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A B S T R A C T

Household and ambient air pollution (HAAP), a major global health risk, is linked to a lower quality of life and is 
responsible for over six million premature deaths globally each year. We investigate country-level socioeco
nomic, environmental, energy, and health determinants of HAAP mortality rates, using regression analyses and 
global mapping of predicted probabilities of high HAAP mortality risk. While related studies are predominantly 
country-specific based on micro-level factors, our study provides global evidence from 150 countries based on a 
broad range of macro-level indicators. Our findings reveal that greater rural access to clean cooking fuels and 
technology and increased healthcare expenditures are critical for reducing HAAP deaths, whereas rurality and 
energy deprivation significantly increase such mortality risks. While advanced economies demonstrate clear 
resilience to HAAP mortality risks, emerging and developing economies are disproportionately vulnerable. 
Contrary to related literature, our analyses also reveal that males are more at risk of HAAP mortality than fe
males. We further contextualise our global evidence with previous country-specific case studies on HAAP risks. 
Our research helps to appraise the progress towards achieving the United Nations Sustainable Development 
Goals 3, 5, and 7, addressing their associated targets and indicators, providing guidance for policymakers to 
strengthen efforts to reduce HAAP mortality and improve living conditions globally.

1. Introduction

Air pollution, both household (indoor) and ambient (outdoor), is a 
significant global environmental health risk that is linked to a lower 
quality of life and premature death. Associated health risks include 
cardiovascular disease, lung cancer, chronic obstructive pulmonary 
disease, and pneumonia (see Ronzi et al., 2019 and references therein), 
among other afflictions like asthma, tuberculosis, low birth weight, and 
eye diseases (see Jin et al., 2006 and references therein). Recent global 
estimates of annual mortality related to household air pollution range 
from 1.6 to 2.5 million (Dhital et al., 2022; Jewitt et al., 2022), while 
mortality in response to ambient fine particulate matter (PM2.5)1 air 
pollution is over 4.1 million (Wang et al., 2023). Annually, the joint 
mortality attributed to both household and ambient air pollution 
(HAAP) is about 6.7 million (World Health Organization, 20242). 
Importantly, both household and ambient pollution are intimately 
connected. Globally, household air pollution from inefficient fuel use 

significantly increases ambient air pollution and premature mortality, 
necessitating an urgent need for coordinated HAAP mitigation efforts 
(Chowdhury et al., 2023). However, these issues and the associated 
health implications disproportionately affect developing countries (Das 
et al., 2021), rural populations (Jin et al., 2006), and women and chil
dren (Talevi et al., 2022).

Despite the extensive recognition of household air pollution risks, 
largely because of case studies on vulnerable villages (see, for e.g., 
Cundale et al., 2017; García-Frapolli et al., 2010), attempts to connect 
country-level factors to air pollution mortality rates remain underex
plored on a global scale, with much of the existing evidence confined to 
village-level or single-country studies. These studies provide valuable 
detail on household practices and local vulnerabilities, but they do not 
reveal the consistent structural conditions that shape mortality across 
nations. As a result, the literature lacks a systematic cross-country 
perspective on which socioeconomic, environmental, and health sys
tem factors most reliably predict HAAP deaths. Addressing this gap is 
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1 Fine inhalable particle matter in the air, with diameters less than or equal to 2.5 micrometres.
2 See https://www.who.int/news-room/fact-sheets (accessed in June 2025).
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crucial not only for advancing academic knowledge but also for 
providing a stronger evidence base to support international and regional 
responses, including the monitoring of progress toward key Sustainable 
Development Goals (SDGs). We, therefore, aim to offer a worldwide 
perspective on the socioeconomic and environmental indicators that are 
linked to HAAP mortality risk. In doing so, we provide global insights 
into the common and consistent macro-level determinants of HAAP 
mortality rates, highlighting countries where greater policy efforts and 
interventions are needed to improve living conditions. Thus, our 
research aligns closely with the United Nations SDG 3 – to ensure healthy 
lives and promote well-being for all. In particular, our study relates to 
target 3.9 – part of which aims to substantially reduce the number of 
deaths and illnesses from air pollution and contamination by 2030 – and 
specifically to target 3.9.1, which tracks mortality rates attributed to 
HAAP.3

There is a wealth of cross-disciplinary literature in development, 
energy, environment, and health that focus on clean fuels and technol
ogies for cooking to address HAAP-related health risks, where increased 
access to such resources mitigates these risks and a lack thereof worsens 
it. Around 40 % of the world's population use traditional methods, based 
on biomass energy (particularly fuelwood and charcoal), for cooking 
(Adrianzén, 2013; Das et al., 2021; Jewitt et al., 2022; Mekonnen et al., 
2022). Such traditional cooking methods are linked to the more than 2.5 
million premature deaths related to household air pollution annually, 
which predominantly occurs in low- and middle-income countries 
(Ronzi et al., 2019). Inefficient cooking also contributes to several 
environmental issues – air pollution, forest biomass loss, deforestation, 
local biodiversity and ecosystem loss, and CO2 emissions (Alem and 
Demeke, 2020; Mekonnen et al., 2022). Access to clean fuels and tech
nologies for cooking remains a significant and urgent issue. This is 
highlighted by the United Nations SDG indicator 7.1.2, which measures 
the proportion of the population that rely primarily on clean fuels and 
technology. Indeed, indicator 7.1.2 serves as an important metric for 
assessing progress toward achieving target 7.1 – universal access to 
affordable, reliable, and modern energy services by 2030 – under SDG 7 on 
sustainable and modern energy for all.4

Related to both cooking and HAAP mortality risk is the broader issue 
of access to electricity. The use of biomass energy for heating poses 
similar health risks to inefficient cooking methods in rural areas (see Jin 
et al., 2006). Both heating and cooking with solid fuels are character
istics of energy poverty, which increases overall HAAP mortality risk. 
The significant time spent indoors and devoted to basic household en
ergy needs disproportionately affects women and children (Li et al., 
2017), who often take on the responsibility of these tasks. Reducing this 
burden can promote increased schooling for children (Lee, 2013), and 
greater workforce participation and income generation for women 
(Ssennono et al., 2021). For these reasons, energy poverty is inextricably 
linked to the United Nations SDG 5 – achieve gender equality and empower 
all women and girls. In our context, this link is a recurring theme, as the 
literature repeatedly reports that women and children face heightened 
health risks from indoor air pollution (see, e.g., Beyene and Koch, 2013; 
Kanagawa and Nakata, 2007).

Additionally, the rural-urban divide of a population is another key 
factor to consider when assessing HAAP mortality risk, but this is 
complicated. On one hand, rural households are often linked to house
hold air pollution risks compared to urban households because of limited 
clean energy access and a greater reliance on traditional and inefficient 
methods of heating and cooking (see, e.g., Mestl et al., 2007). On the 
other hand, rural areas generally have lower ambient air pollution 
because of less industrial activity and vehicular emissions than densely 
populated urban areas (Castells-Quintana et al., 2021). Yet, rural pop
ulations tend to have less access to quality health care, education, and 

employment opportunities than urban populations, which can worsen 
the health impacts of air pollution, regardless of whether the source of 
exposure is indoor or outdoor.

Hence, given the preceding context, we examine how country-level 
indicators such as access to clean cooking fuels and technology, access 
to electricity, rurality, education, employment, solid CO2 emissions, and 
health care expenditure affect HAAP mortality risk. Our cross-sectional 
analysis covers total (male + female), male, and female HAAP mortality 
rate samples for 150 countries across 2016 and 2019 datasets. Our re
sults are based on linear and logit regressions. For the latter, we apply a 
clustering algorithm to classify HAAP mortality rates into relatively high 
and low risk countries. We use these discrete states of the world to then 
estimate binary logit models that provide novel insights on whether the 
selected macro-level indicators can accurately predict countries with a 
high HAAP mortality risk.

Our main findings suggest that rural access to clean fuels and tech
nology for cooking is critically important for reducing HAAP deaths, and 
advanced economies are resilient to high premature HAAP deaths in 
contrast to emerging and developing economies. Moreover, HAAP 
mortality risks are jointly well-predicted by the set of macro-level in
dicators considered, rurality significantly increases this risk, and health 
care prioritisation can substantially reduce high HAAP deaths. A further 
notable result, which we explore in detail, is that we do not observe 
higher female mortality from HAAP at the country level. Instead, our 
descriptive statistics and spatial maps – developed based on the ability to 
predict a high HAAP mortality rate using the macro-level indicators – 
imply that males in fact face greater risk of HAAP mortality. Collec
tively, as outlined above, our study resonates with important United 
Nations SDGs (3, 5, and 7), targets (3.9 and 7.1), and indicators (3.9.1 
and 7.1.2), which have a 2030 deadline. Hence, our research and 
associated findings are timely, as it can support policymakers in 
appraising the national and international efforts made to address these 
interrelated SDGs.

In the following sections, we begin by outlining our methods (Section 
2) and data (Section 3). We then present our results, including regression 
analyses and spatial maps showing predicted probabilities of a high 
HAAP mortality risk based on macro-level indicators (Section 4). 
Finally, we conclude with a summary of our key findings, policy im
plications, and directions for future research (Section 5).

2. Methods

As a point of departure, we use simple linear ordinary least squares 
(OLS) regression models to estimate the effects of macro-level de
terminants on HAAP mortality rates as below: 

HAAPi,t,k = β0 + β1RCCAi,t,k + β2REAi,t,k + β3LFPRi,t,k + β4RPPi,t,k

+ β5PSEi,t,k + β6SFEi,t,k + β7HCEi,t,k + εi,t,k Eq. 1 

where HAAPi,t,k is household ambient and air pollution mortality rate for 
a given country (i), time (t = 2016 or 2019), and sample (k = total, male, 
or female), and is a function of several explanatory variables whose 
importance are discussed in Section 1 above. In all cases, the regressions 
are estimated separately for 2016 and 2019 (hence, t), so that each year 
is treated as an independent cross-sectional regression model rather than 
pooled or averaged. As there are only two years of data and countries are 
not consistent across both years, panel techniques such as fixed or 
random effects are not employed, as these require longer time series, 
consistent across observations (i.e., countries - i). The explanatory var
iables considered are: rural clean cooking access (RCCA); rural elec
tricity access (REA); labour force participation rate (LFPR); rural 
population percent (RPP); primary school enrolment (PSE); solid CO2 
fuel emissions (SFE); and health care expenditure (HCE). Finally, β0 is 
the regression constant, β1,…, β7 are the estimated coefficients of the 
explanatory variables, and εi is the stochastic error term. As total (male 3 See https://sdgs.un.org/goals/goal3#targets_and_indicators.

4 See https://sdgs.un.org/goals/goal7#targets_and_indicators.
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+ female combined) and gender-specific data (separate male and female 
data) are available for three variables – the dependent (HAAP) and two 
independent (LFPR and PSE) variables – k varies in each regression 
model according to the sample (total [male + female combined], male, 
or female) for these variables. All remaining regressors are not gender- 
specific and are, therefore, denoted as k to show that they are consis
tent across samples (total [male + female], male, and female) in a given 
year (2016 or 2019). Thus, there are six OLS regressions in all: a separate 
model for total (male + female combined), male, and female samples, 
for the 2016 and 2019 datasets.

We conduct a series of diagnostic tests to ensure the reliability and 
validity of our estimated OLS regressions models. In particular, we 
assess model adequacy using the F-test to evaluate the joint significance 
of the explanatory variables, and we use the coefficient of determination 
(R2) to assess explanatory power. We check model specification with the 
Ramsey regression equation specification error tests (RESET), which 
indicates the omission of non-linear functional forms in the regression 
specification, and we assess multicollinearity using variance inflation 
factors (VIF). Concerning the latter, we check that VIF values fall below 
the conventional threshold of 5, where 5 < VIF < 10 indicate moderate 
correlation among regressors and VIF > 10 indicate high collinearity. As 
cross-country data often exhibit heteroskedasticity, we estimate all re
gressions with robust standard errors. Although residuals are unlikely to 
be perfectly normal in large heterogeneous samples, these robust esti
mators ensure valid inference even when normality is violated. 
Together, these diagnostic procedures allow us to confirm that our 
empirical models are appropriately specified, and that the estimated 
relationships are statistically sound and theoretically meaningful. We 
report the detailed results of these diagnostics in Section 4.2.

To complement our OLS regression analysis, we assess whether the 
macro-level indicators are factors that predict if a country will have a 
high or low HAAP mortality rate. This is in line with global health 
practices that often distinguishes “priority” high-risk countries from “the 
rest of the world”. Although the HAAP mortality rate is continuous, 
several policy frameworks rely on threshold-based categorisations to 
identify priority countries. For example, WHO burden-of-disease as
sessments and SDG-related monitoring practices routinely differentiate 
between “high burden” and “non-high burden” countries to guide pro
gramme implementation decisions, target technical assistance, and 
support resource mobilisation. If countries in the upper tail of the 
mortality distribution experience a clearly elevated public health risk 
profile, this implies that the determinants of belonging to this group are 
particularly relevant for policy. The binary split adopted here, therefore, 
reflects a substantive policy distinction: whether a country falls into the 
highest-mortality segment of the global distribution. This structure en
ables regression models to identify the macro-level factors associated 
with being a high-burden country, which can directly support health 
intervention policies.

As such, within each sample (total, male, and female) for the two 
datasets (2016 and 2019), we classify the world into relatively high and 
low HAAP mortality rates, using a non-hierarchical k-means clustering 
algorithm. The clustering is based on Euclidean distance as the measure 
of similarity/dissimilarity that maximises between cluster variance and 
minimises within cluster variance of the high and low HAAP mortality 
rate groupings. The choice of the clusters reflects our focus on dis
tinguishing countries facing relatively higher HAAP mortality from 
those with comparatively lower rates. The clustering algorithm suggests 
three clusters (a very high, a high, and a low HAAP mortality cluster) in 
all three samples (total, male, and female) across both datasets (2016 
and 2019). The two higher HAAP mortality clusters are then merged into 
one cluster, as we aim for a maximum of two final clusters (high and low 
mortality) that would yield the closest approximation to an equidivision 
in each sample. A near-balanced dichotomy of the dependent variable 
increases the statistical power of the binary logit model estimation, 
providing more precise coefficients, narrower confidence intervals, and 

a higher chance of detecting real effects. In doing so, we avoid the 
consequence of highly unbalanced samples, with small observations in 
one group, where coefficient estimates for predictors become unstable 
or biased. Importantly, HAAP mortality rates alone are used for clus
tering, while the explanatory variables (i.e., the macro-level indicators) 
are introduced only in the logit regressions, ensuring no overlap be
tween the clustering step and predictor variables. With these binary 
classifications, we use maximum likelihood estimation to run the 
following logit regression model: 

Pr
(
HAAPi,t,k =1

)
= F

(
β0 + β1RCCAi,t,k + β2REAi,t,k + β3LFPRi,t,k

+ β4RPPi,t,k + β5PSEi,t,k + β6SFEi,t,k + β7HCEi,t,k

)
= F(xʹβ) =

e(xʹβ)

1 + e(xʹβ)

Eq. 2 

such that Pr
(
HAAPi,t,k = 1

)
is the probability that the HAAP mortality 

rate for a given country is high in a given year (either 2016 or 2019) and 
sample (either total [male + female], male, or female). Therefore, 
Pr
(
HAAPi,t,k = 0

)
implies that the HAAP mortality rate is low for a given 

country. F is a non-linear function that bounds (xʹβ) between 0 and 1, 
where x represents the regressors, the βs are their corresponding esti
mates, and e is the exponential function. As such, there are six binary 
logit regressions in all, which can be seen as complements to the six OLS 
regression models: a separate binary logit model for total (male + female 
combined), male, and female samples, for the 2016 and 2019 datasets.

For the binary logit models, we also evaluate model fit using the 
Wald chi-square test for joint model significance and the McFadden's 
pseudo-R2 to measure the improvement the regressors add to the model 
over a constant-only specification. We assess predictive accuracy with 
the correctly classified rate and the area under the receiver operating 
characteristic (ROC) curve, both of which capture the binary logit 
model's ability to distinguish between high and low HAAP mortality 
outcomes. As with the OLS models, we employ robust standard errors to 
account for potential heteroskedasticity and other distributional irreg
ularities. We also report the detailed results of the logit model di
agnostics in Section 4.2, alongside the OLS model diagnostics.

Although our OLS and logit models employ heteroskedasticity robust 
standard errors, an acknowledged limitation is that cross-country 
datasets may exhibit spatial correlation, particularly among geograph
ically or economically proximate countries. Such correlation can lead to 
downward-biased standard errors if it is not addressed. Spatially robust 
variance estimators, such as Conley (1999)'s standard errors or related 
spatial heteroskedasticity and autocorrelation consistent (HAC) ap
proaches, provide a way to account for this dependence in 
cross-sectional settings. However, implementing spatial HAC adjust
ments was not feasible in the present study because our data consist of 
two independent cross-sectional years, the composition of countries is 
not identical across these years, and globally consistent 
spatial-economic distance information is not available for all variables 
in our analysis.

Despite this limitation, our results remain robust for several reasons. 
First, all models are estimated with heteroskedasticity robust standard 
errors. Second, we make use of two separate data years, which act as a 
natural sensitivity check for each other. Third, the main findings are 
highly consistent across linear OLS and nonlinear logit models, and they 
also hold in the subsample of emerging and developing economies. We 
explicitly acknowledge the absence of spatially correlated standard er
rors as a limitation in the study, and we note that future research could 
extend our analysis by incorporating spatial HAC estimators when 
appropriate spatial-distance data become available.

Additionally, for a visual spatial analysis, we map the probability of 
high HAAP mortality, predicted from the binary logit regression 
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specified in Eq. (2), for the 150 countries considered across the 2016 and 
2019 datasets. To do this, we use ArcGIS Pro to populate the attribute 
table of the World Administrative Boundaries – Countries and Territories 
shapefile available from opendatasoft5 with these predicted probabili
ties. For our mapping campaign in ArcGIS Pro, we use a graduated or
ange symbology, with lighter (darker) shades implying that the macro- 
level indicators jointly predict that the probability of a country being 
classified into the relatively high HAAP mortality rate cluster is low 
(high), i.e., ≤0.50 (>0.50). Our maps also provide a spatial visualisation 
of high HAAP mortality probabilities, based on macro-level indicators, 
on a global scale. Additionally, they further highlight vulnerability 
patterns, to support more targeted policy responses in high-risk coun
tries and regions.

3. Data

Table 6 lists the 150 countries included in our analyses, and the 
associated data used for estimating our regression models in Eqs. (1)–(2) 
are defined in Table 1. In particular, as Table 2 shows, the 2016 re
gressions include 142 countries, while the 2019 regressions include 131 
countries in the total sample and 130 in the gender-specific samples. 
Each 2016 model includes seven regressors, while each 2019 model 
includes six regressors because data on CO2 emissions from solid fuel 
consumption are not available for that year. All data used are open ac
cess: we obtain data on HAAP from the World Health Organisation 
(WHO), RCCA, RAE, RPP, PSE, SFE, and HCE from the World Bank, and 
LFPR from the International Labour Organisation (ILO). We focus on the 
years 2016 and 2019, as these have the most recent and most complete 
global datasets on HAAP mortality rates and explanatory variables, 
providing consistent cross-country coverage within each of these years.

The set of explanatory variables used are theoretically comprehen
sive (see Section 1), yet parsimonious in preventing multicollinearity 
issues of duplicated information content. For instance, the natural log
arithms of per capita real GDP, current health care expenditure, and CO2 
emissions are strongly correlated with rural access to clean fuels and 
technologies for cooking as a percent of the rural population (ρ > 0.8). 
Hence, including them in a regression model would create multi
collinearity. As no suitable proxy exists for rural access to clean fuels and 
technologies for cooking as a percent of the rural population in models 
estimating HAAP mortality rates, this variable is retained. Alternative 

series for per capita health care expenditure and CO2 emissions are 
health care expenditure as a percent of GDP and CO2 emissions from 
solid fuel consumption as a percent of total fuel consumption, respec
tively. Both series are weakly correlated with rural access to clean fuels 
and technologies for cooking (ρ < 0.4). In the case of CO2 emissions 
from solid fuel consumption, this series is arguably a more fit-for- 
purpose indicator in the context of HAAP mortality from the discus
sions established in Section 1 of this paper. As it is reasonable to assume 
that any measure of the national income will be correlated with rural 
access to clean fuels and technologies for cooking, we do not seek an 
alternative measure of national income. Instead, we argue that income 
effects are plausibly captured through other covariates – i.e., rural 
population size and access to clean cooking technology, fuels, and 
electricity.

The countries selected represent those with consistent data available 
for the explanatory variables considered. By consistent data, we mean 
comparable, complete, and regularly reported observations across 
countries and years, allowing reliable cross-country analysis. Countries 
were included only if complete data for all explanatory variables were 
available for at least one of the two analysis years (2016 or 2019). For 
example, gross primary school enrolment data are used as a metric of 
national education, as it is more widely available for most countries than 
any alternative education indicator provided in the World Bank data
base. This same logic applies for the modelled International Labour 
Organisation (ILO) estimates for labour force participation rate as a 
percent of total population data. The final sample of 150 countries spans 
all major regions and income levels, with the only exclusions being 
countries lacking full reporting on one or more variables. Below, we 
describe the prima facie insights the summary statistics imply about 
global HAAP mortality rates and its determinants.

From Table 2, 2016 and 2019 recorded a global average HAAP death 
rate of 89 and 87 in every 100,000 people, respectively. Global North 
countries generally record the world's lowest HAAP related deaths, with 
Australia, Canada, Finland, Iceland, Norway, and Sweden, recording 
total HAAP mortality rates of less than 10 per 100,000 people in 2016 
and 2019. Unsurprisingly, Global South countries record the world's 
highest HAAP mortality rates, with countries such as Afghanistan, 
Benin, Cameroon, Guinea, Niger, Sierra Leone, and Togo recording 
death rates of more than 200 per 100,000 people in 2016 and 2019.

Additionally, Table 3 reports the number of countries assigned to 
each cluster. In 2016, the high-mortality cluster contains 55 countries, 
compared with 87 in the low-mortality cluster. In 2019, the high- 
mortality cluster contains 56 countries, with 75 countries in the low- 
mortality group. These counts confirm that the binary classifications 

Table 1 
Data abbreviations, definitions, and sources.

Variable Definition Source

HAAP HAAP mortality rate, age-standardised (per 100,000 population) World Health Organisation: www.who.int/data/gho/data/
⇒Male HAAP mortality rate, age-standardised (per 100,000 male population)
⇒Female HAAP mortality rate, age-standardised (per 100,000 female population)

RCCA Rural access to clean fuels and technologies for cooking (% of rural population) World Bank: https://data.worldbank.org/
RAE Rural access to electricity (% of rural population)
RPP Rural population (% of total population)
PSE Primary school enrolment (% gross)
​ ⇒Male primary school enrolment (% gross)
​ ⇒Female primary school enrolment (% gross)
SFE CO2 emissions from solid fuel consumption (% of total)
HCE Current health expenditure (% of GDP)
LFPR Total labour force participation rate (% of total population ages 15+) (modelled ILO estimate) International Labour Organisation: https://ilostat.ilo.org/data/

⇒Male labour force participation rate (% of male population ages 15+) (modelled ILO estimate)
⇒Female labour force participation rate (% of female population ages 15+) (modelled ILO estimate)

Notes – acronyms in the “Variable” column correspond to those listed in Eqs. (1) and (2). Refer to the main text for further information. Main organisational websites 
are cited in the “Source” column, as individual dataset URLs may change. Exact datasets used in the production of this manuscript are provided in the supplementary 
material for replicators. Links to the data sources for each of the series can be found by following the hyperlinks in the “Definition” column – these datasets were 
retrieved in July and August 2024.

5 See: https://public.opendatasoft.com/explore/dataset/world-administrati 
ve-boundaries/export/.
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https://data.worldbank.org/
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https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS
https://data.worldbank.org/indicator/SE.PRM.ENRR
https://data.worldbank.org/indicator/SE.PRM.ENRR.MA
https://data.worldbank.org/indicator/SE.PRM.ENRR.FE
https://databank.worldbank.org/metadataglossary/world-development-indicators/series/EN.ATM.CO2E.SF.ZS
https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS
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used in logit models are sufficiently populated in each group to support 
stable estimations. Moreover, as Table 3 illustrates, when clustering 
HAAP related deaths into relatively high (2016: averaging 170 per 
100,000 people; 2019: averaging 160 per 100,000 people) and low 
(2016: averaging 39 per 100,000 people; 2019: averaging 33 per 
100,000 people) rates, countries in the former versus the latter cluster 
are characterised by larger rural populations (2016: 61 % versus 30 %; 
2019: 56 % versus 27 %) and greater rural energy deprivation in terms 
of: (a) average rural population with access to clean fuels and technol
ogies (2016: 17 % versus 87 %; 2019: 30 % versus 93 %); and (b) average 
rural population with access to electricity (2016: 47 % versus 97 %; 
2019: 64 % versus 99 %).

Considering variables such as the labour force participation rate, 
primary school enrolment, solid CO2 emissions, and health care 
expenditure as a proportion of GDP, differences between the high and 
low mortality clusters appear comparatively less pronounced.

Interestingly, from examining gender-specific data, we observe that 
for males, the HAAP mortality rates per 100,000 people are substantially 
higher than for females in both 2016 and 2019 (Table 2), for countries in 
our samples: in 2016, the mean HAAP mortality rate among males are 
101 deaths per 100,000 of the population, compared with 79 per 
100,000 among females; and by 2019, these averages are 103 and 73, 
respectively. Such gender disparities are plausibly linked to the various 
initiatives around the world that have been implemented to reduce in
door air pollution related risks among women and children (see Frem
pong et al., 2021; Krishnapriya et al., 2021 and references therein), but 
it equally highlights the need to ramp up efforts to reduce male and total 
(male + female) HAAP mortality rates. Additionally, in both 2016 and 
2019, while there are marginal differences between primary school 
enrolment for males and females, the global average female labour force 
participation rate is considerably lower than for males.

4. Results and discussion

We first present and evaluate our results from the six OLS regression 
models based on Eq. (1) for the total (male + female), male, and female 
samples in the 2016 and 2019 datasets. We then progress to do the same 
for our six binary logit regression results based on Eq. (2). Next, we 
evaluate routine model diagnostics for the OLS and binary logit 
regression models. Subsequently, we contextualise our findings from the 
spatial mapping of predicted probabilities of a relatively high mortality 
risk, based on our selection of macro-level indicators, with the existing 
literature on country-specific studies. Finally, we provide some 

sensitivity tests using OLS regressions based on a subsample that include 
only emerging and developing economies, as well as a binary logit 
regression that use terciles as an alternative to the models based on 
cluster analysis classifications.

4.1. OLS and binary logit regression estimates

Our OLS regression results in Table 4 show that a 1 % increase in the 
rural population's access to clean fuels and technology for cooking re
duces HAAP mortality rates, with coefficients ranging from − 0.832 
(female, 2016) to − 1.463 (male, 2019). This range of findings are all 
highly statistically significant (p < 0.01) and consistent across the 
total, male, and female samples, for both 2016 and 2019 datasets. Such 
evidence at the global scale validates the efforts of the United Nations 
Global Alliance for Clean Cookstoves in the 2010s, which aimed to 
provide 100 million clean cookstoves by 2020, to alleviate indoor air 
pollution health risks (Cundale et al., 2017). We also find that a 1 % 
increase in the labour force participation rates is statistically significant 
in decreasing HAAP mortality in the 2016 dataset, with coefficients of 
− 1.146 in the total (p < 0.01), − 0.947 in the male (p < 0.05), and 
− 0.894 in the female (p < 0.01) samples; while having a larger rural 
population is strongly statistically significant (p < 0.01) in increasing 
HAAP death rates in all samples in the 2019 dataset.6 Considering the 
former finding, participation in the labour force implicitly implies less 
time in the household and exposure to indoor pollution related to 
traditional cooking, as well as the potentially higher household income 
from working that can increase the ability to afford cleaner cookstoves 
resulting in less HAAP-related deaths. A plausible explanation for the 
latter finding is that rural populations are more likely to use traditional 
fuels and means of cooking (see, e.g., Mestl et al., 2007) or have less 
access opportunities to quality healthcare than urbanised areas (see, e. 
g., Gilthorpe and Wilson, 2003), contributing to a rise in HAAP mor
tality. Additionally, a 1 % increase in the population with access to rural 
electricity also reduces HAAP mortality in the total (male + female 
combined) and female samples, in the 2016 dataset, with coefficients of 
− 0.667 for the total sample and − 0.853 for females (p < 0.01, in both 
cases), while the effect was smaller and not significant for males. This 
supports the perspective that improved rural electrification enables 
households to move away from polluting energy sources like biomass 

Table 2 
Descriptive statistics for total (male + female), male, and female HAAP mortality rates and macro-level indicators, in the 2016 and 2019 datasets, across the countries 
included in our OLS linear regression model (Table 4).

Summary statistics

2016 dataset 2019 dataset

Obs. Mean S.D. Min. Max. Obs. Mean S.D. Min. Max.

HAAP mortality rate 142 89 74 7 324 131 87 75 7 288
Rural clean cooking access 142 60 42 0 100 131 66 40 0 100
Rural electricity access 142 78 33 2 100 131 84 29 2 100
Labour force participation rate 142 62 10 32 88 131 62 10 32 87
Rural population percent 142 42 24 0 88 131 39 23 0 87
School enrolment (primary) 142 103 11 69 145 131 104 11 66 145
Solid fuel CO2 emissions 142 17 24 0 122 131 – – – –
Health expenditure (% of GDP) 142 6 3 2 17 131 7 3 2 17
HAAP male mortality rate 142 101 77 9 314 130 103 88 9 352
Male labour force participation rate 142 72 9 47 96 130 71 9 46 96
Male school enrolment (primary) 142 105 12 67 143 130 104 12 71 143
HAAP female mortality rate 142 79 73 5 333 130 73 67 5 265
Female labour force participation rate 142 51 13 15 82 130 52 13 14 83
Female school enrolment (primary) 142 102 12 66 146 130 103 12 62 147

Notes – where the following abbreviations and acronyms apply: Obs. = observations, which refer to the number of countries included in the sample; S.D. = standard 
deviation; Min. = minimum; Max. = maximum; HAAP = household and ambient air pollution. There are no solid fuel CO2 emissions data available for 2019. For 
further details about the data, refer to Table 1.

6 In 2016, a larger rural population also increased HAAP death rates for the 
male sample with a weak statistical significance.
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and kerosene, reducing exposure to harmful indoor air pollutants, 
particularly among women who are more likely to be involved in 
household cooking (Li et al., 2017), thus lowering female HAAP mor
tality. Finally, we find that higher healthcare expenditure is weakly 
statistically significant (p < 0.10) in reducing male HAAP mortality 
rate in 2016, with a coefficient of − 3.696, indicating that a 1 % increase 
in investment in healthcare may contribute to better diagnosis, treat
ment, and prevention of air pollution deaths among men.

Overall, we observe some discrepancies in the OLS estimates be
tween the 2016 and 2019 datasets. We attribute these differences to the 
following: first, the two datasets are independent cross-sections, not a 
panel, and the composition of countries differs between 2016 and 2019, 
which will naturally contribute to variations in coefficient significance. 
Moreover, recalling the descriptive statistics in Table 2, some average 
global conditions improved between 2016 and 2019, which could lead 

to a reduction in statistical significance for specific variables observed in 
Table 5. For instance, the percent of the rural population with access to 
electricity increased from 78 % to 84 % between the 2016 and 2019 
datasets. Yet, despite these expected differences between datasets, the 
percent of the rural population with access to clean cooking fuels and 
technology remains a strong and consistent predictor across both years.

Based on five of our six binary logit regression results in Table 5, we 
find that, with the exception of the female sample in the 2016 dataset, 
rural access to clean cooking fuel and technology is again a statistically 
significant indicator of a high HAAP mortality risk status. For instance, 
odds ratios ranging between 0.988 and 0.923 across samples and years 
imply that for every 1 % increase in the rural population's access to clean 
cooking resources, the odds of a country being in the high HAAP mor
tality group fall between 1.2 % ([1-0.988]*100) and 7.7 % ([1-0.923]* 
100), respectively. In particular, the effects of rural access to clean 

Table 3 
Descriptive statistics of macro-level indicators under high and low HAAP mortality rate clusters, for total (male + female), male, and female samples, in the 2016 and 
2019 datasets, across the sample of countries included in our binary logit regression model (Table 5).

Summary statistics

2016 dataset 2019 dataset

Obs. Mean S.D. Min. Max. Obs. Mean S.D. Min. Max.

HAAP high mortality rate 55 170 54 99 324 56 160 58 78 288
Rural clean cooking access 55 17 26 0 100 56 30 34 0 100
Rural electricity access 55 47 35 2 100 56 64 36 2 100
Labour force participation rate 55 62 11 32 84 56 63 12 32 87
Rural population percent 55 61 18 0 88 56 56 19 1 87
School enrolment (primary) 55 104 17 69 145 56 105 15 66 145
Solid fuel CO2 emissions 55 17 28 0 122 – – – – –
Health expenditure (% of GDP) 55 5 3 2 17 56 5 2 2 15
HAAP low mortality rate 87 39 23 7 87 75 33 21 7 77
Rural clean cooking access 87 87 24 4 100 75 93 13 38 100
Rural electricity access 87 97 9 42 100 75 99 4 80 100
Labour force participation rate 87 61 8 39 88 75 61 8 39 82
Rural population percent 87 30 19 0 82 75 27 18 0 81
School enrolment (primary) 87 103 6 79 125 75 103 7 82 126
Solid fuel CO2 emissions 87 17 21 0 94 – – – – –
Health expenditure (% of GDP) 87 7 3 3 17 75 8 3 2 17
HAAP high male mortality rate 80 154 63 69 314 62 179 70 87 352
Rural clean cooking access 80 33 36 0 100 62 35 37 0 100
Rural electricity access 80 62 37 2 100 62 68 36 2 100
Male labour force participation rate 80 72 9 47 88 62 71 10 46 89
Rural population percent 80 55 19 0 88 62 54 19 10 87
Male school enrolment (primary) 80 105 14 67 143 62 106 15 71 143
Solid fuel CO2 emissions 80 18 27 0 122 – – – – –
Health expenditure (% of GDP) 80 6 2 2 17 62 5 2 2 15
HAAP low male mortality rate 62 34 17 9 65 68 35 20 9 80
Rural clean cooking access 62 95 15 9 100 68 94 12 38 100
Rural electricity access 62 98 6 62 100 68 99 3 83 100
Male labour force participation rate 62 71 8 58 96 68 71 8 58 96
Rural population percent 62 24 17 0 81 68 25 18 0 81
Male school enrolment (primary) 62 104 7 79 123 68 103 7 82 124
Solid fuel CO2 emissions 62 16 18 0 92 – – – – –
Health expenditure (% of GDP) 62 8 3 3 17 68 8 3 2 17
HAAP high female mortality rate 53 160 56 85 333 55 138 53 65 265
Rural clean cooking access 53 16 26 0 100 55 29 34 0 100
Rural electricity access 53 46 35 2 100 55 65 36 2 100
Female labour force participation rate 53 53 16 18 82 55 54 16 16 83
Rural population percent 53 61 18 0 88 55 56 19 1 87
Female school enrolment (primary) 53 101 18 66 146 55 104 16 62 147
Solid fuel CO2 emissions 53 18 28 0 122 – – – – –
Health expenditure (% of GDP) 53 5 3 2 17 55 5 2 2 15
HAAP low female mortality rate 89 31 20 5 75 75 26 17 5 63
Rural clean cooking access 89 86 25 4 100 75 93 13 38 100
Rural electricity access 89 97 9 42 100 75 98 9 23 100
Female labour force participation rate 89 50 12 15 73 75 51 11 14 71
Rural population percent 89 30 19 0 82 75 27 18 0 81
Female school enrolment (primary) 89 103 6 78 126 75 103 7 81 129
Solid fuel CO2 emissions 89 17 21 0 94 – – – – –
Health expenditure (% of GDP) 89 7 3 3 17 75 8 3 2 17

Notes – where the following abbreviations and acronyms apply: Obs. = observations, which refer to the number of countries included in the sample; S.D. = standard 
deviation; Min. = minimum; Max. = maximum; HAAP = household and ambient air pollution. There are no solid fuel CO2 emissions data available for 2019. For 
further details about the data, refer to Table 1.
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cooking are largest and strongly significant (where all p < 0.01) in the 
2019 samples, such that a 1 % increase in rural access reduces the 
probability that a country is classified in the high HAAP mortality cluster 
by 6.9 % ([1-0.931]*100) in the total sample, by 7.7 % ([1-0.923]*100) 
in the male sample, and 7.6 % ([1-0.924]*100) in the female sample. For 
2016, rural access to clean cooking resources is moderately significant 
(where p < 0.05) for the total sample, decreasing the probability of 
being in the high HAAP mortality cluster by 2.6 % ([1-0.974]*100); 
strongly significant (where p < 0.01) in the male sample, decreasing 
the probability of being in the high HAAP mortality cluster by 6.2 % ([1- 
0.938]*100); but not significant for the female sample ([1-0.988]*100 
= 1.2 %). Instead, for the female sample in the 2016 dataset, other 
important macro-level predictors include: (i) the proportion of the 
population with rural access to electricity – the odds of being classified 
as a high HAAP mortality country decreases by 7.8 % ([1-0.922]*100, 
where p < 0.01) when there is a 1 % increase in rural electricity access; 
(ii) female labour force participation rate – where greater participation 
reduces the odds of being classified in the high HAAP mortality grouping 
by 5.2 % ([1-0.948]*100, where p < 0.05); and (iii) CO2 emissions 
from solid fuel consumption, where a higher portion of solid fuel 
emissions as a percent of total fuel consumption increases the odds of a 
country being characterised by high HAAP related deaths by 2.9 % 

([1.029-1]*100, where p < 0.05). This latter finding resonates with a 
wide body of literature on the elevated health risk that the combustion 
of biomass poses for women (see, e.g., Gwenzi et al., 2015; Srinivasan 
and Carattini, 2020). For males, the 2019 dataset shows that a 1 % in
crease in their participation in the labour force and their gross primary 
school enrolment rate reduce their odds of a high HAAP mortality rate 
by 9.1 % ([1-0.909]*100) and 7.3 % ([1-0.927]*100), respectively, with 
weak statistical significance in both instances (0.05 < p < 0.10). 
Moreover, the odds of a relatively higher HAAP mortality rate status 
increase in countries with relatively higher rural populations. In 2019, 
these effects are weakly significant (p < 0.10) across all samples, where 
a 1 % rise in the rural population increases the odds of being in the high 
HAAP mortality cluster by 4 % ([1.040-1]*100) in the total (male +
female) sample, by 3.8 % ([1.038-1]*100) in the male sample, and by 
4.4 % ([1.044-1]*100) in the female sample; while for males in 2016, a 
1 % increase in the rural population leads to a 3.9 % ([1.039-1]*100) 
increase in being in the high HAAP mortality cluster, with moderate 
statistical significance (0.01 < p < 0.05). Importantly, an increase in 
current healthcare expenditure as a percent of GDP is statistically sig
nificant in reducing the odds of being in the high HAAP mortality cluster 
across all of our six binary logit regression models. For example, across 
both 2016 and 2019 datasets and samples (total, male, and female), the 

Table 4 
HAAP mortality rate OLS robust regression outputs for total (male + female), male, and female samples, in the 2016 and 2019 datasets.

2016 dataset 2019 dataset

Total Male Female Total Male Female

Macro-level predictors coefficients
Rural clean cooking access − 0.948*** − 1.090*** − 0.832*** − 1.287*** − 1.463*** − 1.097***
Rural electricity access − 0.667*** − 0.406 − 0.853*** − 0.166 − 0.139 − 0.288
Labour force participation rate − 1.146*** − 0.947** − 0.894*** − 0.093 − 0.065 − 0.430
Rural population percent 0.249 0.346* 0.236 0.597*** 0.731*** 0.511***
School enrolment (primary) − 0.435 − 0.258 − 0.529 − 0.043 0.216 − 0.210
Solid fuel CO2 emissions 0.086 0.138 0.091 – – –
Health expenditure (% of GDP) − 2.369 − 3.696* − 0.618 − 1.546 − 2.204 − 0.595
Model fit and diagnostics
Sample size 142 142 142 131 130 130
F-value (joint model significance test) 52.72*** 50.25*** 51.54*** 79.76*** 72.84*** 91.98***
R2 (goodness-of-fit measure) 0.769 0.750 0.772 0.782 0.766 0.782
Ramsey RESET (omitted variables test) 1.460 1.300 0.570 1.810 1.870 1.210
Mean VIF (multicollinearity measure) 2.180 2.160 2.220 1.950 1.980 1.990

Notes – these estimates relate to the OLS regression model specified in Eq. (1). ***, **, and * represent the 1 % (strong: p < 0.01), 5 % (moderate: 0.01 < p < 0.05), 
and 10 % (weak: 0.05 < p < 0.10) conventional levels of statistical significance, respectively. There are no solid fuel CO2 emissions data available for 2019. A list of 
countries included in the models are provided in Table 6. For details about the data, see Table 1 and the main text.

Table 5 
HAAP high mortality rate robust binary logit regression outputs for total (male + female), male, and female samples, in 2016 and 2019 datasets. HAAP high mortality is 
defined using cluster analysis.

2016 dataset 2019 dataset

Total Male Female Total Male Female

Macro-level predictors odds ratios
Rural clean cooking access 0.974** 0.938*** 0.988 0.931*** 0.923*** 0.924***
Rural electricity access 0.950** 0.992 0.922*** 1.000 1.001 1.029
Labour force participation rate 0.949 0.940 0.948** 0.991 0.909* 0.990
Rural population percent 1.029 1.039** 1.039 1.040* 1.038* 1.044*
School enrolment (primary) 0.999 0.960 0.998 0.991 0.927* 1.016
Solid fuel CO2 emissions 1.017 1.003 1.029** – – –
Health expenditure (% of GDP) 0.718** 0.633*** 0.677*** 0.590*** 0.707** 0.654***
Model fit and diagnostics
Sample size 142 142 142 131 130 130
Wald χ2 (joint model significance test) 39.16*** 31.22*** 42.85*** 48.27*** 56.54*** 52.52***
Pseudo R2 (goodness-of-fit measure) 0.653 0.620 0.686 0.672 0.620 0.659
Correctly classified rate 90.14 % 90.85 % 90.85 % 90.84 % 87.69 % 88.46 %
Area under ROC curve 0.961 0.953 0.971 0.967 0.953 0.965

Notes – these estimates relate to the binary logit regression model specified in Eq. (2), using cluster analysis on HAAP mortality for the total, male, and female samples 
in 2016 and 2019. For all other details, see notes on Table 4.
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Table 6 
The 150 countries included in our OLS and binary logit regression models across total (male + female), male, and female samples for the 2016 and 2019 datasets.

Notes – the countries included in the OLS and logit regression models for the dataset of the same year are identical within the total (T); male (M); and female (F) 
samples. Between these samples (T, M, and F) for a given year, there is only one omission – in 2019, for both male and female samples, Indonesia is excluded because 
of missing data. The following additional abbreviations and acronyms apply: H (L) is the high (low) household and ambient air pollution (HAAP) mortality rate group, 
sorted using a -means cluster analysis algorithm based on Euclidean distance; and X implies a country is omitted due to missing data. Additionally, Isl. = Islands; N. =
North; Rep. = Republic; United Arab Emirates = UAE. The following ISO alpha-3 country codes are adopted for the Central African Republic (CAF); Papua New 
Guinea (PNG); Sao Tome and Principe (STP); and Saint Vincent and the Grenadines (St. VCT). Korea refers to the Republic of Korea (South Korea). Country names 
highlighted in dark (light) green are Advanced Economies (Emerging and Developing Economies), classified by the IMF World Economic Outlook (available at 
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odds ratios indicate that a 1 % rise in healthcare expenditure as a percent 
of GDP reduces the probability of a country being in the high HAAP 
mortality cluster with values ranging between 28.2 % ([1-0.718]*100) 
and 41.0 % ([1-0.590]*100), respectively, with high (p < 0.01) or 
moderate (p < 0.05) statistical significance across the six binary logit 

regressions.

4.2. Model diagnostics

In evaluating the overall fit of the six estimated OLS regression 

https://www.imf.org/en/Publications/WEO/weo-database/2023/April/groups-and-aggregates). Cuba is unclassified because it is not an IMF member country. For 
details on the graduated orange colour palette used in the individual cells, refer to the legends and notes in Figs. 1 – 2.

Fig. 1. Global map of predicted high HAAP mortality risk probabilities in 2016, based on our binary logit regression (Eq. (2)). Lighter (darker) shades imply that the 
macro-level indicators underpinning our logit regression (Table 5) jointly predict that the probability of a country falling in the relatively high HAAP mortality rate 
cluster is low (high), i.e., less than or equal to 0.50 (more than 0.50). For further details, refer to the map's legend, Table 6, and the main text. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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models in Table 4, the F-values suggest that jointly, the macro-level 
predictors are strongly statistically significant in explaining HAAP 
mortality rates (p < 0.01, for all OLS regressions). Moreover, the R2 

values range from 0.75 to 0.78, showing that more than 75 % of the 
changes in HAAP mortality rates can be predicted by the variations in 
the selected macro-level indicators. Additionally, the functional form of 
the OLS regression model is appropriately specified, as implied by the 
non-significance of the estimates in the Ramsey RESET results at any 
conventional levels of statistical significance. Thus, there are no omitted 

non-linear forms of explanatory variables in these regressions. 
Furthermore, values of VIF < 5 suggest that multicollinearity is not an 
issue in our models. Finally, all our regressions employ robust standard 
errors as a routine control for the presence of heteroskedasticity.

For our six binary logit regression models, the bottom panel in 
Table 5 show that the joint model significance tests suggest the macro- 
level predictors are collectively highly statistically significant 
(p < 0.01, for all logit regressions). In addition, McFadden's pseudo R2 

values are greater than 0.62 for all regressions, suggesting that the 

Fig. 2. Global map of predicted high HAAP mortality risk probabilities in 2019, based on our binary logistic regression (Eq. (2)), underpinned by the macro-level 
indicators in Table 5. For further details, refer to the notes in Fig. 1.

S.M.R. Mahadeo and A. Seenath                                                                                                                                                                                                            Social Science & Medicine 391 (2026) 118921 

10 



macro-level predictors perform very well in explaining the discrete high 
and low HAAP mortality outcomes of the binary logit model against a 
model with only a constant. The correctly classified rate also explains 
that the models predict the majority of the high and low HAAP mortality 
rate countries correctly, with values ranging between 88 − 91%. 
Similarly, the areas under the ROC curves exceed 0.95 in all six binary 
logit regressions, implying that, for a given country, there is a greater 
than 95% chance that the selected macro-level indicators will correctly 
classify a high HAAP mortality rate country as having a high (rather than 
a low) HAAP mortality rate. Once again, similar to the OLS regression 
models, robust standard errors are used as a routine control for heter
oskedasticity in the logit models.

4.3. Global mapping of predicted probabilities for high HAAP mortality 
rates

Our global maps of predicted high HAAP mortality risk probabilities 
illustrate that the macro-level indicators show this environmental health 
problem affects the Global South more severely than the Global North, 
across both 2016 and 2019 datasets (Figs. 1–2). In particular, our maps 
show that it is the Sub-Saharan African and Asian countries in our 
sample that are at an elevated risk of high HAAP mortality rates. In fact, 
using the IMF World Economic Outlook dichotomous classification, we 
see a clear divide on HAAP resilience in Table 6: advanced economies 
(dark green) are generally resilient to high HAAP mortality risk while 
emerging and developing economies (light green) are more vulnerable. 
The only exception here is the 2019 male sample in Croatia (an 
advanced economy). Table 6 further reveals that the categorical prob
abilities of high HAAP death rates predicted by our selected macro-level 
indicators (represented by darker orange shades) conform with the non- 
hierarchical clustering of the world into high (H) and low (L) mortality 
countries. This echoes the high McFadden indices (Pseudo R2; > 0.62), 
correctly classified rates (> 87%), and areas of the ROC curves (> 0.95) 
of our six binary logit regression models (reported in Section 4.2 and the 
bottom panel of Table 5).

It is, therefore, understandable that much of the case studies in the 
literature have devoted special critical attention to the environmental, 
health, and development issues that HAAP poses to rural areas in Global 
South countries. Hence, we frame our results for several of the Global 
South countries in our samples, which are classified with a relatively 
high HAAP mortality rate by the clustering algorithm and the selected 
macro-level predictors, with the findings from these case studies. For 
example, Krishnapriya et al. (2021) investigate how improved cookstove 
adoption across six countries – Ethiopia, Zambia, Rwanda, Myanmar, 
Nepal, and Cambodia – affects time use and labour supply, particularly 
examining gender-disaggregated impacts using household survey data. 
They found that, by reducing time spent cooking and exposure to indoor 
air pollution, especially for women, improved cookstoves can contribute 
to better health outcomes and increased productivity. Indeed, their 
analysis is consistent with our regression results on the importance of 
rural clean cooking technology and fuel access in reducing HAAP 
mortality.

Focusing on the Sub-Saharan countries with a high HAAP mortality 
risk, based on both our cluster analysis and macro-level predictors, 
provide important country-level context for this region. In Chilumba in 
Malawi, Cundale et al. (2017) found that clean cookstoves are not 
widely perceived as a “health intervention”. From a cooking and 
pneumonia randomised control trial, they also reveal that cookstoves 
have no significant impact on pneumonia reduction in children under 
five. Additionally, Ronzi et al. (2019)'s study on the advancement and 
uptake of clean cooking in South-West Cameroon revealed that afford
ability, accessibility, and safety concerns are key barriers to adopting 
liquefied petroleum gas for cooking, while community-driven ap
proaches like photovoice can help engage stakeholders and identify 
solutions for advancing equitable access to clean cooking fuels. Harrell 
et al. (2016) compared alternative methods for measuring cookstove use 

in rural Mbarara households in Uganda, and found that using multiple 
monitoring strategies can more accurately audit carbon offsets, which is 
critical for ensuring that improved cookstove programmes effectively 
reduce harmful indoor air pollution and improve public health out
comes. The findings of these studies on Sub-Saharan Africa echo the 
importance of the macro-level patterns identified in our analysis, 
particularly the role of limited rural access to clean cooking fuels and 
electricity in driving high HAAP mortality rates, reinforcing the struc
tural vulnerabilities of this region.

Examining studies undertaken for South Asian countries classified 
with a relatively high HAAP mortality rate from the cluster analysis and 
macro-level predictors in our sample, the subsequent country-specific 
evidence is useful for painting a similar picture. Jewitt et al. (2022)
highlight that reducing household air pollution requires not only 
improved cookstove adoption but sustained use in the Majhi Feda 
Nepalese village, facilitated by behavioural change strategies and 
kitchen reconfigurations, to achieve lasting respiratory health benefits. 
Using a nationally representative survey and satellite PM2.5 data from 
Bangladesh, Kurata et al. (2020) found that household air pollution is 
linked to greater respiratory illness in girls while prenatal ambient 
pollution increases stunting in boys, highlighting the need for targeted 
interventions. Additionally, Jeuland et al. (2015) employed both 
revealed and stated preference analyses among rural households in the 
north Indian states of Uttar Pradesh and Uttarakhand, to assess demand 
for improved cookstove features. They suggested that a persistent pref
erence for traditional stoves, unless substantial reductions in smoke and 
fuel consumption are achieved, hinders the uptake of cleaner technol
ogies and consequently deter potential health improvements from 
reduced household air pollution. Again, these South Asian studies align 
with our regression results and spatial mapping, which reveal that 
countries with low rural access to clean cooking fuels and high rural 
populations are consistently predicted to have elevated HAAP mortality 
risk, highlighting the need for both infrastructural and behavioural 
interventions.

Penultimately, we further contextualise our analysis in terms of the 
recent (2025) World Bank report, on ‘Accelerating Access to Clean Air for a 
Livable Planet’.7 Indeed, the two analyses complement each other – while 
the World Bank report examines forward-looking scenario modelling to 
project reductions in PM2.5 exposure by 2040 and advocates for a suite 
of decarbonisation and air-quality management policies to unlock sub
stantial co-benefits, our study provides empirical evidence from 150 
countries that highlights how specific macro-level factors (such as access 
to clean cooking fuels, rural electrification, and healthcare expenditure) 
critically influence HAAP mortality rates. Our granular analysis supports 
the World Bank report's broader recommendations by emphasising the 
socioeconomic, gendered, and rural/urban disparities which influence 
health outcomes that align with achieving key United Nations SDGs (3, 
5, and 7).

Finally, an important consolidated result illustrated by our pre
liminary data analysis (Section 3) and global spatial mapping (Figs. 1 
and 2, and Table 6) is that males are more at risk of premature HAAP 
related death than females. For example, in 2016, the average male 
HAAP mortality rate across countries was 101 deaths per 100,000 
compared to 79 deaths per 100,000 for females; while, in 2019, the 
averages were 103 and 73, respectively (Table 2). Moreover, visual in
spections of the global spatial maps in Fig. 1 (2016) and 2 (2019) show 
higher predicted probabilities of a high HAAP mortality classification for 
males (compared to females) based on the macro-level indicators. Such 
findings diverge from conventional assumptions in the related literature 
previously mentioned, which typically emphasises the disproportionate 
burden of indoor air pollution on women and children because of 

7 World Bank. Accelerating Access to Clean Air for a Livable Planet (English). 
Washington, D.C.: World Bank Group. http://documents.worldbank.org/cu 
rated/en/099032625132535486 (accessed in June 2025).
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household cooking roles. However, by considering both sources 
(household and ambient) of pollution mortality at the national level, a 
more complex gendered exposure pattern emerges. In emerging and 
developing economies, men are generally disproportionately employed 
in manual occupations that involve heightened exposure to ambient air 
pollution from transportation, construction, or manufacturing (Pan 
et al., 2023). Men also have higher rates of tobacco use,8 compounding 
their respiratory risk. Studies further suggest that men underutilise 
preventive healthcare services (Baker, 2024), making them less inclined 
to seek timely medical treatment for air pollution-related symptoms. 
Therefore, biological and behavioural vulnerabilities may intersect with 
occupational exposure in ways that elevate male mortality risk despite 
women's reportedly greater time spent indoors. Thus, using 
gender-disaggregated HAAP mortality data to inform targeted in
terventions remains a key priority, alongside the need to avoid 
one-size-fits-all policy assumptions that dominate the discourse on 
health risks in rural villages of the Global South.

4.4. Sensitivity tests

Although the 2016 and 2019 datasets serve as sensitivity for each 
other in terms of data, and the OLS (linear) and binary logit (non-linear) 
regressions serve as sensitivity in terms of models, a natural extension is 
to determine the consistency of our findings in Table 4 with a subsample 
of Global South countries. To this end, we use the IMF World Economic 
Outlook classification adopted in Table 6 (see table notes), which sorts 
the countries in our sample into “Advanced Economies” and “Emerging 
and Developing Economies”, to develop a further sensitivity exercise. 
Given that our main findings suggest advanced economies demonstrate 
a clear resilience to HAAP mortality risks, and that emerging and 
developing economies (EDEs) are disproportionately vulnerable, we 
rerun the OLS regression on the sample of EDEs and compare the find
ings with the full sample.

In 2016 datasets, in the EDEs subsample, there are 108 countries in 
the total (male + female), male, and female groups (compared to 142 
countries in the full sample) while, in 2019 EDEs subsample, there are 
95 countries in the total (male + female), and 94 in the male and female 
groups (compared to 131 in the total [male + female] and 130 in male 
and female groups in the full sample). The results of the EDEs subsample 
regressions are provided in Table 7. These additional results show that, 
in a subsample of countries that consist of EDEs only, there is a general 
consistency in the sign, size, and statistical significance of rural access to 
clean cooking fuels and technology in both 2016 and 2019 datasets. For 
example, a 1 % increase in access to clean cooking tools in rural pop
ulations significantly reduces HAAP mortality rates (p < 0.01) in all six 
regressions. We also observed that, once again, rural electricity access 
and labour force participation rates are both important factors in 
reducing HAAP mortality in the 2016 dataset (p < 0.01 in the total 
[male + female] and male groups, and p < 0.05 in the female group). 
Furthermore, the composition of the total population that is rural is 
significant in increasing HAAP mortality rates in the 2019 dataset (p <

0.05). As with the main OLS results (Table 4), the EDEs subsample 
(Table 7) also show some differences in significance between the 2016 
and 2019 estimates. These variations reflect the fact that the two data
sets are independent cross-sections with partly different country com
positions and evolving macro-level conditions across years, which 
naturally affect coefficient precision in smaller subsamples. Yet, once 
again, the percentage of the rural population with access to clean 
cooking methods remains a stable and influential predictor in both 
years, reinforcing the robustness of our central findings.

Model diagnostic tests are also satisfied. For instance, the variables 
included in the regression models are jointly significant (p < 0.01, for 
the F-values of all six regressions), goodness-of-fit measures are 

marginally lower than the full sample to reflect the smaller sample size 
(now in the high 0.60s compared to high 0.70s in the full sample), and 
the mean VIFs are still all < 5 which indicates that multicollinearity is 
non-consequential in the EDEs subsample regression models. While 
some of the Ramsey RESET results (p < 0.05 in four of the subsample 
regressions, p < 0.01 in one of the subsamples, and p not significant in 
another) indicate that alternative functional forms of the explanatory 
variables might better represent the data, we do not explore these 
additional specifications to keep the subsample results comparable with 
the main results, for the sake of brevity, and because this can be a 
consequence of the smaller sample size of the EDEs subsample.

We also check whether our findings from the six binary logit re
gressions (Table 5), which decompose HAAP mortality rates into high 
and low categorisation with a non-hierarchical k-means clustering al
gorithm based on Euclidean distance, is robust to an alternative classi
fication method. For this purpose, we compare the top tercile of the 
HAAP mortality rate countries with the rest of that sample (i.e., the 
middle + bottom terciles), within each sample (total, male, and female), 
for each dataset (2016 and 2019). Using this alternative binary classi
fication, we re-estimate the logit regressions and present the results in 
Table 8. These sensitivity results are broadly consistent with the cluster 
analysis-based estimates reported in Table 5. In both classifications, 
rural access to clean cooking fuels remains a strong, stable, and statis
tically significant predictor of lower HAAP mortality risk across nearly 
all samples and years. Similarly, rural population share and solid-fuel 
CO2 emissions (where available) continue to be positively associated 
with high mortality risk, while higher healthcare expenditure consis
tently reduces the likelihood of belonging to the high-risk group.

Some differences in statistical significance emerge between the two 
classification approaches (cluster analysis and tercile distribution), 
particularly for labour force participation, rural electricity access, and 
primary school enrolment in certain samples. These discrepancies arise 
because the tercile-based approach imposes a mechanically fixed cutoff 
that does not necessarily reflect the natural separation in the underlying 
mortality distribution, whereas the clustering algorithm produces 
groupings that maximise within-group similarity and between-group 
separation. The resulting differences in group composition and bal
ance affect the precision of estimated coefficients. Nevertheless, the 
overarching patterns remain stable: the macro-level determinants that 
are statistically significant and directionally consistent in the cluster- 
based models behave similarly in the tercile-based models. These find
ings strengthen confidence in the robustness of our conclusions 
regarding the key predictors of high HAAP mortality risk.

5. Conclusion

We provide a novel global perspective on the macro-level de
terminants of HAAP mortality risk, by integrating evidence from 150 
countries across recent datasets. We demonstrate that access to clean 
cooking fuels and technology, rural electrification, and healthcare 
expenditure are critical factors in reducing premature deaths from 
HAAP. In contrast, we find that larger rural populations and inefficient 
energy practices serve as significant risk factors. Importantly, our ana
lyses reveal that males face higher HAAP mortality risks than females, 
with global average differences of 22 (in 2016) and 30 (in 2019) excess 
deaths for males per 100,000 people, drawing attention to gender- 
specific dynamics that require further examination and gender- 
targeted policy interventions.

Our work makes two important contributions. First, we contribute to 
the literature by moving beyond localised case studies to offer 
comprehensive global evidence linking socioeconomic and environ
mental indicators with HAAP mortality. Our OLS and binary logit 
regression analyses, alongside our spatial mapping, highlight the 
robustness of these macro-level determinants. Second, our research 
provides a breath of analysis that span the areas of health, energy, la
bour, environment, and education, which are all important dimensions 8 See: https://ourworldindata.org/who-smokes-more-men-or-women.
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in understanding HAAP mortality risks. Such perspectives are directly 
relevant to governmental and international initiatives aimed at realising 
several United Nations Sustainable Development Goals, namely SDG 3 
(good health and well-being), SDG 5 (gender equality), and SDG 7 
(affordable and clean energy). In doing so, our study helps to close a 
clear gap in the literature. Earlier work has mostly focused on villages or 
single countries, but here we provide the bigger picture across 150 na
tions. This broader perspective not only enhances academic under
standing but also provides international agencies and governments with 
further evidence to design interventions and monitor progress toward 
critical SDGs.

From a policy perspective, our findings point to the need for a 
reorientation of policy strategies toward integrated, sector-spanning 
solutions. Clean cooking initiatives, for example, should be prioritised 
in countries with low rural access to clean cooking fuels. Programs such 
as India's Pradhan Mantri Ujjwala Yojana 2.0,9 which distributed sub
sidised liquefied petroleum gas connections to poor rural households, 
offer a promising blueprint. However, expanding access must be 
accompanied by sustained affordability, user training, and behavioural 
reinforcement to prevent a fallback to traditional (inefficient) cooking 

fuels. Similarly, rural electrification efforts must go beyond infrastruc
ture provision to ensure reliability, affordability, and end-use connec
tivity. Decentralised energy solutions, such as solar photovoltaic mini- 
grids (Baldi et al., 2022), may offer faster and more inclusive gains in 
hard-to-reach areas. Healthcare systems must also be strengthened to 
better diagnose and manage pollution-related illnesses, especially in 
rural zones where under-resourced clinics may be common. Our findings 
also support gender-sensitive policy design. For example, promoting 
women's labour force participation could have indirect health benefits 
by reducing time spent in polluting household environments. Education 
and awareness campaigns can further empower households to adopt 
cleaner practices. Regionally targeted interventions also seem essential 
from our findings: in Sub-Saharan Africa, for example, efforts should 
focus on improving affordability, accessibility, and community 
engagement to enhance clean fuel access and adoption; while in South 
Asia, scaling sustained behaviour-change strategies, stove use moni
toring, and targeted health interventions is key to reducing household 
air pollution.

Building on the above, future research should further examine 
regional disparities and the underlying reasons for higher male mortality 
rates, to rollout new intervention strategies that address gender-specific 
vulnerabilities and lower overall HAAP mortality rates. These are the 
imperative next steps to take in achieving sustainable development and 

Table 7 
HAAP mortality rate OLS robust regression outputs in the Emerging and Developing Economies subsample for total (male + female), male, and female samples, in the 
2016 and 2019 datasets.

2016 EDE dataset 2019 EDE dataset

Total Male Female Total Male Female

Macro-level predictors coefficients
Rural clean cooking access − 0.840*** − 0.939*** − 0.773*** − 1.173*** − 1.345*** − 1.007***
Rural electricity access − 0.727*** − 0.502** − 0.872*** − 0.229 − 0.212 − 0.322
Labour force participation rate − 1.112*** − 1.203** − 0.827*** − 0.020 − 0.268 − 0.320
Rural population percent 0.196 0.225 0.220 0.561** 0.672** 0.497**
School enrolment (primary) − 0.525 − 0.358 − 0.604* − 0.138 0.100 − 0.294
Solid fuel CO2 emissions 0.170 0.247* 0.147 – – –
Health expenditure (% of GDP) − 1.054 − 1.982 0.291 0.614 0.259 1.055
Model fit and diagnostics
Sample size 108 108 108 95 94 94
F-value (joint model significance test) 31.37*** 27.75*** 34.38*** 37.10*** 36.39*** 41.75***
R2 (goodness-of-fit measure) 0.689 0.665 0.698 0.696 0.673 0.698
Ramsey RESET (omitted variables test) 2.790** 2.74** 1.14 3.29** 2.86** 4.18***
Mean VIF (multicollinearity measure) 1.94 1.91 1.98 1.71 1.71 1.75

Notes – the results of these regressions are based on a subsample which includes all countries listed in light green in Table 6. This corresponds to all countries in our 
sample that are classified as Emerging and Developing Economies in the IMF World Economic Outlook (see notes on Table 6 for further details). For all other details, see 
notes on Table 4.

Table 8 
HAAP high mortality rate robust binary logit regression outputs for total (male + female), male, and female samples, in 2016 and 2019 datasets. HAAP high mortality is 
defined using the top mortality tercile.

2016 dataset 2019 dataset

Total Male Female Total Male Female

Macro-level predictors odds ratios
Rural clean cooking access 0.959** 0.941*** 0.978 0.961*** 0.956*** 0.956***
Rural electricity access 0.939*** 0.990 0.901*** 0.983 0.987 0.985
Labour force participation rate 0.897** 0.941 0.930** 0.994 0.979 0.999
Rural population percent 1.043* 1.024 1.068** 1.055*** 1.064*** 1.035*
School enrolment (primary) 1.008 0.949* 1.012 1.010 1.000 0.982
Solid fuel CO2 emissions 1.046*** 1.018 1.038*** – – –
Health expenditure (% of GDP) 0.684*** 0.847 0.726* 0.808* 0.832 0.768**
Model fit and diagnostics
Sample size 142 142 142 131 130 130
Wald χ2 (joint model significance test) 42.60*** 48.78*** 29.76*** 56.60*** 65.20*** 52.93***
Pseudo R2 (goodness-of-fit measure) 0.770 0.652 0.822 0.637 0.666 0.624
Correctly classified rate 95.07 % 91.55 % 96.48 % 91.60 % 91.54 % 91.54 %
Area under ROC curve 0.986 0.966 0.992 0.959 0.968 0.952

Notes – these estimates relate to the binary logit regression model specified in Eq. (2), using the top tercile of HAAP mortality for the total, male, and female samples, in 
2016 and 2019. For all other details, see notes on Table 4.

9 See https://pmuy.gov.in/about.html.
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improving public health resilience in the Global South.
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