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Abstract

Saltmarsh habitat provides important ecosystem services, such as water quality regulation,
carbon sequestration and flood defence, but is experiencing losses globally. Historically, this
has been caused by land claim, andmore recently by rising sea levels. Several methods have been
implemented to compensate for saltmarsh habitat loss, including realigning defences, trans-
planting vegetation, and building structures such as sedimentation fields to enclose areas of
mudflat and encourage sediment deposition. It has been suggested that sedimentation fieldsmay
offer saltmarsh restoration without the limitations identified in other restoration approaches,
such as poor drainage and anoxia caused by changes to the sediment structure due to prior
human activity. In this article, we argue that restoration through sedimentation fields should be
viewed as a continuation of human activity influencing natural processes, rather than a method
that overcomes the influence of prior human activity on saltmarsh ecosystem functioning. This
opinion is evidenced by a critical review of the (pre-)historic human activity and saltmarsh
restoration attempts at RumneyGreatWharf, Severn Estuary,Wales, where sedimentation fields
were constructed between 1989 and 2005 and extended in 2024. We then evaluate the research
requirements that need to be addressed to ensure the successful implementation of future
schemes, including further understanding of the interactions between physical and biological
processes, to enhance ecosystem functioning in sites restored using sedimentation fields.

Impact statement

Sedimentation fields are used to restore or create saltmarsh habitat by enclosing areas ofmudflat,
often using brushwood fencing, with the intention of dampening waves and reducing current
velocities to encourage sediment deposition and saltmarsh colonisation. This approach to
saltmarsh restoration can be implemented where it is not possible to use other methods, such
as managed realignment – the breaching, lowering or removal of flood defences to allow tidal
inundation of the coastal hinterland. For example, sedimentation fields do not require the
purchase of terrestrial (typically agricultural) land and conversion through engineering works to
make it suitable to support intertidal habitat, which can be costly and socially sensitive. It has also
been proposed that sedimentation fields might provide saltmarsh restoration without the
limitations associated with prior human activity found in other restoration approaches. How-
ever, in this article, we argue that sedimentation fields should be seen as an extension of human
influence on natural processes, rather than reversing the impact of human activity on saltmarsh
ecosystem functioning. Evolution of sites restored using sedimentation fields can still be affected
by site history, including both natural and anthropogenic influences. Depending on the targeted
outcome of the scheme, it is important that sedimentation field construction results in the
formation of a saltmarsh that provides the required ecosystem functioning and service provision.
This could, for example, include increased flood protection, carbon storage or the creation of a
diverse saltmarsh habitat. Further research is needed into the physical processes, ecological
development and biogeomorphic evolution of sedimentation fields to inform the design and
implementation of future schemes.

Compensating for saltmarsh habitat loss

Saltmarsh habitat occupies ~5.1 Mha of the Earth’s surface (Pendleton et al., 2012) and provides
important ecosystem services, such as carbon sequestration and flood defence through wave
attenuation (e.g., Costanza et al., 1997). Globally, 46.6% of saltmarsh has been lost or degraded
(Brook et al., 2025) due to historic land claim (e.g., Allen and Fulford, 1986) andmodern sea level
rise resulting in erosion and coastal squeeze (e.g., Doody, 2004). However, during the mid-
twentieth century, the approach to saltmarsh management shifted from reclamation to
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protection, and then in the twenty-first century to restoring and
increasing saltmarsh extent (Ladd, 2021).

Several approaches have been adopted to restore and (re)create
saltmarsh (Pontee et al., 2021). These include allowing tidal inun-
dation of terrestrial, often (re)claimed, land through either regulated
tidal exchange (e.g., Masselink et al., 2017) or breaching and lower-
ing of defences viamanaged realignment (e.g., Schuerch et al., 2022).
However, purchasing land and landscaping sites so they can support
the targeted habitat types can be costly, socially unacceptable and
culturally sensitive (e.g., Ledoux et al., 2005; Yamashita et al., 2019).
Alternatively, in situ restoration methods that do not require the
purchase and conversion of terrestrial land, such as transplanting
vegetation (Taylor et al., 2019), are available. Sediment accumu-
lation can also be encouraged using revetments and other struc-
tures, such as coir rolls, sandbags, silt fences and sedimentation
fields to trap sediment and enhance sedimentation rates (e.g.,
Henry et al., 1999; Siemes et al., 2020; Vona et al., 2020; Reeder
et al., 2021; Cox et al., 2022; Gonçalves et al., 2025), or can take
place artificially through the deposition of dredge material (e.g.,
Baptist et al., 2019).

These methods have proven to be relatively successful, with
1,279.84 km2 of saltmarsh gained globally through restoration
between 2000 and 2019, although this is not yet equivalent to the
2,733.33 km2 lost (Campbell et al., 2022). Of the various saltmarsh
restoration methods, the most common, and therefore the most
researched, has been managed realignment. Managed realignment
sites have been shown to offer benefits such as carbon storage and
habitat for fish (e.g., Burgess et al., 2020; Mossman et al., 2022;
McMahon et al., 2023). However, they have a lower diversity and
abundance of key plant species, and increased amounts of

unvegetated ground, in comparison to pre-existing reference
marshes (e.g., Mossman et al., 2012). It has been argued that these
differences result from the sites’ former land use, which is typically
agricultural, causing irreversible alterations to the (re)claimed sedi-
ment (e.g., Spencer and Harvey, 2012). This leads to reduced
hydrological connectivity following site breaching (Tempest et al.,
2015), reduced aeration of the sediment and anoxia (e.g., Spencer
et al., 2017; Van Putte et al., 2025). Managed realignment sites
also have reduced topographic complexity and fewer elevational
niches (e.g., Lawrence et al., 2018), resulting in lower plant diversity
(e.g., Morzaria-Luna et al., 2004).

There is a need for increased large-scale saltmarsh restoration
and creation efforts that mitigate the issues related to prior human
activity and site history identified in managed realignment. One
potential solution is the construction of sedimentation fields, which
have been used historically in theWadden Sea (Dijkema et al., 2001;
Esselink et al., 2011), more recently in locations such as Venice
Lagoon, the Ems-Dollard estuary and the North Sea (Scarton et al.,
2000; Reeder et al., 2021; Siegersma et al., 2023), and for mangrove
restoration (Winterwerp et al., 2020). This involves (partially)
enclosing an area of intertidal mudflat with the intention of
trapping sediment by reducing tidal currents and wave energy,
increasing sediment deposition and facilitating saltmarsh creation
(Pontee et al., 2021). Consequently, costly site purchases and
landscaping works are not required, and the evolution of themarsh
should not be affected by site history, the trade-off being a loss of
mudflat habitat. In this article, we argue that this perception is a
false distinction, and the construction of sedimentation fields is,
in fact, the continuation of human activity influencing natural
processes.

Figure 1. Aerial imagery of Rumney GreatWharf sedimentation fields, collected by the authors using an uncrewed aerial system, showing the locations of the originally installed and
new sedimentation fields. Themost easterly of the original sedimentation fields was installed in 1989, with the remaining four installed in 2005. The new sedimentation fields were
installed in 2024. The regional (upper insert) and national (lower insert) settings are also indicated.
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We argue this using the case of Rumney Great Wharf, Severn
Estuary, Wales (Figure 1), where sedimentation fields were con-
structed between 1989 and 2005, and extended in 2024. Rumney
GreatWharf allows for temporal comparisons of recent restoration
efforts in the context of current shoreline management policies and
approaches.We then evaluate the future evidence needs that should
be considered to ensure the effective implementation and success of
future restoration and creation attempts through sedimentation
field construction.

Human activity and landscape evolution at Rumney Great
Wharf

Holocene evolution

Rumney Great Wharf’s modern-day landforms and landscape
features result from the intrinsic and long-term relationship
between human activity and landscape evolution (Figure 2). Bell
et al. (2000) described the general Holocene sedimentary sequence
of the Severn Estuary, which comprises a series of layers of estuarine
sediments and peats. The uppermost of these layers is exposed at
low tide, and more recent deposits have often been eroded. The
oldest layer is known as the Wentlooge Formation (Allen and Rae,
1987) and comprises three subdivisions: the lower, middle and
upper Wentlooge formations. The lower Wentlooge Formation
consists of estuarine clays and silts and formed during a period of

rapid sea level rise during the early Holocene (Bell and Neumann,
1997). Analysis of pollen and foraminifera contained within these
sediments indicates that the site supported mudflats with some
localised areas of saltmarsh (Green, 1989).

The middle Wentlooge Formation was deposited following the
deceleration in the rate of sea level rise around 6,000 BP. The
formation consists of peat intercalated with estuarine clays and
silts, and continued to form until 2,500 BP (Allen, 1997) when the
upperWentlooge Formation was laid down following a widespread
marine transgression. The upper Wentlooge Formation consists of
marine silts and clays and can be up to 4.5 m in depth (Bell et al.,
2000). There have been subsequent periods of erosion and depos-
ition, with three intertidal formations being deposited since the
medieval period. The earliest of these is the Rumney Formation,
dating to the thirteenth to fourteenth centuries (Allen, 1987). The
second deposit, the Awre Formation, was laid down in the late
nineteenth century, with the Northwick Formation being deposited
during the twentieth century (e.g., Allen, 1997).

Prehistoric and historic (4150–800 BP) human activity

The earliest evidence of human activity at Rumney Great Wharf
includes the construction of fish traps and livestock pens (Nayling,
1991) during the Bronze Age (4150 to 2750 BP). However, the first
evidence of large-scale landscape change due to human activity
occurs alongside evidence of Iron Age and Roman activity,

Figure 2. Schematic representation of the landform evolution (top), prehistoric and historic human activity (middle) and recent human activity (bottom) at Rumney Great Wharf.
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including pottery and coins (e.g., Fulford et al., 1994). Specifically,
Allen and Fulford (1986) propose that a series of drainage ditches
containing Romano-British pottery is indicative of the first planned
reclamation attempts at the site.

Subsequent phases of reclamation and landscape change
occurred, including the construction of an earth embankment
seawall before the thirteenth century AD, which prevented
deposition of the more recent Rumney, Awre and Northwick
formations on the landwards side (e.g., Fulford et al., 1994). The
resulting modern-day intertidal landscape (Figure 3) consists of
areas of saltmarsh formed on the Rumney, Awre and Northwick
formations, with the peats of the middle Wentlooge Formation
exposed to the west of the saltmarsh due to erosion (Figure 3b).
In isolated areas, saltmarsh has colonised the exposed peat.
Behind the modern seawall is the Gwent Levels, a reen and
ditch habitat formed through intertidal land claim. This area is a
Site of Special Scientific Interest and supports rare and endan-
gered insect species such as Odontomyia ornata and Hydaticus
transversalis.

Recent (mid-twentieth century to present) human activity

Since the mid-twentieth Century, there has been a trend of erosion
and saltmarsh loss at Rumney Great Wharf. It is estimated that the
foreshore has lowered at a rate of 0.01–0.04 mmper year since 1965
(Armstrong et al., 2021). There have been several attempts to
prevent and reverse these losses. In the 1950s, a Spartina planting
campaign took place to try and stabilise the saltmarsh (ABPmer,
2009) – the success of which remains unknown, as no subsequent
monitoring work was undertaken. Between 1989 and 2005, brush-
wood sedimentation fields were constructed (Figure 1). Initially,
in 1989, a single sedimentation field was constructed in an area of
mudflat to the west of, and fronted by, a pre-existing saltmarsh. The
fencing was subsequently extended westwards in 2005, creating five
sedimentation fields. Rock revetment was also added in 2005 to
stabilise the channels and cliff between the upper and lower marsh,
which in some places is 3 m high. Since construction, saltmarsh has
developed in the eastern part of the sedimentation fields, where
elevation has increased by over 0.5 m (Armstrong et al., 2021).

Figure 3. Imagery taken by the authors in May 2023 of (a) the western end (looking eastwards) of the Rumney Great Wharf sedimentation fields, including the remaining posts from
the original brushwood fencing and the seawall with the Gwent Levels behind to the left of the image, (b) the exposed peats of the middle Wentlooge Formation to the west of the
sedimentation fields and (c) the in situ posts remaining from the original brushwood fencing construction.
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However, the fencing was not maintained or routinely monitored
since 2010 and has subsequently been eroded, leaving just the
support posts in situ (Figure 3c).

Due to concerns over the continued flood defence capabilities of
the seawall, in addition to habitat loss, Natural Resources Wales
reviewed the management of the site and the possibilities for salt-
marsh restoration (Armstrong et al., 2021). Re-implementing and
extending new sedimentation fields was identified as the most
suitable option, with the new fencing constructed between July
and September 2024.

Human activity continues to influence natural processes

The requirement to defend former saltmarsh, which has been
drained for terrestrial use, through further saltmarsh creation
within mudflat habitat presents an intriguing paradox. This is
enhanced by the ecological significance and statutory designations
of the drained saltmarsh behind the seawall, driving the need to
reinforce flood defences and maintain a “Hold the Line” approach
to coastal management. Restoring and compensating for saltmarsh
loss is required legally, and to prevent and mitigate the impacts of
climate change through carbon sequestration and flood defence
(e.g., Kiesel et al., 2022; Mossman et al., 2022; McMahon et al.,
2023). Sedimentation fields provide an opportunity to do this in
locations where other methods, such as managed realignment, are
not possible. This is usually due to a need to maintain defences to
protect designated habitats or infrastructure, cost or negative public
opinion (e.g., Ledoux et al., 2005; Esteves, 2014) and may help to
reduce the net loss of saltmarsh (e.g., Campbell et al., 2022). In
addition, sedimentation fields do not have the same limitations on
saltmarsh ecosystem functioning imposed by former agricultural
land-use at managed realignment sites.

Past human activity is still, however, likely to have influenced
site formation processes, and hence themodern-day landscape, and
should be accounted for when setting restoration targets, such as
the intended saltmarsh extent or habitat type. For example, at
Rumney Great Wharf, if restoration were to target similar habitats
to those present before any human activity took place at the site
during the Bronze Age, then it would likely be targeting a similar
environment to either the lower or middle Wentlooge formations.
This would result in the restoration of either the mudflat with some
areas of saltmarsh (lower Wentlooge), and an environment not too
dissimilar to the modern-day landscape or peats with some inter-
tidal areas (middle Wentlooge). If the habitats before Romano-
British reclamation attempts were targeted, then the marine silts
and clays of the upper Wentlooge Formation could be recreated.
Under both scenarios, the subsequent site evolution alongside the
influence of later human activity, including the deposition and
(in places) erosion of the Rumney, Awre andNorthwick formations
on the seaward side of the seawall (Allen, 1987; Allen, 1997; Bell
et al., 2000), would not be accounted for. Restoration to a defined
(pre)historic baseline is likely to be impossible given current and
future projected sea level rise, and restoration targets should rather
consider the most appropriate habitat types needed to meet the
objectives of the scheme.

Future sedimentation fields: Evidence requirements

As demonstrated for Rumney Great Wharf, restoration using sedi-
mentation fields is not necessarily without the influence of previous
human activity and can arguably be viewed as the continuation of

human manipulation, albeit with a step-change towards encour-
aging saltmarsh growth. Therefore, it should be recognised that the
use of sedimentation fields represents the management of hydro-
logical functioning and sedimentation processes to artificially
encourage saltmarsh creation rather than restoring natural func-
tioning or processes and allowing the saltmarsh to develop. It also
remains unclear whether saltmarsh created using this method can
be self-sustaining, or whether continued maintenance is required.
However, it remains important that the required and/or targeted
ecosystem functioning and services, such as wave attenuation,
carbon storage, habitat extent and species diversity, are provided.

To date, the limited number of studies assessing sedimentation
fields have focused on predicting site evolution using numerical
models (e.g., Dao et al., 2018; Siemes et al., 2020), rather than
empirical observations. Those studies that have presented field-
based evaluations of sedimentation fields have tended to focus on
mangroves (e.g., Winterwerp et al., 2020), relatively small-scale
structures built within or as an extension of pre-existing marsh
(e.g., Scarton et al., 2000; Gonçalves et al. 2025) or the establishment
of pioneer vegetation (Siegersma et al., 2023). Our evaluation of
Rumney Great Wharf has demonstrated that using sedimentation
fields for saltmarsh restorationmay not result in the development
of the equivalent habitat the site used to support or would support
without human influence. Consequently, it is essential that the
baseline habitat creation requirements are established before
site implementations. While this is also true of other methods
of restoration, including managed realignment, many managed
realignment sites are designed and landscaped to deliver a par-
ticular habitat type or function (e.g., Pearce et al., 2011; Burgess
et al., 2014). Provision of a particular target, service or deliverable
is often used as the mechanism to justify and fund saltmarsh
restoration schemes, and this approach is likely to continue given
the move towards funding restoration through carbon finance
mechanisms (Mason et al., 2022; Burden et al., 2023).

Regardless of the specific drivers, restoration is likely to have
multiple benefits, and it is important that sites support a function-
ing ecosystem (Billah et al., 2022). Consequently, it is crucial that
sedimentation fields aremonitored to evaluate ecosystem function-
ing, including empirical assessments of the biogeomorphic pro-
cesses. Specifically, sedimentation fields might provide benefits,
such as the trapping of suspended contaminants, as demonstrated
for silt fences used to retain toxic particles from dredge spoil (Henry
et al., 1999). The formation of morphological features, the supply of
sediment, ecological succession and the role of stochastic events
such as storms (Scarton et al., 2000) also require further evaluation
to fully understand site development. For example, studies into the
relationship between sediment accretion and plant colonisation
(Brückner et al., 2020) will inform assessments of saltmarsh estab-
lishment and development. In addition, topographic complexity
and the formation of a range of elevational niches are known to play
an important role in increasing plant diversity (e.g., Morzaria-Luna
et al., 2004; Kim et al., 2013). Understanding if (and when) topo-
graphic variability develops as sediment accretes will help inform
evaluations of saltmarsh development and functioning, including
the level of flood defence provided by the scheme (e.g., Rupprecht
et al., 2017). These data can then be used to inform themanagement
and maintenance of sedimentation fields following construction,
informing the design of future restoration schemes to maximise
ecosystem service delivery.

In addition to assessments of the site itself, the benefits of
sedimentation field construction on pre-existing coastal flood
defences, management approaches and the wider ecosystem should
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also be considered. Sedimentation fields may provide opportunities
to restore saltmarsh in locations where coastal flood defences
cannot be breached and flood defence standards need maintaining
(Pontee et al., 2021). This includes locations where there is a need to
protect infrastructure or areas of rare and important habitat, but
without necessarily upgrading or investing in seawalls and hard
defences. Consequently, the use of sedimentation fields for both
flood defence and saltmarsh restoration is likely to increase. How-
ever, the required size and rate of marsh development needed to
deliver the necessary attenuation in wave energy requires further
investigation.

Alongside uncertainty relating to the level of flood defence
provided, it is unknown if or when restored marshes in sedimen-
tation fields become self-sustaining or whether there needs to be a
continued commitment to maintaining the fencing and structures.
Without continued maintenance, there is potential for the restored
marsh to start eroding and be lost unless a certain vegetation cover
threshold is reached (e.g., D’Alpaos, 2011). It also remains unclear
who is responsible for funding this maintenance, and what the
public perception will be. Encouraging saltmarsh growth at the
expense of mudflat habitat may, in some locations, have consider-
able implications and require strong justification. Nonetheless, at
locations where the mudflat is eroding, the need to stabilise the
mudflat is becoming more pressing. For example, at Rumney Great
Wharf, as further erosion of the Rumney, Awre and Northwick
formations occurs, more of the middleWentlooge peat deposits are
exposed and subject to erosion (Armstrong et al., 2021). These peats
likely contain a relatively high organic carbon stock (e.g., Chmura
et al., 2003) and their erosion could cause the release of carbon
sequestered within the peats up to 6,000 years ago.

Creating saltmarsh on mudflats will not only help stabilise erod-
ingmudflats but could help to protect the pre-existingmarsh and, in
doing so, protect the organic carbon already stored within it
(Smeaton et al., 2024), providing further justification for future site
implementation. The construction of sedimentation fields may also
help meet the saltmarsh extent increases targeted by coastal man-
agers. For example, in England, the EnvironmentAgency’s Restoring
Meadow, Marsh and Reef (ReMeMaRe, https://ecsa.international/
rememare/restoring-meadow-marsh-and-reef-rememare) initiative
is targeting a 15% increase in saltmarsh by 2043. Likewise, since
the early 1990s, saltmarsh restoration in the United Kingdom
through tidal inundation and depositing dredged sediment has
resulted in the delivery of nearly 3,000 ha of new intertidal habitat
(Ladd, 2021). However, this does not deliver enough habitat to offset
the reduction in saltmarsh extent that is known to have occurred
historically (Phelan et al., 2011), whichmust first be addressed before
a net gain can be achieved.

Conclusion

Sedimentation fields may mitigate some of the issues observed in
other saltmarsh restoration or creation approaches (e.g., poor
drainage, reduced plant abundance and diversity). However, we
argue that they are not without human influence and remain
shaped by both historic and ongoing human activity. The Rumney
Great Wharf example demonstrates that such schemes should not
be considered a “return to nature” but a managed evolution of
coastal landscapes. There remains an expectation that restoration
efforts provide a particular ecosystem service or deliverable, and it is
still important to ensure that sites deliver additional benefits and
that a functioning ecosystem is restored. It is also necessary to

protect the pre-existing saltmarsh habitat and reduce erosion rates.
Further understanding of the physical functioning of sedimenta-
tion fields is clearly needed. This includes empirical data on the
supply and delivery of sediment, and the influence of these factors
on the establishment of saltmarsh habitat. The need for these
datasets will become more pressing as coastal managers and
decision-makers look to develop more sustainable approaches to
coastal flood defence, coupled with the increased pressures of sea
level rise and increased storm magnitude and frequency. This is
particularly the case in locations where approaches such as man-
aged realignment are not possible, and there is a need to increase
wave attenuation to reduce pressures on flood defences and/or
compensate for saltmarsh habitat loss.
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