridae with ranges across Eurasia and Africa, and sarbecoviruses have been detected in at least
30 of them [17]. For species and sites where more extensive studies have been performed (generally SE Asia), it is apparent that
species- and site-specific clustering of virus sequences occurs [18, 19]. Geographical hotspots of both bat and viral species are
apparent in SE Asia [17, 20].

There are, in contrast, very few reports of sarbecoviruses in the sub-order Yangochiroptera: a small number of isolated reports
in individual animals or pooled samples of Molossidae and Vespertilionidae families have been recorded in multispecies studies
(17,21, 22].

There is also evidence from multiple studies for considerable variation in both Sarbecovirus carriage and sequences among host
and viral lineages in bats, with implications for potential cross species transmission [22]. While the exact determinants of what
makes sarbecoviruses more likely to cross the species barrier into humans are not known, one clear limiting factor is the ability
of the virus spike protein (the protein that binds to the host cell facilitating virus entry) to bind to the human ACE-2 protein
(the receptor for SARS-CoV and SARS-CoV-2 in humans) [23]. Considerable mutation and antigenic variation is present in
this spike protein in SARS-CoV-2 isolates and bat sarbecoviruses [18, 24]. In SARs-CoV-2 this protein also displays a distinctive
cleavage site for the furin protease that is missing in many bat isolates and appears to be a critical factor in transmission and
pathogenesis in humans [25]. Complicating matters further, it is apparent that there is frequent viral recombination between
different sarbecovirus lineages [18, 19].

Two species of horseshoe bats are present in Great Britain, the greater horseshoe bat (Rhinolophus ferrumequinum) and lesser
horseshoe bat (Rhinolophus hipposideros), both with distributions largely restricted to southwest England and Wales. Neither are
common at a national scale and both are regarded as rare in Europe, and hence are protected under the Habitats Directive and
Eurobats Agreement [26, 27]. In Britain, populations comprise approximately 13000 greater horseshoe bats and 50000 lesser
horseshoe bats [28, 29]. Britain and Ireland form the extreme north-western end of their geographic ranges (only R. hipposideros
is found in Ireland), which extends through central and southern Europe to Central Asia for lesser horseshoe bats and across
Asia to Japan for greater horseshoe bats. The two species can share roost sites and both use a variety of roosts across the year,
including maternity and hibernation sites [30].

Sarbecoviruses have been reported previously from both bat species. Partial RDRP (Rnase dependent RNA polymerase) sequences
have been described from Chinese, Italian and Bulgarian greater horseshoe bats [31-35] at a prevalence of 2.2-42% (6/45 13%,
2/53 3.8%, 19/45 42%, 1/45 2.2%) in European samples. Full sequences are also available for a number of Chinese, one Korean
and one Russian greater horseshoe bat sarbecoviruses; the Asian sequences are phylogenetically very distinct from the European
isolates [36-39].

Similarly, partial RDRP sequences have been reported in Slovenian lesser horseshoe bats [40], at a prevalence of 31% (14/36), and
Slovenian and Spanish lesser horseshoe bats at a prevalence of 14% (5/36) and 7.1% (21/285) [35]. More recently, full genome
sequences from Russian and British lesser horseshoe bats [36, 41] have also been reported.

Resequencing of partial RDRP genes from Spanish, Italian and Slovenian isolates (and the full genome sequences for the UK and
Russian isolates) from both species has demonstrated a lack of the furin cleavage site present in SARS-CoV-2 [38]. The European
greater and lesser horseshoe bat sequences are also phylogenetically distinct from each other [38] with the two Russian isolates
(one from each species) displaying 59-95% amino acid similarity to each other depending on the gene [36].

In addition to their being hosts of various sarbecoviruses [20], horseshoe bats have been identified as potentially susceptible to
infection with SARS-CoV-2 [41-44]. This led us to screen British horseshoe bat populations, at the height of the SARS-CoV-2
pandemic in western Europe, for the presence of sarbecoviruses with the aim of confirming or ruling out the establishment of
SARS-CoV-2 circulation in these animals.

METHODS
Sample collection

A total of 517 bat samples (oronasal swabs, external swabs of the rectal region, and faecal samples), including 474 from horseshoe
bats, (Table 1) were collected from roost sites or animals in care in the UK between April 2021 and February 2022, during which
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Table 1. Summary of bat species, sample type and positivity rates for Sarbecovirus E gene gPCR

Bat species Type of sample no. of samples Sarbecovirus E gene QPCR
Lesser horseshoe Oronasal swabs 71 0 (0 %)
Rectal swabs 56 3 (5.4 %)
Individual faeces samples 39 17 (43.5 %)
Pooled faeces samples 31 17 (54.8 %)
Greater horseshoe Oronasal swabs 90 0
Rectal swabs 69 0
Individual faeces samples 91 0
Pooled faeces samples 28 0
Common pipistrelle Oronasal swabs 3 0

Rectal swabs - -

Individual faeces samples 7 0

Pooled faeces samples - -

Natterer’s Oronasal swabs 1 0
Rectal swabs - -

Individual faeces samples - -

Pooled faeces samples - -

Daubenton’s Oronasal swabs 5 0
Rectal swabs 8 0
Individual faeces samples 16 0

Pooled faeces samples - -

time human infection in the UK underwent successive alpha, delta and omicron SARS-CoV-2 epidemic waves [45]. Faecal
samples included those collected from individuals in capture bags during routine population monitoring (during which sex and
age were also recorded where possible) and pooled samples of fresh droppings collected from the floor of bat roosts. All samples
were collected secondarily to regular licenced population monitoring efforts. Handling of animals was conducted under Natural
England Licence 2022-61108-Sci-Sci (Mathews), and followed best practice guidelines for minimising the risk of human to bat
SARS-CoV-2 transmission. Ethical approval was granted by the University of Nottingham School of Veterinary Medicine and
Science Committee for Animal Research and Ethics (CARE), and the University of Sussex Animal Welfare and Ethical Review
Board. Samples were preserved in RNAlater at room temperature and sent to the University of Nottingham where they were
stored at —20 °C until RNA extraction. Samples were collected from five bat species from 54 sites: 197 from lesser horseshoe
bats (Rhinolophus hipposideros) at 33 sites, 277 for greater horseshoe bats (Rhinolophus ferrumequinum) from 20 sites, 10 from
common pipistrelles (Pipistrellus pipistrellus), 32 from Daubentons bats (Myotis daubentonii) and one from a Natterer’s bat (Myotis
nattereri) (Table 1 and Supplementary information, available in the online version of this article).

RNA extraction, reverse transcriptase (RT) and RNA-dependent RNA polymerase (RDRP) gene coronaviruses
generic conventional PCR and envelope gene sarbecovirus-specific real-time PCR

RNA extraction from bat faecal and oronasal swabs, and cell culture supernatant as positive control, was carried out using the
Macherey-Nagel RNA tissue extraction kit as per manufacturer’s instructions. The Wuhan SARS-CoV-2 strain positive control
sample used throughout this study was kindly donated by Dr Christopher Coleman (Division of Infection, Immunity and
Microbes, School of Life Sciences, University of Nottingham, UK). RT was performed in two steps, using M-MLV-RT and random
hexamer primers (Promega) as per manufacturer’s instructions. All cDNA products were stored at =20 °C for conventional PCR.

A generic pan-coronavirus PCR assay published by [46] was used to amplify a 440 bp fragment of the coronavirus RDRP gene
using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs cat no: M0493S). PCR products were purified using the
Nucleospin extract II kit (Macherey-Nagel) according to manufacturer’s instructions and were Sanger sequenced (Eurofins UK).
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Real-time PCR was carried out using the Promega GoTaq Probe 1-Step RT-qPCR System (Promega) with Sarbecovirus-specific
envelope gene primers from bat RNA samples as published by [47].

RNA and cDNA quality control was assessed via partial amplification of 148 bp of the bat mitochondrial cytochrome b gene
using a published conventional PCR protocol [48].

Next generation sequencing and genome analyses

RNA sequencing was performed by Novogene UK, using the Illumina NovaSeq 6000 platform. Quality filtering and trimming to
remove adapters, duplicates and low quality reads was achieved using fastp v0.23.1 [49]. Kraken2 v2.1.2 was used for taxonomic
classification reads against the Kraken2 viral Refseq database [50] (retrieved on 9 June 2022). Reads were assembled using the
coronaSPAdes option in SPAdes genome assembler v3.15.4 [51] using default parameters. While CheckV v1.0.1, a fully automated
command-line pipeline, was used for identification and quality assessment of contigs, contigs were also queried against the NCBI
custom BLASTN (v2.12.0) viral database [52] (retrieved on 3 July 2022) to confirm results from CheckV. Assembled contigs were
indexed and contigs that were classified and assessed as complete bat Sarbecovirus genomes were extracted for downstream
analysis using samtools v1.16.1 faidx option [53]. Individual reads for each sample were mapped back to identified contigs using
Minimap?2 [54], read coverage and depth were generated using samtools [53]. Assembled genomes were annotated in Geneious
Prime (v.2022.2.2) using NCBI coronavirus reference sequences and visualized for the presence of the structural, non-structural
protein, accessory genes and to generate linear genome maps and data on individual gene location, composition, and nucleotide
length. Reads were also mapped to the prototype European horseshoe bat (Rhinolophus blasii, Blasius horseshoe bat Bulgarian
isolate) sarbecovirus reference genome (NC014470) using BBMap for variant calling, SNPs were viewed, and data exported in
Geneious Prime (v.2022.2.2).

Phylogenetic analysis

Complete coronavirus genomes, extracted RDRP, spike, envelope and nucleocapsid nucleotide sequences from Sarbecovirus
genomes assembled in this study, and a total of 198 reference Sarbecovirus genomes (including non-human Sarbecovirus
isolates, SARS-CoV and SARS-CoV-2) downloaded from NCBI, were aligned using maftt v7.490 [55]. Maximum likelihood
phylogenetic trees were reconstructed based on complete coronavirus genomes, and four different genes using IQ-TREE v2.0.7
[56], using 1000 bootstrap approximations following implementation of UFBoot2 within IQ-TREE v2.0.7 to evaluate branch
support [57]. The ModelFinder option was included in command-line to select the best fitting nucleotide substitution model
for phylogenetic reconstruction [58]. Phylogenetic trees were visualized and annotated in FigTree v1.4.4 (https://github.com/
rambaut/figtree/).

Spike glycoprotein comparison, identification of furin cleavage site (FCS) and transmembrane protease
serine 2 (TMPRSS2), receptor binding domain (RBD) homology modelling and structural analysis

To identify and compare the presence of FCS and TMPRSS2 between UK Coronavirus genomes and related CoVs, RBD spike
proteins from the six UK Coronaviruses (five from this study and one reported by [41]), SARS-CoV, SARS-CoV-2 and related
Beta coronaviruses were aligned, viewed and pictures generated in Jalview [59]. The model for the receptor binding domain
(RBD) and hACE2 protein complex were constructed using SWISS-MODEL to assess the amino acid residues and structural
differences between UK bat CoV, SARS-CoV, and SARS-CoV-2 using an RBD-hACE2 complex. The SWISS-MODEL template
library was search for evolutionary related structures matching the target UK Coronavirus RBD (residues 321-515) and hACE2
(PDB: Q9BYF1) protein sequences using BLasT HHblits database. The most suitable template (PDB: 6vwl) with the highest
selected Global Model Quality Estimate (GMQE) of 0.75 (range: 0-1) and the lowest average Quaternary Structure Quality
Mean Estimate (QMEAN) of - 0.64 was selected to build models for the five UK Coronavirus RBD proteins generated from
this study. The structural analysis and verification server (SAVES) was used to validate 3D structures, create Ramachandran
plots, and classify amino acid residue torsion angles of each structure via implementation of PROCHECK AND ERRAT2 [60],
respectively. In addition, receptor binding residues detection and binding energies of 3D model complex structures generated
were calculated using PRODIGY [61, 62]. Visualization, superimposition, alignment, and generation of figures for presentation
was done using UCSF Chimaera [63].

Recombination analysis

To assess for the presence of potential recombination events, a total of 24 complete coronavirus genomes, including 19 reference
and the five bat Sarbecovirus assembled genomes from this study (Supplementary information), were aligned using maftt v7.490
[55]. Eight recombination detection methods were executed in RDP5 to detect combination events including RDP (R), GENE-
CONV (G), Bootscan (B), Maxchi (M), Chimaera (C), SiSscan (S), 3Seq (T), and LARD (L) [64]. Only a series of recombination
events detected by at least six of these methods were considered as indicative of recombination.
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Fig. 1. Roost sites of Sarbecovirus detected by PCR in faeces from lesser horseshoe bats (Rhinolophus hipposideros), yellow=negative, white=positive.
Circle sizes are proportional to number of samples from the site.

Geospatial mapping and data analysis

Maps of roost sites positive and negative for coronavirus PCR were created in QGIS (version 3.28.2). To account for pooled and
individual samples, map circle sizes were set to five proportional sizes as follows: <3 bats, 3-5 or one pooled sample, 5-10 (pools
count as 3), 10-120 (pools count as 3) and >20 (pools count as 3). Chi-square test was used to evaluate potential differences in
prevalence with sex and age-class (SPSS, Amos 28.0.0).

RESULTS

No samples tested positive in the pan-coronavirus assay, and no oronasal swabs tested positive in the Sarbecovirus-specific PCR
assay for either species, however, numerous lesser horseshoe bat faecal samples tested positive with the Sarbecovirus qPCR
assay (Table 1). Within the five roosts from which >5 individual faecal samples and/or rectal swabs were collected, all yielded at
least one positive sample, and the percentage positivity ranged from 5-25% (mean at individual level across those sites, 16/100
individuals, 16%, 95% CI [Wilsons] 10.0-24.6%). Twenty-two sites yielded only single, pooled samples, of which 10 (45%; 95%
CI [Wilson’s] 27.0-65.3%) were positive (Supplementary information). The locations and infection status of lesser horseshoe bat
roost sites yielding either >3 individual faecal samples or at least one pooled faecal sample are shown in Fig. 1; of these, 21/31
(68%; 95% CI 50.0-81.4%) roosts yielded at least one positive sample.

Age and sex were recorded for 41 and 37 animals, respectively, when individual faecal samples were collected and examined;
among this subset of animals tested, there were no significant (chi-square) differences in the frequency of positive samples by
age (19.5% adult, 8% juvenile) or sex (12.5% female, 21.9% male).

Taxonomic classification, genome assembly

Taxonomic classification using Kraken2 identified reads assigned to other viral operational taxonomic units, however, only
reads classified to the Coronaviridae viral family are reported in this study. Paired end reads were generated from RNA extracted
from six lesser horseshoe bat faecal samples. Between 98-99% of reads were unclassified. The percentage of classified viral reads
from the datasets examined varied from 0.49-1.18%, while the total percentage of classified viral reads assigned to the family
Coronaviridae varied from 0.01-63.58%. Three samples including RhGB04, RhGB05 and RhGB06 recorded approximately 50%
of classified viral reads assigned to Coronaviridae (Supplementary information).
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Fig. 2. Genome organisation of lesser horseshoe bat Sarbecovirus sequences derived from this study and the reference UK genome RhGB0O1. Missing
genes are shown in grey, lengths of nucleic acid segments are listed for each gene, LTR and isolate. RhGBO04 is a partial sequence missing the 5" end
of the genome. RhGBO3 is likewise an incomplete genome missing ORF10 and the 3'UTR.

De novo assembly of datasets from lesser horseshoe bats yielded five genomes made up of single contigs. The length of the
assembled genomes varied from 28.2-30.6 kb with one short contig of 12.6 k. CheckV analysis demonstrated that all the assembled
contigs were closely related to beta coronaviruses, specifically the subgenus Sarbecovirus. Sarbecovirus genomes identified were
assessed to have 94-100% (4/5) and 42% (1/%) quality/completeness, all genomes had 0% contamination except for RbhGB05
with 3.17% contamination. Overall, all the assembled genomes shared 94.5-97.7% average amino acid identity with the reference
genome (RhGB01 MW1957) identified by CheckV (Supplementary information).

Assessment of reads mapped to the assembled genomes demonstrated over 7000, 4000, 302000, 420000 and 500000 reads mapped
to RhGB02, RhGB03, RhGB04, RhGB05 and RhGB06, respectively. The genome assembled from RhGBO03 had the least average
mean depth of 22X and was missing ORF10 and the 3’ UTR, while RhGB04 (partial genome of 12.6 kb missing the 5" end of ORF
lab) recorded the highest mean depth coverage of 3446X (Supplementary information). RhGB03 sequence was not of sufficient
quality for submission to Genbank due to multiple stop codons. The other sequences were submitted with accession numbers
OP776338-0P776340 and OP837780-OP837781. RhGBO03 analysis has been included for the sake of completeness except for
phylogenetic analysis, where its sequence quality was too low (likely due to very low sequence coverage).

Genome annotation and organization of British bat CoVs

Genome annotation in Geneious Prime using NCBI SARS-CoV-2 and SARS-related reference sequences, confirmed a similar
genome organization to the UK lesser horseshoe bat reference genome available from the NCBI database (Fig. 2). Sarbecovirus
genomes consist of a leader sequence (5'UTR), followed by ORF1ab gene with sixteen non-structural proteins (nsp1-16) making
up about 2/3 of the viral genome. The assembled sarbecoviruses were made up of four major structural proteins including the
spike (S), membrane (M), envelope (E) and nucleocapsid (N) proteins. While accessory proteins including ORF3b, 6a, 6b, 7a
and variable ORFs recognisable for 7b, 9b and 10 were reported within the 3’ region interspaced between the major structural
proteins (Fig. 2).

Variant calling

Variant calling following mapping of raw reads to the bat Bulgarian Sarbecovirus reference genome (Bat CoV BM48-31) avail-
able in Europe, demonstrated the presence of a series of single nucleotide polymorphism (SNPs) characterized by amino acid
substitution distributed throughout the entire length of the genome. However, only a total of 22 unique SNPs were identified
within the spike glycoprotein (Supplementary information) with minimum read coverage >10X, mapped quality 210% and variant
frequency >95% from the four nearly full genomes assembled (Supplementary information for details). Overall, 15/22 SNPs
resulting in amino acid substitution were found in RhGB02, 12/22 SNPs identified in RhGB03 (12/22) though sequencing depth
was low for this sample and 8/22 SNPs were reported from both RhGB05 and RhGB06 with the highest read-depth coverage.
One unique SNP at coding sequence position 3641 (V to A) was found in all four assembled genomes, and 5/22 unique SNPs,
including changes at position 2399 (SR to KR), 2766 (D to E), 2781 (TT to TA), 3208 (E to K), and 3268 (I to V), in at least 3/4
of the assembled genomes. The position of these SNPs coincided with location of Sarbecovirus SD-1 and SD-2 subdomains, S1/
S2 cleavage region and the S2 fusion subunit (Supplementary information).
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Phylogenetic analysis

Results from the maximum likelihood phylogenetic trees drawn using complete coronavirus genomes (Supplementary infor-
mation), spike glycoprotein (Fig. 3), RDRP, envelope and nucleocapsid (Supplementary information) nucleotide sequences
showed that the Sarbecovirus genomes assembled from UK lesser horseshoe bats belong to the same monophyletic clade as the
published European horseshoe bat Sarbecovirus genomes (RhGB01, Khostal and 2 and BM48-31), and are more similar to the
small number of African horseshoe bat sarbecoviruses than to any Asian horseshoe bat isolates, even those from the same host
species (R. ferrumequinum).

Spike glycoprotein comparison, identification of furin cleavage site (FCS) and Transmembrane protease
serine 2 (TMPRSS2), receptor binding domain (RBD) homology modelling and structural analysis

All the UK bat coronaviruses reported in this study shared the same spike glycoprotein amino acid length of 1256 aa with the
only available complete bat SARS-like coronavirus genome reported from UK lesser horseshoe bats [41]. The S1 RBD of UK
bat coronaviruses reported from this study and the previously reported RhGBO1 [41] consisted of 220 amino acids, the RBM
(receptor binding motifs) of UK lesser horseshoe bat coronaviruses reported from this study have the same amino acid length
(71 aa) as RhGBO1.

The RBD (receptor binding domain) pairwise alignment percentage identity estimation (Fig. 4b) between the reported UK
bat coronaviruses and selected Betacoronavirus reference sequences, revealed an estimated percentage identity of 68% with
SARS-CoV and 65-67% with SARS-CoV-2 related viruses. The RBD of all five UK bat coronaviruses reported from this study
shared >95% amino acid homology with RhGBO1 reported by Crook, Murphy et al. [41], and 76% amino acid homology with
the Bulgarian horseshoe bat Sarbecovirus (BM48-31) reported by Drexler, Gloza-Rausch et al. [33]. Further assessment of the S1
and S2 regions of UK bat coronaviruses RBDs showed the absence of a furin or S1/S2 cleavage site (Fig. 4a), while demonstrating
the presence of host transmembrane serine protease 2 (TMPRSS2) or S2 cleavage site from reported UK bat CoVs (Fig. 4a).

Comparative homology modelling of this study’s sarbecoviruses to examine the interaction between RBD and the human ACE2,
yielded five UK bat CoV 3D models sharing >92% identity and 3.0 A root-mean-square deviation (RMSD) of C-atoms with the
SARS-CoV-2 (PDB: 6vwl) X-ray crystal template structure (Fig. 5a, b). The overall quality factor of 3D models was calculated
through validation with ERRAT2 and Ramachandran plots (Supplementary information) as 296 for all RBD and hACE2 3D
structures constructed. Amino acid residues rejected at 95 and 99% confidence intervals and those known to be characteristic
for the interaction between SARS-CoV-2 and hACE2 are highlighted along the RBD proteins in Fig. 5. Ramachandran plots
generated following ERRAT? validation demonstrated that 91% of residues were in the most favoured regions, 8.7% in additional
allowed regions and 0.3% were found to be in the generously allowed regions (Supplementary information).

Prediction of amino acid residues using Prodigy showed that amino acid residues at interface with hACE2 receptor in British
bat Sarbecovirus spike glycoproteins can be located at positions V409, R431, Q437, Y441, 1443, F444, Y461, S462, P463, S464,
G465, E471, F473, Y482, A483, F484, S486, P487, G488, 1489, G490, T491, and Y493; as reported previously [41]. RBM of these
sarbecoviruses is located between amino acid position 426 aa to 496 aa of the spike protein, coinciding with the location of hACE2
amino acid residues. In addition, RBD comparative analysis revealed the presence of critical amino acid residues in British bat
sarbecoviruses (L443, L443, F473, A480, H481 and 1489) previously reported to play a key role in cross-species transmission of
SARS-like CoVs (Fig. 5).

Recombination

The only potential recombination events between the sarbecoviruses detected in this study all involved the partial or low quality
sequences RhGB03 and RhGBO05, and were with other sequences from this study (Supplementary information). These can and
must be treated with caution due to both sequence quality and the lack of potentially intermediate sequences from more animals.

DISCUSSION

This study found no detectable SARS-CoV-2 in British bats, in particular none in horseshoe bats, which might be expected to
be most at risk of infection. This is similar to the findings of other studies of European bats during the COVID-19 pandemic,
none of which demonstrated SARS-CoV-2 infection including from, three common pipistrelles in the UK [65], 503 samples
from 20 bat species including 58 lesser horseshoe bats in Poland [66], 197 samples from five bat species including 82 samples
from lesser horseshoe bats, 104 from greater horseshoe bats and five from Mediterranean horseshoe bats (Rhinolophus euyale)
from Sochi in Russia [36] and 53 lesser horseshoe bats in the UK [41].

The pan-coronavirus screening assay used in this study [46] is known to be relatively insensitive and may miss some
coronavirus strains due to sequence mismatch. For example, it is not a good match for the known UK isolate MW719567,
RhGBO1. The Sarbecovirus E gene qPCR [47] was designed to detect all known sarbecoviruses and is in common use in
human SARS-CoV-2 diagnostics due to the relative stability of the E gene in SARS-CoV-2 isolates and sarbecoviruses in
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Fig. 3. Maximum likelihood phylogenetic tree of S gene nucleic acid constructed with 1000 bootstrap approximation, rooted on the MERs coronavirus
reference sequence. One hundred and ninety eight non-human Sarbecovirus genomes and reference sequences for major variants of SARS-CoV and
SARS-CoV-2 were included (non-human SARS-CoV-2 isolates were not included). Clades of Asian bat coronavirus sequences (apart from greater
horseshoe bat sequences) have been collapsed for clarity (represented as broad triangles). Red=isolates from this study, green=human isolates,
blue=isolates from other mammals. Sequences are named with Genbank ID, name from original study species of origin (e.g. R.hip=Rhinolophus
hipposideros) and country of origin (e.g. GBR=Great Britain). Diamond symbols on nodes represent bootstrap support values >95%.
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Fig. 4. British bat Sarbecovirus (in bold text) spike glycoprotein organization and sites of interest. (a) The presence of conserved S2 or TMPRSS2
cleavage site (top right) and the absence of furin cleavage site (51/52 top left). The FCS consisted of four amino acids (PRRA) identified to be presentin
only SARS-CoV-2. Below these two is the British bat CoVs spike glycoprotein linear map. (b) Estimated percentage pairwise alignment identity heatmap
following alignment of RBD proteins from sarbecovirus reference genomes and those reported in this study.

general. Serial dilution of the SARS-CoV-2 positive control in this study (data not shown) found that the E gene qPCR was
approximately a hundred times more sensitive than the pan coronavirus screening assay, though SARS-CoV-2 is routinely
detected by both assays. This difference in sensitivity of the two assays may explain the discrepancies in results between the
two screens (CT values for the E gene qPCR ranged between 22 and 40). It is therefore possible that other coronaviruses, in
particular non-sarbecoviruses are present in these sample but were not detected.

British lesser horseshoe bats were, however, found to be frequently infected with a Sarbecovirus similar to that described
previously in this species [36, 38, 40, 41, 66], and distinct from sarbecoviruses previously described in greater horseshoe
bats in Bulgaria [35] and Russia [36]. Although the sampling strategy in this study, based on opportunistic sampling linked
to bat survey and conservation studies, did not allow a prevalence to be calculated, the frequency at which the virus was
detected within and between populations suggests a prevalence not dissimilar to that found in Slovenia of around 30% [66].
That study, unlike this, detected virus in oronasal swabs as well as faeces, and this may reflect the smaller amount of material
collected on swabs in this study (rectal swabs were also less frequently positive in the qPCR assay than faecal samples). The
sites sampled reflected the distribution of horseshoe bats in Great Britain, and infection was clearly common within and
between populations of lesser horseshoe bats in this study, with no clear sex or age differences in likelihood of shedding.
This high frequency of shedding and widespread distribution geographically and demographically, likely indicates either
persistent infection and excretion, or frequent reinfection, of the gastrointestinal tract as has been reported for many other
coronaviruses, such as those of cats, chickens and pigs [67-69].

Many of the roosts of lesser horseshoes bats in this study were shared with greater horseshoe bats, yet none of the latter
were shedding detectable virus. This suggests lack of cross-species transmission and that the virus is relatively host-species
restricted. This contrasts with several studies of SE Asian horseshoe bat species and their sarbecoviruses [70-72], which
found strong evidence of cross-species transmission of coronaviruses. Lesser horseshoe bats were primarily sampled in the
summer due to the greater sensitivity of this species to disturbance, while greater horseshoe bats were sampled across both
summer and winter (53/277). The numbers of greater horseshoe bats in this study should have been adequate to detect, if it
were present, the virus previously detected in Italian, Bulgarian and Russian greater horseshoe bats at the prevalence rates
of 2.2-42% recorded in those studies [31-33, 35, 36] and the assay should be able to detect the Russian isolate (the only
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[T SARS-CoV 321 [ - -NLCPFGEVFNATKFPSVYAWERKK | SNCVADYSVLYNST-FFSTFKCY 369
SARS-CoV-2 331 NI TNLCPFGEVFNATRFASVYAWNRKR | SNCVADYSVLYNSASFSTFKCYG 382
RhGBO2 35 |- - - QLCPFSDVFNRTKFPSVYAWERMS | ROCVADYAVLYNSS I SFSTFECY 374
RhGBO3 325 - - -QLCPFGDVFNRTNFPSVYAWERMP | ROCVADYAVLYNSS I SFSTFECY 374
RhGBO4 325 |- - -QLCPFSDVFNRTKFPSVYAWERMS | ROCVADYAVLYNSS | SFSTFECY 374
RhGBO5 325 |- - -QLCPFSDVFNRTNFPSVYAWERMS | RDCVADYAVLYNSS I SFSTFECY 374
RhGBO6 325 |- - -QLCPFSDVFNRTNFPSVYAWERMS | RDCVADYAVLYNSS ISESTFECY 374

SARS-CoV 370 GVSATKLNDLCF SNVYADSF VVKGDDVRQ | APGQTGMI ADYNYKLPDDFMG 423
SARS-CoV-2 383 VSPTKLNDLCF TNVYADSFV I RBDEVRQ | APGQTGK|I|ADYNYKLPDDF TGC 436
RhGB02 375 GVSPTKLNDLCFSSVYADYFVVRGDDVKQ | APGKTGMI ADYNYKLPDDF VG 428
RhGBO3 375 GVSPTKLNDLCFSSVYADYFVVRGDDVKQ | APGKTGMI ADYNYKLPDDF VG 428
RhGBO4 375 GVSPTKLNDLCFSSVYADYFVVRGDDVKQ | APGKTGMI ADYNYKLPDDF VG 428
RhGBO5 375 GVSPTKLNDLCFSSVYADYFVVRGDDVKQ | APGKTGMI ADYNYKLPDDF VG 428
RhGBOG 375 GVSPTKLNDLCFSSVYADYFVVRGDDVKO | APGKTGMI ADYNYKLPDDF VG 458

SARS-CoV 424 CVLAWNTRNIDATSTGNYNYK[VRVJ(JRHGKLRPFERD | SNVPF SPDGKPCTP 468
SARS-CoV-2 437 V| AWNNSNMLDSKVGGNYNYL YRILFRIKSNLKPFERD | STE | YRJRERJTIPCNG YV 483
RhGB02 429 CVLAWNSRIHVONK[IG - - - - F Y|Y[RILF|IRHGK | KPYQRDMSRE L|Y[SPISI{TPCSV 471
RhGBO3 429 CVLAWNSWL VONKPG - - - - F Y|VRILF|RHGK | KPYQRDVSRE L|Y[SPISIG | PCKA 471
RhGBO04 429 CVLAWNSRIL VOSK[G - - - - F Y|VRILF[RHGK | KP YQRDMSREL|Y[SPISIGKPCTT 471
RhGBO05 429 CVLAWNSRIL VONKEG - - - - F YVRILF|IRHGK | KPYQRDMSREL|Y[SPISIHTPCAT 471
RhGB06 429 CVLAWNSRIPVDSKRIG - - - - FYIVIRLFIRHGK | KPYORDMSRE LIVISFISIBITPCTA 471
SARS-CoV 469 - PIALINC YWP LFEIYEFT-TTTTTTEEYIoP YRVVVLSFELLNAPATVCGH 513
SARS-CoV-2 484 EGIFINC YF P LQfS{Y PTINCIVE|YP|YRVVVLSFELLHAPATVCGP - - 527
RhGB02 472 - EIGFINC YDP LAHYAF AP ATl YIePFRVVVLSFQLLNAPATVCGP 515
RhGBO3 472 - EIGFINC YOP LAHYAF|AISFI  TIelYIePFRVVVL SFQLLNAPATVCGR 515
RhGBO4 472 - EIGFINC YOP LIAHYAFIAISFI  TIelYIe PFRVVVL SFQL LNAPATVCGR 515
RhGBO05 472 - ERGFINCYNP LIAHYIAFIASFER] | BTIR|YIRPFRVVVLSFQLLNAPATVCGP 515

L RnGBO6 472 -EGFINCYDP LIAHYIAF|ASKI] BITIYIOPFRVVVL SEQLLNAPATVCGP) 515

Fig. 5. Protein-protein homology complex model of British bat and related sarbecoviruses. (a) Superimposed RBD 3D complexes from UK bat CoVs
(grey LH009), SARS-CoV (magenta), and SARS-CoV-2 (green). (b) Superimposed model between RBDs of UK bat CoVs (grey), SARS-CoV (magenta)
and SARS-CoV-2 (green) and hACE2 (cyan). (c) Sequence alignment and comparison of S1 RBD and RBM of UK bat CoVs, SARS-CoV, and SARS-CoV-2.
RBM for UK bat CoVs is positioned between 426 aa to 496 aa. Amino acid residues predicted to interact with hACE2 are shown in blue text, amino acid
residues in red text are the critical residues within the RBM previously reported to play key role in cross-species transmission.

one for which an E gene is available). It is not clear why no sarbecoviruses were detected in these animals, though annual
variation in viral loads is possible, as is a ‘founder effect’ in an island population on the edge of the host’s geographic range.

The apparent host specificity of the European lesser horseshoe bat Sarbecovirus, combined with its lack of the furin cleavage
site thought to be critical for human spread of SARS-Cov-2, indicates that these viruses are likely of low potential for zoonotic
transmission, although modelling studies [38] have indicated that these viruses could acquire such features with minimal
mutation and that these viruses could potentially bind to the human ACE-2 receptor [41].

The sarbecoviruses found in European lesser horseshoe bats cluster monophyletically and probably represent a distinct genus of
Sarbecovirus. Recombination analysis with RDP5 (data not shown) indicates that these viruses are not recombinants.

Some variation in the presence of the accessory genes 7b, 9b and 10 was found amongst the isolates studied. These genes
are not essential for viral replication, but are modulators of the host’s innate immune system response and as such can affect
strain pathogenicity [73-75]. All three of these genes interfere with MAVS (Mitochondrial Antiviral Signalling Protein) and
IFN-p signalling and probably act synergistically in IFN inhibition in human SARS-CoV-2 infection [73, 75-77]. Plasticity in
accessory gene complement has also been evident in different SARs-CoV-2 isolates and appears to be a feature of Sarbecovirus
isolate variability [74, 75].

We do not have any indication of whether or not infection with these viruses has any adverse effects on their hosts or whether
excretion patterns vary with age or reproductive status. This type of work is mature in relation to other bat-borne viruses, for
example Hendra virus (a member of the Paramyxoviridae family) in bats of the genus Pteropus (flying foxes), for which it is
clear that virus excretion is associated with maternity roosts with large numbers of birthing and juvenile animals and that virus
excretion peaks in times of nutritional stress [78]. Such work is, however, in its infancy with horseshoe bat sarbecoviruses,
although some longitudinal studies in SE Asia hint at a summer/maternity roost excretion pattern [70].

A better understanding of the ecology of horseshoe bat viruses requires further and longer term studies of sarbecoviruses in
their natural hosts. The samples with the highest detection rates in this study were pooled faecal samples from bat roosts, so
this sample type may provide the most reliable method of detection of virus in a roost site as well as being the most convenient,
causing least disruption to bat colonies and presenting least threat of cross-species transmission between bats or between bats
and humans. Serological studies to estimate lifetime exposure to SARS-CoV-2 (or this sarbecovirus) might also be useful,
although existing SARS-CoV-2 serological assays have not been assessed for either these bats or their sarbecoviruses. There
are also practical and regulatory issues with blood sampling very small locally endangered bat species.
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Overall, this study provides several critical pieces of data in the overall picture of sarbecoviruses in their natural hosts. The
growing picture is one of relative stability in terms of viral diversity and cross-species transmission potential in European
horseshoe bat species, in contrast to higher diversity and cross species sharing of isolates in SE Asia, potentially related to
the greater diversity and number of horseshoe bat species in the latter geographic region. This likely partly explains the
repeated cross-species spill over of sarbecoviruses with an ancestral origin in bats, into other mammals including humans
in SE Asia, though human behaviour and wildlife/human interactions, habitat disruption and farming of wildlife for meat
are also likely to be contributing factors [1]. Ongoing work with these European sarbecoviruses remains to determine the
epidemiology, temporal changes in viral prevalence and sequence, and effects of the virus in its natural host, with a real need
for longitudinal studies of roost sites across the host range and spatial comparisons of sequences and prevalence.
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