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Abstract. We present a new gridded data set of air temperature change across global land and ocean extend-
ing back to the 1780s. This data set, called the GloSAT reference analysis, has two novel features: it uses
marine air temperature observations rather than the sea surface temperature measurements typically used by
pre-existing data sets, and it extends further into the past than existing merged land and ocean instrumental
temperature records which typically estimate temperature changes from the middle to late 19th century on-
wards. New estimates of diurnal-heating biases in marine air temperatures have enabled the use of daytime
observations, extending the data set further into the past compared to nighttime-only marine air temperature
data. The data set uses an extended version of the CRUTEMS station database over land areas, incorporat-
ing newly available bias adjustments for non-standard thermometer enclosures used prior to the adoption of
Stevenson screens and new climatological normal estimates for stations with limited data in the 1961-1990
baseline period. Land and marine temperature anomalies are combined to produce a gridded data set fol-
lowing the methods developed for HadCRUTS. The GloSAT global and hemispheric temperature anomaly
series show close agreement with those based on sea surface temperature for much of the overlapping pe-
riod of their records but with slightly less warming overall. The GloSAT reference analysis is available from
https://doi.org/10.5285/a2519624a593402a83246bd359d098be (Morice et al., 2025b), the GIoSATLAT data set
is available from https://doi.org/10.5285/ef237£578329487eb02fb42f9db56bb2 (Morice et al., 2025a), and the
GloSATMAT data set is available from https://doi.org/10.5285/e6251bf935304cfbb9c9269dc7757a35 (Cornes
et al., 2025b).
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1 Introduction

Instrumental data sets recording changes and variations in
near-surface temperature across the globe have been widely
used to monitor changes in global and regional climate
(World Meteorological Organisation, 2023). The Intergov-
ernmental Panel on Climate Change 6th Assessment Re-
port (IPCC ARG6) assessment of global average temperature
change from the mid-19th century (Gulev et al., 2021) is un-
derpinned by instrumental data sets that combine informa-
tion from sea surface temperature (SST) observations with
information from meteorological station observations of land
surface air temperature (LSAT). The IPCC ARG6 refers to
changes in mean near-surface temperature based on this com-
bination of SST and LSAT as the global mean surface tem-
perature (GMST). Studies using climate model output com-
monly assess changes in near-surface temperature using air
temperature changes over both land and ocean, using ma-
rine air temperature (MAT) rather than SST. The IPCC AR6
refers to this combination of LSAT and MAT as global sur-
face air temperature (GSAT). Hence, the difference between
GMST and GSAT is the use of SST or MAT to measure
changes over the marine regions.

Existing global instrumental data sets used to monitor
changes in GMST combine measurements of near-surface air
temperatures at meteorological stations (LSATSs) with mea-
surements of surface water temperatures obtained by ships,
buoys, and moorings (SSTs). The currently available data
sets of this type include HadCRUTS (Morice et al., 2021),
GISTEMP (Lenssen et al., 2019), NOAAGIlobalTemp (Yin
et al., 2024; Huang et al., 2022), Berkeley Earth (Rohde
and Hausfather, 2020), Kadow et al. (Kadow et al., 2020),
CMST 2.0 (Sun et al., 2022), DCENT (Chan et al., 2024),
Calvert (Calvert, 2024), and COBE-STEMP3 (Ishii et al.,
2025). Each of these data sets provides global grids that map
GMST variability and change along with derived global and
regional average time series. These data products have start-
ing dates ranging from 1850 to 1880 as data availability, par-
ticularly with regard to SST and over land in the Southern
Hemisphere, decreases rapidly prior to this.

Data sources for current observational surface tempera-
ture data sets are shown in Table 1. There are many com-
mon observational data underpinning the named LSAT and
SST data sets because of global data sharing and consolida-
tion of national records into global archives. For example, the
International Comprehensive Ocean-Atmosphere Data Set
(ICOADS) (Freeman et al., 2017) is an underpinning source

Earth Syst. Sci. Data, 17, 7079-7100, 2025

C. P. Morice et al.: An observational record of global gridded near-surface air temperature from 1781

for each of the marine data sets in Table 1. Despite these over-
laps in observation sources, there are differences in terms of
the selection criteria used in each data set, and sometimes
standard data holdings are extended, e.g., through the addi-
tion of newly digitized historical sources. Each data set also
differs in terms of some or all of the methods for data qual-
ity control (QC), the methods used to account for system-
atic changes in observing practices, the gridding methods,
and uncertainty modelling. Some data sets have indepen-
dent processing workflows, such as NOAAGlobalTemp v6
and HadCRUTS. Others share aspects of processing, such as
the reprocessing of HadCRUTS data using alternative grid-
ding methods by Kadow et al. (2020) and alternative gridding
methods and bias adjustment in Calvert (2024). The eight
currently updated GMST data sets each use a combination
of one of five LSAT data sets and one of three SST data sets
(Table 1).

Historically, SST rather than MAT has been used in global
temperature products for three main reasons (Jones et al.,
1999): (1) there are substantially fewer MAT observations
available from approximately 1900 onwards, (2) there are
diurnal-heating biases in the MAT data that require adjust-
ment, and (3) adjustment of MAT measurements to a com-
mon reference height are required to account for changes in
measurement heights throughout the MAT record. SST ob-
servations are also affected by sampling limitations and sys-
tematic changes in measurement practices (Kennedy et al.,
2019; Kent and Kennedy, 2021), but the adjustments required
for MAT records were considered to be more complex and
uncertain (Rayner et al., 2003). Furthermore, while a decline
in ship coverage has resulted in fewer observations of both
SST and MAT since the 1960s, in the case of SST, this has
been mitigated through the increasing coverage of drifting-
buoy and satellite data (Kent and Kennedy, 2021).

Nighttime marine air temperature (NMAT) observations
have previously been used to avoid the need to make diurnal-
heating bias corrections and are available from CLASSnmat
(Cornes et al., 2020a) and UAHNMATv1 (Junod and Christy,
2020). Both ERSST v5 and HadSST4 use NMAT obser-
vations within their SST bias adjustment methods. ERSST
v5 uses NMAT-SST differences to derive a bias adjustment
that is applied to ship SST observations prior to 2010. The
HadSST4 bias adjustment model uses NMAT-SST differ-
ences to constrain the estimates of contributions of differ-
ent measurement types for observations made from 1850 to
1920. These NMAT data sets have not previously been com-
bined with LSAT to create GSAT data sets.

The IPCC ARG6 (Guleyv et al., 2021) reviewed whether dif-
ferences between GMST and GSAT reconstructions should
be expected. This included a review of a range of model-
based studies and process understanding and differences be-
tween instrumental NMAT and SST data sets. Differences
between the two diagnostics have been the subject of recent
debate due to the common (but not exclusive) use of GSAT
to assess near-surface temperature changes in climate mod-
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Table 1. Global instrumental data sets reporting GMST and their land and marine data sources. LSAT data sets: CRUTEMS (Osborn et al.,
2021), GHCNm v4 (Menne et al., 2018), Berkeley Earth land record (Rohde et al., 2013a, b), C-LSAT 2.0 (Li et al., 2021), and DCLSAT
v1.0 (Chan et al., 2024). SST data sets: HadSST4 (Kennedy et al., 2019), ERSST v5 (Huang et al., 2017), DCSST v1.0 (Chan et al., 2024),
and COBE-STEMP3 (Ishii et al., 2025). All land data sources are LSAT data sets. All marine data sources are SST data sets, except for

GloSATMAT, used in GloSATref, which is an all-hour MAT data set.

Global data set

Land data source

Marine data source

HadCRUTS5 CRUTEMS HadSST4

GISTEMP v4 GHCNm v4 ERSST v5
NOAAGlobalTemp v6 GHCNm v4 ERSST v5

Berkeley Earth Berkeley Earth land record HadSST4

Kadow et al. (2020) CRUTEMS (via HadCRUTS) HadSST4 (via HadCRUTS)
CMST 2.0 C-LSAT 2.0 ERSST v5

DCENT v1.0 DCLSAT v1.0 DCSST v1.0
COBE-STEMP3 COBE-LSAT3 COBE-SST3

Calvert (2024) CRUTEMS (via HadCRUTS5) HadSST4 (via HadCRUTS)
GloSATref GloSATLAT GloSATMAT (MAT)

els, while observational records have been based on GMST.
Studies investigating differences between GMST and GSAT
diagnostics have included physical reasoning (Richardson,
2023) and have assessed the impact of the choices of meth-
ods used to merge SST and LSAT data (Cowtan et al., 2015;
Jones, 2020; Richardson et al., 2018), particularly in regions
of changing sea ice cover (Cowtan et al., 2015; Richardson
et al., 2018). The IPCC ARG6 concluded that “There is high
confidence that long-term changes in GMST and GSAT dif-
fer by at most 10 % in either direction” with “low confidence
in the sign of any difference in long term trends” (IPCC WG1
Cross-Chapter Box 2.3) (Gulev et al., 2021). Based on this
understanding and with no available instrumental GSAT data
set, the IPCC ARG derived estimates of GSAT change equal
to the change in observed GMST, with expanded uncertainty
ranges to account for differences between the two diagnos-
tics.

This article describes a new gridded surface air tem-
perature (SAT) data set, the GIoSAT reference analysis
(GloSATref.1.0.0.0, hereafter referred to as GloSATref). The
data set adds to the available set of estimates of global sur-
face temperature in several ways. Firstly, the use of MAT
enables an extension of the instrumental record prior to the
start of systematic SST observation in the 1850s. Secondly,
this earlier extension requires adjustments for the effects of
solar heating of the measurements, with adjustments having
been developed for both marine and land observations and
applied in GloSAT. Thirdly, because climate models show
different evolutions of GMST and GSAT, improving our in-
strumental records of both measures will help inform ongo-
ing discussions about resolving the disagreements between
methods and data sets. Finally, SST and MAT observations
contain different biases, and so producing analyses based on
both measures samples another dimension of the structural
uncertainty inherent in estimates of global surface tempera-
ture. The name “reference analysis” is adopted because the
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data set is intended to provide a reference for the compari-
son of observed GMST and GSAT, with processing based on
the processing workflow of the HadCRUTS5 GMST data set
(Morice et al., 2021).

The new data set combines an extended and improved ver-
sion of the CRUTEMS LSAT database, updated from Osborn
et al. (2021), with a new MAT data set based on all-hour ob-
servations, building on Cornes et al. (2020a). Section 2 de-
scribes the processing of input LSAT and MAT data sets and
their use in constructing the combined GloSATref analysis,
following the processing workflow of Morice et al. (2021).
Section 3 presents global and regional climate diagnostics
derived from the merged SAT analysis. Conclusions are pre-
sented in Sect. 5.

2 Methods for producing the GloSAT data set

2.1 Land surface air temperature data processing

The GloSAT reference analysis (GloSATref) uses an up-
dated database of monthly average air temperature at surface
meteorological stations. This is an extended version of the
CRUTEMS station database (Osborn et al., 2021), including
additional station data, updated methods for climatological
normal calculation (Taylor et al., 2025), and new bias adjust-
ments for early instrumental measurements prior to the adop-
tion of louvred Stevenson-style screens (Wallis et al., 2024).
The following subsections describe the land station data con-
tributing to the GloSATref analysis.

2.1.1 Land station data acquisitions and quality control

The new acquisitions and improved/updated series are sum-
marized in Table 2. Quality control is applied to these data at
the source by the national meteorological services together
with further quality control following the methods described
in Osborn et al. (2021). These include station neighbours

Earth Syst. Sci. Data, 17, 7079-7100, 2025
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and station extreme-threshold checks, with threshold modi-
fications based on neighbour stations, and the identification
and removal of physically implausible values (taking into ac-
count the month of the year, station elevation, and station lat-
itude).

2.1.2 Early-record exposure biases

Measurements in the early record were made in thermometer
shelters of widely varying designs. Disparities between mea-
surements made using these different shelters were already
being noted in the mid-19th century (Naylor, 2018), and the
process of understanding those differences and the more gen-
eral difficulties of making reliable and practical measure-
ments across a global network of observers led, eventually, to
standards for the siting and design of instrument shelters such
as those provided by the World Meteorological Organisation
(WMO, 2018). The transition from non-standard shelters to
Stevenson-style screens is a known source of systematic bias
— called exposure bias — because earlier shelters were subject
to differences in ventilation and direct or indirect radiative
heating of the thermometer. Resulting biases exhibit a sea-
sonal structure with an identifiable impact on regional trends
(Parker, 1994).

Current global data sets do not explicitly account for ex-
posure bias across their networks of station data. Some (e.g.
Berkeley Earth land record or those using GHCNm v4; see
Table 1) rely on their general statistical homogenization al-
gorithms to detect and adjust for breakpoints arising from ex-
posure changes. These are not specifically designed for iden-
tifying exposure biases, but where those biases are detected,
they may yield a similar outcome. However, the power of
breakpoint detection is reduced if changes in exposure were
introduced within the same time frame across many stations
within a country or region (Menne and Williams, 2009),
which was often the case for the introduction of Stevenson
screens (Wallis et al., 2024). Other data sets leave exposure
biases mostly uncorrected and instead represent their effects
via a component in their uncertainty model, developed from
previous exposure bias assessments (Brohan et al., 2006;
Morice et al., 2012). Only a limited number of data sources
have explicitly adjusted for exposure biases in early temper-
ature records; e.g. in CRUTEMS, only some data sources for
Spain (Brunet et al., 2006, 2011), the Greater Alpine Region
(Bohm et al., 2009), and Australia (Ashcroft et al., 2014)
have had adjustments applied. Specific exposure bias adjust-
ments have not been developed and applied more widely be-
cause quantitative estimates of the bias and comprehensive
metadata describing screen types in terms of use over time at
each meteorological station have been lacking.

Wallis et al. (2024) made a significant step forward in ad-
dressing these gaps by compiling temperature observations
from 54 parallel measurement series at sites where multi-
ple thermometer shelters were simultaneously in operation
and using them to develop regression-based predictive mod-
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els of the bias between measurements taken in Stevenson-
style screens versus those taken in earlier shelters. These re-
gression models were selected and calibrated using parallel
measurements for four classes of shelter:

— open exposures that, barring shielding to the top and one
side, fully expose the thermometer to the air, including
Glaisher and Montsouris stands (bias predictors are an-
nual temperature and a climatology of surface solar ra-
diation);

— intermediate exposures that provide additional lateral
protection to the thermometer, including thermometer
sheds and summer houses (this bias prediction model
was not applied because its skill arose mostly from a
single parallel measurement site);

— closed exposures in which the thermometer is fully
shielded on all sides, including Wild huts (the bias pre-
dictor is a climatology of surface solar radiation);

— wall-mounted exposures, including wall-, fence-, or
window-mounted measurements, both screened and un-
screened (the bias predictor is the top-of-atmosphere
downward solar radiation).

Wallis et al. (2024) then compiled a database of shelter
types for the majority of mid-latitude stations that had some
pre-1961 data in the GloSAT station database. These meta-
data provide an estimate of the shelter types in use up to the
time that a Stevenson-style screen was introduced and allow
for a prediction of the exposure bias arising from the transi-
tion from these earlier shelters to the Stevenson-style screen
using the aforementioned regression models.

The bias estimates from Wallis et al. (2024) have been ap-
plied here to adjust the GloSAT station database for expo-
sure bias. Of the 5031 stations between 30° and 60° latitude
(in either hemisphere) with some data prior to 1961, expo-
sure bias was considered to be absent in 1898 stations (either
because they had already been adjusted or because the meta-
data suggest that a Stevenson screen had been in place from
the start of the record). Of the remaining 3133 stations, new
exposure bias adjustments were applied to 1960 stations. No
adjustments were made to 1173 stations either because shel-
ter metadata were absent or because Wallis et al. (2024) had
not found an acceptable bias prediction model (e.g. for inter-
mediate exposures).

Even though we apply these new adjustments for exposure
bias, we retain the exposure bias error term in the Morice
et al. (2012) uncertainty model without any reduction. This
provides conservative bounds on remaining exposure-related
uncertainty in regional and global averages and is appro-
priate because residual exposure biases are still present in
the GloSAT station database (from those tropical and high-
latitude stations not assessed by Wallis et al. (2024) or lack-
ing necessary metadata or due to transitions from very early
exposures that have not been considered).

https://doi.org/10.5194/essd-17-7079-2025
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Table 2. Summary of new acquisitions and updates applied to CRUTEM.5.0.1.0 to create the GloSAT land surface air temperature station
database (sdb). Place and country names are as given by the data source.

Region Series no.  Source Details

Routine updates

Global 7810 CLIMAT Updated series for 2020-2021

Australia 112 BoM Updated ACORN series for 2019-2021

Canada 434 Environment Canada Updated series and improved homogeneity

Chile 314  Chilean Centre for Climate and Updated series for 2016-2021
Resilience Research

Denmark, Faroe Islands, 17  Danish Meteorological Institute Updated series for 2017-2020

and Greenland

Iceland 127 Icelandic Meteorological Office Updated series and improved homogeneity
and Trausti Jénsson

New Zealand 7  NIWA Updated series for 2018-2021

Russia 604  GHCN-Daily Updated series for 2018-2021

Switzerland 13 MeteoSwiss Updated existing series

USA 1218 USHCN Updated series and improved homogeneity

New acquisitions

Global 439  NCEI World Weather Records (WWR)  New series not previously in CRUTEM sdb

Global 149  NCEI Monthly Climatological New series not previously in CRUTEM sdb
Data for the World (MCDW)

Canada 346  Environment Canada New, homogenized series not previously in CRUTEM sdb

Germany 14 DWD New series not previously in CRUTEM sdb

Improved series (e.g. earlier extensions, gaps filled, improved homogeneity)

Global 2618
China 322
France 49
Germany 68
Switzerland 14
Global 15

CMA
MeteoFrance
DWD
MeteoSwiss

NCEI World Weather Records (WWR)

Multiple sources (papers, archives)

Gaps filled, especially for 2011-2016

Replacements with improved homogeneity

Mostly post-1950 additions to existing series
Replacements with improved completeness
Replacements with improved homogeneity

Jersey (1894-2019), Dublin (Ireland, 1831-2021),
Reading (UK, 1908-2019), Perpignan (France,
1836-2021),

Bordeaux (France, 1851-2021), Paris (France, 1658-2019),
Gorkij (Russia, 1881-1989), Tenkodogo (Burkina Faso,
1951-1991), Cucuta (Colombia, 1961-2021),

Nassau (Bahamas, 1811-2021), St Helena (1892-2021),
Ascension (1923-2021), Armagh (UK, 1796-2021),
Tianjin (China, 1890-2021),

Antananarivo (Madagascar, 1889-2021)

2.1.3 Improved and additional station normals

The GloSATref gridding process requires the monthly tem-
peratures to be expressed as anomalies by subtracting an es-
timate of each station’s average (hereafter “station normal’)
during the 1961-1990 baseline. In CRUTEMS (Osborn et
al., 2021), station normals were computed for each calen-
dar month where at least 15 out of 30 years of data were
available in the 1961-1990 period. For stations where this
criterion was not met, some station normals were obtained
from the WMO (World Meteorological Organisation, 1996)
or were estimated by computing 1951-1970 normals, which
were then adjusted to represent the 1961-1990 mean based
on the difference between the grid box averages for 1961—
1990 and 1951-1970 at nearby locations (Jones et al., 2012;
Jones and Moberg, 2003). Applying this approach for the
GloSAT reference analysis would have led to 2699 stations

https://doi.org/10.5194/essd-17-7079-2025

being unused due to the absence of an estimated normal and
the fact that some estimated normals would have greater un-
certainty and small biases (Calvert, 2024; Taylor et al., 2025)
due to being estimated from incomplete data.

For the GIloSAT reference analysis, therefore, the
CRUTEMS approach is revised to augment the available sta-
tion observations with individual monthly values estimated
by the local-expectation Kriging (LEK) method described
by Taylor et al. (2025). The local expectation at a given sta-
tion location is estimated as a linear weighted average of the
temperature values recorded at other stations in the neigh-
bourhood, with the weightings determined by an approxima-
tion to Kriging with hold out and taking into account the
covariance between stations. The monthly values estimated
by LEK are used to fill in missing values within each sta-
tion time series but only for the purpose of calculating sta-

Earth Syst. Sci. Data, 17, 7079-7100, 2025
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tion normals from complete 1961-1990 values. Taylor et al.
(2025) evaluate these LEK-estimated normals against nor-
mals calculated directly from observed values (for those sta-
tions with adequate data during 1961-1990) and find a root-
mean-squared difference of approximately 0.2 °C, with no
systematic dependence on latitude. This measure of similar-
ity is representative only of stations with data close to the
baseline period. For station data fragments further away (in
time) from 1961-1990, the normals based on LEK are more
uncertain, though this is difficult to quantify; comparison
with simple neighbour averages suggests that the uncertainty
of those normals may be twice as large as for stations with
data close to 1961-1990. The new data set applies the pre-
existing HadCRUT uncertainty model for extrapolated nor-
mals to those based on LEK, assigning them a larger error
than for those calculated from complete 1961-1990 data.

For GloSATref, the normals are therefore calculated ei-
ther from complete 1961-1990 observations (5806 stations),
from a mixed set of observed and LEK-estimated values dur-
ing 1961-1990 (3568 stations, with reduced bias for cases
where the observed values were either at the start or end
of the baseline period), or from only LEK-estimated values
(1742 stations, typically short-segment stations during ear-
lier or very recent periods). This permits the use of station
series for which few or no observations are available in the
1961-1990 period and reduces the use of less reliable WMO
normals.

In addition to extending the record back to 1781, the to-
tal number of stations in the database is increased from
10632 in CRUTEM.5.0.1.0 to 11865 in the GloSAT land
station database. The number of stations with normals —
and, thus, the number of stations able to be used to create
the gridded data set — is increased from 7983 stations in
CRUTEM.5.0.1.0 to 11 134 stations for GloSATref.1.0.0.0
(Table 3). Together with new data acquisitions, the use of
LEK-derived normals increases the number of usable sta-
tions. Many of the stations with new normal information are,
however, situated in relatively well-observed locations and
cover relatively short periods of time (mean station length
is 35 years for those with normals fully or partially calcu-
lated from LEK estimates versus 94 years for those with full
1961-1990 data); hence, the spatial coverage of the globe is
not increased commensurately with the increased number of
stations with climatological normal estimates.

2.2 Marine air temperature data processing

This section describes the processing used to construct a 200-
member ensemble of gridded MAT fields that forms the in-
put into the GloS ATref spatial analysis. We refer to this MAT
data set as GloSATMAT. The production of stable GSAT cli-
mate records requires assessment of the systematic biases
and uncertainty in MAT observations. The most important
of these are diurnal biases and measurement height changes.

Earth Syst. Sci. Data, 17, 7079-7100, 2025
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Spurious diurnal effects are caused by solar heating of
the ship which, in turn, warms the air around the sensor,
and these have been addressed previously through two ap-
proaches. The first and most common approach is to dis-
card all observations affected by daytime heating to produce
a nighttime marine air temperature (NMAT) data set (Bot-
tomley et al., 1990; Cornes et al., 2020a; Junod and Christy,
2020; Kent et al., 2013; Rayner et al., 2003), with the def-
inition of nighttime typically being from 1h after sunset to
1 h after sunrise. Although simple to apply, this restricts the
starting date of NMAT data sets to the late 19th century
as, before that time, an increasing proportion of observa-
tions were taken during the daytime and, commonly, at lo-
cal noon (Kent and Kennedy, 2021). The second approach is
to model and adjust for daytime biases. This has the advan-
tage of increasing the sample size of observations and was
the approach taken by Berry and Kent (2011), who produced
a global gridded all-hour air temperature product starting in
the 1970s. This approach is also taken here but is used to con-
struct an MAT data set back to 1784. As noted by Berry et al.
(2004) and Cropper et al. (2023), this adjustment approach
acts on average to remove any real diurnal cycle from the
MAT observations. Whilst this is not an ideal solution, this is
a pragmatic approach that can be assessed by the similarity
between data sets based on MAT and NMAT. Adjustments
from the measurement height to a standard reference height
are required as the temperature typically decreases with in-
creasing height above the ocean as the sea is usually warmer
than the air above. Height adjustments have been made by
estimating the lapse rate of the lower atmospheric boundary
and using this information with known values (or estimates)
of the temperature recording height to adjust the temperature
to a common reference height.

Processing of GIoSATMAT largely follows Cornes et al.
(2020a), with the following description of the method focus-
ing on additions to and variations of that approach. The most
notable changes are as follows:

— arefined quality control (QC) procedure;

— development of an ensemble version of the Cornes et al.
(2020a) error model to produce a 200-member ensem-
ble data set;

— the inclusion of observations of marine air tempera-
ture made during the daytime, following adjustment for
daytime heating bias (Cropper et al., 2023) using the
method proposed by Berry et al. (2004).

A new version of CLASSnmat (version 2.1.0.2) has also
been produced (Cornes et al., 2025a), which uses the same
input data and methodology as GlIoSATMAT but is con-
structed from nighttime-only values and hence omits the
diurnal adjustments. CLASSnmat v2 only extends back to
1880 due to the reduced sampling of nighttime observations
before that time.
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Table 3. Station counts per normal category code in CRUTEMS and GloSATref. Of those stations coded as have missing normals, 26 do
have a normal in up to 5 calendar months. Climatology uncertainty models for data-derived, WMO, and extrapolated normals are described
in Brohan et al. (2006) and Morice et al. (2012). Note that NA represents not applicable.

Normal Category of normal CRUTEM GloSATref Climatology uncertainty
code station count  station count model used

1 Normals missing 2649 731  Not applicable

2 Estimated using previous infilling methods 100 11 Extrapolated

3 WMO 25 1 WMO

4 Calculated directly from observations 7855 5806 Data

5 Taken from previous data set version 3 6 Data

6 Estimated solely from LEK NA 1742 Extrapolated

7 From combination of data and LEK NA 3568  Extrapolated

Total All usable types (categories 2—7) 7983 11134

2.2.1 Marine observations and quality control

The principal source of ship data is the International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS, Freeman
et al., 2017; Li et al., 2021), and data are processed from
1784 to present using the methods described in Cornes et al.
(2020a). In addition, ship data from the following sources are
also included:

— citizen science data digitization undertaken under the
Old Weather initiative (Spencer et al., 2019);

— research vessel data from ICOADS holdings of the
Ship-based Automated Meteorological and Oceano-
graphic System (SAMOS) archive (Smith et al., 2018);

— Voluntary Observing Ship Global Data Assembly Cen-
tre (VOS-GDAC) data, obtained on 19 January 2021
https://www.dwd.de/EN/ourservices/gcc/gec.html (last
access: 19 January 2021) — in cases where an obser-
vation in ICOADS has the same ID, date, and position
as a VOS-GDAC observation, the information from the
VOS-GDAC observation is used.

As in Kent et al. (2013) and Cornes et al. (2020a), data for
the period of 18761893 for ships passing through the Suez
Canal were excluded due to the warm bias in those observa-
tions.

The QC checks applied to the MAT data follow those de-
scribed in Cornes et al. (2020a). An updated climatology-
based quality control check has been developed for the MAT
data and is described below. For GloSATMAT, additional
checks have been made in relation to the diurnal-heating bias
adjustments (Cropper et al., 2023).

Climatology QC procedure

At the start of marine data processing, climatological outliers
are rejected based on the climatology generation step. Under
the new procedure, a 1961-1990 pentad (5 d) climatology is
generated on a 1° latitude x 1° longitude resolution grid. Due
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to the sampling frequency of ship-based observations, if a
grid cell does not initially contain at least one value in each
pentad throughout the year or one value in each month then
the size of the grid cell, centred on the target 1° x 1° grid cell,
is expanded in 1° latitude and longitude increments. This oc-
curs until either the criterion of 500 values across at least 48
pentads and 10 months is met or there is one complete set
of pentads. These criteria prevent climatologies from being
formed from data with preferential sampling in one part of
the year. Harmonics are fitted to the pentad averages per grid
cell, and an optimum number of functions is chosen using
the Akaike information criterion up to a maximum of three
harmonics. The fitted harmonic coefficients are then used to
generate a daily climatology for each grid cell.

Using the grid cell climatology values, outliers are identi-
fied from the distribution of anomaly values per year. Values
that exceed a lower or upper bound from the distribution are
flagged for exclusion. These bounds, biower and bypper, are
defined by the 5th and 95th percentiles (ps and pos), the Sth
to 95th percentile range, and an expansion factor ( fexp).

biower = ps — O-Sfexp(p% = Ds) (L
bupper = P95 + 0.5 fexp(pos — ps) (2

To exclude gross outliers, an initial check is performed
across each latitude band per year with fexp = 2. Following
the exclusion of values that fail that check, the outlier flag
is applied to observations with fexp = 0.5 at the highest grid
cell spatial resolution available (starting at 1° resolution) that
contains 50 observations per month, progressively increasing
the grid box size in 1° increments. If, despite that increasing
box size, the number of observations is still less than 50 then
the distribution is formed from anomalies across the 10° lat-
itude band per month.

The generation of the climatology and the quantile-based
removal of values are applied as follows. A climatology is
generated using data that pass the Met Office QC checks (af-
ter Cornes et al., 2020a). The above quantile-based QC pro-
cedure is then applied, and then a new climatology is gener-
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ated using data that passed the first quantile-based QC check,
and a second iteration of quantile-based QC is applied.

Diurnal bias-related QC procedure

Additional QC is applied as part of the diurnal bias adjust-
ment process (see Sect. 2.2.4) as documented in the Ap-
pendix of Cropper et al. (2023). Four modifications to the QC
method described in Cropper et al. (2023) are made here:

— Precipitation-flagged observations were retained for use
in the analysis (but excluded from the heating bias fit-
ting process).

— All ships with unrealistic diurnal heating were excluded,
not just those in the 1854-1894 period described in
Cropper et al. (2023).

— Observations with an estimated heating bias of > 15 °C
were also flagged and excluded from the analysis.

— For ships lacking ID information, only nighttime obser-
vations are retained as IDs are required for diurnal bias
adjustment.

2.2.2 MAT measurement height adjustments

In HadNMAT?2 (Kent et al., 2013) and CLASSnmat vl
(Cornes et al., 2020a), the measurement height uncertainty is
represented as a standard deviation around the estimated or
known measurement height. This uncertainty is propagated
through the height adjustment calculation (see following sec-
tion) using a Monte Carlo approach sampling a distribution
of heights and a joint distribution of wind speed and air—
sea temperature difference to estimate the likely uncertainty
in atmospheric stability. Details can be found in Kent et al.
(2013), with updates in Cornes et al. (2020a).

Adjustment of MAT observation to a standard height
above sea level

The previous approach provides only a likely distribution of
measurement height and height adjustment uncertainty. Cor-
related and uncorrelated contributions were estimated sep-
arately, and the correlation structure was not captured. For
those observations that could not be linked to a measure-
ment height in WMO Publication 47 (Kent et al., 2007), de-
fault heights were chosen which, after 1945, accounted for
the regional variation in typical ship heights. However, this
had the consequence that a ship with a known ID and un-
known height would change its estimated height depending
on which 5° grid cell it occupied at a particular time. Here,
the development of an ensemble of heights permits correlated
uncertainty to be handled as follows:

— In each ensemble member a ship with a known ID will
keep the same measurement height, at least within a cal-
endar year.
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— In each ensemble member the stability estimate will be
the same for nearby ships within the same 5° grid cell
and 10d period.

Prior to height information being available for individual
observations from WMO Publication 47 (mostly pre-1973,
before call signs were available to assign WMO Publication
47 entries to ships in [ICOADS), observation heights are esti-
mated from the literature following Kent et al. (2013). A 200-
member ensemble is created to reflect uncertainty in mea-
surement heights; the parameters for the ensemble are shown
in Table 4. Per ship, the ensemble varies the height four times
to reflect the change in average ship height over time (param-
eter prefix “height” in Table 4). The exact timing of the start
of the height changes also forms a component of the ensem-
ble to reflect uncertainty in that date (parameter prefix “year”
in Table 4).

From 1970 onwards, the height of a ship is determined by
joining the ICOADS ID (the ship call sign or other identifier)
with the corresponding WMO Publication 47 entry. Some-
times, the height of the dry-bulb thermometer above the sum-
mer load line, i.e. the thermometer height, is used. However,
if the thermometer height is missing then the height of the
barometer, the anemometer, or the height of the visual ob-
serving height is used. If the height of the ship’s thermometer
(inferred from WMO Publication 47) is known, the assumed
uncertainty in that height is £1 m.

For missing heights after 1970, the height is sampled from
the distribution of known heights from WMO Publication
47. Height information is grouped by 5° grid box, 10° grid
box, country of registration, oceanic basin, 10° latitude band,
vessel length, and vessel type. For IDs without a height, the
height is sampled across a selection of heights where a ship
has matching information. Observations without ship ID in-
formation are assigned a pseudo-ID and placed in a sub-
group for which an ensemble of possible heights is gener-
ated. The overall estimated thermometer height for ships in
ICOADS is shown in Fig. 2 of Cornes et al. (2020a).

To adjust MAT measurements to a standard reference
height and quantify uncertainty in adjustments, we imple-
ment an ensemble version of the height adjustment method
described in Cornes et al. (2020a). For each ensemble mem-
ber, a single random sample of stability parameters (temper-
ature scaling parameter and Monin—Obukov length, Biri et
al., 2023) is taken in each 5° grid cell and 10d period from
a pool of 10000 parameter sets, which comprises 5000 sam-
ples taken from the distribution of random uncertainty com-
ponents and 5000 taken from the systematic components (see
Cornes et al., 2020a). A fixed sample over each 10d period
within a month is used. This is designed to replicate the ex-
pected constancy of stability parameters within the synoptic
timescale. For each sample of stability parameters and height
estimates, the temperature data were adjusted to a height of
2 m above sea level.
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Table 4. Parameters used to construct the GIoSATMAT height ensemble.

Parameter

Sampling distribution

Year: start of increasing heights around 1870
Year: start of World War 2 heights

Year: end of World War 2 heights

Height: constant until around 1870

Height: reached at start of World War 2
Height: change at start of World War 2
Height: reached by 1973

Normal: mean is 1870, standard deviation is 3 years
Uniform: 1939 +2

Uniform: 1946 + 5

Normal: mean is 6 m, standard deviation is 2 m
Normal: mean is 12 m, standard deviation is 2 m
Normal: mean is —1 m, standard deviation is 2 m
Normal: mean is 16 m, standard deviation is 2 m

2.2.3 Adjustment of observations during World War 2

The adjustment of data from ICOADS Decks 245 (UK Royal
Navy Ships) and 195 (US Navy Ship Logs) during the pe-
riod 1942-1945 follows the method described in Cornes et
al. (2020a) to calibrate observations from these decks in re-
lation to those in other decks. For GloSATMAT, the adjust-
ments and uncertainty values have been calculated for both
daytime and nighttime data. While the uncertainty in these
adjustments was previously considered to be entirely corre-
lated by ship track, the World War 2 adjustments have been
partitioned so that one-third of the total uncertainty is mod-
elled as correlated by ship track, while two-thirds of the un-
certainty is uncorrelated. This partitioning addresses a prob-
lem with the error covariance matrices, which would other-
wise not always have been positively semi-definite and hence
could not have been used in further calculations.

2.2.4 Diurnal-heating bias adjustment

The Cropper et al. (2023) implementation of the Berry et al.
(2004) heating bias model was used to quantify the expected
diurnal influence on the MAT of energy storage and release
by ship superstructures. On an annual basis, we fit a set of
heating bias model coefficients to every uniquely identifiable
ship track used from ICOADS following processing to im-
prove the association of ship identifiers with individual ships
as described in Cornes et al. (2020a). In addition, some ship
IDs prior to 1850 were not unique and were assigned new
unique IDs using additional information contained within the
ship report. Where this was possible, the data for these prob-
lematic IDs were retained; otherwise, the data were excluded.
The estimates of the heating bias are based on the difference
from MAT and the underlying trend in nighttime tempera-
ture, defined as the temperature between 1 h after sunset un-
til 1 h after sunrise. Hence, each MAT observation is adjusted
by the difference between the estimated bias and the night-
time mean MAT. As such, the full diurnal cycle is removed
from the data, and GloSATMAT should be considered to be
a nighttime-equivalent data set.

As described in Cropper et al. (2023), 2500 alternate sets
of heating bias model coefficients are determined from the
full suite of ICOADS ships from the period of 1856-2020.
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For each individual ship, 2500 realizations of the heating
model coefficients are generated, and an ensemble of 60 of
these, minimizing several different cost functions, are se-
lected as the best fit for each ship. The ensemble means of
the adjustments over the 60 different ensemble members be-
come the heating bias adjustment.

The data requirements for each observation to apply the
heating bias adjustment are position, time, cloud cover, and
relative wind speed. For a ship track to be included, we re-
quire at least 12 observations where the underlying nighttime
MAT can be determined. If a ship track has partially miss-
ing cloud and/or wind speed values, these values are sampled
from the 1961-1990 climatological distribution of cloud and
wind derived from ICOADS after the 60 best model coef-
ficient combinations have been selected. If a ship track has
completely missing cloud and/or wind, the sampling occurs
during the selection of the heating bias model coefficients.

Almost all observations pre-1856 lack cloud cover data,
and many ships do not meet the criterion of having 12 ob-
servations for which the underlying nighttime MAT can be
determined. In this period, we relax this requirement so that
all observations in this period that pass QC can be included.
For many ships, this means that the coefficients for the heat-
ing bias model cannot be fitted as there is no target nighttime
information. In this situation, we use an ensemble of heating
bias model coefficients computed from ships that do have the
required data, whereby it is likely that these ships are typical
during this period. The correlated uncertainty for MAT from
ships fit this way is fixed at 0.45 °C, the 97.5th quantile over
the 1857-1870 period.

2.3 The GloSAT GSAT reference analysis
2.3.1 LSAT anomaly grids

A 200-member ensemble of gridded LSAT fields has been
constructed from station temperature series by applying the
ensemble gridding procedure described in Morice et al.
(2012). This includes ensemble sampling for homogeniza-
tion uncertainty, exposure bias uncertainty, station climatol-
ogy uncertainty, and urbanization uncertainty, which are ac-
companied by analytical estimates of measurement and sam-
pling uncertainties, as in Morice et al. (2012). The exposure
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bias uncertainty model of Morice et al. (2012) is retained de-
spite the addition of new exposure bias adjustments as the
Wallis et al. (2024) adjustments are available for a subset of
stations located at mid-latitudes only, and the adjustments are
uncertain. The HadCRUTS climatology uncertainty model is
retained (Morice et al., 2012), with the HadCRUTS5 uncer-
tainty model for interpolated normals being used for LEK
normals (Taylor et al., 2025). For these interpolated nor-
mals, the station climatology uncertainty o¢jim () for the cal-
endar month m is a function of the standard deviation of
monthly temperatures for the calendar month oy,(m), with
oclim(m) = oyar(m)/ V15. The resulting uncertainty is equiv-
alent to that for a station with 15 years of available monthly
averages within the climatology period.

Table 5 shows the mapping of uncertainty sources to the
uncertainty model’s ensemble members and error covariance
matrices. These ensemble members and error covariance ma-
trices form the inputs for a non-interpolated merged analy-
sis and the resulting 200-member LSAT anomaly ensemble
grids are then used as inputs into the Gaussian-process-based
infilling method described in Morice et al. (2021) and previ-
ously used to create the HadCRUTS data set (see Sect. 2.3.3).

2.3.2 MAT anomaly grids

A 200-member marine air temperature ensemble has been
generated based on the 200-member ensemble of diurnally
adjusted all-hour marine air temperature observations ad-
justed to a 2 m reference height. Each ensemble member is
gridded separately following the method described in Cornes
et al. (2020a) using the ship observation ensembles that
sample uncertainty in height adjustments and World War 2
(WW?2) adjustments. As in CLASSnmat vl, these gridded
fields are initially generated as monthly actual MAT val-
ues, and then climatological averages are subtracted from
the gridded data to produce the anomaly fields. Missing val-
ues in the GloSATMAT climatology fields are filled using a
thin-plate spline with the smoothing parameter set to zero.
In this way, the spline acts as an exact interpolator, and,
hence, where grid cell values exist, these are reproduced ex-
actly in the interpolated field. Missing cells are interpolated
from non-missing cells in the neighbourhood, and this al-
lows anomaly values to be calculated in regions where there
are insufficient values over the climatological period to con-
struct a 30-year mean value. The gridded anomaly values
are calculated by subtracting this climatology from the grid-
ded actual temperature fields for the respective month of the
year. As a final QC check on the gridded data, any grid cell
MAT anomalies greater than 10 °C or less than —10°C are
removed. It should be noted that these climatologies differ
slightly from the values used in the earlier climatological QC
(see Sect. 2.2.1).

Following the example of the CLASSnmat data set, uncor-
related, systematic, and sampling uncertainties are encoded
into monthly error covariance matrices, excluding terms in-
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cluded in the ensemble. Uncertainty in diurnal-heating ad-
justments is encoded into these error covariance matrices and
treated as uncorrelated between observations. A summary
of uncertainty model components is provided in Table 5.
The 200-member gridded MAT ensemble and accompany-
ing error covariance matrices are provided as inputs into the
Gaussian-process-based infilling method (previously used to
create the HadCRUTS data set, Morice et al., 2021) to gener-
ate a 200-member infilled MAT anomaly ensemble.

2.3.3 LSAT and MAT interpolated analyses

Interpolated analyses of LSAT and MAT are produced us-
ing the Gaussian process analysis system of Morice et al.
(2012). This analysis method takes ensemble gridded tem-
perature anomaly fields as inputs, modelling systematic error
structures in observed air temperature anomalies. An addi-
tional observational error structure is provided to the analysis
in error covariance matrices. The full details of the method
are provided in Morice et al. (2021).

Separate LSAT and MAT analyses are produced. Ensem-
ble and error covariance inputs into the analysis equations
are summarized in Table 5. The LSAT analysis error model
structure matches that used in the HadCRUTS data set, with
the structure of individual uncertainty components described
in Morice et al. (2021). For the MAT analysis, the encoding
of error structures into the input 200-member MAT ensemble
grids and the accompanying error covariance matrices is de-
scribed in Sect. 2.2 and in Cornes et al. (2020a) and Cropper
et al. (2023).

Analysis estimation follows the method of Morice et al.
(2021) using the HadCRUTS? analysis processing system. As
in Morice et al. (2021), the Gaussian process models monthly
temperature anomaly fields as the sum of a monthly field
mean and a spatially varying Gaussian process. The Gaus-
sian process model uses a Matérn covariance function that
models covariances between locations on the Earth’s sur-
face as a function of Euclidian distance. As for HadCRUTS,
the Matérn covariance function’s smoothing parameter is set
to n = 1.5. Parameters representing the standard deviation
of temperature anomaly variability o and spatial decorre-
lation length scales p are estimated separately for land and
ocean analyses as the average of maximum likelihood esti-
mates for monthly fields from 1961 to 1990. The resulting
parameter estimates for the LSAT analysis are o =1.2°C
and p = 1300 km, and those for the MAT analysis are o =
0.65°C and p = 1550km. For comparison, these LSAT pa-
rameter estimates for GloSATref are the same as for Had-
CRUTS, but the GloSATref MAT parameter estimates differ
from those for SST in HadCRUTS, which have a lower am-
plitude (¢ = 0.6 °C) and shorter length scale (o = 1300 km).

As in the HadCRUTS data set, the analyses are masked in
regions of weak observational constraint, defined by a metric
of 1 minus the ratio of the posterior to prior variance of the
spatial model estimates at each analysis grid cell. The anal-
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Table 5. Representation of uncertainty model components in LSAT and MAT error models.

Analysis domain  Uncertainty term Analysis input

Error structure

LSAT Urbanization bias Ensemble One-sided piecewise trend; correlated between stations to
represent uncertainty in large-scale averages (Morice et al., 2012)
Exposure bias Ensemble Two-sided early-record bias reduced to zero in mid-20th century;
correlated between stations to represent uncertainty in large-scale
averages (Morice et al., 2012)
Homogenization error Ensemble Random step change model, independent between
stations (Morice et al., 2012)
Measurement error Error covariance  Random error uncorrelated between stations/grid cells
(Morice et al., 2012)
Grid cell sampling error Error covariance  Random error uncorrelated between stations/grid cells
(Morice et al., 2012)
MAT Height adjustment/ Ensemble Per-ship height uncertainty and per 5° grid cell or 10d
stability uncertainty period stability uncertainty encoded into ensemble grids
Climatology uncertainty Not used Not used

WW?2 bias Error covariance

Per-ship per-year uncertainty during the period 1942-1945 for ships
from decks 195 and 245 (Cornes et al., 2020a)

Diurnal adjustment error Not used

Included in measurement random error

Measurement random error  Error covariance

Random error uncorrelated between ships/grid cells
(Cornes et al., 2020a)

Measurement bias error Error covariance

Correlated uncertainty between ships/grid cells
(Cornes et al., 2020a)

Grid cell sampling error Error covariance

Per-ship errors encoded into grid error covariance matrices
(Cornes et al., 2020a)

ysis is masked where this metric takes a value of less than
o = 0.25 (see Morice et al., 2021, and their supporting infor-
mation for discussion).

2.3.4 Merging LSAT and MAT analyses

The GSAT ensemble grids are produced as weighted av-
erages of MAT and LSAT anomaly ensemble grids. The
weighting scheme follows the HadCRUT5 method, with
weighting based on the fraction of land area in each grid
cell. As in HadCRUTS, for the interpolated analysis, sea ice
regions are treated as if they were land in the weighting
scheme, and a minimum weighting of 25 % land is placed
on grid cells that are directly observed by land meteorologi-
cal stations. These choices are retained from HadCRUTS to
aid comparison of the climate diagnostics based on SST and
MAT through comparison of HadCRUTS and the GloSAT
reference analysis.
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3 Results and discussion

3.1 Global and hemispheric temperature anomaly
series

Figure 1 shows a comparison between GloSATref and Had-
CRUTS interpolated global and hemispheric analyses, in-
cluding uncertainty ranges and percentages of global and
hemispheric coverage. Each of these two analyses is pro-
duced using the HadCRUTS analysis methodology. Differ-
ences in global annual average time series between these
two analyses reflect the differences in input LSAT and MAT
and/or SST data sets and their uncertainties combined with
the interaction between anomaly patterns and data coverage
in those input data sets and the spatial interpolation methods.

GloSATref, like HadCRUTS, represents the major changes
we expect to see in the global mean. The pre-1850 record, de-
spite its increased uncertainty, captures the strong cooling as-
sociated with major volcanic eruptions. The overall warming
of global temperature is clear, although GloSATref warms
slightly less overall. Features noted in previous comparisons
of SST and NMAT large-scale averages remain prominent
in the GloSATref comparison to HadCRUTS, for example,
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Figure 1. Global and hemispheric average temperature anomaly time series for the GloSATref and HadCRUTS global analyses (°C, relative
to 1961-1990), together with the percentage of areal grid coverage for (a) the full globe, (b) the Northern Hemisphere, and (c) the Southern
Hemisphere. Hemispheric series omit years in which there are no data available in the respective hemisphere. Global averages are computed
as an average of northern- and southern-hemispheric series, requiring data to be available in both hemispheres. Methods for computation of

time series and their uncertainties are provided in Morice et al. (2021).

the lower temperatures in the early 1900s and in recent years
(Cornes et al., 2020a; Gulev et al., 2021; Chan et al., 2024).

For their period of overlap, currently 1850 to 2021, there is
broad agreement in the global and hemispheric means. While
areal coverage of the Northern Hemisphere is similar in
the two data sets, GloSATref has slightly reduced southern-
hemispheric coverage compared to HadCRUTS5. GloSATref
is, on average, warmer than HadCRUTS from the start of
the latter data set in 1850 until 1880 and then more notably
cooler, on average, than HadCRUTS until the early 1910s,
especially in the Southern Hemisphere.

Variability in GSAT and hemispheric averages from
GloSATref is high in the period before the start of Had-
CRUTS in 1850, as expected from the lower data coverage.
There are two periods of strong cold anomalies which result
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from the cooling of the atmosphere following the eruptions
of major volcanos: Laki in 1783-1784 (Zambri et al., 2019),
an eruption of unknown source in 1808, Tambora in 1815,
and further eruptions in the 1820s and 1830s (Brénnimann
et al., 2019). It is likely that the global mean effect of Laki
is overestimated in this time series (Fig. 1a) because it is in-
fluenced by the location of the available observations in the
1780s; this effect can be seen in model simulations masked
in relation to the GloSATref data coverage (Ballinger et al.,
2025).

3.2 Temperature anomaly maps and data coverage

The most obvious feature in the 20-year averages of SAT
anomalies shown in Fig. 2 is the increase in temperature over
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time, particularly at high northern latitudes. The period be-
fore about 1820 is particularly cold, likely due to volcanic ac-
tivity. Warm anomalies are present in higher latitudes of the
North Atlantic in the 20-year averages from 1821-1840 to
1881-1900 and the of the South Atlantic from 1821-1840 to
1861-1880. These might be indicative of multidecadal vari-
ability. The Arctic region is relatively warm in the 1920s and
1930s (Hegerl et al., 2018). Despite the new adjustments to
MAT for biases present during WW2, this period may still be
unrealistically warm in GloSATref according to a new anal-
ysis of SST data (Chan et al., 2024).

While the use of MAT allows GloSATref to extend prior to
1850, there is nevertheless a marked reduction in data avail-
ability prior to about 1855 (see global coverage metrics in
Fig. 1 and 20-yearly coverage maps in Figs. S1 and S3 in the
Supplement). Before 1850, the majority of weather station
LSAT series are situated in Europe and the eastern coast of
North America, limiting Northern Hemisphere coverage of
the GloSATref analysis fields. Combined with an absence of
station records in the Southern Hemisphere, this contributes
to increased uncertainty in global and hemispheric series.
MAT coverage is predominantly restricted to the Atlantic and
Indian oceans, reflecting primary trade routes. For these re-
gions it is possible to make estimates of regional tempera-
ture anomalies based on GloSATref analysis fields using rea-
sonable criteria for data availability (Fig. 2). The Pacific has
highly limited sampling in this early period. Non-uniform
global coverage in the early record may lead to a sampling
bias in global average SAT estimates in this period. Uncer-
tainties in global and hemispheric means are therefore larger
in this early period as both LSAT and MAT are sparsely ob-
served, but the uncertainty estimates themselves are likely to
be less robustly quantified.

Observation coverage improves over time, accompanied
by increased global coverage of the gridded analysis fields. In
the second half of the 1800s, there is a marked increase in sta-
tion LSAT series availability, with analysis estimates becom-
ing available by the end of the century for most land regions
excluding Antarctica; interior regions of Africa; and north-
ern regions of South America, including the Amazon. By the
1880s, measurements from all oceans are available, although
with varying degrees of data availability. While sufficient
data are available to estimate average temperature anomalies
across much of the Pacific at this time (Fig. 2), data coverage
in the analysis is limited in regions of the western and south-
ern Pacific. Data coverage for the Southern Ocean and high
northern latitudes is highly limited.

In the early 20th century, most of the missing grid cells
are in the Southern Ocean and over Antarctica. Underpin-
ning land station data coverage remains limited for much of
Africa, South America, interior regions of eastern Asia, and
high-latitude regions of North America and Eurasia, although
the available observation coverage permits analysis estimates
for these regions. The Antarctic becomes represented in the
analysis in the 1950s. Coverage for MAT peaks in the 1970s
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and 1980s and has declined markedly since (Berry and Kent,
2016; Kent and Kennedy, 2021). Observation coverage of the
Southern Ocean and the southern extents of the Pacific, At-
lantic, and Indian oceans remains reduced in GloSATref in
comparison to HadCRUTS in recent decades (see Figs. S1—
S4). SST observations from drifting buoys contribute notably
to differences in marine data coverage in these regions, but
there are also fewer ship observations of MAT than of SST.

As in the preceding CRUTEMS station database (see dis-
cussion in Osborn et al., 2021), the number of LSAT series
is relatively high and stable from the early 1960s to the early
2010s, with a sharp reduction in the last decade due in part to
delays in accessing data. However, in CRUTEMS, the num-
ber of station series actually used in the gridding showed a
decline from the 1970s onwards, falling to below 90 % of
its 1970s peak from 1991 onwards (Fig. 7 of Osborn et al.,
2021), and this is mostly because new stations installed from
the 1970s onwards did not have the data necessary to estimate
their 1961-1990 normals. In the current study, the use of
Kriging (Sect. 2.1.3) to estimate missing values from neigh-
bouring stations for the purpose of estimating normals has
partly ameliorated this issue: the number of stations used for
gridding is 90 % of its 1970s peak as late as 2011 (compared
with 1991 in CRUTEMYS). It is worth noting, though, that
these additional stations that can now be used for the gridded
data set are commonly in grid cells with other LSAT stations;
therefore, their importance is that they reduce the sampling
uncertainty at the grid cell level rather than extending cover-
age of the gridded data set in the final decades.

Differences in temperature anomalies over land between
HadCRUTS and GloSATref (Fig. 3) result from the increased
number of stations used to create the GloSATref grids, pri-
marily from use of the LEK method and from early-record
mid-latitude screen bias adjustments. The effects of screen
bias adjustments are evident in anomaly difference maps
prior to the 1930s, most notably with HadCRUTS5 contain-
ing warmer anomalies across Eurasia in the 1890-1909 and
1910-1929 panels and in western North America in the
1850-1869 panel. This difference is largest in the summer
and autumn months when Northern Hemisphere screen bi-
ases are largest, for which HadCRUTS does not include
adjustments. From the 1930s onwards, differences between
HadCRUTS and GloSATref anomalies over land are mini-
mal.

3.3 Effects of MAT and LSAT updates in global series

Global average anomaly time series for GloSATref, GloSAT-
LAT, and GloSATMAT are shown in Fig. 4 in comparison
to methodologically related data sets, showing the effects of
data and methodological changes contributing to GloSATref.
Additional land and marine data set comparisons are shown
in Figs. S7 and S8, including a broader range of data sets.
Averaging globally over the land domain for the non-
interpolated GloSATLAT data (noting that coverage becomes
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Figure 2. The 20-year average SAT for the GloSATref analysis (°C relative to 1961-1990; final panel shows 21-year average). Each panel

averages available gridded data to quarterly, annual, and then 20-year (21-year) averages, requiring data in at least two quarters to form an
annual average and at least 10 annual averages to produce a 20-year average.
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Figure 3. Difference in 20-year average anomalies, relative to 1961-1990, between the HadCRUTS5 and GloSATref analyses (°C; final panel
shows 12-year average). Blue colours indicate where HadCRUTS is colder than GloSATref. Red indicates where HadCRUTS is warmer.

increasingly limited during the first 100 years) and compar- summer warm biases, which are larger than the annual bias
ing to the closely related CRUTEMS data set (Fig. 4a and d) adjustments. Differences from CRUTEMS in the 21st cen-
show that the Wallis et al. (2024) exposure bias adjustments tury are less than 0.04 °C of either sign. These differences
cool LSAT global annual averages in the 19th and early 20th result from the expanded set of station records included in
centuries by less than 0.1 °C, primarily through mitigation of anomaly grids.
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Figure 4. Top row (a—c): global average temperature anomalies (°C) relative to 1961-1990 for (a) LSAT; (b) SST, NMAT, and/or MAT; and
(¢) GMST and/or GSAT. Bottom row (d-f): differences in global average 1961-1990 temperature anomaly time series for (d) LSAT minus
CRUTEM.5.0.2.0 LSAT; (e) SST, NMAT, and/or MAT minus HadSST.4.0.1.0 SST; and (f) GMST and/or GSAT minus HadCRUT.5.0.2.0.
The dashed line for GlIoSATLAT extends the series prior to 1856 by omitting the requirement for at least five populated grid cells in each
hemisphere, with only Northern Hemisphere station data present in GloSATLAT grids prior 1854. None of the LSAT, SST, NMAT, and/or
MAT data sets in panels (a, b, d, e) use spatial interpolation, while spatial interpolation is used in GSAT and/or GMST analyses shown in
panels (c, f). Plotted series use all available gridded data without co-location to common data coverage.

Comparing the all-hour GIoSATMAT to related NMAT
data sets, CLASSnmat v2 uses the same methodology and
input data sources as GloSATMAT but, like its predecessor
CLASSnmat vl1, excludes daytime observations and starts in
1880. The main reason for the differences between the two
versions of CLASSnmat is the addition of extra data sources
(see Sect. 2.2.1 and Fig. 4b and e). CLASSnmat v2 is there-
fore most similar to GloSATMAT. For most of the period
of 1850-1879, where there are only estimates from GloSAT-
MAT and HadSST4, GloSATMAT is warmer than HadSST4
on average by about 0.1 °C, which may suggest either an in-
complete removal of diurnal-heating biases in GloSATMAT
or a residual cold bias in HadSST4. This relative warmth
compared to HadSST4 is also seen for the first decade of
the NMAT records. The early 20th century shows rapid vari-
ations in the difference between the MAT data sets and
HadSST4. Recent analysis has suggested that most SST data
products, including HadSST4, may be biased cold during the
early 20th century (Sippel et al., 2024; Chan et al., 2024); fur-
ther work is required to understand the different temperature
records in this period. During WW2, GloSATMAT shows
cold temperature anomalies relative to both HadSST4 and
the NMAT-based estimates. This may suggest that the new
bias adjustments are an improvement (Sect. 2.2.3) as a new
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analysis by Chan et al. (2024) indicates that HadSST4 may
contain residual warm biases during WW2.

The smaller warming trend in NMAT relative to SST data
has been noted for some time (for an overview, see Cornes et
al., 2021; Gulev et al., 2021). This feature is also apparent in
the MAT data presented here (Fig. 4) and is shown to start in
the late 1950s. SST and air temperature anomaly differences
in this period are larger in tropical regions but are more sim-
ilar during El Nifio periods (not shown). Climate models and
atmospheric reanalyses show the opposite relationship be-
tween SST and MAT trends (Gulev et al., 2021), supported
by a proposed physical constraint (Richardson, 2023). Fur-
ther analysis of the in situ marine observations is therefore
required.

Global average temperature series for GloSATref and Had-
CRUTS analyses are shown in Fig. 4c (as in Fig. 1 but with-
out the uncertainty range), and their differences are shown
in Fig. 4f. Over their common period, comparison with av-
erages derived from their underpinning single-domain data
sets indicates that differences in terms of the time varia-
tion of global temperature anomaly series for GloSATref and
HadCRUTS primarily arise from their marine components,
with early-record LSAT exposure bias adjustments having a
smaller effect.
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3.4 Comparison to other GMST data sets

The global average temperature time series for the GloSAT
GSAT analysis is shown in Fig. 5 alongside those of cur-
rent GMST analyses. Figure 5b gives a more detailed view
of their differences from GloSATref. As noted in Sect. 1, the
GMST data sets differ in terms of the methods used and the
underpinning observation data, although there are overlaps
and commonalities between them in both respects.

Also shown is the global average temperature anomaly
time series for the median of the PAGES2k multi-proxy en-
semble reconstructions (PAGES2k, 2019). The PAGES2k en-
semble was calibrated using the Cowtan and Way (2014) spa-
tially infilled analysis of HadCRUT4 data over 1850-2000 so
that (by weighting and scaling the proxy records) it resem-
bles the overall warming and some of the variability of the
infilled HadCRUT4. The pre-1850 period is not directly con-
strained in this way, and it is for comparison with GloS ATref
during this period that it has been included.

There is general agreement between all of the estimates,
with particularly good agreement regarding the representa-
tion of interannual variability among the instrumental-based
data sets. From 1850 to around 1885, there is a wider scatter
between the various data sets, with some warmer and some
cooler than GloSATref, reflecting the greater uncertainty in
these early observational data sets. This is also a period when
these other data sets lie outside the GloSATref 95 % confi-
dence range more often.

From 1888 to 1913, GloSATref is consistently cooler than
the SST-based data sets, and, at times, they all lie outside
the GloSATref 95 % confidence range during this period, ex-
cept for the HadCRUTS-based Calvert (2024) data set. This
difference is notable because there is evidence that this early-
20th-century cool period is biased cold in the SST data sets
(Sippel et al., 2024), yet GloSATref is cooler still by 0.1 to
0.2°C. The SST-based data sets are more similar to each
other than to GloSATref due to differences between SST and
MAT (see Fig. 4e). Differences over 1888 to 1913 (Fig. 5) are
most prominent for the DCENT and COBE-STEMP3 data
sets (Chan et al., 2024; Ishii et al., 2025), with each being
notably warmer than GloSATref over 1888 to 1913 and ex-
hibiting excursions beyond the GloSATref 95 % confidence
intervals throughout the first half of the 20th century. These
two recently published data sets have new treatments of in-
homogeneities. Each uses land station LAT values in their re-
spective SST bias adjustment schemes. While the specifics of
their adjustment methods differ, each method acts to reduce
differences between detrended global average SST and LSAT
anomalies. These two data sets also add SST data-source-
based adjustments that impact early-20th-century warming:
COBE-STEMP3 includes an adjustment to address a trunca-
tion error in a prominent underpinning data source in this pe-
riod, the KOBE collection (Chan et al., 2019), while DCENT
uses an SST adjustment scheme based on nation, ICOADS
deck, and measurement method (Chan and Huybers, 2021).
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The PAGES2k ensemble median palaeoclimate reconstruc-
tion (PAGES2k, 2019) is warmer than GloSATref and much
closer to DCENT and COBE-STEMP3 during this early-
20th-century period.

From the 1930s to the end of the 20th century, differences
between GloSATref and GMST data sets based on ERSST v5
(GISTEMP and NOA AGlobalTemp) are, on average, smaller
than differences with HadSST4-based data sets (HadCRUTS
and Berkeley Earth). This is likely to be related to the more
direct use of NMAT observations to bias adjust ERSST v5
SSTs rather than HadSST4 SSTs. Similar results may be ex-
pected once data sets based on ERSST v5 are updated to use
the recently published ERSST v6 (Huang et al., 2025a, b).
From the 1950s onwards, the dominant difference is the
slightly lower trend in MAT relative to SST, as noted ear-
lier. This leads to GMST data sets lying above the GloS ATref
confidence range in recent years.

Before 1850, the only comparison is with data from the
palaeoclimate record. During this period, GloSATref shows
much greater variability than it does after 1850 (arising es-
pecially from the land component: Fig. 4) and much greater
variability than the PAGES2k median global temperature re-
construction (Fig. 5a), with the PAGES2k median extend-
ing outside both the 2.5 % and 97.5 % confidence limits of
GloSATref at times (Figs. 5b and S6). There is a possi-
ble step in the PAGES2k-GloSATref difference around 1820
(Fig. 5b), but this is the type of feature that occurs when
differencing a highly variable series with a smoother lower-
variance series, and so it is not strong evidence for a dis-
continuity in either GloSATref or PAGES2k. There are mul-
tiple reasons for the differences between GloSATref and
PAGES2k prior to 1850. The variance of the PAGES2k me-
dian may be too small due to averaging over multiple possi-
ble realizations (PAGES2k ensemble range is not shown here
but is shown in Fig. S6) as discussed by PAGES2k (2019) and
Anchukaitis and Smerdon (2022). It is likely that pre-1850
variability in the GloSATref global series is overestimated by
much reduced global measurement sampling (Fig. 2), which
increases uncertainty and variance in the global mean esti-
mate. This is especially the case for the land data, which
are limited almost entirely to Europe before 1820. Coverage
uncertainty estimates for the GloSAT series (based on sub-
sampling late-20th-century and early-21st-century ERAS re-
analysis fields in relation to the observed locations) are, in-
deed, larger during this period but may not fully represent
this uncertainty. The underlying measurements in the early
19th century were taken from less standardized instruments
and measurement platforms and will likely have larger un-
corrected errors, which contribute to increased variance. Part
of the enhanced variability is likely to be due to strong vol-
canic activity, with the GloSATref series cooling around the
times of the unidentified 1809 volcanic eruption and the 1815
eruption of Mount Tambora and, to a lesser degree, around
the time of the 1830s eruptions. It is possible that this vol-
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Figure 5. (a) GSAT and GMST (°C, relative to 1961-1990) derived from instrumental data sets and the ensemble median of the PAGES2k
palaeoclimate reconstructions and (b) differences between GloSATref and instrumental GMST and the PAGES2k ensemble median (each
series minus GloSATref). Solid lines show the ensemble means or medians where the data set provides an ensemble; grey shading is the
2.5 % to 97.5 % confidence interval for the GloSATref series only. All instrumental series are January—December annual averages. PAGES2k
series are representative of April-March annual averages.

canic response is not fully captured in the PAGES2k median — COBE-STEMP3, COBE-LSAT3, COBE-LSAT3
(Anchukaitis and Smerdon, 2022). (Ishii et al., 2025): https://climate.mri-jma.go.jp/pub/
archives/Ishii-et-al_COBE-SST3 (last access: 21 May

4 Data availability 2025).

The GloSATref analysis and its constituent data sets are = ChinaMST 2.0 — Imax (Sun ‘and Li, 2021):

available via the CEDA archive. https://doi.org/10.6084/m9.figshare.16929427 .v4.

— The  GloSATref analysis (Morice et al., — CLASSnmat vl (Cornes et a}l.,
2025b) is available at https://doi.org/10.5285/ 2020b): https://catalogue.ceda.ac.uk/uuid/
a25196242593402283246bd359d098be. Sbbf48b128bd488dbb10a56111feb36a/.

— The GloSATLAT data set and station files (Morice — CLASSnmat v2 (Cornes et al., 2025a): https://doi.org/
et al., 2025a) are available at https://doi.org/10.5285/ 10.5285/306246329ae04eb3b2299446d911530a.

ef237f578329487eb02{b42f9db56bb2.
— CRUTEM.5.0.2.0 (Osborn et al., 2021): https://www.
— The GIoSATMAT data set (Cornes et al, metoffice.gov.uk/hadobs/crutem5/ (last access: 10 Jan-
2025b) is available at https://doi.org/10.5285/ uary 2024).
€6251bf935304cfbb9c9269dc7757a35.
— DCENT, DCSST, DCLAT v1.0 (Chan et al., 2024):

. . https://doi.org/10.7910/DVN/NU4UGW.
Data used in comparison plots

— Berkley Earth (Rohde et al., 2013a, b; Rohde and Haus- — ERSST v6 (Huang et al., 2025a, b): https://www.ncei.
father, 2020): https://www.berkeleyearth.org (last ac- noaa.gov/pub/data/cmb/ersst/v5/2023.ersst.v6 (last ac-
cess: 10 September 2024). cess: 2 May 2025).

— Calvert (Calvert, 2024): https://doi.org/10.26050/ — GISTEMP v4 (Lenssen et al., 2019): https://data.giss.
WDCC/HadCRU_MLE_vl1.2. nasa.gov/gistemp/ (last access: 10 September 2024).
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— HadCRUT.5.0.2.0 (Morice et al., 2021): https://www.
metoffice.gov.uk/hadobs/hadcrutS/ (last access: 10 Jan-
uary 2024).

— HadSST.4.0.1.0 (Kennedy et al., 2019): https://www.
metoffice.gov.uk/hadobs/hadsst4/ (last access: 21 May
2024).

— Kadow version 6. (Meuer et al., 2024):

https://doi.org/10.5281/zenodo.11262704.
— NOAAGIobalTemp v6 (Huang et al, 2024,

Yin et al, 2024; Huang et al, 2022):
https://doi.org/10.25921/rzxg-p717.

- PAGES2k (Neukom et al., 2019):
https://doi.org/10.25921/tkxp-vn12.

- UAHNMATv1 (Junod and  Christy, 2020):

https://www.nsstc.uah.edu/users/robert.junod/
UAHTEMP/UAHNMAT/UAHNMATv1_6190_ref.nc
(last access: 21 May 2025).

5 Conclusions

A new global surface air temperature (GSAT) anomaly data
set has been produced: GloSATref. This is the first such data
set to use marine air temperature (MAT) instead of sea sur-
face temperature (SST) in combination with land surface air
temperature (LSAT). The use of MAT has allowed for the
extension of the global measurement-based record back to
1784, with a land-only analysis back to 1781, adding nearly
70 years when compared to data sets using SST as their
marine component and which start in 1850 or later. The
construction of a MAT-based data set required overcoming
several challenges, most notably the derivation and appli-
cation of adjustments to account for warm biases due to
daytime heating of the ship and sensor environment (Crop-
per et al., 2023). Similarly, for air temperature observations
made over land, new estimates of bias were required to be
able to use observations made before the widespread adop-
tion of Stevenson-style screens to shelter the thermometers
from the direct or indirect effect of solar radiation (Wallis et
al., 2024). These adjustments will also improve the existing
LSAT record (Osborn et al., 2021) before about 1930.

Extending the instrumental near-surface temperature
record earlier in time by nearly 70 years gives an estimate
of temperature changes associated with a period of strong
volcanic activity between the 1780s and the 1820s, albeit re-
quiring consideration of limitations in early global data cov-
erage. These data are a new resource for the study of the cli-
mate of this early instrumental period (e.g. as in Ballinger et
al., 2025) and provide an additional line of evidence for un-
derstanding global near-surface temperature change and vari-
ability alongside existing GMST data sets.

Instrumental monitoring of GSAT is contingent on sus-
tained observation of air temperature over ocean and land.
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At present, the marine air temperature observing network is
less robust than that for SST, with numbers of MAT obser-
vations having declined since the 1990s (Kent and Kennedy,
2021). Similarly, the LSAT record is dependent on mainte-
nance of meteorological station networks and international
data exchange. Support for international data infrastructure
to meet the requirements of the construction of long-term cli-
mate records remains essential (Folland et al., 2001; Kent et
al., 2019; Li et al., 2021). Equally important is support for
data rescue through imaging and digitization of observations
to improve global sampling and of metadata to improve our
understanding of observing methods throughout the record
(Brohan et al., 2009; Bronnimann et al., 2018; Luterbacher
etal., 2024).

Global data sets based on SST have been produced for
more than 30 years and have improved as our understanding
of the characteristics of the observations has improved and as
our methods of data set construction have advanced. Similar
improvements can be expected with records based on MAT
if resources permit. This new global surface air temperature
analysis provides an additional line of evidence of changes
in global temperature alongside existing GMST data sets and
reanalyses.
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