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Climate change is intensifying drought risk, yet it is unclear which regions will be most 1 

vulnerable in the future. Here, we investigate emerging hotspots of agricultural drought 2 

across the tropics and northern hemisphere extra-tropics using climate reanalysis and 3 

model simulations under a range of shared socio-economic pathways. Our analysis  4 

accounts for soil moisture at growing season onset, as well as for variability during the 5 

season itself -  linking climate change to the land-surface water balance by classifying 6 

the dominant controls on evapotranspiration, including a newly defined state governed 7 

by plant extraction of water from the root zone. We show that much of Europe, 8 

southern Africa, northern South America, and western North America are emerging 9 

hotspots of agricultural drought, with mechanisms of observed drying consistent with 10 

future projections. Drought trends are identified even where precipitation projections 11 

diverge. By focusing on growing seasons, our approach captures hotspots overlooked by 12 

annual metrics and shows that increasing drought frequency is compounded by shifts 13 

toward more severe and intense events. These findings have strong implications for food 14 

security and highlight the need for drought-resilient adaptation not only in the Global 15 

South but also in extratropical regions where risk is already escalating. 16 

Despite the expectation that global precipitation will increase under anthropogenic climate 17 

change1,2, in many regions soil moisture is projected to decline3 - creating new hotspots of 18 

agricultural drought4-6. Global analyses of the 6th Coupled Model Intercomparison Project 19 



(CMIP6) ensemble indicate that reductions in soil moisture are projected even in regions 20 

where annual precipitation is projected to increase6,7, and that a climate-change related signal 21 

will be detectable before 20608.  Soil moisture reflects the local land surface water balance, 22 

and hence is affected by precipitation, runoff and the climatic drivers of evaporation (solar 23 

radiation, temperature, humidity and wind speed9,10), as well as by land-surface and 24 

vegetation processes11. Variability is thus modulated by land-surface condition and trends in 25 

regional climate, which affect evapotranspiration2,12, interception of precipitation13 and land-26 

atmosphere coupling14,15.  On long time scales, warming increases atmospheric water 27 

demand10, leading to increased rates of evapotranspiration16 and soil moisture decline in 28 

terrestrial regions where water is currently plentiful14,17. On decadal to centennial timescales, 29 

evaporative fluxes are affected by the response of vegetation to CO2 increase and 30 

warming16,18-20, by changes in winter snow cover21, and by changes in land use22.  31 

The complexity of these hydroclimatic interactions has created challenges in disentangling 32 

the factors driving regional variation in soil moisture trends9.  Moreover, although 33 

agricultural drought is related to soil moisture deficit, the two are not equivalent. Since most 34 

crops are not grown during the whole year, impactful agricultural drought should be defined 35 

as root-zone soil moisture deficit during local growing seasons5 – i.e. the season in which 36 

annual crops grow best. Although there has been much work on the land-surface water 37 

balance14, the notion of agricultural drought as a seasonal phenomenon, influenced by both 38 

growing season meteorological anomalies, and antecedent conditions, has received limited 39 

attention - with most previous studies investigating monthly or annual soil moisture decline6-40 

8,23. And yet, the tendency of soil moisture anomalies to persist in time24-26 means that the risk 41 

of seasonal drought is affected by soil moisture levels at season onset, and long-term changes 42 

in the land-surface water balance, as well as by variability in precipitation, evpaoration and 43 

runoff during the season itself.  44 



Growing seasons differ between the tropics and the extra-tropics (see Methods). In the extra-45 

tropics, where plant growth is controlled by temperature and solar radiation12, the growing 46 

season peaks during the late spring and summer, when solar radiation is highest – i.e. May-47 

September in the northern hemisphere27. In the tropics, where seasonal variation in 48 

precipitation is more pronounced and solar radiation and temperature are high throughout the 49 

year, growing seasons align with local wet seasons (Extended Data Figure 1).  50 

The aim of this study is to identify emerging hotspots of agricultural drought in both the 51 

tropics and northern hemisphere extra-tropics. We take a mechanistic approach, focusing on 52 

the intersection between climate trends, and the biophysical factors that underpin seasonal 53 

variability in the land-surface water balance. We advance on previous work by characterising 54 

the drivers of soil moisture variability during locally defined growing seasons - framing the 55 

land-surface water balance in terms of spatial and temporal variation in the factors controlling 56 

evapotranspiration. This process-based approach enables us to relate global climate model 57 

soil moisture projections to the evolving risk of regional agricultural drought - revealing why 58 

some regions are rapidly becoming hotspots of agricultural drought whilst others are not.  59 

Evaporative regimes and seasonal cumulation of soil moisture  60 

A conceptual model, used to describe the interplay between climate variability, evaporation 61 

and soil moisture, is to define regimes based on the whether actual evapotranspiration (AET) 62 

is primarily controlled by energy or water13,14,17. Here we extend this framework by 63 

identifying a third regime - extraction control - in which seasonal AET variability is governed 64 

by plant extraction of water from the root-zone. In this regime, energy and moisture are 65 

sufficient for transpiration, so moisture fluxes are determined by demand from plants, rather 66 

than by precipitation supply. The extraction-controlled regime thus differs from the energy-67 

controlled regime - for which AET scales with available radiation, and from the water-68 

controlled regime - for which AET co-varies with precipitation and soil-moisture 69 



replenishment, and changes in AET can modulate but not reverse the polarity of 70 

precipitation-driven changes in soil moisture. Misclassifying extraction control as energy 71 

control understates the role of plant regulation in driving variability in seasonal AET, and can 72 

exaggerate the effect of increased atmospheric demand on soil moisture drying. Moreover, 73 

treating extraction control as water control ties projections of drought to uncertain predictions 74 

of precipitation – potentially obscuring robust demand-driven drying signals under warming 75 

(see Methods).  76 

The relationships between energy, soil moisture and evapotranspiration illustrated in Figure 1 77 

allow us to classify regions by evaporative regime (see Methods for criteria, and 78 

Supplementary Materials for further discussion) – providing a framework for exploring how 79 

controls on AET and hence on soil moisture, vary in space and time and differ between 80 

models and observations (Figure 2). The contrasting effects of warming on the land-surface 81 

water balance in the three regimes are shown in Figure 3, which relates temperature change to 82 

seasonal soil-moisture cumulation (i.e. the difference in soil moisture between the beginning 83 

and end of the growing season). In the water-controlled regime, AET is driven by 84 

precipitation and modulated by warming-induced increase in potential evapotranspiration 85 

(PET). The net effect of temperature on AET is thus less clear than in the other regimes – 86 

reflecting regional variability in the links between temperature and precipitation trends.  The 87 

clearest relationship between warming and soil moisture depletion is seen in the energy-88 

controlled regime, with greater warming consistently associated with greater soil moisture 89 

decline.  For the extraction-controlled regime, the relationship depends on trends in relative 90 

humidity (and hence vapour pressure deficit (VPD) – Extended Data Figure 2). In regions 91 

where relative humidity is maintained as temperature increases, warming increases the rate of 92 

transpiration, and subsequent depletion of soil moisture. In contrast, where relative humidity 93 

decreases significantly under warming, reduction in stomatal conductance will reduce 94 



transpiration. These competing effects are evident in Figure 3: in the tropical growing 95 

seasons, extraction-limited regimes are restricted to coastal areas, where relative humidity is 96 

maintained as the atmosphere warms, and consequently warming depletes soil moisture; in 97 

contrast, in the northern hemisphere extra-tropical growing seasons and tropical non-growing 98 

seasons, relative humidity is projected to decrease strongly in extraction-controlled regions, 99 

and greater warming is thus associated with reduced drying (compare Figure 2 with Extended 100 

Data Figure 2).  In hot regions/seasons (including the tropical dry season), the high 101 

temperatures associated with climate change may, furthermore, be sufficient to exceed the 102 

optimum temperature – exacerbating this effect28 (acknowledging that the extent of thermal 103 

acclimation to climate change is uncertain and not well-represented by climate models18).  104 

Soil moisture memory and trends in drought  105 

At every point on the globe – tropical and extra-tropical - agricultural drought is caused by 106 

some combination of low soil moisture at the start of the growing season (antecedent soil 107 

moisture) and lower than usual (or more negative than usual) accumulation of soil moisture 108 

during the season. Comparison between Figures 4a, b and c confirms that long-term change 109 

in growing season soil moisture strongly reflects changing antecedent conditions, rather than 110 

changes in seasonal soil moisture accumulation - implying a high degree of soil moisture 111 

memory (see also Extended Data Table 1). In this context, soil moisture memory 112 

encapsulates the persistence of anomalies over the full range of time scales, from a few 113 

months (due to persistence of seasonal antecedent conditions29) to decades (reflecting long-114 

term trends in the annual water balance7).  Our objective in this study is not to analyse spatial 115 

variability in decorrelation timescale, but rather to identify which calendar season most 116 

strongly explains variability and change in growing-season soil moisture, and whether the 117 

dependence on antecedent conditions reflects seasonal persistence or long-term change in the 118 

annual water-balance.  119 



In the tropics, where the majority of precipitation occurs during local rainy seasons30 120 

(Extended Data Figure 1a), on seasonal time scales, soil moisture memory might be expected 121 

to be low – with any trace of antecedent conditions obscured by the influx of rainy season 122 

precipitation and subsequent cumulation of soil moisture. Extended Data Figure 3 shows that 123 

this is true, to an extent, with dry season soil moisture cumulation weakly correlated with wet 124 

season soil moisture in arid and semi-arid regions. In humid regions, however, most variance 125 

in growing season soil moisture is explained by variability in the preceding dry season. In 126 

arid and semi-arid regions, where evaporation is constrained by water availability and hence 127 

is positively correlated with precipitation, long term trends in antecedent soil moisture reflect 128 

trends in annual precipitation (compare Figure 4c with Extended Data Figure 4b). In more 129 

humid regions, where evaporation is energy limited for some or all of the year, over time, 130 

increased annual evaporative losses reduce the impact of precipitation increase or exacerbate 131 

the impact of precipitation decrease.  132 

For the northern hemisphere extra-tropics, Figure 5a displays the calendar season for which 133 

cumulated soil moisture correlates most strongly with growing season soil moisture (the 134 

dominant season). The substantial proportion of variance explained by the dominant season 135 

(Figure 5b), along with the agreement between the models and ERA5, supports the 136 

robustness of this identified season (Extended Data Figure 5). Moreover, the dominant season 137 

remains consistent regardless of time series length or whether long-term trends are removed, 138 

suggesting that the influence of antecedent conditions reflects seasonal soil moisture memory 139 

rather than long-term trends - a conclusion reinforced by the strong explanatory power across 140 

time scales (Supplementary Materials Figure S5). 141 

Emerging hotspots of agricultural drought  142 

In the northern hemisphere extra-tropics, soil moisture cumulation during MAM is projected 143 

to reduce markedly in all regions, apart from RFE (Russia-Far-East), CNA (Central-North-144 



America), eastern NWN (N.W.North-America) and GIC (Greenland-Iceland) (Extended Data 145 

Figure 6). The reduction results from there being sufficient increases in evapotranspiration to 146 

outweigh the effect of observed and projected anthropogenic increases in precipitation31,32 on 147 

cumulated soil moisture (Extended Data Figures 6-8). Figure 5a confirms that MAM is the 148 

dominant season, over all of Europe and North America apart from southern central Eurasia 149 

(WCA, ECA) and the northern Russian Arctic (RAR). Consistent with these mechanisms, 150 

Figure 6 shows that agricultural drought events have been observed to increase in frequency 151 

in most Eurasian and some North American SRX regions (NWN, WNA, NEU, WCE, MED, 152 

EEU, WSB and ESB) and that the increases are projected to increase over the 21st Century. 153 

These findings are consistent with the importance of spring drying in the development of 154 

recent severe Eurasian droughts in 200333, 201034 and 201835.  For these reasons, western 155 

North America, western Europe and mid-latitude central and eastern Europe (apart from 156 

RFE) are identified as emerging drought hotspots (Figure 6a). Notably, these regions align 157 

with locations previously identified as exhibiting earlier emergence of severe or intense 158 

drought metrics8,23.   159 

Not all of the northern hemisphere extra-tropics are emerging hotspots of drought. For NEN 160 

(North-Eastern North America) and ENA (Eastern North America), although drought is 161 

projected to increase in the future, these changes have not been observed in the historical 162 

record. In the southern Asian sub-/extra-tropics and in the Caribbean (WCA, ECA, TIB, 163 

CAR), the influence of spring soil variability on growing season soil moisture is weaker, and 164 

the projected changes in agricultural drought are correspondingly less pronounced and 165 

consistent between historical and future periods.  166 

Because tropical precipitation exhibits strong natural interannual variability and because 167 

CMIP models underestimate internal climate variability36, precipitation trends in historical 168 

model simulations commonly disagree with observations (compare Supplementary Materials 169 



Figure S3c and d). In semi-arid and arid tropical regions, where agricultural drought is 170 

governed by precipitation variability, anthropogenically forced changes may therefore be 171 

difficult to detect. In the Horn of Africa, for instance, precipitation droughts have been 172 

observed to decrease over the historical period37,38 (Figure 6g), resulting in a significant 173 

increase in the occurrence of agricultural drought (Figure 6f). In the future, however, large 174 

anthropogenic increases in precipitation are projected to reduce the incidence of drought 175 

(albeit with questions remaining about the reliability of the projections37,39). The observed 176 

increase in drought in this region cannot, therefore, be classified as an indicator of future 177 

change, even though some recent seasonal anomalies have been attributed to anthropogenic 178 

forcing40.  Similarly, in southern South America, recently observed increases in agricultural 179 

drought frequency are not projected to persist in the future.  180 

In western southernmost Africa, in contrast, precipitation is observed and projected to 181 

decrease – with notable consistency over the CMIP6 ensemble41. Because decreased annual 182 

precipitation is evident in the future projections; recent drying (including the 2015-2017 ‘Day 183 

Zero drought’) has been attributed to climate change42; and trends in agricultural drought are 184 

driven by consistently projected trends in annual precipitation total (Extended Data Figure 185 

4b), we conclude that western southern Africa (WSAF) is an emerging hot spot of 186 

agricultural drought.  187 

In the humid tropics, the situation is analogous to the high latitudes, in that evaporation is 188 

controlled by energy in both growing and non-growing seasons (Figure 2). In these regions, 189 

warming-induced increases in AET tend to reduce soil moisture – either countering the effect 190 

of precipitation increase or amplifying the effect of precipitation decrease. However, not all 191 

of the humid tropics can be considered as emerging drought hotspots. In Central Africa 192 

(CAF), for example, there remains significant uncertainty in both models and observations of 193 

precipitation and soil moisture change – with positive precipitation43, precipitation-194 



evaporation44, and streamflow trends45 in some observations, and in the CMIP6 historical 195 

simulations (Supplementary Materials Figure S3), but negative changes in drought events in 196 

the ERA5 reanalysis (Figure 6f and g). CAF is therefore not listed as an emerging hotspot of 197 

agricultural drought – primarily because of the mismatch between observations of drying and 198 

projections of wetting. However, it should be noted because this region is identified as having 199 

an energy-controlled evaporation regime, in some regions future decreases in precipitation 200 

droughts (Figure 6c) may not translate to reduced soil moisture agricultural drought (Figure 201 

6b).  In Amazonia and northern South America (NSA and SAM), in contrast, historical 202 

simulations, future projections, and observations agree on signficant worsening of drought 203 

incidence and intensity. Indeed, over the last 20 years, in northern South America, there have 204 

been four ‘once-in-a-hundred-year’ events46, with the effect of El Niño-related rainfall 205 

deficits exacerbated by anthropogenic warming47. Both NSA and SAM are therefore 206 

considered emerging hot spots of agricultural drought.  207 

Wider implications 208 

The results presented here have implications for both mitigation and adaptation policy. 209 

Comparison across SSPs indicates that drought incidence is projected to worsen in most of 210 

the northern hemisphere extra-tropics under all pathways, but significant increase in the 211 

incidence of severe drought is less consistently projected under SSP2-4.5 and SSP1-2.6 than 212 

under the more extreme SSP3-7.0 and SSP5-8.5 (Supplementary Materials Figure S6). This 213 

finding underlines the societal benefits of reducing emissions.  214 

From an adaptation point of view, Extended Data Figure 9 shows that the projected increase 215 

in drought incidence reflects increased drought intensity (consistent with the projected 216 

increase in flash drought48), and Supplementary Figure 7 indicates that the relative frequency 217 

of very severe droughts (|Z-score| > 2) is projected to increase markedly. Crop productivity is 218 

disproportionately impacted by intense dry periods - as happened during the 2012 North 219 



American flash drought49, and by very severe events, such as the 2018 summer drought that 220 

affected northern Europe50. Our findings thus highlight an urgent need for policy-makers to 221 

plan for increased drought stress on crops in Europe and North America (as well as in the 222 

more societally vulnerable Global South), and to consider adaptation measures – including 223 

introducing drought resistent crop varieties. Because the modelling results presented here do 224 

not explicitly consider irrigation, the findings are best interpreted as indicators of increased 225 

demand for freshwater for irrigation in heavily irrigated regions – stressing the importance of 226 

managing rural water supply in emerging drought hotspots.  227 

To conclude, robust representation of precipitation variability and change remains a challenge 228 

for models – but the need to identify regions at increasing risk of agricultural drought is 229 

urgent. Moving beyond previous seasonal studies of drought, our study frames global 230 

growing seasons in terms of slowly evolving antecedent conditions and trends in soil 231 

moisture cumulation during key seasons.  By expressing the land-surface water balance in 232 

terms of spatially and temporally varying evaporative controls, we identify where soil-233 

moisture decline is robustly projected, and distinguish regions with robust declines from 234 

those where change remains uncertain. Advancing on earlier seasonal and annual studies, we 235 

identify regions, including western North America, Europe, South America and southern 236 

Africa, where recent observed drying is driven by the mechanisms underlying projected 237 

worsening of drought and we distinguish such ‘emerging hotspots of drought’ from regions, 238 

such as East Africa and southern South America, where recent observed drying is 239 

inconsistent with future projections.  Our process-based approach thus clarifies the 240 

mechanistic drivers of agricultural drought and robustly identifies emerging hotspots in both 241 

the tropics and extra-tropics.   242 
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Main paper figures 259 

 260 

Figure 1: Schematic diagram illustrating the dominant processes for each of the evaporative 261 

regimes described in this study. a. Energy control: in this regime evaporation is limited by 262 

the availability of energy. Actual evapotranspiration (AET) is positively correlated with 263 

shortwave radiation flux (SW), and negatively correlated with soil moisture (SM); b. 264 

Extraction control: in this regime evaporation is limited by the ability of plants to extract 265 

water from the soil column. AET and SM are therefore negatively correlated; c. Deep water 266 

control: in this regime, evaporation is limited by the availability of SM for transpiration. 267 

AET is thus positively correlated with SM and the link between SM and AET is directly 268 

causal; d. Surface water control: in this regime, evaporation is limited by the availability of 269 

surface water. AET is thus positively correlated with precipitation, and hence SM, but the 270 

link between SM and AET is not directly causal.  271 
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 273 

Figure 2: Geographical distribution of evaporative regimes in growing and non-growing 274 

seasons. CMIP6 multi-model ensemble for 1981–2000 (a.,b.) and 2071–2090, SSP5-8.5 275 

(c.,d.); ERA5 for 1981–2000 (e.,f.). Left panels show growing seasons (a.,c.,e.); right, non-276 

growing (b.,d.,f.). CMIP6 panels display the multi-model modal regime; circles mark grid 277 

cells where ≥67% of models agree on the mode. The maps are split by a horizontal line 278 

between the tropics/sub-tropics—where growing seasons coincide with local rains—and the 279 

northern-hemisphere extratropics, where growing seasons align with boreal summer (see 280 

Methods). Symbols are plotted on alternate grid cells for clarity. [See Suppementary 281 

materials Figure S1 for northern hemisphere calendar seasons] 282 

Data sources: The data plotted is derived from CMIP6 data from the ESGF archive and 283 

ERA5 from C3S. Basemap: Cartopy/Natural Earth.  284 



 285 

Figure 3: Relationship between seasonally cumulated soil moisture change and warming. The 286 

plots compare  2071–2090 (SSP5-8.5; CMIP6 multi-model ensemble), expressed relative to 287 

the 1981–2000 baseline for the three evaporative regimes (see colour key). Soil moisture 288 

changes are binned according to local temperature change (x-axis shows the lower edge of 289 

each bin). The panels show different seasons and latitude ranges: a. extra-tropical northern 290 

hemisphere (400N-700N) growing season; b. tropical (400S-400N) growing season; c. extra-291 

tropical northern hemisphere non-growing season; d. tropical non-growing season. The size 292 

of the circles is scaled by the number of data points in each bin. 293 

Data sources: The data plotted is derived from CMIP6 data from the ESGF archive.  294 

  295 



 296 

Figure 4: Historical and projected change in root zone soil moisture. CMIP6 multi-model 297 

mean 2071–2090 (SSP5-8.5) vs 1981–2000 (a.–c.); CMIP6 multi-model mean 2001–2020 vs 298 

1981–2000 (d.–f.). ERA5: 2001–2020 vs 1981–2000 (g.–i.). Variables: growing-season mean 299 

soil moisture (a.,d,g.); cumulated growing-season soil moisture (b.,e.,h.); antecedent (start-of-300 

season snapshot) soil moisture (c.,f.,i.). ERA5 panels (g.-i.): circles denote changes 301 

significant at 5% relative to interannual variability. CMIP6 panels (a.-f.): circles indicate 302 

≥67% of models show a significant change of the multi-model mean’s polarity at the 5% 303 

level; crosses indicate ≥67% agree there is no significant change The maps are split by a 304 

horizontal line between the tropics/sub-tropics—where growing seasons coincide with local 305 

rains—and the northern-hemisphere extratropics, where growing seasons align with boreal 306 

summer (see Methods). Symbols are plotted on alternate grid cells for clarity. [See 307 

Supplementary Materials Figure S2 for non-growing season changes; Figure S3 and S4 for 308 

growing and non-growing season changes in precipitation and evaporation; Figure S6 309 

additional SSPs]. 310 

Data sources: The data plotted is derived from CMIP6 data from the ESGF archive and 311 

ERA5 from C3S. Basemap: Cartopy/Natural Earth.  312 



Figure 5: Soil moisture persistence and consequent dominant season in the northern 313 

hemisphere extra-tropics a. Calendar season (March-May, June-August, September-314 

November, December-February) for which cumulated soil moisture has the highest positive 315 

correlation with growing season (May-September) soil moisture – i.e. the dominant season. 316 

Circles indicate points for which at least 67% of models agree on the dominant season; b.) 317 

Variance in growing season soil moisture explained by the cumulated soil moisture during 318 

the dominant season (grid points where the dominant season is inversely correlated are 319 

greyed out). The labelled polygons are regions defined by the IPCC Special Report on 320 

Extremes (SRX regions).  321 

Data sources: The data plotted is derived from CMIP6 data from the ESGF archive. 322 

Basemap: Cartopy/Natural Earth; Region boundaries: IPCC SREX (licensed via IPCC Atlas 323 

repository) 324 
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 326 

Figure 6: Emerging hotspots of agricultural drought a. SREX regional summary: each region 327 

classified as observed and projected increase in soil-moisture-defined drought,  projected 328 

increase only, or no evidence of worsening (see colour key). b.–c. CMIP6 SSP5-8.5 change 329 

in growing-season drought occurrence, 2071–2090 c.f. 1981–2000, for soil moisture events 330 

(b.) and precipitation events (c.). d.-e. Historical CMIP6 change, 2001–2020 c.f. 1981–2000, 331 



for soil moisture (D) and precipitation (E). (f.–g.) Historical ERA5 change, 2001–2020 c.f. 332 

1980–2000, for soil moisture events (f.) and precipitation events (g.). For the future 333 

projections (b.-c.), circles mark grid cells with 67% of models agreeing on a significant 334 

change at the 5% level and crosses indicate that >67% of models agree on no significant 335 

change; for the CMIP6 historical trends (d.-e.) triangles mark grid cells where 100% of 336 

models agree on the polarity of change; for ERA5 stars indicate significant change (95% 337 

level) compared to interannual variablity. For all panels, drought is defined as Z score <-1. 338 

The maps are split by a horizontal line between the tropics/sub-tropics—where growing 339 

seasons coincide with local rains—and the northern-hemisphere extratropics, where growing 340 

seasons align with boreal summer (see Methods).  [see Supplementary Materials Figure S7 341 

for additional soil moisture drought thresholds and SSPs] 342 

Data sources: The data plotted is derived from CMIP6 data from the ESGF archive and 343 

ERA5 from C3S. Basemap: Cartopy/Natural Earth; Region boundaries: IPCC SRX (licensed 344 

via IPCC Atlas repository) 345 
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Methods  482 

Models and data used 483 

For this study, an ensemble of 17 models from the 6th Coupled Model Intercomparison 484 

Project (CMIP651) was analysed (Supplementary Materials Table 1). The first ensemble 485 

member was used from each model. The models selected encompass a wide variety of land 486 

surface models, resolutions and soil thicknesses. The primary selection criterion for the was 487 

the availability of all required variables for the historical period and the SSP5-8.5 pathway (a 488 

smaller subset of models was used for the plots of other SSP pathways: SSP1-2.6, SSP3-7.0, 489 

SSP2-4.5).  490 

The required variables were: 491 

• pr (precipitation) 492 

• mrsol (soil moisture in soil layers) 493 

• evspsbl (surface evapotranspiration) 494 

• tas (near surface air temperature) 495 

• hurs (surface relative humidity) 496 

• rsds (surface flux of shortwave radiation) 497 

The CMIP6 data were analysed for the historical simulations (starting at 1940), spliced 498 

together with SSP5-8.5,  SSP1-2.6, SSP3-7.0, SSP2-4 output for  2015-2100. As an 499 

observation-based benchmark we use ERA5 reanalysis52 selected for its global coverage, 500 

variable completeness and internal physical consistency at daily resolution, and documented 501 

skill in capturing soil-drying and related hydroclimate variability53.  502 

Data downloaded at monthly resolution, and then interpolated to pentadal resolution for 503 

separation into wet and dry seasons (see next section). Using monthly, rather than daily data, 504 

greatly reduced computational cost and allowed us to use a larger model ensemble. All data 505 

were re-gridded to a common 144x96 horizontal grid (using bi-linear interpolation). 506 

Identification of growing seasons 507 



For the purposes of identifying growing seasons, data were split by latitude into 400S - 400N 508 

and 400N - 900N. In the main text, these regions were referred to informally as the ‘tropics’ 509 

and the ‘northern hemisphere extra tropics’. For the northern hemisphere extra tropics, the 510 

growing season was defined everywhere as May 1st – September 30th (referred to informally 511 

as northern hemisphere or boreal summer), with the rest of the year referred to as northern 512 

hemisphere winter.  513 

For the tropics, it is assumed that growing seasons align with local wet seasons. We 514 

acknowledge that crop-specific shifts in planting or phenology under heat stress are important 515 

but require a separate, phenology-resolved framework and are therefore beyond the scope of 516 

this hydroclimate-focused analysis. We define wet/dry seasons using precipitation thresholds 517 

to reflect rainy season water supply and to enable consistent model–reanalysis comparisons. 518 

Because the timing of tropical wet seasons varies considerably from one region to another, 519 

local growing seasons were identified using a well-established objective method for 520 

identifying rainy season start and end date30,54. The method identifies the start and end of the 521 

rainfall season based on cumulative rainfall anomalies. It first computes sub-monthly rainfall 522 

anomalies relative to the annual mean. Then, a cumulative sum of these anomalies is 523 

calculated, forming a curve that typically shows a minimum near the season start and a 524 

maximum near the season end. The start date is the time when this cumulative anomaly 525 

reaches its lowest point, indicating the transition from the dry to the wet season. The end date 526 

is when the cumulative anomaly reaches its highest point, marking the return to drier 527 

conditions.  528 

In this paper, the following adjustments/simplifications were made: 529 

• the method has been adapted to be applied to monthly data, interpolated to pentadal scale 530 

• no attempt is made to remove humid regions or regions with weak precipitation 531 

seasonality 532 



• for regions with two seasons, the algorithm picks out the main rainy season. It should be 533 

noted that only a few regions experience two rainy seasons, including East Africa, part of 534 

Pakistan and a few grid points in northern Brazil (see Figure 1 in Wainwright et al. 535 

202155). For the purposes of this study, the main rainy season was considered the growing 536 

season and periods outside the primary rainy season were treated as the ‘dry season’ or 537 

the ‘non-growing season’ 538 

The local growing seasons were defined individually for each model or reanalysis, which 539 

means that when calculating the growing season mean for the multi-model ensemble, 540 

different dates were included for each model (see Supplementary Materials Figure S15a and 541 

b for maps of the multi-model mean start and end rainy season dates). Furthermore, because 542 

rainy season timing exhibits significant trends55, the algorithm was implemented for a 543 

running 10-year window. There is some variation in precipitation seasonality amongst 544 

climate models (Supplementary materials Figure S15c and d). For this reason, season timings 545 

were derived separately for each model, meaning that the wet seasons identified were specific 546 

to the model in question. For calculation of multi-model means, the individual model wet/dry 547 

seasons were averaged.   548 

The differences between projected growing season soil moisture (Figure 4A) and annual soil 549 

moisture change (Extended Data Figure 4D) underline the importance of treating agricultural 550 

drought as a growing season phenomenon. In some regions – especially in the northern 551 

hemisphere extra-tropics, equating changes in agricultural drought to changes in annual soil 552 

moisture underplays the projected increased risk of drought. In central and eastern Europe, 553 

for instance, projected changes in annual soil moisture are small and inconsistent between 554 

models, while growing season soil moisture is projected to decrease strongly – leading to 555 

increased incidence of drought.  In North America, annual soil moisture depletion is 556 

concentrated in eastern regions, but projected increase of agricultural drought frequency is 557 



most marked in the west (consistent with historically observed trends). These discrepancies 558 

explain the differences between the conclusions of this study and previous assessments of 559 

change in global soil moisture, which focused on annual metrics and thus did not highlight 560 

western North America or central Europe as regions of severe projected decline in soil 561 

moisture7,56.  562 

Evaporative regimes: Further details of methodologies  563 

To identify regimes, we use the following variables: soil moisture [seasonally cumulated soil 564 

moisture interpolated to 1m depth (based on CMIP6 variable mrsol)], AET [total actual 565 

evapotranspiration (CMIP6 variable evspsbl] and SW [short wave radiation flux at the surface 566 

(CMIP6 variable rsds)]. A key point is that regimes are determined based on time series of 567 

rootzone soil moisture cumulation (i.e. the difference between the soil moisture at season end 568 

and beginning), rather than on absolute values. Using cumulation allows us to look at the 569 

seasonal land-surface water balance independently of soil moisture persistence.  570 

The criteria for each regime is as follows: 571 

Energy control: negative interannual correlation (<-0.1) between AET and soil moisture and 572 

positive correlation (>0.1) between AET and SW  573 

Surface/Deep Water control: positive interannual correlation (>0.1) between AET and soil 574 

moisture; and weak or negative correlation (<0.1) between AET and SW.  575 

Extraction control: negative interannual correlation (<-0.1) between AET soil moisture, and 576 

weak or negative correlation (<0.1) between AET and SW (rsds) 577 

Points that did not meet the criteria to be assigned to an evaporative regime were denoted as 578 

‘Undefined’. The correlations were calculated for interannual variability for individual 579 

seasons as shown on Figure 2 and Supplementary Materials Figure S1.  580 

Drought metrics 581 

The following drought metrics are investigated: 582 



• Drought occurrence is defined as the number of events where the mean growing 583 

season soil moisture at a grid point is lower than a specified threshold, with the 584 

threshold defined in terms of the number of standard deviations from the mean (Z-585 

score). Figure 6 uses a threshold of 1 standard deviation from the mean – with 586 

additional thresholds given in supplementary information (Supplementary materials 587 

Figure S7) 588 

• Change in drought intensity is defined as the percentage change in minimum soil 589 

moisture (expressed in terms of Z-score) 590 

• Change in drought duration is defined as the percentage change in a dry spell index: 591 

the number of pentads that fall within a continuous sequence of at least 12 dry pentads 592 

(2 months), with a dry pentad defined as having a z-score < -0.5.   593 

To ensure enough events for meaningful statistical testing (see section on statistical testing 594 

below for further details), rather than using 20-year historical and future time slices, the 595 

metrics are compared for 1941-2020 and 2021-2100. In addition, the criteria for defining a 596 

drought is relaxed to seasonal soil moisture z-score anomalies <-0.5.  597 

Further details of analysis of statistical testing  598 

All hypothesis tests are conducted pixelwise and model-by-model on annual/seasonal time-599 

slice series, and significance is then summarized across models via a consensus rule: multi-600 

model maps display stippling only where ≥67% of models are individually significant and 601 

agree in sign with the multi-model mean. The ≥67% threshold follows the ‘majority 602 

agreement’ convention used in multi-model assessments (e.g., IPCC AR6 uses ≈66% for 603 

majority agreement). 604 

When interpreting multi-model means, we therefore classify results as: 605 



• Robust detection of a signal of change: >67% of models indicate a statistically 606 

significant change (per the variable-appropriate tests above) with the same polarity as 607 

the multi-model mean. 608 

• Robust detection of no signal of change: >67% of models indicate no statistically 609 

significant change. 610 

• Indeterminate: the criteria above are not met (models disagree on polarity and/or 611 

significance). 612 

Given strong spatial correlation and many simultaneous tests, we do not apply pixelwise 613 

multiple-testing corrections; instead, we require cross-model agreement (≥67% with common 614 

sign) before highlighting a change. This consensus threshold suppresses isolated false 615 

positives that arise from multiplicity while highlighting signals that are reproducible across 616 

models. 617 

We select the test to match the distribution and dependence structure of each variable. For 618 

drought metrics (minimum growing-season soil moisture and dry-spell indices), which are 619 

bounded, skewed or discrete, we use a rotation (circular-shift) permutation that preserves 620 

year-to-year dependence and seasonality while testing the mean shift without distributional 621 

assumptions. For event counts (proportion of event years per slice), we use a two-proportion 622 

score test with effective sample size (prop_neff) that inflates the standard error using each 623 

slice’s AR(1). For continuous seasonal/annual aggregates (e.g., precipitation, temperature, 624 

moisture indices), we apply Welch’s unequal-variance t-test after within-slice detrending, and 625 

we verify assumptions by mapping lag-1 autocorrelation and D’Agostino–Pearson K² on 626 

AR(1)-whitened residuals. 627 

Event-count comparisons (two-sample proportions with dependence). 628 

For windowed counts of drought events (yearly indicators aggregated over a time slice), we 629 



compare the proportion of event years between periods using a two-proportion score test with 630 

effective sample size to account for autocorrelation.  631 

Let 𝑥!be the number of event years and 𝑛!the number of years in period k ∈	[1,2]. The 632 

estimator 𝑝̂! = 𝑥!/𝑛!remains unbiased under weak serial dependence, but its variance is 633 

inflated. We estimate each slice’s lag-1 autocorrelation 𝜌/",!from the binary event series and 634 

form 635 

𝑛!,eff   =   𝑛!  
1 − 𝜌/",!
1 + 𝜌/",!

,	637 

 636 

clipped to [2, 𝑛!]. We then test 𝐻$: 𝑝" = 𝑝%using the score (z) test for two proportions with 638 

the standard errors computed using 𝑛!,eff: 639 

SE6%(𝑝̂" − 𝑝̂%)   =   
𝑝̂(1 − 𝑝̂)
𝑛",eff

  +   
𝑝̂(1 − 𝑝̂)
𝑛%,eff

, 𝑝̂ =
𝑥" + 𝑥%
𝑛" + 𝑛%

. 640 

Drought-metric comparisons (rotation permutation with temporal dependence preserved). 641 

For drought metrics that may be non-Gaussian and bounded, including minimum growing-642 

season soil moisture and our dry-spell index - we compare periods using a circular-shift 643 

permutation test that maintains the observed serial structure: 644 

Let 𝑦& denote the annual metric for year 𝑡 = 1,… ,𝑁, spanning two contiguous time slices 645 

𝑊"(baseline) and 𝑊%(comparison). The observed test statistic is the difference in window 646 

means, Δobs = 𝑦̄'! − 𝑦̄'"(reported with its sign). Under the null of no change in the mean 647 

across windows, years are exchangeable up to a rotation that preserves autocorrelation and 648 

seasonality. We therefore generate 𝐵	cyclic shifts: for shift 𝑠 ∈ [0, … , 𝑁 − 1], form 𝑦&
()) =649 

𝑦(&+) ,-. /), recompute Δ()), and obtain a two-sided p-value 650 

𝑝   =   
1 + [  ∣ Δ()) ∣≥∣ Δobs ∣  ]

1 + 𝐵 ,	651 



 652 

This construction exactly preserves each series’ empirical distribution and interannual 653 

dependence, while testing only the shift in the mean between slices.  654 

Continuous seasonal/annual fields (Welch’s unequal-variance t-test with 655 

dependence/normality checks). 656 

For continuous-valued aggregates (e.g., seasonal/annual means of precipitation, temperature, 657 

and moisture indices), we test for differences between 20-yr slices using Welch’s t-test on 658 

period means, allowing unequal variances across slices. Let 𝑥̄!and 𝑠!%be the mean and 659 

variance of slice 𝑘 ∈ {1,2]with 𝑛!years. The test statistic is 660 

𝑇   =   
𝑥̄% − 𝑥̄"

I  𝑠"%/𝑛"  +   𝑠%%/𝑛%  
,	662 

 661 

Because these fields are seasonal/annual aggregates formed from many pentads/days, their 663 

sampling distributions are close to normal by a central-limit effect; nevertheless we verify 664 

assumptions at each grid cell and model by (i) estimating lag-1 autocorrelation of the 665 

detrended series (R2 typically << 0.1), and (ii) quantifying normality using the D’Agostino–666 

Pearson 𝐾%diagnostic on AR(1)-whitened residuals (low 𝐾%and non-significant p-values over 667 

all regions apart from the hyper-arid Sahara and Arabian peninsula). Example plots of these 668 

diagnostics are shown in Supplementary Materials Figure S16.  669 

Data availability statement 670 

All input data used in this study are publicly available. Climate model simulations were 671 
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Extended Data 700 

 701 

Extended Data Figure 1: Difference between growing season and non-growing season A)  702 

precipitation rate; B) potential evapotranspiration (PET); and C) shortwave radiation flux 703 

(SW); Panel D shows the soil moisture cumulated during the growing season. All panels 704 

show the CMIP6 multi-model mean, for the period 1980-2000. 705 

 706 

Extended data figure 2: Projected changes in relative humidity under an SSP5-8.5 707 

scenario for 2071-2090 compared to a baseline of 1981-2000 708 



 709 

Extended Data Figure 3: Proportion of wet season total soil moisture variance explained by 710 

cumulated soil moisture during the dry season (panels A, C, E); and the wet season (panels B, 711 

D, F)  for the  CMIP6 multi-model mean for 1940-2090, with no detrending (panels A and 712 

B); ERA5 reanalysis for 2000-2020 with linear detrending applied to both variables (panels C 713 

and D); and the ERA5 reanalysis for 2000-2020 with linear detrending applied to both 714 

variables (panels E and F). Regions with a negative Pearson correlation coefficient between 715 

the two variables are greyed out. The regions shown are the SRX regions referred to in the 716 

main paper. 717 



 718 

Extended data figure 4: Historical and projected changes in annual precipitation and soil 719 

moisture. (A) Multi-model mean annual precipitation climatology (1980–2000). (B) 720 

Projected precipitation change, 2070–2090 vs 1980–2000 (SSP5-8.5). (C) Multi-model 721 

mean annual 1 m soil-moisture climatology (1980–2000). (D) Projected soil-moisture 722 

change, 2070–2090 vs 1980–2000 (SSP5-8.5). Circles mark grid cells where ≥67% of 723 

models show a significant change with the MMM’s polarity; crosses mark ≥67% 724 

agreement on no significant change (5% level). Markers are plotted on alternate grid 725 

points for clarity. 726 

 727 



Extended data figure 5: Dominant season for (A) the CMIP6 multi-model model ensemble 728 

(1941-2090 not detrended); (B) ERA5 reanalysis (2000-2020 detrended); C) the CMIP6 729 

multi-model mode (2000-2020 detrended). Grid points with >67% of models agreeing on the 730 

modal dominant season are indicated with a filled circle. 731 

 732 

Extended data figure 6: Observed and projected percentage change in cumulated soil 733 

moisture in the northern hemisphere extra-tropics for the MAM and JJA calendar seasons (all 734 

changes are relative to 1981-2000). Top row (panels A and B): CMIP6 multi-model ensemble 735 

2071-2090 time slice; middle row (panels C and D) CMIP6 multi-model ensemble 2001-2020 736 

time slice; bottom row (panels E and F) ERA5 2001-2020 time slice. For the CMIP6 plots, 737 

circles indicate that at least 67% of the models display a significant change of the same 738 

polarity as the multi-model mean; crosses indicate that at least 67% of models agree that 739 

there is no significant change at the 95% level. [Additional scenarios shown in 740 

Supplementary Information Figure S10] 741 



 742 

Extended data figure 7: As for Extended Data Figure 6 but showing precipitation  743 

[Additional scenarios shown in Supplementary Information Figure S11] 744 

 745 

Extended data figure 8: As for Extended Data Figure 6 but showing total evapotranspiration 746 

[Additional scenarios shown in Supplementary Information Figure S12] 747 



 748 

Extended data figure 9: Change in the character of drought through time, comparing 1940-749 

2019 against 2020-2099: A) Minimum soil moisture during the season; B) Dry spell index 750 

(see methods for definition) [Additional scenarios shown in Supplementary Information 751 

Figures S13 and S14] 752 

 753 

 754 

 755 

  756 



Supplementary Information 757 
1.1. Supplementary Materials  758 

Additional variables and seasons 759 

 760 

Figure S1: As for Figure 2 but showing the March-May and June-August calendar seasons   761 

 762 

Figure S2: As for main paper Figure 4 but for the non-growing season 763 



 764 

Figure S3: As for Figure 4a, d and g for growing season precipitation (panels a, c and e) and 765 

evapotranspiration (panels b, d and f)  766 

 767 

 768 



 769 

Figure S4: As for Figure S3 but for non-growing seasons.  770 

 771 

Figure S5: As for Extended Data Figure 5, but showing the variance in growing season soil 772 

moisture by explained by variability in cumulative soil moisture during the dominant season. 773 

Regions with a negative Pearson correlation coefficient between the two variables have been 774 

greyed out.  775 

 776 

  777 



Addditional scenarios 778 

Here we display projections for key variables and seasons for the SSP1-2.6, SSP2-4.5 and 779 

SSP3-7.0 and SSP5-8.5. Note that because fewer models include the required variables for 780 

the above SSPs than for SSP5-8.5, the following plots are based on a smaller multi-model 781 

ensemble (Table S1) 782 

 783 

Figure S6: As for main paper Figure 4a but for SSP5-8.5, SSP3-7.0, SSP2-4.5 and SSP1-2.6 784 

 785 



 786 

Figure S7: As for Figure 6B (which shows SSP5-8.5 only), comparing SSP5-8.5, SSP3-7.0, 787 

SSP2-4.5 and SSP1-2.6  788 

  789 



 790 

 791 

Figure S8: As for main paper Extended Data Figure 3A but for SSP5-8.5, SSP3-7.0, SSP2-792 

4.5 and SSP1-2.6 793 

 794 

Figure S9: As for main paper Extended Data Figure 3B but for SSP5-8.5, SSP3-7.0, SSP2-4.5 795 

and SSP1-2.6 796 



 797 

Figure S10: As for main paper Extended Data Figure 6A/B but for SSP5-8.5, SSP3-7.0, 798 

SSP2-4.5 and SSP1-2.6 799 

  800 



 801 

 802 

Figure S11: As for main paper Extended Data Figure 7A/B but for SSP5-8.5, SSP3-7.0, 803 

SSP2-4.5 and SSP1-2.6 804 

  805 



 806 

 807 

Figure S12: As for main paper Extended Data Figure 8A/B but for SSP5-8.5, SSP3-7.0, 808 

SSP2-4.5 and SSP1-2.6 809 

  810 



 811 

 812 

 813 

Figure S13: As for extended data Figure 9A but comparing SSP5-8.5, SSP3-7.0, SSP2-4.5 814 

and SSP1-2.6  815 

 816 

 817 

Figure S14: As for extended data Figure 9B but comparing SSP5-8.5, SSP3-7.0, SSP2-4.5 and SSP1-2.6 818 

  819 



Further analyses of evaporative regimes 820 

Surface and deep water control 821 

In water-controlled seasons, evaporative fluxes are supply-limited: AET covaries with 822 

precipitation through surface wetness and/or root-zone replenishment, yielding a positive 823 

correlation between AET and SM, and weak or negative correlations between AET and 824 

shortwave radiation fluxes (SW). The positive AET–SM link can arise either indirectly 825 

(surface evaporation and interception track rainfall while SM is also set by rainfall) or 826 

directly (transpiration responds to root-zone soil moisture), but in both cases the diagnostic is 827 

precipitation supply limitation. It should be noted that the methodology used here does not 828 

allow us to distinguish between surface and deep water limitation because in both cases, soil 829 

moisture and AET are positively correlated. 830 

In energy-controlled regimes, water is ample and AET rises with available energy. Higher 831 

AET thus coincides with greater soil-moisture drying, with soil moisture cumulation/drying 832 

driven by atmospheric demand. In extraction-controlled seasons, surface energy and near-833 

surface water are generally sufficient such that evaporation of near-surface and root zone 834 

water is not supply-limited; variability in seasonal AET is instead dominated by plant 835 

extraction capacity and canopy conductance acting on root-zone moisture. Years with 836 

greater transpiration draw down soil moisture more strongly, so AET and seasonal soil-837 

moisture accumulation are negatively correlated.  838 

In both extraction-controlled and deep water-limited situations, seasonal soil moisture reflects 839 

the balance between precipitation inputs and transpiration losses. A negative AET–ΔSM 840 

correlation in extraction-controlled seasons typically occurs when soils begin the season 841 

sufficiently wet to support transpiration (above wilting), but in-season precipitation is too low 842 

to offset transpiration losses; soil moisture then declines toward a physiological threshold at 843 

which AET diminishes. Where water influx maintains soil moisture between critical and 844 



wilting points (deep water-limited), AET rises with soil moisture, producing a positive AET–845 

ΔSM correlation and a damping of precipitation variability in ΔSM. 846 

Geographical distribution of evaporative regimes 847 

Figure 2 shows that, in the tropics, there is a tendency to transition from water-controlled 848 

during the growing season to extraction-controlled during the non-growing season because 849 

soil moisture accumulates during growing seasons and dries during non-growing seasons. In 850 

the extra-tropics, because soil moisture dries down during growing seasons and accumulates 851 

in non-growing seasons the opposite is true (Extended Data Figure 1D). The factors 852 

underpinning the spatial distribution of the energy-controlled regime also differ between the 853 

tropics and extra-tropics. In the highest latitudes, because solar radiation fluxes are low in 854 

comparison to the tropics, energy limitation dominates in both high and low precipitation 855 

climates in CMIP6 (Figure 2). In northernmost Eurasia, during the winter non-growing 856 

season, in ERA5, the evaporative regime cannot be defined. This may be because of the extra 857 

complexity introduced by snowmelt processes. In the tropics, the energy-controlled regime is 858 

found in wetter regions, simply because water is plentiful and vegetation is highly active – 859 

meaning that the only limiting factor left is solar energy. As a result, the energy-controlled 860 

regime is more widespread during the wet growing seasons, with only the wettest regions 861 

experiencing an energy-controlled regime year round.  862 

Comparison between observed and modelled evaporative regimes 863 

Comparison between Figure 2c/d and Figure 2e/f shows that, for the historical period, when 864 

data are aggregated into growing and non-growing seasons, models and reanalysis broadly 865 

agree on the distribution of regimes in both the tropics and extra-tropics – giving us 866 

confidence in model projections of future changes in the spatial and seasonal distribution of 867 

the regimes. Figure 2A and B show that in the tropics, these projected changes are minor. In 868 

the extra-tropics, in contrast, there are significant changes projected over the 21st Century, 869 



with the most marked change being increased latitudinal extent of the water-controlled 870 

regime - consistent with the projected extension of sub-tropical arid zones under climate 871 

change1.  872 

Effect of evaporative regime on consistency in model projections of cumulated soil moisture 873 

over the northern hemisphere extra-tropics 874 

To test whether projections of cumulated soil-moisture change are more robust in demand-875 

limited (extraction/energy) than in supply-limited (water) regimes, we conducted a regime- 876 

and season-specific intermodel sensitivity analysis. For each model, we selected grid cells by 877 

regime from the seasonal regime map (tropics: wet; extratropics: summer), computed 878 

seasonal means of cumulated soil moisture for 1981–2000 and 2071–2090, and formed a 879 

guarded percent change (with an absolute-change fallback where historical baselines were too 880 

small for percent change to be meaningful). We then calculated land-only, area-weighted 881 

regional means by regime and summarized intermodel behavior using the SNR = |mean|/SD 882 

to characterise ensemble agreement. Preliminary analyses suggest that the extratropics 883 

(summer), extraction- and energy-controlled areas show greater consistency than water-884 

controlled regimes (SNR = 1.35 and 0.44 compared to SNR = 0.24). 885 

  886 



1.2. Supplementary materials for the methods section 887 

Models and data  888 

Supplementary Table 1: A few details of the models and reanalysis used in this study. Models 889 
highlighted in red had all data for all four SSPs  890 
Model 

/Reanalysis 

Land-surface 

model 

Number of 

layers 

Soil depth 

(m) 

Approximate 

horizontal 

resolution 

(degrees) 

ERA5 HTESSEL 4 1.9 0.75x0.75 

UKESM1-0-LL JULES 4 2 1.875x1.25 

CAS-ESM2-0 CoLM 15 42.1 1.4x1.4 

CanESM5 CLASS 3 4.1 2.8x2.8 

CMCC-CM2-SR5 CLM4.5 20 0.4 - 8.5 1x1 

CMCC-ESM2 CLM4.5 20 0.4 - 8.5 1x1 

CNRM-CM6-1 ISBA-CTRIP 14 12 1x1 

ACCESS-ESM1-5 CABLE2.4 6 2.9 1.25x1.875 

ACCESS-CM2 CABLE 2.4 6 2.9 1.25x1.875 

EC-Earth3 HTESSEL 4 1.9 0.4x0.4 

EC-Earth3-CC HTESSEL 4 1.9 0.4x0.4 

IPSL-CM6A-LR ORCHIDEE 18 65.6 3.75x0.95 

MIROC6 MATSIRO6.0 6 9 1.4x1.4 

MPI-ESM1-2-LR JSBACH3.20 5 7 2.5x2.5 

CESM2-WACCM CLM5 25 42 1x1 



NorESM2-LM CLM5 25 42 2x2 

GFDL-ESM4 GFDL-LM4.0.1 20 8.8 1x1 

HadGEM3- LL JULES 4 2 1.875x1.25 
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Identification of growing seasons 893 

 894 

Figure S15: Objective diagnosis of rainy seasons for the CMIP6 multi-model ensemble 895 

within the tropics/sub-tropics (40S-40N). A) Season start; B) Season end; C) Intra-model 896 

standard deviation for the season start; C) Intra-model standard deviation for the season end 897 

 898 
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Further details of the statistical testing 900 

 901 

Figure S16: Assumption diagnostics. Panels A, C, and E map D’Agostino–Pearson K² for AR(1)-whitened 902 
residuals of growing season soil moisture, precipitation and evaporation (1980–2000); lower K² ≈ more Gaussian. 903 
Panels B, D, F show lag-1 autocorrelation of the corresponding detrended series. Markers denote grid cells where 904 
>67% of models reject normality at the 5% level (two-sided K²), i.e., consensus non-Gaussianity. Panels B, D, 905 
and F map lag-1 autocorrelation of the corresponding detrended annual/seasonal series. For all panels, shading 906 
denotes the  CMIP6 multi-model mean diagnostic.  907 
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