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Jamie Hodgkins d, Laura Niven e, Marie-Cécile Soulier f , Susan Lagle g,h, Christelle Dancette f,  
Teresa E. Steele g , Jean-Christophe Castel i, Shannon McPherron j, Jean-Jacques Hublin b,j,  
Karen Ruebens b,k , Emmanuel Discamps f,** , Kate Britton a,***

a Department of Archaeology, University of Aberdeen, St. Marys Building, Elphinstone Road, Aberdeen, AB24 3UF, United Kingdom
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A B S T R A C T

Understanding prey species spatial behaviour is key to unravelling contemporary hunter-gatherer subsistence 
and movement patterns. Here, we use sulfur (δ34S), carbon (δ 13C) and nitrogen (δ 15N) isotope compositions of 
bone collagen extracted from Rangifer, Equus, Bovinae, Capreolus, and Cervus (n = 244) to explore isotope spatial 
and dietary niches of several key hunter-gatherer prey species from three Late Pleistocene sites in southwestern 
France between MIS 5 and MIS 3. Alongside morphological identification, Zooarchaeology by Mass Spectrometry 
(ZooMS) was used to confirm deer taxa (n = 125) allowing for a better interpretation of the isotopic data. δ34S 
analysis identifies differences in ranging sizes between ungulates with known large ranging sizes from those with 
small to medium size ranges. Rangifer, who, today, have large home ranges, have the largest range of δ34S values 
and lowest δ34S values with low to no overlap with other ungulate species through time. This indicates that 
Rangifer had a larger range size with a distinct isotopic area that is different to other ungulates, potentially 
farther inland and farther north. Bovines and Equus have largely overlapping δ34S values that are similar to the 
modern local δ34S value of the sites, and Cervus and Capreolus have δ34S values that overlap but are slightly 
higher than the modern δ34S values, potentially indicating a ranging area to the west of the sites. These results 
reveal that Neanderthals hunted three different groups of game who occupied different areas of the landscape.
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(R.K. Heikkilä), Aurelien.Royer@u-bourgogne.fr (A. Royer), Jamie.Hodgkins@UCDenver.edu (J. Hodgkins), laura@lauraniven.com (L. Niven), marie-cecile. 
soulier@cnrs.fr (M.-C. Soulier), susan.lagle@gmail.com (S. Lagle), christelle_dancette@orange.fr (C. Dancette), testeele@ucdavis.edu (T.E. Steele), jean- 
christophe.castel@ville-ge.ch (J.-C. Castel), mcpherro@eva.mpg.de (S. McPherron), jean-jacques.hublin@college-de-france.fr (J.-J. Hublin), k.j.ruebens@reading. 
ac.uk (K. Ruebens), emmanuel.discamps@cnrs.fr (E. Discamps), k.brtitton@abdn.ac.uk (K. Britton). 

Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev

https://doi.org/10.1016/j.quascirev.2025.109744
Received 23 May 2025; Received in revised form 2 December 2025; Accepted 3 December 2025  

Quaternary Science Reviews 374 (2026) 109744 

Available online 17 December 2025 
0277-3791/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0001-7301-3847
https://orcid.org/0000-0001-7301-3847
https://orcid.org/0000-0002-7575-4259
https://orcid.org/0000-0002-7575-4259
https://orcid.org/0000-0002-0139-8765
https://orcid.org/0000-0002-0139-8765
https://orcid.org/0000-0003-2439-7308
https://orcid.org/0000-0003-2439-7308
https://orcid.org/0000-0002-3091-6488
https://orcid.org/0000-0002-3091-6488
https://orcid.org/0000-0002-5621-5786
https://orcid.org/0000-0002-5621-5786
https://orcid.org/0000-0002-2464-0761
https://orcid.org/0000-0002-2464-0761
mailto:sarah.barakat@abdn.ac.uk
mailto:elodie-laure.jimenez@abdn.ac.uk
mailto:raija-katarina.heikkila@college-de-france.fr
mailto:Aurelien.Royer@u-bourgogne.fr
mailto:Jamie.Hodgkins@UCDenver.edu
mailto:laura@lauraniven.com
mailto:marie-cecile.soulier@cnrs.fr
mailto:marie-cecile.soulier@cnrs.fr
mailto:susan.lagle@gmail.com
mailto:christelle_dancette@orange.fr
mailto:testeele@ucdavis.edu
mailto:jean-christophe.castel@ville-ge.ch
mailto:jean-christophe.castel@ville-ge.ch
mailto:mcpherro@eva.mpg.de
mailto:jean-jacques.hublin@college-de-france.fr
mailto:k.j.ruebens@reading.ac.uk
mailto:k.j.ruebens@reading.ac.uk
mailto:emmanuel.discamps@cnrs.fr
mailto:k.brtitton@abdn.ac.uk
www.sciencedirect.com/science/journal/02773791
https://www.elsevier.com/locate/quascirev
https://doi.org/10.1016/j.quascirev.2025.109744
https://doi.org/10.1016/j.quascirev.2025.109744
http://crossmark.crossref.org/dialog/?doi=10.1016/j.quascirev.2025.109744&domain=pdf
http://creativecommons.org/licenses/by/4.0/


1. Introduction

Pleistocene faunal remains are often the most abundant organic re
mains at archaeological and palaeontological sites and can provide a 
wealth of information on human-animal-environmental interactions in 
the past. These remains are often the focus of geochemical studies which 
aim to reconstruct human behavioural patterns based on animal re
sources, put archaeological layers in biochronological frameworks, and 
study past climates in the broadest sense (Craig et al., 2010; Drucker 
et al., 2003a, 2018a; Drucker and Bocherens, 2004; Drucker and Fon
tana, 2024; Hedges et al., 2004; Jones et al., 2021; Jones and Britton, 
2019; Reade et al., 2020a, 2020b; Stevens et al., 2014; Stevens and 
Hedges, 2004). Isotope zooarchaeology has become increasingly useful 
in Pleistocene studies to provide a baseline for human dietary recon
struction (Bocherens and Drucker, 2021; Craig et al., 2010; Kuzmin 
et al., 2021), modelling dietary niches of extinct and extant species in 
ancient ecosystems using carbon and nitrogen isotope compositions 
(δ13C and δ15N) (Baumann et al., 2020; Britton et al., 2012; Richards 
et al., 2008), reconstruct local palaeoclimatic conditions using oxygen 
isotope compositions (Bernard et al., 2009; Britton et al., 2019; 
Fernández-García et al., 2022; Pederzani et al., 2021a, 2021b; Pryor 
et al., 2013; Royer et al., 2013; Tütken et al., 2007) as well as to explore 
past migratory behaviours of both humans and animals using strontium 
isotope analysis (87Sr/86Sr) (Barakat et al., 2023; Britton et al., 2011; 
Copeland et al., 2016; Hodgkins et al., 2024; Kowalik et al., 2020; Lin
scott et al., 2023; Richards et al., 2021; Sillen et al., 1995, 1998; Wooller 
et al., 2021), with recent approaches becoming increasingly focused on 
multi-isotopic analysis which allows us to understand various environ
mental and biological factors affecting past faunal behaviours (Britton 
et al., 2023a, 2023b; Heddell-Stevens et al., 2024; Jones et al., 2019).

In recent years, applications of sulfur isotope analyses (δ34S) have 
increased in archaeological and palaeontological studies (Lamb et al., 
2023; Madgwick et al., 2019a, 2019b; Nehlich, 2015; Nehlich et al., 
2010; Nehlich and Richards, 2009; Rand and Nehlich, 2018; Reade 
et al., 2020a, 2020b; Richards, 2023; Stevens et al., 2021, 2023), facil
itated in part by advances in mass spectrometry that allow analyses of 
several isotope elements with smaller sample sizes (1.2–1.5 mg) (Sayle 
et al., 2019). While useful in dietary reconstruction (Czere et al., 2021; 
Lamb et al., 2012; Nehlich et al., 2010, 2011, 2014; Oelze et al., 2012; 
Privat et al., 2007; Richards et al., 2001, 2003), and likely impacted by 
local climatic conditions, such as the extent of permafrost (Kemeny 
et al., 2023; Reade et al., 2020b; Stevens et al., 2023), sulfur isotopes 
vary across landscapes with underlying lithology and coastal proximity, 
making them especially useful in reconstructing past movement patterns 
(Bataille et al., 2021; Britton et al., 2023b; González-Rabanal et al., 
2025; Linderholm et al., 2014; Nehlich et al., 2014; Richards, 2023; 
Richards et al., 2001).

Here, we present a large new sulfur isotope dataset (n = 244) from 
five different ungulate species identified via morphology and Zooarch
aeology by Mass Spectrometry (ZooMS) across three Late Pleistocene 
archaeological sites in southwestern France (Roc de Marsal, Pech de 
l’Azé IV and Combe Grenal), and from archaeological layers covering 
the MIS 5 to 3 period. The aim of this work is to evaluate variations in 
δ34S values between taxonomic groups (Equus ferus (horse), Bos pri
migenius/Bison sp. (bovines), Rangifer tarandus (reindeer), Cervus elaphus 
(red deer), Capreolus capreolus (roe deer)), in order to reconstruct the 
ecological behaviour of ungulate communities and to explore potential 
ecological variations throughout time during a period with large cli
matic variations. In the current study, δ34S data are generated alongside, 
and compared to, δ13C and δ15N data as a means of further exploring 
relationships between landscape use and dietary niche.

2. Reconstructing faunal spatial and dietary palaeoecology 
through the carbon, nitrogen and sulfur analysis of bone 
collagen

Carbon (δ13C) and nitrogen (δ15N) isotope compositions from bone 
collagen have been used to reconstruct the feeding behaviours and di
etary niches of both domestic and wild fauna for decades (Codron et al., 
2016; Feranec, 2007; Hofman-Kamińska et al., 2018; Kristensen et al., 
2011; Lee-Thorp et al., 1989, 2003; Schwarcz and Schoeninger, 2012; 
Schwartz-Narbonne et al., 2019; Stewart et al., 2003; Van Der Merwe, 
1982; Vogel, 1978; Vogel and Van Der Merwe, 1977). Although most 
useful in differentiating between the use of marine and terrestrial re
sources (Schoeninger and DeNiro, 1984; Schwarcz and Schoeninger, 
2012; Walker and Deniro, 1986); between C3 and C4 plant foods 
(Ambrose, 1986; Cerling and Harris, 1999; DeNiro, 1987; Jaramillo 
et al., 2022; Norman et al., 2009; Tipple and Pagani, 2007; Van Der 
Merwe, 1982; Vogel and Van Der Merwe, 1977); and identifying trophic 
level relationships (Ambrose, 1991; Bocherens and Drucker, 2003; 
Deniro and Epstein, 1981; Schoeller, 1999; Schoeninger and DeNiro, 
1984), these approaches can also be useful in identifying dietary habits 
and niche feeding behaviours even amongst terrestrial herbivores 
(Britton et al., 2012, 2023b; Codron et al., 2016; Reiss et al., 2023; 
Tieszen, 1991). As bone collagen remodels during an individual’s life, 
isotopic information from bone collagen provides an average of inputs 
that reflect dietary habits in the years prior to death (Britton, 2020; 
Goude and Fontugne, 2016; Richards, 2020; Schwarcz and Schoeninger, 
2012). While sulfur isotope data (δ34S) is also obtained from bone 
collagen, until recent years, applications have been severely limited due 
to analytical issues and needing large sample sizes. Recent mass spec
trometry advancements allow for sequential measurements of δ13C, 
δ15N, δ34S in a single sample, facilitating simultaneous analysis of di
etary, ecological, and spatial studies, thus increasing the number of 
studies using δ34S isotopic analysis (Nehlich, 2015; Richards, 2023; 
Sayle et al., 2019).

2.1. Carbon (δ13C) and nitrogen (δ15N)

Carbon isotope ratios between 13C to 12C (δ13C, as compared to the 
international standard V-PDB) in herbivore bone collagen primarily 
reflect their diet and the types of plants consumed. For example, bone 
collagen δ13C values can differentiate between grazers and browsers in 
mixed C3-C4 ecosystems (Codron et al., 2016; Tieszen, 1991; Vogel, 
1978), where differences in photosynthetic pathways influence the 
values of these plants (Bender, 1968; Cerling, 1999; Cerling and Harris, 
1999; DeNiro, 1987; Heaton, 1999; Kellogg, 1999; Tipple and Pagani, 
2007; Van Der Merwe, 1982). In purely C3- or in C3- dominated eco
systems, as found in Pleistocene Northwest Europe, variations in 
collagen δ13C values can reveal dietary habit and niche specialisation 
(Britton et al., 2023b), or reveal climatic conditions (Domingo et al., 
2015; Drucker and Fontana, 2024).

Typical ungulates eating a primarily C3, terrestrial, vascular plant- 
based diet should have δ13C values around − 26 ‰ (DeNiro, 1987; Van 
Der Merwe, 1982). If marine plants, such as seaweeds, are added to the 
diet, the δ13C values will be more enriched (Blanz et al., 2019; Richards, 
2020; Schoeninger and DeNiro, 1984; Schwarcz and Schoeninger, 
1991). Another factor which can affect plant δ13C, and thus bone 
collagen δ13C, is densely covered forests, known as the canopy effect 
which causes depleted δ13C values between − 35 ‰ and − 30 ‰ (Bonafini 
et al., 2013; Drucker et al., 2008; Van Der Merwe and Medina, 1991). 
Thus, if an animal is primarily foraging in woodlands, their δ13C values 
should be depleted and archaeologists can infer both the presence of a 
more wooded landscape and faunal use of it. In comparison, if there are 
no signs of highly depleted δ13C values, this could indicate a more open 
landscape, although these interpretations should be tested using other 
environmental proxies, such as pollen, charcoal, or small mammals. 
Finally, certain non-vascular plants such as mosses and lichen, typically 
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have more enriched δ13C values compared to vascular C3 plants (Park 
and Epstein, 1960). Archaeological and palaeontological studies on 
reindeer, one of the only species which can consistently consume lichen, 
typically show δ13C values ranging between − 18 ‰ and − 21 ‰ 
(Bocherens, 2003; Brenning et al., 2024; Britton et al., 2023a, 2023b; 
Drucker et al., 2001, 2011b; Fizet et al., 1995; Fjellström et al., 2023; 
Park and Epstein, 1960; Salmi et al., 2020, 2022).

In addition to dietary inputs, other factors can influence tissue δ13C 
values in ungulates, even those consuming an isotopically homogenous 
diet. For example, due to the presence of symbiotic bacteria which 
produce methane, which has very negative δ13C values, foregut feeders 
and ruminants, such as Bovinae and deer species, are expected to have 
slightly elevated δ13C values in comparison to non-ruminants, such as 
horses.

The ratio of 15N–14N (δ 15N, in comparison to the international 
standard, AIR) in bone collagen has primarily been used to study food 
webs and trophic positions, as δ15N increase by 3–5 ‰ with each trophic 
level shift (Ambrose and DeNiro, 1989; Bocherens and Drucker, 2003; 
Britton et al., 2012; Cerling and Harris, 1999; Clementz et al., 2009; 
Codron et al., 2018; Deniro and Epstein, 1981; Hedges, 2003; Palmqvist 
et al., 2008, 2003; Richards and Hedges, 2003; Schoeninger and DeNiro, 
1984; Schulze et al., 1998; Thorp and Van Der Merwe, 1987). This 
normally means that, in comparison to omnivores or carnivores, herbi
vores should have low and very similar δ 15N values to one another. 
However, in practice, baseline enrichment in soils due to local envi
ronmental conditions, or even due to deliberate modifications of soils 
(and thus to crops grown on them) through fertilising, for example, can 
serve to alter soil and plant values (Ambrose, 1986, 1991; Szpak, 2014), 
and potentially also affect herbivore δ 15N values. Climatic conditions 
impact the productivity of nitrogen cycle in soil, with colder and wetter 
climates typically having less productive soil habitats, which leads to 
lower δ 15N values available in plants and herbivore bone collagen 
(Ambrose, 1991; Craine et al., 2015; Drucker et al., 2011a; Hedges et al., 
2004; Reade et al., 2023; Schwarcz et al., 1999; Stevens et al., 2008; 
Stevens and Hedges, 2004; Szpak, 2014; Van Klinken et al., 2002).

Herbivore feeding preferences can also affect δ15N values. For 
example, certain plant species, such as N2-fixing plants (e.g. legumes and 
certain lichens) who receive 15N from the atmosphere will have distinct 
(lower) δ15N values than non- N2-fixing plants who absorb 15N from the 
soil within the same area (Ambrose, 1991; Drucker et al., 2001; Shearer 
et al., 1983; Virginia and Delwiche, 1982; Yoneyama et al., 1986). 
Consequently, animals who consume N2-fixing plants could have lower 
bone collagen δ15N values (Palmqvist et al., 2008). Consumption of 
non-vascular plants can also affect nitrogen values of herbivore bone 
collagen. For example, lichens and mosses, which make up a large 
portion of reindeer winter diets (Drucker et al., 2010; Heggberget et al., 
2002; Hiltunen et al., 2022; Russell et al., 1993; Webber et al., 2022), are 
poor in protein and typically have lower δ15N values (Brenning et al., 
2024; Drucker et al., 2001; Mcleman, 2006; Rioux et al., 2022). 
Comparatively, mushrooms and other fungi, which reindeer may eat in 
summers and autumns, are rich in nitrogen (Brenning et al., 2024; 
Drucker et al., 2010; Rioux et al., 2022).

Finally, metabolic changes and interspecies physiology can also 
affect herbivore δ15N bone collagen (Sponheimer et al., 2003). For 
example, pregnancy, lactation, weaning, and malnutrition can all in
fluence δ15N values (Fuller et al., 2004, 2005, 2006; Gutierrez et al., 
2024). Ruminants also will potentially have more elevated δ15N values 
than non-ruminants (Coltrain et al., 2004; Sealy et al., 1987; van Klinken 
et al., 2002), however this is not seen at all Late Pleistocene sites (Britton 
et al., 2012) and a modern controlled-feeding study did not show a 
significant difference between ruminants and non-ruminants 
(Sponheimer et al., 2003).

2.2. Sulfur (δ 34S)

Sulfur has four naturally occurring isotopes with the following 

abundances: 32S (95.02 %), 33S (0.75 %), 34S (4.21 %), and 36S (0.02 %) 
(Faure, 1986; Nehlich, 2015). The most popular ratio for analysis is 
between 32S and 34S due to their natural high abundances, and this ratio 
is reported as a δ34S value in per mil (‰) against the international 
standard: Vienna Canyon Diablo Troilite (V-CDT) (Nehlich, 2015). The 
most common values found for δ34S across terrestrial landscapes are 
between − 20 and +20 ‰, whereas present-day oceans have a δ34S value 
near +20.3 ‰ (Ault and Kulp, 1959; Krouse, 1980; Nehlich, 2015; Rees 
et al., 1978). Geological sulfur composition in aerobic soil environments 
is dominated largely by weathering bedrock so that lithologies made of 
sulfur-rich rocks (such as evaporites) have higher δ34S compositions 
than areas with sulfur-poor rocks (i.e., sedimentary and igneous rocks) 
(Thode, 1991). During weathering, sulfur is released from the underly
ing bedrock and absorbed by nearby soils; plant roots can then absorb 
δ34S directly from the soil. Typically, δ34S values in plants largely reflect 
the soil δ34S, although in cases where the bedrock has very low con
centrations of sulfur, plants can absorb and reflect δ34S from ground
water, atmospheric deposition (SO2 and SO4

2− ) and aerosols, such as 
marine sea spray, volcanic sulfur compounds, biogenic emissions, and 
dry deposition, with atmospheric sulfur contributing <10 % of soil 
sulfur (Newman et al., 1991; Nielsen, 1974; Stevens et al., 2023; 
Tcherkez and Tea, 2013; Thode, 1991; Trust and Fry, 1992).

Marine sea spray can influence soil and plant δ34S values via the ‘sea 
spray effect,’ which transfers high δ34S values from marine ecosystems 
to otherwise terrestrial environments (Göhring et al., 2015; Nielsen, 
1974; Richards et al., 2001). In areas within 30 km of the coastline, the 
sea spray effect can make up large portions of plant δ34S content, 
although in certain environments, marine aerosols can travel up to 100 
km or even more due to wind patterns and landscape (Szpak et al., 2019; 
Zazzo et al., 2011). This influence decreases at distances farther from the 
coast, and it can be assumed that areas greater than 150 km (or less 
depending on topography and wind patterns) from the coastline have 
little to no sea spray influence (Bataille et al., 2021; Nehlich, 2015; 
Tarrant and Richards, 2024).

In comparison to marine ecosystems, freshwater resources like rivers 
can have very large ranges of δ34S values, which can be influenced via 
lithologies which the river runs through, rainwater, and the source of 
water sulfates (Nehlich, 2015; Robinson and Bottrell, 1997). Plants in 
riverine environments can be thus influenced by river water δ34S values 
via plant absorption of river water; river flooding in floodplains and 
basins can also influence plants in these wider areas (Fry, 2002). The 
inhibition of bacteria in anoxic conditions, for example, due to water
logging or permafrost, can lead to the development of sulfides, which 
have extensive fractionation and can cause very low values in local soils 
or plants which can affect δ34S in mammals using resources from these 
environments (Guiry et al., 2022; Reade et al., 2020a, 2020b; Stevens 
et al., 2022; Thode, 1991). How plants uptake sulfur from the sur
rounding environment is still being investigated, but it is becoming clear 
that a range of factors beyond local lithology can affect sulfur values in 
plants including hydrology of the landscape (such as proximity to the 
coast or rivers) or local climatic conditions (such as the presence of 
permafrost (Cheung et al., 2021; Fry, 2002; Reade et al., 2020a, 2020b; 
Stevens et al., 2022; Tarrant and Richards, 2024). Furthermore, in 
contemporary environments, anthropogenic sources of sulfur through 
agricultural fertilisation, emissions from gas plants and mining may 
influence local soils and thus plants (Hinckley et al., 2020; Krouse et al., 
1996; Krouse and Mayer, 2000; Rogers et al., 2017; Strauch et al., 2001; 
Winner et al., 1978); and isotopic analysis of sulfur in lichen (often 
focusing on arboreal types) is frequently used to identify anthropogenic 
pollution (Niepsch et al., 2023; Yun et al., 2010).

Mammalian bodies require sulfur to create crucial protein-building 
amino acids cysteine and methionine, which help the body metabolise 
food and protect cells from diseases; however, mammals cannot produce 
their own sulfur and are therefore reliant on dietary input (Nehlich, 
2015; Nimni et al., 2007). Based on minimal sulfur fractionation rates in 
tissue uptake (less than 2.5 ‰ (Richards, 2023; Nehlich, 2015)), and 
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mammals requiring sulfur from their diet, theoretically sulfur isotopes 
should be particularly useful in recreating diet and tracking provenance 
in both herbivores and terrestrial omnivores, as their bone collagen 
should reflect an average value of the localities they were sourcing their 
food (Nehlich, 2015; Richards, 2023; Richards et al., 2003; Stevens 
et al., 2023; Tcherkez and Tea, 2013). However, given the multiple 
potential ecosystem inputs of sulfur at any one location, and the equi
finality that can be further introduced through different dietary sources 
(e.g., marine fish), the interpretation of sulfur isotope data remain 
complex (Richards, 2023).

Despite its complexities, δ34S is becoming an increasingly useful tool 
for modern and past ecological investigations. Nonetheless, to fully 
characterise potential dietary inputs the combination of other isotope 
compositions (δ13C and δ15N) is needed to interpret δ34S for potential 
mobility information. Although subsistence choices could complicate 
interpretation of omnivores and carnivores, for instance with freshwater 
fish consumption (Ebert et al., 2021; Hu et al., 2009; Irvine and Erdal, 
2020; Nehlich et al., 2010, 2011; Privat et al., 2007; Rand et al., 2020; 
Richards, 2023; Tsutaya et al., 2019), it is assumed that due to their diet, 
herbivore δ34S values should reflect only the geographical and envi
ronmental factors influencing plants. Therefore, this approach offers the 
opportunity to identify herbivorous mammals with local ranges and 
those with more expansive ranges whose δ34S value should reflect the 
broader environmental inputs. In a food web study in Late Pleistocene 
Belgium, for example, δ34S data was used to demonstrate residence 
differences between hominin groups and to highlight the migratory 
behaviour of some species (such as reindeer) and – conversely – the 
relatively local ranging behaviours of others (Wiβing et al., 2019). This 
method thus has great potential, to explore differences in habitat use and 
total range size between different species, and to investigate variations 
through time (Bocherens et al., 2015a; Britton et al., 2023a, 2023b; 
Drucker et al., 2015; Reade et al., 2020b; Wiβing et al., 2019).

To date, the majority of δ34S studies have explored relative differ
ences between species or through time, to investigate the potential im
pacts of climate change and the evolution of animal behaviour (Britton 
et al., 2023b; Reade et al., 2020a). Recent approaches focused on 
developing predicted landscape environmental δ34S variability in soils 
and plants (i.e., isoscapes) offer new opportunities to move beyond 
identification of relative trends and to estimate areas of the landscape 
used. These isoscapes offer opportunities to be a baseline to reconstitute 
herbivorous mobilities within a spatial environment. It is important to 
note these reconstructed sulfur isoscapes are still in development, in 
particular for past periods, because of potential problems of modern 
pollution (i.e. anthropogenic contamination issues from agricultural 
practices and factory pollution) and past biotic and abiotic conditions (i. 
e. permafrost and wetlands), which could be prevalent in the Pleistocene 
(Aguraiuja-Lätti et al., 2022; Bataille et al., 2021; Brlík et al., 2024; 
Evans et al., 2023; Lamb et al., 2023; Stevens et al., 2022).

By analysing δ34S in bone collagen we also aim to recreate long-term 
spatial palaeoecology of fauna using sulfur isotopes. As δ34S values in 
plants typically vary by distance to the sea, changes in geology, and 
presence of permafrost, if certain fauna have a small δ34S range it should 
suggest they are moving within a limited area of the landscape whereas 
fauna with larger δ34S ranges are expected to move further around the 
landscape to incorporate more varying values. Thus, the goal of this 
study is to analyse multiple ungulate species from three Late Pleistocene 
sites ranging from MIS 5 to MIS 3 to identify any spatial partitioning 
between selected taxa that may be evident in the δ34S data. The variation 
will allow us to evaluate fauna that likely had lower levels of mobility/ 
smaller home ranges from those whose annual range was likely to be far 
larger. Along with interspecies differences, diachronic variation and 
relationship to (isotopic) dietary niche (as evidenced by δ13C and δ15N 
values) will also be explored.

3. Sites and species targeted

Renowned for its karstic landscape and subsequently rich Middle and 
Upper Palaeolithic archaeology, the abundant Late Pleistocene 
mammalian fossil record of the Dordogne allows archaeologists to un
derstand changes in human and animal behaviour alongside environ
mental changes over thousands of years. Three Late Pleistocene sites in 
the Perigord region, Roc de Marsal, Combe Grenal, and Pech de l’Azé IV 
(Fig. 1), were chosen for this study, as they each contain an extensive 
record of ungulate remains (such as reindeer, bovines, horse, and red 
deer), are relatively close (~70 km2) and have concurrent levels dating 
between MIS 5 to MIS 3. These sites thus offer an opportunity to examine 
the relative faunal home range size of these different ungulate species 
over a long period of time with distinct climate conditions, within a 
specific region of France. Furthermore, these sites have previously been 
investigated and compared to understand Neanderthal habits and 
changes through time such as hunting patterns, prey selection, prey 
mobility, and ability to produce fire (Dibble et al., 2018; Discamps and 
Royer, 2017; Hodgkins, 2012; Hodgkins et al., 2024; Sandgathe et al., 
2011b; Sorensen, 2017). Prior to analysis, the δ34S values of the land
scape surrounding these sites was determined to be between 8 and 9 ‰ 
based on a Holocene δ34S isoscape of Europe, with Roc de Marsal’s δ34S 
value equal to 9.0 ‰, Combe Grenal equal to 8.6 ‰, and Pech de l’Azé IV 
equal to 8.4 ‰ (Fig. 1) (Bataille et al., 2021).

3.1. Roc de Marsal

Roc de Marsal (RDM, 44.895◦N, 0.978◦E) is a cave site located on a 
small tributary of the Vézère River, 80m above the tributary valley floor. 
The site was first excavated in the mid-1900s by Jean Lafille. Starting in 
2004, the site was further excavated by Harold Dibble, Alain Turq and a 
large international team who identified 13 archaeological layers all 
related to the Middle Palaeolithic (Castel et al., 2017; Reeves et al., 
2019; Sandgathe et al., 2011a; Turq et al., 2008). At the bottom of the 
stratigraphy, layers 7 through 5 are characterised by Levallois technol
ogy, with a higher proportion of denticulate in layer 7 and the number of 
scrapers increasing through layer 5 (Reeves et al., 2019; Turq et al., 
2008). Zooarchaeologically, layer 7 has a high proportion of red and roe 
deer, followed by bovines and horse with a small proportion of reindeer. 
By layer 5, reindeer become the dominant species (70 % of NISP), sug
gesting a transition from a warmer to cooler climate conditions (SI Ta
bles 1 and 2, Castel et al., 2017; Reeves et al., 2019). Luminescence 
dating puts layer 7 between 73 and 52 kya, likely deposited during MIS 
4, and layer 5 between 65 and 49 kya. The transition from MIS 4 to MIS 3 
likely occurred during, or around the time, that layers 5 and 6 were 
deposited according to absolute dates (Guérin et al., 2012, 2017), yet 
this chronology has been debated on the basis of other chronological 
arguments (Discamps and Royer, 2017). Layers 2 and 4 contain a rela
tively high level of large, retouched scrapers, which fit within the 
traditional Quina Mousterian lithic industry (Castel et al., 2017; Reeves 
et al., 2019; Turq et al., 2008). These two layers have a high frequency of 
reindeer remains (>70 % NISP), followed by horses, bovines, and red 
deer (Castel et al., 2017; Hodgkins et al., 2016; Lagle, 2021). Although 
the majority of Quina levels across southwestern France are attributed to 
MIS 4 or early MIS 3, indirect dating at RDM assigns the Quina material 
from layers 2 and 4 to around ~49kya (Discamps and Royer, 2017; 
Guérin et al., 2012, 2017).

3.2. Combe Grenal

Combe Grenal (44.806◦N, 1.227◦E) consists of a small cave and a 
large archaeological rich talus located south of the Dordogne River. The 
site was discovered in 1816, making it one of the earliest Palaeolithic 
sites studied in the region. Thus, it has been excavated several times in 
the past two centuries, the most famous of which are the François Bordes 
excavations from 1953 to 1965, although it has also been the focus of 
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more recent investigations (Discamps and Faivre, 2017). At least 65 
layers associated to the Middle Palaeolithic (lower 10 attributed to the 
Acheulian, upper 54 to the Middle Palaeolithic) have been identified and 
are rich in lithics, Neanderthal and faunal remains, bone tools, pigments, 
and ornamentation (latest studies of this material include Berlioz et al., 
2023; Discamps and Faivre, 2017; Faivre et al., 2014; Morin and Lar
oulandie, 2012; Tartar et al., 2022, amongst many others). In layers 37 
to 20, two main lithic technologies can be found. Layers 37 to 27 are 
dominated by Levallois tools with more retouch and resharpening found 
in ‘Ferrassie Levallois’ layers compared to ‘Typical Levallois’ layers. In 

layers 26 to 20 there is a change to Quina Mousterian tools with two 
major typologies found between the layers ‘Classic Quina’ in Layers 26 
to 21 and ‘Denticulate Quina’ in layer 20 (Faivre et al., 2014). While 
recent reviews have highlighted potential bias in the Bordes faunal 
collections (Discamps and Faivre, 2017), over 12,000 specimens repre
senting 27 different species have been identified (Chase, 1986; Delpech 
and Prat, 1995; Guadelli, 1987, 2012). Due to the importance of Combe 
Grenal and the abundance of faunal remains, many studies have used 
Combe Grenal as an example to study changes in palaeoclimate, 
palaeoecology and Neanderthal hunting patterns through time (Berlioz 

Fig. 1. A) Topographical map of region in study. Late Pleistocene sites in focus are highlighted by white stars while modern locations represented by black circles. B) 
Modern δ 34S isoscape based on Bataille et al. (2021) showing the bioavailability of δ34S in the Holocene landscape. Dotted rectangle shows the expanse of map A. 
Maps were created in ArcMap 10.8 and ArcGIS Pro 3.1.2.
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et al., 2023; Discamps et al., 2011; Discamps and Faivre, 2017; Discamps 
and Royer, 2017; Richards et al., 2017). Layers 37 to 33 typically have 
high amounts of temperate fauna such as bovines and red deer. Then, 
from layers 32 to 27 reindeer become more abundant while still having 
large amounts of red deer. Finally, reindeer become the dominant spe
cies in layers 26 to 20, followed by red deer, bison, and horses (SI Table 
3, Guadelli, 1987, 2012). While Combe Grenal is an important site to 
understanding Middle Pleistocene palaeoecology, the sequence has not 
yet been firmly anchored to absolute dates. Ongoing analysis focused on 
obtaining new absolute dates and correlations with other archaeological 
sequences suggest layers 36–27 date to the Ante-Quina periods 
(~115-70 kya) but can be split into two periods (37-33 are temperate 
Ante-Quina, MIS 5, while layers 32- 27 correlate with the end of MIS 5 or 
start of MIS 4) and layers 26-17 correlate with Quina period, which date 
to the end of MIS 4 and Heinrich Stadial 6 (~70-60 kya) (Discamps and 
Royer, 2017).

3.3. Pech de l’Azé IV

Pech de l’Azé IV (44.806◦N, 1.227◦E) is a collapsed rock shelter on 
the foot of a cliff and is one of the four sites associated with Pech de 
l’Azé, located just north of the Dordogne River (Goldberg et al., 2018). 
The site was discovered in 1952 and excavated over the following de
cades by Bordes and Mortureux (Bordes, 1975; Sandgathe et al., 2018). 
The site was re-excavated in the 2000s by McPherron and Dibble, in 
which they identified eight Pleistocene layers spanning nearly 60,000 
years from MIS 5d to MIS 3 (Jankowski, 2018; McPherron et al., 2012; 
McPherron and Dibble, 2000; Sandgathe et al., 2018; Turq et al., 2011).

The lowest layer, layer 8, dates to between ~99 and ~90 kya (based 
on OSL and TL dates) and corresponds to MIS 5d and MIS 5c (Jacobs 
et al., 2016; Jankowski, 2018; Richter et al., 2013). Archaeological finds 
in this layer include Typical Mousterian lithics (Turq et al., 2011), evi
dence of extensive use of fire (Goldberg et al., 2012), and a large number 
of red deer and roe deer remains, which suggests a more temperate, 
wooded environment (Niven, 2013). Above this, layer 6A dates from 
~81 to ~73 kya using OSL dating (Hodgkins et al., 2016; Jacobs et al., 
2016; Jankowski, 2018) which is associated with end of MIS 5a. This 
layer has an increasing amount of Levallois type lithics and has been 
assigned to the Asinipodian (Turq et al., 2011). The zooarchaeological 
record of 6A has an abundance of red deer, followed by roe deer and 
then horses (Niven, 2013; Niven and Martin, 2017). Finally, layer 4A 
dates between ~60 and ~54 kya using OSL dating and corresponds to 
the end of MIS 4 or beginning of MIS 3 (Jacobs et al., 2016; Jankowski, 
2018). This layer has evidence of Quina technology (Jacobs et al., 2016; 
Turq et al., 2011) and has a significant change in zooarchaeological 
record with reindeer being the most abundant remains (SI Table 4, 
Hodgkins et al., 2016; Niven, 2013; Niven and Martin, 2017).

3.4. Species targeted

Bovinae (Bos/Bison) and horse (Equus ferus) were targeted as these 
species are generally anticipated to be non-migratory with moderately 
sized annual home ranges. In modern studies, they have been shown to 
vary substantially from <10 km2 to >1500 km2 in extreme environ
ments (Glassburn et al., 2018; Krasińska and Krasiński, 2013) but are 
typically between 0.6 km2 to ~200 km2, (Kaczensky et al., 2008; 
Linklater et al., 2000; Lugauer, 2010; Schoenecker et al., 2023). Few 
studies exploring the mobility of these species have been conducted on 
Late Pleistocene material, but those undertaken to date do not suggest 
long distance movements in the European Pleistocene (Britton et al., 
2011, 2023a; Pederzani et al., 2021b; Pellegrini et al., 2008). Thus, it is 
likely that these species will help to identify the potential ‘baseline’ for 
our sites and the immediate surrounding area with these species (Britton 
et al., 2011, 2023a; Feranec et al., 2009; Julien et al., 2012; Pellegrini 
et al., 2008). Bos and Bison are both identified within several layers at 
Combe Grenal (Guadelli, 2012). However, distinguishing these species 

among highly fragmented bones (as those sampled for isotopic analyses) 
is currently not possible using morphology or ZooMS. We will thus refer 
to both taxa as bovines. These two species have different evolutionary 
histories, physiologies, and behaviours which could lead to differences 
in isotopic signatures (Rosengren and Magnell, 2024; Terlato et al., 
2019); however, Pleistocene isotopic studies on Bos and Bison have 
shown overlapping patterns in diets and habitat use (Bocherens et al., 
2015b).

Modern roe deer and red deer, as well as Late Pleistocene red deer 
(Barakat et al., 2023; Pilaar Birch et al., 2016), are known to have 
short-distance seasonal (or partial) migrations (Mysterud, 1999; Mys
terud et al., 2011, 2012, 2016, 2017; Peters et al., 2017; Ramanzin et al., 
2007; Wahlström and Liberg, 1995). These taxa, while having small 
seasonal home ranges (roe deer <5 km2 (Ramanzin et al., 2007; Saïd and 
Servanty, 2005) and red deer up to ~200 km2 (Jarnemo et al., 2023)) 
largely based on availability of vegetation, should provide evidence for 
short-distance ranging (albeit potentially seasonally migratory) fauna 
with home ranges that are relatively small.

Modern Rangifer have both migratory and sedentary ecotypes, both 
with considerable ranging needs. Sedentary or woodland caribou can 
have range sizes typically between ~10 km2 (Tyler and Øritsland, 1989) 
when in a contained area, such as Svalbard, to nearly 10,000 km2 

(Wilson et al., 2019) whereas migratory caribou such as those found in 
Alaska or Canada can have ranges between 80,000 and 900,000 km2 or 
more (Nicholson et al., 2016; Schmelzer and Otto, 2003). Studies on Late 
Pleistocene European reindeer have shown that they, like modern 
Rangifer, had both migratory and non-migratory ecotypes (Britton et al., 
2011, 2023a; Price et al., 2017). Although seasonal migrations have 
been confirmed in MIS 4 reindeer in the Charente-Maritime at the site of 
Jonzac (~70 kya (Britton et al., 2011);); recent strontium isotope 
research in the region, including at the sites of Pech IV and RDM 
(Hodgkins et al., 2024), has highlighted that such movements were 
probably restricted to the sedimentary basins of France (i.e., the Aqui
taine, and/or Paris Basins) and that they are not likely to have crossed 
the Massif Central. However, the similarities between bioavailable 
strontium in the Aquitaine and Paris Basin make assigning a distance to 
those movements difficult. Other species, such as bovines and roe deer 
may have had more restricted home ranges or, in the case of red deer and 
horses included more upland areas in their annual ranges (Hodgkins 
et al., 2024) despite likely having smaller range sizes. Where horses, 
bovines and the different deer species are anticipated to have differences 
in both their movement behaviours and total range size of the different 
taxa, differences should be apparent in the sulfur isotope ratios of their 
bone collagen.

4. Material and methods

Ungulate bones from Roc de Marsal (n = 119), Pech de l’Azé IV (n =
59), and Combe Grenal (n = 66) were sampled for isotopic analysis, with 
five different taxonomic groups being selected based on morphological 
identifications that had been previously undertaken or were undertaken 
at the point of sampling. The primary ungulates collected at all three 
sites were Bos/Bison (bovines) (n = 38), Equus ferus (horse) (n = 54), 
Cervus elaphus (red deer) (n = 63), and Rangifer tarandus (reindeer) (n =
73), while Capreolus capreolus (roe deer) (n = 16) were also collected at 
Pech de l’Azé IV due to availability of a large number of samples. In total 
244 bones were selected for collagen extraction and analysis across the 
three sites.

Bone collagen was extracted following the steps as described in 
Britton et al. (2012). This process uses a modification of the Longin 
(1971) method following the recommendations of Collins and Galley 
(1998) and includes an ultrafiltration step (Brown et al., 1988) to the 
>30 kDa fraction to maximise the yield of collagen of good preservation 
and remove any non-organic sulfur (Richards, 2023). Extracted collagen 
was weighed out in tin capsules (1.2–1.5 mg) and analysis for δ13C, δ15N, 
and δ34S was undertaken at the Scottish Universities Environmental 
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Research Center (SUERC), with 20 % of samples (n = 41) being sub
mitted for duplicate analysis. The three isotope ratios were co-analysed 
using the protocols outlined in Sayle et al. (2019). This method uses 
advancements in the EA IsoLink IRMS system (Thermo Fischer Scienti
fic, Bremen, Germany) to co-measure δ13C, δ15N, and δ34S at once using 
a single sample (Sayle et al., 2019). International Atomic Energy Agency 
(IAEA) reference materials USGS40 and USGS41a were used to 
normalise δ13C and δ15N values, while an in-house standard (F-SAAG) 
which is calibrated to the IAEA reference material IAEA-S-2, IAEA-S-3, 
and USG88 was used to normalise δ34S values. Based on repeat mea
surements of the well characterised Elemental Microanalysis IRMS fish 
gelatin standard B2215, precision was determined to be ±0.15 ‰ 
(δ13C), ±0.2 ‰ (δ15N), and ±0.4 ‰ (δ34S). After isotopic analysis, the 
data were assessed for quality indicators, with samples with C:N ratios 
outside of 2.9–3.6, C:S ratios outside of 600 ± 300, and N:S ratios 
outside of 200 ± 100 then being removed from the data set (Ambrose, 
1990; Nehlich and Richards, 2009).

Although all samples were initially selected on the basis of 
morphological identifications, due to the general difficulties in identi
fying fragmentary deer bones (Discamps et al., 2024; Morin et al., 2023), 
the presence of multiple deer species at all sites, and the initial isotopic 
results obtained in this study, the extracted collagen from all Cervidae 
bones (n = 125) was further analysed using peptide mass fingerprinting 
(Zooarchaeology by Mass Spectrometry, ZooMS) to confirm species 
identifications (Buckley et al., 2009). This was undertaken at the Collège 
de France, Paris, following standard protocols (Buckley et al., 2009; 
Welker et al., 2016) with modifications allowing for the analysis of 
lyophilised collagen extracts from isotope analysis (Charlton et al., 
2016; Presslee et al., 2021). Full details are presented in the Supple
mentary Information. All further data analysis, statistical tests, and data 
interpretation are based on these updated taxonomic assignments via 
molecular techniques.

δ34S values were analysed using linear models to test for 1) the effect 
of the species and 2) effect of species based on time-period (Ante-Quina, 
Late Ante-Quina, and Quina) as defined by Discamps and Royer (2017)
by combining absolute dates (where available) with other chronological 
indicators (including local environmental proxies, archaeostratigraphy, 
techno-cultural tradition and the faunal record within the region). 
Ante-Quina samples (~128-70 kya) relate to temperate climates in MIS 
5 and include archaeological levels with a high proportion of red and roe 
deer and Levallois industries. Late Ante-Quina samples mostly relate to 
end of MIS 5 to early MIS 4 when climate becomes cooler and reindeer 
become more prevalent but red deer are still present in larger numbers, 
RDM layers 7-5 date to MIS 4 - early MIS 3, but are assigned to this 
period based on the lithic and zooarchaeological record. The majority of 
Quina samples (~70-60 kya) correlate to MIS 4 or the beginning of MIS 
3, with the exception of RDM layers 4 and 2 which date to ~50 kya and 
relate to late MIS 4 or early MIS 3 but are still assigned to the Quina time 
period based on stone tools, and reindeer dominated assemblages 
(Discamps and Royer, 2017). As sample numbers were low when divided 
by time period and the isotopic results by species violated homogeneity 
of variance (δ34S) or were not normally distributed (δ13C), a 
Kruskal-Wallis test and post-hoc Dunn Test were used to compare species 
and species by time-period. Finally, we statistically analysed for the 
point-estimate overlap between δ13C - δ34S core isotope area of species in 
time-periods based on the maximum likelihood estimated SEA_c using 
SIBER in R (Jackson et al., 2011). The total area of isotope overlap be
tween species was calculated by transforming convex hulls from SIBER 
into spatial objects and computing minimum convex polygons before 
calculating the intersection area and proportion of overlap. All data 
were analysed in R software using R versions 4.3.0 (R Core Team, 2024).

5. Results

5.1. ZooMS results and isotopic quality control

Out of 244 samples selected for collagen extraction, 51 samples 
failed to produce any or sufficient collagen for isotopic and/or ZooMS 
analysis and 12 did not pass isotopic quality control indicators (DeNiro, 
1985; Nehlich and Richards, 2009). Of the 125 cervid bones analysed for 
ZooMS, 18 (14.4 %) returned differences between morphological and 
ZooMS identifications, and one sample proved inconclusive. ZooMS can 
identify Rangifer tarandus and Capreolus capreolus to species level, 
however can currently not distinguish Cervus/Megalocer
os/Dama/Alces/Saiga. Considering the assemblages analysed, the 
abundance of Cervus elaphus remains, the absence of Dama/Alces/Saiga 
at the sites studied, the extreme scarcity of Megaloceros remains in the 
zooarchaeological assemblages from sites selected, along with the 
cortical size of bones (which is more compatible with Cervus than with 
Megaloceros), we hereafter refer to those samples assigned to Cervus/
Megaloceros/Dama/Alces/Saiga via ZooMS as Cervus elaphus (which in 
the majority of cases, 78 %, had been previously assigned red deer on the 
basis of their morphology). Bone collagen δ13C, δ15N, and δ34S results 
and ZooMS identifications can be found in Supplementary Tables 5a, 5b, 
and 6. The final count of samples post ZooMS and quality control is 
found in Table 1.

5.2. Isotope results by species

δ34S isotope values range from 0.6 to 16.4 ‰, with taxonomic means 
of 10.2 ± 1.7 ‰ (bovines), 15.3 ± 1.1 ‰ (roe deer), 13.2 ± 1.1 ‰ (red 
deer), 10.7 ± 2.0 ‰ (horse), and 5.7 ± 3.0 ‰ (reindeer). Bovines and 
horse have the most similar δ34S values and ranges and are not signifi
cantly different from each other (Table 2). Red deer are consistently 
significantly higher in δ34S than all species except for roe deer, which are 
only present at Pech de l’Azé IV. Roe deer have the lowest δ34S range 
(3.1 ‰) and have significantly higher δ34S values than all species, except 
for red deer. Finally, reindeer have significantly lower δ34S values 
compared to all other species and have the widest δ34S range (11.1 ‰) 
across time (Fig. 2).

Reindeer have the most significantly elevated δ13C values (− 19.6 ±
0.4 ‰) with a range between − 20.4 ‰ and − 18.7 ‰, compared with all 
other taxa (SI Table 7). Roe deer have the lowest δ13C values (− 21.3 ±
0.7) and are significantly lower than red deer (− 20.2 ± 0.3 ‰). Red deer 
δ13C values are also significantly higher than horses (− 20.8 ± 0.5 ‰). 
Bovine δ13C values (− 20.4 ± 0.3 ‰) are not significantly different than 
any species except reindeer.

δ15N values range between 3.1 ‰ and 10.8 ‰ with majority clus
tering between 5 ‰ and 9 ‰ (SI Fig. 1). Bovines (7.1 ± 1.4 ‰) have 
significantly higher δ15N values than roe deer (5.1 ± 0.6 ‰) and horses 

Table 1 
Table with successful samples per time period as described in Discamps and 
Royer (2017). Ante-Quina layers include Pech IV layers 6A and 8 and CG layers 
35,36, and 37. Late Ante-Quina layers include RDM layers 5 and 7 and CG layer 
27. Finally, Quina layers include Pech IV 4A, CG 20, 22, and 23, and RDM 2 and 
4 (which date to MIS 3). The single sample which did not produce a ZooMS 
identification is not included in this table.

Species Ante-Quina 
(MIS 5)

Late Ante-Quina (late MIS 5 
- MIS 4)

Quina (MIS 
4*)

Bovine 5 4 14
Capreolus 

capreolus
8 ​ ​

Cervus elaphus 14 8 15
Equus sp. 7 3 28
Rangifer 

tarandus
7 14 54

Total count 41 29 111
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(6.0 ± 1.4 ‰) while reindeer (6.6 ± 1.4 ‰) have significantly higher 
δ15N values than roe deer (SI Table 7). Red deer δ15N values (6.0 ± 1.3 
‰) are not significantly different to any other taxa.

5.3. Diachronic trends

Reindeer have the largest δ34S ranges (Quina = 10.9 ‰, Late Ante- 
Quina = 9.6 ‰ and Ante-Quina = 7.3 ‰) in all three periods while roe 
deer have the lowest range in the Ante-Quina (3.1 ‰), horses in the Late 
Ante-Quina (0.3 ‰), and red deer in the Quina (2.5 ‰). When 
comparing the species, reindeer have the lowest mean, median, and 
individual values across all time periods. Further, while reindeer 
maximum δ34S values remain constant through time (11.4 ‰–11.7 ‰), 
the minimum values decrease through time and are significantly lower 
in the Quina period compared to the Late Ante-Quina (SI Table 8). Red 
deer have the highest δ34S values across time except for in the Ante- 
Quina when roe deer have the highest δ34S values (Fig. 3). Bovine δ34S 
values remain consistent through time and have mean and median 
values between red deer and reindeer. Finally, horses have a gradual 
decline in δ34S values with significantly lower δ34S values in the Quina 
compared to the Ante-Quina (SI Table 8).

Bovine δ13C values remain constant throughout time (SI Table 8) 
while δ15N values steadily decrease from the Ante-Quina to Quina (SI 
Table 8), although not significantly. Red deer δ13C decreases from the 
Ante-Quina to Quina period, but neither the δ13C not the δ15N values 
significantly change. Horse δ13C values are significantly lower in the 
Ante-Quina compared to later periods, while δ15N values are only 

Table 2 
Pairwise comparison of δ34S estimates from linear models testing the difference 
in δ34S between species considering all time periods (δ34S ~ species) using a 
Kruskal-Wallis test followed by the post-hoc Dunn Test. Significant value shown 
in bold. The effect size (r) is shown in the final column to show the magnitude of 
observed differences following Cohen (1992) and Wolverton et al. (2016). 
Strong effects (>0.6) are denoted by ***, medium (0.3–0.6) by **, small 
(0.1-0.3) by *, and no effect with no asterisks.

Species Contrast 
for δ34S

Number of 
species 1

Number of 
species 2

Adjusted p- 
value

r (effect 
size)

Bovine - 
Capreolus

23 8 0.004 0.63***

Bovine – Cervus 23 37 0.002 0.48**
Bovine - Equus 23 38 1.000 0.08
Bovine – 

Rangifer
23 75 <0.001 ¡0.43**

Capreolus – 
Cervus

8 37 1.000 − 0.17*

Capreolus – 
Equus

8 38 0.011 ¡0.48**

Capreolus - 
Rangifer

8 75 <0.001 ¡0.73***

Cervus - Equus 37 38 0.004 ¡0.41**
Cervus - 

Rangifer
37 75 <0.001 ¡0.95***

Equus - Rangifer 38 75 <0.001 ¡0.57**

Fig. 2. Scatter plot with δ 13C along the x-axis and δ 34S along the y-axis. Red squares represent bovines, green triangles are horses, light blue circles are red deer, 
purple diamonds are reindeer, and black asterisks are roe deer. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.)
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significantly higher in the Late Ante-Quina compared to the Quina 
period. Finally, reindeer δ13C values are significantly higher in the Late 
Ante-Quina compared to both the Ante-Quina and Quina, while δ15N 
values decrease through time with significantly lower values in the 
Quina period compared to both other periods.

5.4. Isotope niche space partitioning

Isotope niche space partitioning between species was evaluated by 
analysing the δ13C-δ34S isotopic space via SIBER (Jackson et al., 2011). 
The isotope niche partitioning plots (Fig. 4a–d) are based on data in SI 
Table 9. The plots show all data points with colour representing different 
species, the convex hull (light dotted line) which outlines the total area 
(TA) of isotopic space taken by each species, and the core area (thicker 
dashed line) of each fauna is represented by the standard ellipse area 
(SEAc, to correct for small samples sizes) which contains roughly 40 % of 
the data per species.

Across all time periods, the results show a clear separation in core 
area (SEAc) between reindeer and all other fauna (SI Table 9). Reindeer 

also have the largest core area when comparing all the data together. 
Bovine and horse core areas had a moderate (30–60 %) proportion of 
core area overlap and high (>60 %) proportion of total area overlap, 
which is highest in the Quina period. This is the only pairing which had a 
moderate proportion of core area overlap between species and there are 
no groupings which had a high proportion of core area overlap 
throughout time. In the Quina period, bovine total area has a moderate 
overlap with reindeer while reindeer-horses, bovines-red deer, and 
horse-red deer all have low proportions of total area overlap. Bovines 
and red deer are the only species combination that has total area overlap 
(<30 %) in the Late Ante-Quina period. In the Ante-Quina period, there 
is low overlap in core area between bovines-red deer, horse-red deer, 
and horse-roe deer, a moderate overlap between bovine and red deer 
total area, and a low overlap between reindeer-bovine, horse-red deer, 
horse-roe deer, and red-roe deer.

Isotope niche partitioning between δ13C-δ15N, reveals larger areas of 
overlap (SI Fig, 2). Over all periods, bovine core areas moderately 
overlap with horses and red deer, roe deer core area moderately overlaps 
with horses, and total area overlap shows a high proportion of overlap 

Fig. 3. Scatter plot showing δ 13C, δ 15N, and δ 34S variation over time. The coloured symbol represents the median isotope value for each period and the dotted line 
connects the median values between periods to see how isotope values shift through time. The hollow symbols represent the individual data points. Quina (MIS 4) has 
an asterixis as it contains data from RDM level 2 and 4, which dates to MIS 3.
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between bovines-horses, bovines-red deer, horse-red deer and horse-roe 
deer (SI Table 10). In the Quina period, bovines and horses have a 
moderate core aera, and high total area overlap. Red deer total area also 
has a high proportion of overlap with reindeer. The Late Ante-Quina 
period has moderate proportion of overlap between bovine and red 
deer core area, and a high proportion of total area overlap. Horses also 
have a moderate proportion of overlap with red deer in this period. 
Finally, in the Ante-Quina period, roe deer have a high proportion of 
overlap with horses in core and total area, while there is a moderate 
overlap between bovine and red deer core area. Bovines-red deer and 
red-roe deer all have a moderate overlap in total area in the Ante-Quina. 
Throughout all periods, reindeer have the lowest, or no, amount of 
overlap with all other species.

6. Discussion

6.1. Inter-species trends

The δ34S results of this study show that horses, bovines, and red and 
roe deer have smaller intra-species ranges of δ34S values, and generally 
higher δ34S values, than reindeer. The small ranges of δ34S values (and 

similar values) exhibited by the majority of the taxa compared to the 
reindeer is consistent with the total home range size of these species 
being smaller than that of reindeer throughout the periods covered in 
this study. The overlapping values of bovines and horses suggests that 
their physical ranges were similar and that the sulfur isotope values 
exhibited in these species may be representative of the more regional 
environmental values. This interpretation is consistent with other 
(strontium) isotopic evidence for Late Pleistocene bovine and horse 
movement ecology, which indicate that these faunas were likely non- 
migratory (Britton et al., 2011, 2023a; Julien et al., 2012; Pellegrini 
et al., 2008). While demonstrating a tight ‘clustering’ of values, red and 
roe deer are generally enriched in δ34S relative to bovines and equids, 
and much more so relative to reindeer. This may suggest a distinct 
regional spatial partitioning of these species in Late Pleistocene Dor
dogne. Finally, reindeer have the lowest δ34S values throughout time 
and the largest variation in δ34S values (11.3 ‰). Reindeer also show the 
lowest overlap with other ungulates of isotope niche space suggesting 
they may be occupying a spatial area with different (and significantly 
lower) δ34S values available. The wide range in δ34S values could imply 
that reindeer, who today are known to have the largest home range 
compared to other fauna in this study, may have also had a very large 

Fig. 4. Spatial niche partitioning between Rangifer, bovines, Equus, Cervus, and Capreolus based on the different time periods. (A) represents all data and all time 
periods together, (B) Quina data including data from RDM which dates to HS 5 in MIS 3, (C) Late Ante-Quina samples, and (D) Ante-Quina samples. The convex hull 
which encompasses the total isotope area (TA) is represented by light grey dashed lines, the core niche area is shown in the standard ellipse area (darker dashed lines, 
denoted by species colour), and individual samples are shown by single circles. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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home range which covers landscape areas with large δ34S variations 
(including much lower values) in Late Pleistocene France.

To ensure patterns in δ34S values represent ranging ecology rather 
than dietary niche, δ13C and δ15N can be analysed. Reindeer δ13C values 
are significantly higher than all other species with values between 20.5 
and 18.5 ‰, which is indicative of lichen in the diet, while δ15N values 
reflect a typical herbivore diet. Lichen receives most of its δ34S from the 
atmosphere (SO2, H2S, or sulfate ions from wet and dry deposition). 
Atmospheric δ34S can rapidly change when near geothermal energy, an 
erupting volcano, or anthropogenic contamination sources (Case and 
Krouse, 1980; Gries et al., 1994; Krouse, 1977; Wadleigh, 2003), 
although these are unlikely to have been factors influencing Rangifer 
isotopic data in Late Pleistocene France. Still, the potential influence of 
lichen consumption on bone collagen δ34S values must be examined.

There is currently a lack of studies identifying the direct effects of 
lichen consumption on δ34S values in reindeer bone collagen, unlike the 
numerous studies on δ13C (Ben-David et al., 2001; Brenning et al., 2024; 
Britton, 2010; Britton et al., 2023a, 2023b; Drucker et al., 2001, 2010, 
2011b; Fizet et al., 1995; Rivals et al., 2020). Published studies highlight 
lithology and distance to coastline as the main influence on δ34S values 
in archaeological samples (Bataille et al., 2021; Britton, 2010). More
over, other isotopic work on European Late Pleistocene reindeer, which 
indicate lichen consumption, have demonstrated distinct δ34S values in 
reindeer compared to other fauna which are not always depleted in the 
heavier isotope as observed in this study. For example, at Goyet cave, 
reindeer with elevated δ13C values which indicate lichen consumption, 
have higher δ34S values than all other ungulates, and are almost the 
same as Neanderthals (Wiβing et al., 2019). This pattern is also seen at 
Yudinovo, where reindeer have higher δ34S than all other herbivores 
except muskox and an arctic fox (Drucker et al., 2018a). There are also 
several examples where reindeer δ34S values largely overlap with other 
ungulate’s δ34S values, such as Abri du Maras, layer 4.1 (Britton et al., 
2023a), Geißenklösterle (Drucker et al., 2015), and Kastelhöhle-Nord 
(Reade et al., 2020b). The 34S-enrichment seen in some cases, the 
34S-depletion observed in our own study and sometimes overlapping 
values seen in others is therefore not consistent with a universal cause 
for δ34S values related to either lichen consumption or otherwise unique 
to reindeer. In light of this, we can be more confident that the wide range 
of δ34S values seen in reindeer across time in this study can be inter
preted as reflecting movement across the landscape to areas with diverse 
and low δ34S values and is not due to some hitherto undocumented 
innate species difference.

As most of the reindeer in this study have δ34S values ranging be
tween 0 ‰ and 10 ‰, it is unlikely these reindeer were travelling close to 
the coastline during their annual ranging and/or consumed a large 
proportion of plant material from within 30 km of the coastline, other
wise the δ34S range would have more of a marine signal (expected δ34S 
values would be above 10 ‰ and closer to 15 ‰ according to the modern 
δ34S isoscape (Fig. 1) (Bataille et al., 2021)). As reindeer δ34S values are 
much lower than those of the other ungulates across all Late Pleistocene 
sites, δ34S values could reveal that reindeer are moving to areas with 
lower δ34S values, such as areas farther inland or areas with permafrost 
coverage including potentially moving through the French river basins 
to the northeast or to areas with higher elevation and thus colder cli
mates, such as going east to the Massif Central (Reade et al., 2020a, 
2020b; Stevens et al., 2022; Thode, 1991).

When combined with previously-published 87Sr/86Sr data, it seems 
reindeer from Combe Grenal and Roc de Marsal were not going to the 
higher elevations of the Massif Central but were likely staying within 
river basins (Hodgkins et al., 2024), which is also consistent with data 
from the reindeer of Jonzac (Britton et al., 2011). δ34S studies on early 
Holocene fauna from near the Seine River have identified widely vary
ing but consistently low δ34S values (2.2 ± 2.1 ‰) amongst terrestrial 
herbivores (Bocherens et al., 2011; Cheung et al., 2021, 2022; Drucker 
et al., 2018b). If reindeer travelled to the Paris Basin or ranged near the 
Seine River, this could potentially cause their bone collagen δ34S to be 

lower. However, a contemporary δ34S isoscape is necessary to confirm 
this as the modern isoscape may be different due to anthropogenic 
contamination and the effects of permafrost in the Pleistocene could 
significantly lower naturally available values.

Besides reindeer, who have the lowest overlap of δ13C and δ15N 
isotope niche space with other ungulates, bovine δ13C and δ15N isotope 
niche spaces overlap moderately with horses and red deer, while red 
deer have a moderate amount of overlap with roe deer as well. Bovines 
and red deer have the most similar δ13C values throughout time and 
consistently have more elevated δ13C values than horses, as is seen in 
other isotope studies on ruminants (Britton et al., 2012; Cerling and 
Harris, 1999; Codron et al., 2018; Hedges, 2003; Palmqvist et al., 2008, 
2003; Richards and Hedges, 2003; Thorp and Van Der Merwe, 1987). 
While the δ13C values in ruminants (except roe deer who have lower 
δ13C and δ15N values) are higher than horses, this does not translate to 
δ34S values. Both red and roe deer have significantly higher δ34S values 
than all other fauna with low ranges of values, while horse and bovine 
δ34S values plot between the deer species and can have moderate 
changes in δ34S values.

Bovine and horse δ34S values fit between the three cervid species and 
have a moderate variation in δ34S values. In modern studies, these taxa 
typically have range sizes up to 200 km2, although this can change in 
extreme environments (Glassburn et al., 2018; Kaczensky et al., 2008; 
Krasińska and Krasiński, 2013; Linklater et al., 2000; Lugauer, 2010; 
Schoenecker et al., 2023). This change in modern home ranges may 
explain the moderate variation seen in δ34S values in Late Pleistocene 
bovines and horses.

The low variation in red and roe deer, yet relatively high δ34S values 
could suggest these deer species may have a slightly different range use. 
As red and roe deer can undertake short-distance, partial seasonal mi
grations (Albon and Langvatn, 1992; Barakat et al., 2023; Langvatn and 
Albon, 1986; Mysterud et al., 2016; Pellegrini et al., 2008; Qviller et al., 
2013; White et al., 2010), this small range in δ34S values could suggest 
that these cervids utilised modest home ranges in similar areas 
throughout time which would cause these taxa to have similar δ34S 
values. These δ34S values could also be due to red and roe deer living in 
areas closer to the coastline where the sea spray effect can serve to 
override (and generally enrich) any local geological δ34S values. This 
could result in both higher, and more uniform δ34S values in local fauna. 
The values seen in these cervid species roughly match with δ34S values 
within 100 km of the sites based on Bataille et al. (2021).

Palaeolithic red deer are known to undertake short distance migra
tions (under 100 km) (Barakat et al., 2023; Pilaar Birch et al., 2016), 
which are either elevational (higher altitudes in summer, lower in 
winter) or coastal (living inland in summer and along coastlines in 
winter) (Albon and Langvatn, 1992; Langvatn and Albon, 1986; Mys
terud et al., 2011; Qviller et al., 2013). Modern red deer living on 
coastlines are also known to eat seaweed which could cause δ34S values 
to be much higher than in other fauna, although the δ13C and δ15N does 
not support this here (Ceacero et al., 2014; Conradt, 2000; Stevens et al., 
2006). Thus, δ34S values in red deer suggest that these populations could 
be spending some or most of their time to the west of the sites in areas 
nearer to the coastal plains, which have terrestrial vegetation that is 
enriched in δ34S due to the marine sea spray. While this may be the most 
parsimonious interpretation of the data, a further possibility is that both 
deer species had ranges that compromised lithologies (and thus soils and 
plants) with naturally occurring high δ34S values which have not yet 
been identified in the current isoscape due to the low sampling resolu
tion in the current working model.

The Ante-Quina is the only period with roe deer, which have the 
highest δ34S values of any fauna (ranging from 13.3 ‰ to 16.4 ‰). The 
high δ34S values in roe deer could suggest that the range of this species 
was likely predominantly to the west of the sites in areas influenced by 
marine sulfur due to the sea spray effect. It is unlikely, however, that roe 
deer were directly eating sea plants as both the δ13C and δ15N values are 
not enriched compared to other fauna. Modern roe deer have the 
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smallest home range size of the ungulates studied here and can have 
short-distance (<20 km) or no seasonal migrations; although there are 
rare cases of roe deer migrating more than 120 km (Cagnacci et al., 
2011; Mysterud, 1999; Mysterud et al., 2012; Wahlstrom and Liberg, 
1995). Given that the sea spray affect in sulfur can be visible up to 100 
km inland, long distance migrations would not be required for a more 
westerly ‘coastal’ signature to be seen in the bones of these animals. 
Today, Pech de l’Azé IV is approximately 120 km away from the 
coastline which is at the maximum distance of known roe deer migra
tion. Because there is a low range of δ34S values, roe deer likely were not 
spread over landscape with varying δ34S values, instead their range was 
likely restricted as a group to areas of relatively enriched δ34S, such as 
those found in the coastal plains to the west or in lithological areas with 
enriched δ34S that are not yet identified in the isoscape, like the red deer. 
Based on these results, roe (and red) deer could have had a range that 
incorporated regions at, or near, the sites where they were eventually 
found but likely incorporated areas closer to the coastal plains to the 
west. Changes in sea level from MIS 5 to MIS 4 and thus increase in the 
distance to coastline from the sites, might also explain part of the 
enriched δ34S signal of roe and red deer. Alternatively, these species may 
have been hunted in areas closer to the coastline and transported back to 
sites by Neanderthal hunters.

6.2. Diachronic trends

Isotopic values for bovine and red deer are the most stable through 
time, with only δ13C values being slightly higher in the Quina compared 
to Ante-Quina in red deer. This could suggest a stable ecological and 
dietary range through time (as previously argued on the basis of dental 
microwear texture analyses by Berlioz et al., 2023), however as the 
temperature decreases from MIS 5 to MIS 4 (or early MIS 3 at RDM) and 
the faunal and archaeological records change through time (Discamps 
and Royer, 2017), this stability in isotopic values could also be indica
tive of the adaptability of these fauna as mixed feeders, as seen at Les 
Cottés (Britton et al., 2023b), or the capacity of Neanderthal hunters to 
pursue similar hunting grounds in the landscape surrounding the sites 
(cf. Berlioz et al., 2023). The limited isotopic variation in bovines 
through time, further supports the grouping of Bos and Bison in isotopic 
Late Pleistocene southwestern France, although further studies which 
can identify highly fragmented bones to species level using aDNA or 
SPIN may be able to tease out dietary and habitat differences between 
the two species (Rüther et al., 2022; Smith et al., 2024a).

We observe more significant changes in isotopic values in horses, 
who are grazers with less dietary flexibility. In the Ante-Quina, horse 
δ34S values are significantly higher than in the Quina, δ15N values are 
lower compared to the Late-Ante Quina, and δ13C values are signifi
cantly lower than in later periods. As horses have fewer adaptive traits 
than bovines and red deer, they may be a more accurate representative 
of the local environment (Britton et al., 2019, 2023a; Pederzani et al., 
2021a). More research is needed before using horses as the local baseline 
for bone collagen isotopes as these variations could be due to a change in 
ranging ecology rather than dietary ecology, or Neanderthals changing 
their hunting patterns. However, as δ34S values between horses (range: 
4–12.7 ‰) and bovines (range: 6.7–12.4 ‰), two non-migratory taxa, 
moderately overlap in the Quina period, this could suggest that these 
taxa could be representative of local conditions in later periods, espe
cially when a fractionation rate of up to 2.5 ‰ can occur between diet 
and consumer (Nehlich, 2015). For a better representation of the local 
baseline for all periods, small mammals from the same levels in the 
archaeological record should be analysed for δ34S, which could then be 
used to generate time-sliced isoscapes.

Reindeer isotopic values also change significantly through time. δ13C 
values are the most enriched in the Late Ante-Quina suggesting more 
lichen consumption. δ15N values decline through time from the Ante- 
Quina and are significantly lower in the Quina than both other pe
riods potentially indicating movement to colder and drier climates. 

Finally, δ34S values are also significantly lower in the Quina compared to 
the Late Ante-Quina, which could be the result of reindeer moving to 
areas with lower δ34S values due to a drop in temperature, and poten
tially even moving to areas with permafrost. As reindeer are the only 
species with δ34S values below 4 ‰ in the Quina, it is unlikely that this is 
indicative of local δ34S values significantly dropping but rather changing 
spatial ecology or a change in δ34S values in the areas which reindeer 
range. 87Sr/86Sr isotope analysis between the different sites and periods 
could help to identify whether the difference is due to ranging ecology.

6.3. Integrating ZooMS data

In light of the isotopic results, it appears that throughout the three 
periods studied, Neanderthals hunted three different groups of game 
who occupied different spatial isotope niches. These include red and roe 
deer who potentially lived to the west of the sites or in areas with 
enriched δ34S; horses and bovids who may have lived in the landscape 
surrounding the sites (which potentially overlapped in the Quina pe
riods); and reindeer who have the largest isotopic niche throughout 
time, suggesting they are moving across the landscape and have large 
variation in their individual movements, similar to modern herds. These 
three groups have been identified using a combination of approaches 
including zooarchaeological identification, ZooMS, and isotopic 
analysis.

It is important to note that here, without the use of ZooMS to confirm 
species identifications assigned through morphological analysis, the 
species-specific isotopic differences – particularly amongst the cervids – 
would not be as distinct. This in turn could have led to significantly 
different interpretations of the overall data, i.e. that deer behaviour was 
more plastic and that isotope niche partitioning between species (in 
terms of their spatial ecology) was not as pronounced (Figs. 5 and 6). 
This highlights the strengths of isotope analyses in ungulate behavioural 
ecology, and the ability of these approaches in niche space analysis. The 
findings also highlight the importance of using multiple complementary 
tools in palaeoecology and advocates for their use in an iterative way, 
where a set of results may lead to the need for further analyses post-hoc. 
The strength of zooarchaeological analyses was vital to both designing 
the isotopic sampling strategy and to data interpretation. The integra
tion of biomolecular methods, such as ZooMS, may be particularly 
important at sites/in specific periods where certain taxa may be 
morphologically distinct from contemporary reference examples (e.g., 
the large roe deer found in Late Pleistocene France); where faunal re
mains endured intense fracturing for marrow extraction (e.g., as in the 
case of most Mousterian assemblages); where unusual faunal suites are 
suggested from morphological analyses; or, conversely, to ensure wider 
representation of taxa in what otherwise might appear to be mono
specific assemblages (e.g., to help overcome ‘reindeer blindness’ at cold- 
phase sites) (Smith et al., 2024b). Future studies which want to further 
distinguish Bos/Bison and Cervus/Megaloceros/Dama/Alces/Saiga may 
benefit from higher resolution identification techniques, such as aDNA 
or shotgun proteomics (e.g. Jensen et al., 2020; Rüther et al., 2022; 
Smith et al., 2024a).

6.4. Implications and future work

The results from this study suggest that palaeofaunas with likely 
large ranging ecologies (and potentially long-distance migrations) may 
demonstrate distinct δ34S values from fauna with smaller ranging ecol
ogy (and short distance, partial, or no migrations) but also demonstrate 
a greater range of δ34S values. These differences are apparent in spatial 
partitioning modelling, suggesting that fauna with large home ranges 
will have a larger isotope core area and a wider range of δ34S values than 
others.

Limited 87Sr/86Sr analysis on ungulates at some of the sites included 
in this study indicate the generally limited movement of bovines, roe 
deer and horses (albeit to some upland areas), but also that reindeer 
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mobility was restricted to areas of sedimentary lithology (Hodgkins 
et al., 2024). By integrating these results with the findings of the current 
study, we can perhaps tentatively suggest that the areas traversed by 
reindeer included not only the Aquitaine Basin but sedimentary basins to 
the north. Further, higher resolution 87Sr/86Sr analysis of Rangifer 
specimens from both Aquitaine and the Paris Basin will be important to 
understanding how these two isotopes can be used together to maximise 
insights into Late Pleistocene Rangifer ranging behaviours. Furthermore, 
by undertaking regional studies, rather than site by site studies, we can 
have a better overview of faunal ecology both spatially and temporally. 
This will be especially significant where specimens can be directly dated 
using radiocarbon dating (i.e. after ~46 ka), increasing the sample sizes 
that can be achieved at single sites and helping to discount site-specific 
human behaviours that may influence the makeup of specific 

assemblages.
In this study, there were also some indications of changing climate 

alongside potential dietary and spatial ecology adaptations to cope with 
that climate change in the faunal isotope dataset. To better understand if 
these variations in isotopes through time are due to changes in climate, 
dietary or spatial ecology, it would be beneficial to analyse further 
herbivores dating to period of extreme climate change such as the Late 
Glacial Maximum and Late Glacial, as has been highlighted by 
previously-published studies (Drucker et al., 2003a, 2003b, 2011a, 
2011b; Drucker and Fontana, 2024; Reade et al., 2023; Richards and 
Hedges, 2003). Incorporating sulfur isotope analyses in such studies in 
the future will allow an examination of how δ34S values vary between 
interglacial and extreme glacial environments (perhaps due to perma
frost, see Reade et al. (2020a, 2020b) and Stevens et al. (2022)), and the 

Fig. 5. Scatter plot with δ13C along the x-axis and δ34S along the y-axis before and after ZooMS analyses. A) represents the δ13C-δ34S isotopic results based on 
taxonomic identification of ungulates across three time periods. B) shows the same δ13C-δ34S isotope results after ZooMS analysis of all cervid bones. Red squares 
represent bovines, green triangles are horses, light blue circles are red deer, purple diamonds are reindeer, and black asterisks are roe deer. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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interactions between climate change, and faunal dietary and ranging 
palaeoecology.

Analysing other species, such as carnivores and small fauna, 
throughout the Pleistocene will also provide us with better insights into 
food webs which will ultimately help us better understand early human 
behaviours and living landscapes. Such datasets, especially those 
including small animals (e.g., rodents, lagomorphs) with restricted 
home ranges, are integral to helping construct time-sliced maps of 
landscape-level variability in environmental δ34S, which are essential 
for assigning spatial distributions to collagen δ34S values of larger ani
mals. Integration of faunal isotope datasets with other climatic and 
environmental proxy datasets will also help to disentangle isotopic 
variations due to ‘baseline’ changes (e.g., extent of permafrost, aridity, 
etc.), to faunal behaviours modifications (e.g., dietary changes, expan
sion of home ranges), or even to better understand the relationship be
tween the two.

This research has also demonstrated the advantages of integrating 
complementary methods such as zooarchaeological studies, isotopic 
analysis, and ZooMS for palaeoecological interpretations. Here, we 
based our sampling strategy on robust zooarchaeological identification 
(85.6 % accuracy in cervids, as confirmed by molecular techniques). 
After initial isotope results there was a large overlap in deer isotopic 
spatial niche space, which was resolved through post-hoc ZooMS anal
ysis. This shows the benefit of combining these three methods, whether 
during the sampling stage when there are difficulties in morphologically 
identifying multiple related species (e.g., cervids) or post-hoc for isotopic 
data interpretation. The triple-method, iterative approach employed in 
the current study has enhanced our ability to reconstruct Pleistocene 
living landscapes and better understand ungulate palaeoecology and is 
recommended for future studies.

7. Conclusion

As our understanding of sulfur isotopes further develops, and sulfur 
becomes more frequently analysed alongside carbon and nitrogen in 
bone collagen, we anticipate that sulfur will become increasingly useful 
in exploring spatial partitioning and the movements of past fauna and 
humans in both archaeology and palaeontology. The results of this study 

show that fauna with large home ranges, such as reindeer, may not only 
have distinct δ34S values from other taxa but may also have larger δ34S 
variation than taxa with small home ranges who are also likely non- 
migratory. In this study, we have shown evidence for this at three Late 
Pleistocene sites in southwest France, where reindeer have the largest 
range of δ34S values and subsequently the largest plotted core areas on 
multi-isotope Bayesian ellipse plots (representative of isotopic niche 
partitioning) compared to other contemporary cervids, bovines, and 
horses. When analysed through time, δ34S values did not change for 
majority of small-ranging taxa likely due to the lack of permafrost in this 
area of south-west France during the Late Pleistocene, while reindeer 
δ34S values did decrease in colder periods potentially reflecting the 
incorporation of areas containing more extensive permafrost into their 
ranges at these times. In contrast to reindeer, red and roe deer have the 
smallest range of δ34S values as well as the highest values suggesting the 
ranges of these animals may have included areas to further to the west/ 
closer to the coast (and thus bearing elevated environmental δ34S values 
due to a marine influence) or possibly 34S-enriched areas of lithology in 
the broader region which have yet to be characterised. Finally, although 
δ34S values measured in horses and bovines are typically similar to one 
another, demonstrate less intra-species variation than reindeer, and are 
assumed to represent more local values, determining what those local 
values should be remains difficult.

In addition to further studies on ungulates and other megafaunal 
taxa, studies focused on characterising past landscape variability in 
environmental δ34S are required, for example, incorporating microfauna 
or other species with likely small home ranges (e.g., rodents, lago
morphs) to produce period-specific maps of baseline variability. 
Combining palaeoecological, paleoenvironmental, and palaeoclimate 
studies will further help illuminate the ranging behaviours and dietary 
palaeoecology of ungulates in the Late Pleistocene, how these species 
interacted with past climatic changes, and how these behaviours inter
sected with the socio-economical organisation of past human 
populations.
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Aguraiuja-Lätti, Ü., Tõrv, M., Sayle, K.L., Lõugas, L., Rannamäe, E., Ehrlich, F., Nuut, S., 
Peeters, T., Oras, E., Kriiska, A., 2022. Multi-isotopic analysis of zooarchaeological 
material from Estonia (ca. 200–1800 CE): variation among food webs and 
geographical regions. PLoS One 17, e0279583. https://doi.org/10.1371/JOURNAL. 
PONE.0279583.

Albon, S.D., Langvatn, R., 1992. Plant phenology and the benefits of migration in a 
temperate ungulate. Oikos 65, 502–513. https://doi.org/10.2307/3545568.

Ambrose, S.H., 1991. Effects of diet, climate and physiology on nitrogen isotope 
abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317. https://doi.org/ 
10.1016/0305-4403(91)90067-Y.

Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for 
isotopic analysis. J Archaeol. Sci. 17, 431–451. https://doi.org/10.1016/0305-4403 
(90)90007-R.

Ambrose, S.H., 1986. Stable carbon and nitrogen isotope analysis of human and animal 
diet in Africa. J. Hum. Evol. 15. https://doi.org/10.1016/S0047-2484(86)80006-9.

Ambrose, S.H., DeNiro, M.J., 1989. Climate and habitat reconstruction using stable 
carbon and nitrogen isotope ratios of collagen in prehistoric herbivore teeth from 
Kenya. Quat Res 31. https://doi.org/10.1016/0033-5894(89)90048-3.

Ault, W.U., Kulp, J.L., 1959. Isotopic geochemistry of sulphur. Geochim. Cosmochim. 
Acta 16, 201–235. https://doi.org/10.1016/0016-7037(59)90112-7.

Barakat, S., Le Corre, M., Willmes, M., Cohen, J., Vuillien, M., Desclaux, E., Britton, K., 
2023. Laser ablation strontium isotopes and spatial assignment show seasonal 
mobility in red deer (Cervus elaphus) at Lazaret Cave, France (MIS 6). Front. Ecol. 
Evol. 11. https://doi.org/10.3389/fevo.2023.988837.

Bataille, C.P., Jaouen, K., Milano, S., Trost, M., Steinbrenner, S., Crubézy, É., Colleter, R., 
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Combe-Grenal (Domme, Dordogne). Paléo 7, 123–137. https://doi.org/10.3406/ 
PAL.1995.1210.

DeNiro, M.J., 1987. Stable isotopy and archaeology. Am. Sci. 75, 182–191.
DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen 

isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809.
Deniro, M.J., Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes 

in animals. Geochim Cosmochim Acta 45, 341–351. https://doi.org/10.1016/0016- 
7037(81)90244-1.

Dibble, H.L., Sandgathe, D., Goldberg, P., McPherron, S., Aldeias, V., 2018. Were 
Western European neandertals able to make fire? J of Paleo Archaeol 1. https://doi. 
org/10.1007/s41982-017-0002-6.

Discamps, E., Faivre, J.P., 2017. Substantial biases affecting Combe-Grenal faunal record 
cast doubts on previous models of Neanderthal subsistence and environmental 
context. J. Archaeol. Sci. 81. https://doi.org/10.1016/j.jas.2017.03.009.

Discamps, E., Jaubert, J., Bachellerie, F., 2011. Human choices and environmental 
constraints: deciphering the variability of large game procurement from Mousterian 
to Aurignacian times (MIS 5-3) in southwestern France. Quat. Sci. Rev. 30. https:// 
doi.org/10.1016/j.quascirev.2011.06.009.

Discamps, E., Royer, A., 2017. Reconstructing palaeoenvironmental conditions faced by 
Mousterian hunters during MIS 5 to 3 in southwestern France: a multi-scale 
approach using data from large and small mammal communities. Quat. Int. 433. 
https://doi.org/10.1016/j.quaint.2016.02.067.

Discamps, E., Ruebens, K., Smith, G., Hublin, J., 2024. Can ZooMS help assess species 
abundance in highly fragmented bone assemblages? Integrating morphological and 
proteomic identifications for the calculation of an adjusted ZooMS-eNISP. 
PaleoAnthropology. https://doi.org/10.48738/202x.issx.xxx.
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stades isotopiques 5 à 3. In: Delpech, F., Jaubert, J. (Eds.), François Bordes and 
Prehistory: International Symposium François Bordes, Bordeaux, pp. 199–219, 22-24 
April 2009. Paris. 
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Palaeolithic at Pech de l’Azé IV, France. J. Archaeol. Sci. 39, 3436–3442. https:// 
doi.org/10.1016/j.jas.2012.05.017.

Morin, E., Laroulandie, V., 2012. Presumed symbolic use of diurnal raptors by 
neanderthals. PLoS One 7, e32856. https://doi.org/10.1371/JOURNAL. 
PONE.0032856.
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World. Springer, Cham. https://doi.org/10.1007/978-3-319-57524-7_5. 

Norman, H.C., Wilmot, M.G., Thomas, D.T., Masters, D.G., Revell, D.K., 2009. Stable 
carbon isotopes accurately predict diet selection by sheep fed mixtures of C3 annual 
pastures and saltbush or C4 perennial grasses. Livest. Sci. 121. https://doi.org/ 
10.1016/j.livsci.2008.06.005.

Oelze, V.M., Nehlich, O., Richards, M.P., 2012. ‘There’s no place like home’’ - no isotopic 
evidence for mobility at the early Bonze Age cemetery of Singen, Germany. 
Archaeometry 54, 752–778. https://doi.org/10.1111/J.1475-4754.2011.00644.X.
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l’Azé IV and Roc de Marsal, France. PaleoAnthropol. https://doi.org/10.4207/ 
PA.2011.ART54.

Sandgathe, D., Dibble, H.L., McPherron, S.J.P., Goldberg, P., 2018. Introduction. In: The 
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