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Abstract: Anaplasma phagocytophilum (A. phagocytophilum) is the aetiological agent of tick-borne fever
in cattle and sheep, and granulocytic anaplasmosis in human and dogs. Livestock, companion
animal and human infections with A. phagocytophilum have been reported globally. Across England
and Wales, two isolates (called ecotypes) have been reported in ticks. This study examined A.
phagocytophilum isolates present in livestock and wildlife in Great Britain (GB), with a particular
focus on cattle. Clinical submissions (EDTA blood) from cattle (n = 21) and sheep (n = 3) were
received by APHA for tick-borne disease testing and the animals were confirmed to be infected with
A. phagocytophilum using a PCR targeting the Msp2 gene. Further submissions from roe deer (n = 2),
red deer (n = 2) and Ixodes ricinus ticks (n = 22) were also shown to be infected with A. phagocytophilum.
Subsequent analysis using a nested PCR targeting the groEL gene and sequencing confirmed the
presence of ecotype I in cattle, sheep, red deer and Ixodes ricinus, and ecotype II in roe deer and I.
ricinus removed from deer carcasses. Despite the presence of two ecotypes, widely distributed in
ticks from England and Wales, only ecotype I was detected in cattle in this study.

Keywords: livestock; tick-borne fever; Ixodes ricinus; ecotypes

1. Introduction

Anaplasma phagocytophilum is an obligate intracytoplasmic bacteria classified under the
family Anaplasmatacea (formerly Ehrlichia equi and Ehrlichia phagocytophila). It was renamed
A. phagocytophilum in 2001 based on a genetic analysis unifying the former species Ehrlichia
equi, Ehrlichia phagocytophila and the agent of human granulocytic ehrlichiosis [1,2]. A.
phagocytophilum is transmitted by ticks and has been reported in cattle (Bos taurus), sheep
(Ovis aries), goat (Capra hircus), horse (Equus caballus), dog (Canis lupus familiaris), red deer
(Cervus elaphus), roe deer (Capreolus capreolus), white-tailed deer (Odocoileus virginianus),
rodents, birds, hedgehogs (Erinaceus europaeus), wild boar (Sus scrofa), humans, cat (Felis
catus), red fox (Vulpes vulpes) and moose (Alces alces). Ixodes ricinus is the principal vector of
A. phagocytophilum in Europe [3,4], although its DNA has also been detected from Derma-
centor reticulatus [5], D. marginatus [6], Haemaphysalis punctata [7], H. concinna [5] and other
Ixodes species, including I. hexagonus, I. canisuga [8], I. persulcatus and I. trianguliceps [9].
However, the role of these tick species as potential vectors for A. phagocytophilum trans-
mission in Europe is not clearly understood. Ixodes scapularis and I. pacificus transmit A.
phagocytophilum in North America, where human granulocytic anaplasmosis is regularly
reported [10–12], although there appears to be few reports of infection in livestock. In
Asia and Russia, I. persulcatus and Dermacentor silvarum are known vectors of A. phagocy-
tophilum [13]. Transmission from mother to child immediately before or after birth has
been documented in humans [14]; transmission to the foetus via placenta has also been
reported in cattle [15]. Cases of canine, ovine, equine, bovine and human anaplasmosis
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have been reported globally and the infection of questing ticks, ruminants and wildlife has
been reported in Europe over the past decade [16–20].

Human infection with A. phagocytophilum is considered an emerging zoonotic disease.
It was first recorded as a febrile illness and named human granulocytic ehrlichiosis (HGE)
in North America in 1994 [21]. Case rates have dramatically increased since, and the
disease poses an increasingly important public health threat. The first European cases were
documented in Slovenia [22–25], with further cases reported in other European countries,
including Spain [4,26], France [27] and Italy [28]. However, overall disease rates remain
substantially lower in Europe than in the United States. The rarity of human infection with
A. phagocytophilum in GB has been considered to be due to the absence of zoonotic isolates,
also described as ecotypes [18]. Recent studies have documented A. phagocytophilum
presence in GB, including a prevalence survey of questing ticks in Wales (12.1%), Northern
England (4.7%), Southern England (1.8%) and central England (0.5%) [17]. Ecotype I has
been recorded in GB sheep (O. aries) [18] associated with specific areas and is considered
more likely to infect humans [17]. Gandy et al. [17] and Bianchessi et al. [18] examined
questing ticks and sheep, respectively. However, cases of bovine anaplasmosis [29,30]
and co-infection with Babesia and A. phagocytophilum resulting in severe disease have
been recorded in GB and Europe [16,31,32]. Bovine anaplasmosis is a transient and mild
infection characterized by clinical signs such as fever, anorexia, weakness and secondary
infection due to immunosuppression [33]. High morbidity associated with abortion and
a drop in milk production, resulting in economic losses, have also been reported in dairy
cattle diagnosed with bovine anaplasmosis [32–34]. However, information regarding the
potential role of A. phagocytophilum in the pathogenesis and diagnosis of abortions and
stillbirth in cattle is not clearly known [34].

To establish the evolutionary relationship of Anaplasma species, a selection of appro-
priate molecular gene marker is essential. PCR assays designed to amplify 16S rRNA [13],
highly conserved major surface protein-2 (Msp2 or p44), citrate synthase (gltA) [35,36],
ankA [37] and heat shock protein (groEL) [17,18] genes have all proven to be useful. In
addition, PCR and sequencing assays designed to target multiple genes (multilocus se-
quence genotyping) have been used effectively for A. phagocytophilum genotyping [37,38].
However, the groEL gene has demonstrated to be a valuable and useful genetic marker
to identify and establish distinct genetic clades of A. phagocytophilum in the absence of
multilocus sequence genotyping [18,39,40]. Information on A. phagocytophilum ecotypes
present in GB cattle is currently unavailable. The aim of this study was to investigate A.
phagocytophilum isolates present in GB cattle from samples (initially tested using Msp2 gene
qPCR) obtained from Southern England, Wales and Scotland. Additional samples obtained
from sheep, deer and I. ricinus were also examined.

2. Materials and Methods
2.1. Sample Collection, Polymerase Chain Reaction (PCR) and Sequencing

Whole engorged ticks (collected from cattle and roe deer only) and EDTA blood
samples collected from cattle (Bos taurus), sheep (O. aries) and both roe (Capreolus capreolus),
and red (Cervus elaphus) deer submitted from nine locations (for tick-borne pathogen
testing) in Great Britain, including England (Devon, Cornwall, Norfolk, Cumbria, Somerset,
and Dorset), Scotland and Wales (Pembrokeshire and Powys), were examined. Samples
were tested for A. phagocytophilum following DNA extraction using QIAamp DNeasy
kit (QIAgen, Manchester, UK). Msp2 gene-specific TaqMan qPCR assay [41] was used
to initially screen samples for the presence of A. phagocytophilum DNA. Where this was
detected, a partial groEL gene heminested PCR assay was applied [39]. PCR products
obtained were separated on agarose gel (1.5%) prepared with SYBR safe nucleic acid
staining dye (Thermo Fisher Scientific, UK) and run at 100 volts for 60 min. PCR controls
consisted of A. phagocytophilum DNA (positive) [16] and nuclease-free water (negative).
The groEL gene PCR products were sequenced using primers Ephpl groEL (569) and Eph
groEL (1142). Morphological identification and molecular barcoding of tick samples were
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carried out, following published methods [42]. Details of all PCR primers, master mix
reaction volumes and thermal cycling conditions are provided in the Supplementary file
(Supplementary Materials Table S4).

2.2. Sequence Editing, Assembly and Phylogenetic Analysis

Quality assessment, removal of primer sequence, editing, alignment and generation
of consensus sequence from Sanger sequence obtained was carried out using SeqMan Pro
in DNAStar Lasergene v15, followed by NCBI online BLASTn search. A. phagocytophilum
groEL gene DNA sequences generated were deposited in NCBI GenBank under accession
number OQ436965-OQ437012. A total of 328 A. phagocytophilum groEL gene nucleotide
sequences, including sequences generated from this study, downloaded from GenBank
database and published in the recent literature [18,43,44], were used for phylogenetic analy-
sis. A maximum likelihood phylogenetic tree was constructed in IQ-TREE v2.0.7 [45], using
10,000 bootstrap approximations and implementation of UFBoot2 within IQ-TREE to eval-
uate nodes [46]. IQ-TREE v2.0.7 automatically selected the best nucleotide substitution
model (HKY+F+R2) [47] with the lowest Bayesian information criterion (BIC) [48]. The
precision of the phylogenetic tree generated was improved by the inclusion of the Mod-
elFinder option in command-line for the selection of the best fitting nucleotide substitution
model [48]. The tree constructed was visualized and annotated in FigTree v1.4.4. to produce
a radial phylogram for simple presentation.

3. Results

A total of fifty samples that previously tested positive for the presence of A. phagocy-
tophilum via the Msp2 gene qPCR assay were assessed for A. phagocytophilum genotyping,
following groEL gene PCR assay. All tick samples assessed (n = 22; female: 20; nymphs: 2)
were identified as I. ricinus. A. phagocytophilum groEL gene sequence was obtained for 48 of
50 samples tested, including 20/22 I. ricinus, 21/21 Bos taurus, 3/3 O. aries, 2/2 Capreolus
capreolus and 2/2 Cervus elaphus samples (Table 1). Nucleotide sequences (530 bp) were
assembled from confirmed positive samples (48/48). NCBI online custom BLASTn search
demonstrated 95–100% a similarity between sequences generated by this study and A.
phagocytophilum sequences submitted from the British Isles and Europe (Supplementary
Materials Table S2). Although all nucleotide sequences obtained were >90% identical to
other A. phagocytophilum sequences available in the GenBank database, 17/48 of sequences
obtained were >99% identical to sequences (accession numbers: KJ832487, KJ832484) origi-
nating from Bos taurus (France) and O. aries (AF548385) from Norway. Maximum likelihood
phylogenetic analysis demonstrated that 45/48 sequences generated in this study clustered
with A. phagocytophilum sequences identified as ecotype I, while the remaining three (3/48)
clustered with ecotype II (Figure 1, Supplementary Materials Figure S1 [18]. This set of
three A. phagocytophilum sequences were generated from C. capreolus blood/tick samples
and showed a greater identity (NCBI online BLASTn search) to A. phagocytophilum se-
quences (accession number KM215256, JN005745, DQ779568 and AF383226) detected from
C. capreolus from Poland and Switzerland, classified as ecotype II in the recent literature [43].
In addition, phylogenetic tree demonstrated a geographical clustering of A. phagocytophilum
ecotype I reported in this study (from sheep (1/3), cattle (8/21) and I. ricinus (8/20)) with
previously reported European ecotype I from cattle, humans (e.g., AF033101: Austria;
AF033101: Slovenia), horses, hedgehog, brown bear, polecat, sheep, roe deer, dogs, wild
goat, fox and dogs. Similarly, the remaining ecotype I sequence obtained from Great Britain,
cattle (n = 13), sheep (n = 2) and ticks (n = 10), in this study, clustered with previously
reported European ecotype I from wild ruminants, cattle, sheep, horse and dog. However,
the American ecotype I reference sequences reported from domestic and wild animals
(horses, rodents, rabbits, dogs and cats) and humans (zoonotic ecotype I) clustered within
a distinct geographical subclade (Supplementary Materials Figure S1).
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Table 1. Distribution of A. phagocytophilum ecotypes among GB cattle, sheep, roe/red deer and ticks
in Great Britain.

Location Ecotype Sequence
Variants (n) Host Tick Species Negative

(n)
Positive

(n) Total

Devon
1 8 B. taurus − 8 8
1 13 vegetation I. ricinus * 2 13 15

Cornwall
1 2 I. ricinus * − 2 2
1 5 B. taurus − 5 5

Norfolk 1 2 C. elaphus (red deer) − 2 2

Cumbria
1 1 I. ricinus * − 1 1
2 1 C. capreolus (roe deer) − 1 1

Pembrokeshire 1 2 I. ricinus * − 2 2

Dorset
1 1 O. aries − 1 1
1 1 B. taurus − 1 1

Somerset
1 2 B. taurus − 2 2
1 1 C. capreolus (roe deer) − 1 1

Powys 1 1 B. taurus − 1 1

Scotland 1 1 O. aries − 1 1

Unknown
2 2 I. ricinus ** − 2 2
1 5 B. taurus − 4 4
1 1 O. aries − 1 2

Total 48 2 48 50

(*) Ticks collected from cattle; (**) ticks collected from roe deer carcass. NB: Only engorged ticks were examined.

Pathogens 2023, 12, x FOR PEER REVIEW 4 of 9 
 

 

study, clustered with previously reported European ecotype I from wild ruminants, cattle, 
sheep, horse and dog. However, the American ecotype I reference sequences reported 
from domestic and wild animals (horses, rodents, rabbits, dogs and cats) and humans 
(zoonotic ecotype I) clustered within a distinct geographical subclade (Supplementary 
Materials Figure S1). 

 
Figure 1. A simplified radial phylogram displayed following a maximum likelihood phylogenetic 
tree constructed with 10,000 bootstrap approximation using A. phagocytophilum groEL gene se-
quences generated from this study (n = 48) and representative ecotypes (n = 328) from previous 
studies [18,43]. Clades,branches and branch tips in black represents ecotype I, red represents eco-
type II, green represents ecotype III and blue represents ecotype IV, while taxa in magenta under 
ecotypes I and II represent nucleotide sequences reported from this study. Branch tips highlighted 
in grey under ecotype I clade represents A. phagocytophilum ecotype I sequences reported from Great 
Britain cattle. Roman numerals I, II, III and IV represents ecotypes. The phylogeny is rooted at mid-
point and drawn to display circular node shapes at bootstrap support values ≥ 90. 

  

Figure 1. A simplified radial phylogram displayed following a maximum likelihood phylogenetic
tree constructed with 10,000 bootstrap approximation using A. phagocytophilum groEL gene sequences
generated from this study (n = 48) and representative ecotypes (n = 328) from previous studies [18,43].
Clades, branches and branch tips in black represents ecotype I, red represents ecotype II, green
represents ecotype III and blue represents ecotype IV, while taxa in magenta under ecotypes I and
II represent nucleotide sequences reported from this study. Branch tips highlighted in grey under
ecotype I clade represents A. phagocytophilum ecotype I sequences reported from Great Britain cattle.
Roman numerals I, II, III and IV represents ecotypes. The phylogeny is rooted at midpoint and drawn
to display circular node shapes at bootstrap support values ≥ 90.
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4. Discussion

Following the renaming of A. phagocytophilum [1], genotypes with a diverse host
range have emerged. The emergence of multiple genotypes has created complexity in
the understanding of pathogenicity and clinical disease manifestation in various animal
hosts and potential for zoonotic transmission in humans. Bovine anaplasmosis caused
by A. phagocytophilum is associated with a severe clinical disease in cattle globally, and
risk factors such as the season of the year, the presence of tick vectors, latitude and farm
hygiene practice have been associated with disease [49]. However, this study aimed at
establishing A. phagocytophilum ecotypes using a small number of samples confirmed to
be positive via the Msp2 qPCR. To the best of our knowledge, this is the first study to
demonstrate the presence of ecotype I in cattle and red deer in GB. Bovine anaplasmosis
and co-infection with B. divergens and A. phagocytophilum characterized by severe disease
and mortality has been reported in GB [16,32] and other parts of mainland Europe [29–31].
Although this study did not test for Babesia species, B. divergens is known to share the
same vector (I. ricinus) as A. phagocytophilum and co-infection can increase the severity of
disease [16]. I. ricinus is a three-host tick, both larval and nymphal stages of I. ricinus feed
on small to medium-sized animals while adults prefer larger animals, including cattle.
The presence of A. phagocytophilum (ecotype I) in all engorged ticks collected from cattle
is likely to originate from a previous blood meal (during larval/nymphal lifecycle stages
from other animal hosts) or present in the blood meal obtained from infested cattle. This
report supports previous findings that infected animals can play a significant role in the
enzootic transmission of A. phagocytophilum [50]. Additional studies are required to provide
a clear understanding of the pathogenicity and clinical manifestation of A. phagocytophilum
in cattle, and assist clinicians in diagnosis, treatment and control. The presence of ecotype I
in sheep and both ecotypes (I and II) in I. ricinus further supports recent studies reporting A.
phagocytophilum in sheep [18] and questing ticks collected from GB recreational areas [17],
while the report of ecotype II from roe deer in this study supports previous reports from
Central Europe [51,52]. Cervids (red and roe deer) are wildlife reservoir hosts for various
genotypes of A. phagocytophilum known to be transmitted by I. ricinus [53–55]. Although roe
deer have been demonstrated to be co-infected with multiple A. phagocytophilum variants,
these variants are not considered pathogenic to domestic animals and humans. However,
genotypes reported from red deer are pathogenic to domestic animals [51]. The presence
of ecotype I in red deer from this study suggest further investigations are needed to
understand the role of red deer in A. phagocytophilum transmission in GB. In addition,
the geographical clustering of ecotype I sequences reported in this study partly supports
previous findings in Europe [56]. Ecotype I reported in this study clustered within the
same geographical subclade with European wild and domestic animals, equine and human
zoonotic ecotypes I sequences, suggesting zoonotic risk and the likelihood of human
infection as previously described. The separate geographical clustering of the American
human, domestic and wild animal ecotype I may likely suggest differences in potentials for
zoonotic infections between the European and American ecotype I as recently described [18].
This report provides additional information on the A. phagocytophilum isolates infecting
cattle in GB.

5. Conclusions

In conclusion, this study reports that only A. phagocytophilum ecotype I has been
detected in GB cattle and provides further evidence for the presence of ecotypes I and II in
red and roe deer, respectively. The presence of ecotype I in cattle and I. ricinus infesting
cattle corroborates such reports in previous studies. These findings constitute the first report
of A. phagocytophilum ecotype I in GB cattle, despite the presence of ecotypes I and II in the
indigenous tick population [17]. However, this report should be interpreted with caution
owing to the smaller sample size assessed in this study. The presence of A. phagocytophilum
ecotype I in sheep was also confirmed in this study as previously reported in GB [18]. The
epidemiology and clinical disease manifestation of the A. phagocytophilum genotypes in
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GB cattle require further investigation as A. phagocytophilum and/or co-infection with B.
divergens in cattle is routinely reported and likely to result in severe disease and potential
mortality. While the full zoonotic potentials of ecotype I is not well understood, it has been
associated with human granulocytic anaplasmosis. Preventive measures, including public
education on tick control and limiting the exposure of animal and humans to tick bites, are
suggested measures in the absence of adequate information on A. phagocytophilum disease
pathogenicity and epidemiology in GB cattle.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12081029/s1. Figure S1: A full polar cladogram dis-
played, following maximum likelihood phylogenetic tree constructed at 10,000 bootstrap approxima-
tions using A. phagocytophilum groEL gene nucleotide sequences (48) generated from this study
and representative ecotypes (328) reported in the previous literature; Table S1: GenBank accession
number and list of A. phagocytophilum nucleotide sequences obtained from GB livestock, I. ricinus
and deer species; Table S2: A summary of NCBI online custom BLASTn search containing a list of
GB nucleotide sequences obtained from GB livestock, I. ricinus and deer species, GenBank acces-
sion numbers and percentage identity, established ecotypes based on the recent literature, host and
country of origin; Table S3: List of GenBank nucleotide accession numbers used for NCBI online
BLASTn search; Table S4: List of published nested PCR primers (A), reaction volumes and thermal
cycling conditions (B) used for the amplification of the A. phagocytophilum groEL gene in this study.
Available online: https://zenodo.org/record/8174242 (accessed on 15 July 2023).
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