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this work. Driver mutations in IDHT and IDH2 are initiating events in the evolution of chondro-
*Correspondence: sarcoma and several other cancer types. Here, we present evidence that mutant IDH1
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Background

Driver mutations in IDHI and IDH2 have been implicated in several cancer types [1],
including central chondrosarcoma [2, 3], acute myeloid leukemia, and glioblastoma. In
chondrosarcoma, the evidence that IDHI1 mutations are initiating events is supported
by a causative relationship with the early postzygotic conditions, Ollier disease and Maf-
fucci syndrome [4, 5], and by mouse models [6].

There is a clear need for new treatment options for metastatic chondrosarcoma [7], as
patients rarely survive beyond two years [8] and recent trials of IDH1 inhibitors report
variable responses [9]. Nevertheless, emerging data suggest that [DH1/2 mutation status
has an overall impact on outcome in metastatic disease [3, 10]. To gain a deeper under-
standing of the role of IDHI1/2 in chondrosarcoma metastasis, we performed detailed
genomic profiling of metastatic central chondrosarcoma, with a specific focus on IDH1
and IDH?2 mutations.
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Results and discussion

Our index case, CS1, is a 73-year-old patient who died of metastatic central chondro-
sarcoma and donated her body to research through the Cancer Research UK PEACE
research autopsy study [11, 12]. We performed whole-genome sequencing on three pri-
mary tumor samples and 10 metastatic lesions to a median coverage of 120X. We called
6090 SN'Vs, 2718 indels, and 810 structural variants (averages: SNV: 1.9/Mb, indels: 0.76/
Mb, SVs: 537/genome, Fig. 1A). The tumor’s genome was highly rearranged, had under-
gone whole-genome doubling, and contained driver mutations in TP53, COL2A1, and
IDH]1 (Fig. 1A). While the genome doubling event was specific to metastatic tissues, we
have previously reported that this alteration was not uncommon in primary high-grade
chondrosarcoma [10]. No putative driver mutations specific to metastasis samples were
identified. However, most strikingly, I[DH1 mutations, while present in all primary tumor
samples, were absent in two metastatic samples (liver 2 and anterior uterus, both show-
ing no mutant reads) and near-absent in a third metastatic sample (lower uterine seg-
ment, 1 mutant read, VAF=0.01). These losses of IDHI mutations were associated with
three different copy number losses of the IDH1 locus on 2q (liver 2: 28.2 Mb, anterior
uterus: 18.9 Mb, lower uterine segment: 18.8 Mb, Fig. 1B, Additional file 1: Table S1),
suggesting the IDH1 deletions may have occurred multiple times in parallel.

To gain deeper insight into how IDHI mutation losses evolved, we performed detailed
subclonal reconstruction and metastatic seeding analysis, using a combination of bio-
informatics tools. Subclonal reconstruction using DeCiFer [13] revealed five distinct
copy number states observed at the IDHI locus (Fig. 1C). We combined this analysis
with the phylogenetic reconstruction of SNVs using CONIPHER [14], which resulted in
a single optimal phylogenetic tree, where eight distinct tumor clones were inferred and
then expanded (black dotted lines) to reflect clones with different copy number states at
the IDH1I locus (Fig. 1D). This confirmed that IDHI1 mutations were lost through mul-
tiple parallel copy number losses: one in the clone present in “liver 2”, another in the
clone present in the “lower uterine segment’, and another in the “anterior uterus” sam-
ple. To build further support for these results and assess the clonal relationships using
an orthogonal approach, we next examined the evolution of copy number alterations by
inferring clone-specific copy numbers with HATCHet [15] and reconstructing the evo-
lutionary history of these clones using MEDICC2 [16]. This approach confirmed distinct
loss of the IDH1 locus (Fig. 1E) in each of the three samples in which IDH1 loss was
observed. To examine the seeding pattern of these clones, we used MACHINA [17],
providing as input the phylogenetic tree inferred by CONIPHER for the inferred tumor
clones (Fig. 1F). A single-source metastasis-to-metastasis seeding pattern was identified,
suggesting that the pattern of dissemination was first to the liver, then other anatomical
sites, followed by reseeding to the liver. These combined results suggest parallel evolu-
tion of IDHI mutation loss in this tumor.

We next performed whole exome sequencing of an additional 10 tumor samples from
four patients who had developed metastatic chondrosarcoma (CS2, CS3, CS6, and CS7,
Fig. 2A, Additional file 1: Table S1 and Additional file 2: Table S2) to determine if IDH1
mutation loss was a recurrent event in chondrosarcoma evolution. We identified no
putative driver mutations specific to metastasis samples. We found that the primary
tumor sample of patient CS2 showed a heterozygous IDHI R132G mutation, whereas
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Fig. 1 The evolution of IDHT mutant loss in a case of metastatic chondrosarcoma. A Mutational burden
summary for index case CS1. B Driver mutation summary. The IDHT mutation is clonal in primary tumor
samples, but absent or near absent in three metastatic sites. All metastatic sites are genome doubled. C
Copy number states of the IDHT locus across sites with IDHT mutation loss. D The presence of eight clones
detected are indicated in the body map. Multiple parallel losses of IDHT (red branches) were observed. E
The evolutionary history of the tumor inferred via HATCHet and MEDICC2. F Seeding pattern determined via
MACHINA suggests the liver was the first metastatic site
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Fig. 2 Exploration of IDH1 and IDH2 loss in ddPCR and immunohistochemistry. A Driver mutation summary
of four cases subjected to exome sequencing, identified as harboring mutant IDH1 loss. B Copy neutral

LOH of the IDHT loci in CS2. € ddPCR frequency of IDH1/2 mutant droplets for 19 cases of metastatic
chondrosarcoma. Partial loss defined as frequencies > 1% and < 10%. Near-complete loss frequencies

are defined as < 1% but higher than the background (Methods). Samples assayed for IDHT R132H
immunostaining included in panel D are marked. D Tumor content distribution, as measured by sequencing
and histological estimation. E Immunostaining for IDHT R132H. Loss of immunoreactivity confirmed the
genetic findings in CS6_Met and CS7_Pri_1 (which had a low droplet count)

both metastatic samples had lost this mutation due to copy neutral LOH of part of chro-
mosome 2 (Fig. 2B). In CS3, the IDHI R132C mutation present in the primary tumor
showed a subclonal loss in the metastasis sample (VAF=0.073, cancer cell fraction:
21%, Fig. 2A). In patient CS6, the IDHI mutation was retained in the sampled metastasis
(VAF=0.23, consistent with one out of four IDHI copies mutated in all tumor cells).
In CS7, only primary tumor samples were sequenced, and all were [DHI mutant. These
results support our finding above that IDHI mutations may be recurrently lost in chon-
drosarcoma metastases.

To explore our findings of IDHI mutation losses in a larger number of samples, we
used ddPCR to evaluate IDHI (and IDH2) hotspot mutation status across 78 samples

Page 4 of 11
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from 19 patients (including 24 samples from CS1, 28 samples from CS2, CS3, CS6,
CS7, and 26 samples from 14 other patients, Fig. 2C, Additional file 2: Table S3). Four
out of the 19 cases had IDH2 R172 mutations, and the remaining 15 harbored IDH1
R132 mutations. Our results confirmed loss or near-complete loss in six metastasis
samples from CS1 and two samples from CS2. We defined near-complete loss as a
mutant droplet percentage <1% but above the level of the background false positive
noise of the assay (see the “Methods” section, Additional file 2: Table S3). While no
additional cases showed a mutant droplet percentage < 1%, nine other cases, includ-
ing three IDH?2 cases, showed mutant droplet frequencies <10% (henceforth termed
partial loss). Together, these IDH1/2 (partial) loss events were found in 24/78 (31%)
samples in 11/19 (58%) cases. These events were strongly enriched in metastasis sam-
ples compared to the primary tumor samples (24/62 vs. 1/16, p =0.009).

The significance of partial loss events of IDH1/2 mutations remains unclear. To
formally exclude low tumor content as a possible explanation, we next evaluated
tumor purity using both copy number inference from WGS/WES data and histologi-
cal assessment. All samples contained a high percentage of tumor cells (mean purity
from WGS/WES: 56%; mean purity from histological assessment: 74%, Fig. 2D, Addi-
tional File 2). Based on this, we hypothesize that some of these IDH1/2 partial loss
events represent subclonal mutation losses in chondrosarcoma metastases.

To provide support for the IDHI mutation loss detected by ddPCR at a protein
level, we performed immunohistochemistry using an IDH1 R132H mutation-specific
antibody on the relevant tumors with this specific alteration in primary tumor and
metastasis samples from cases CS6 and CS7. CS6 showed IDH1 immunoreactivity
in the primary tumor but not in the metastasis sample (Fig. 2E). The low number of
IDH1 mutant molecules detected by ddPCR in the corresponding samples (marked
on Fig. 2C) likely reflects the sensitivity of the assay in detecting a minor popula-
tion of mutant cells [18]. CS7 also revealed the absence of IDHI immunoreactivity
in a single region from the primary tumor (Fig. 2E). The ddPCR result from the same
region revealed a low IDHI R132H droplet count (13%, Fig. 1C, Additional File 2)
compared to the other regions analyzed. We hypothesize that the absence of mutant
IDH1 expression may in some cases result from a combination of allelic imbalance
between normal and mutant copies, and possibly clonal mixing within the sample.

In summary, by exploring the clonality of IDHI mutations in metastatic chondro-
sarcoma, we found that, despite the initiating role of IDHI and IDH2 in this disease,
these mutations can be recurrently lost later in tumor evolution. We note that this
phenomenon has been previously observed in glioma [19] where IDH1/2 driver muta-
tions are also commonly observed. We hypothesize that I[DHI and IDH2 mutations,
known to block differentiation [6], become disadvantageous later in chondrosar-
coma evolution and may be subject to negative selection. Alternatively, selection for
IDH1/2 mutations may become relaxed later in chondrosarcoma evolution, and losses
of mutant IDH1/2 may occur as a product of mutational drift in these chromosomally
instable genomes. Both models could explain the relatively high frequency of IDHI or
IDH?2 mutation loss or partial loss in our cohort and the observation of parallel evolu-

tion for losses across multiple samples within CS1.
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Conclusions

Our study posits that initiating driver mutations in IDHI or IDH2 in cartilaginous
tumors are not required for the persistence of chondrosarcoma. These data support
emerging evidence that IDHI inhibition does not consistently control disease in met-
astatic chondrosarcoma [20].

Methods

Patients and samples

We obtained archived tumor samples from 19 patients with metastatic central chon-
drosarcoma and IDH1/2 mutations from the Royal National Orthopaedic Hospital.
Samples from multiple tumor sites (mean 4) were available for analysis from nine of
these patients, targeted digital droplet PCR (ddPCR, n=19), whole exome sequenc-
ing (WES, n=4), histological analysis, or a combination thereof (Additional file 1:
Table S1 and Additional file 2: Table S2). In addition, fresh frozen pre- (n=3) and
post-mortem (1n=10) samples from a patient enrolled in the PEACE (Posthumous
Evaluation of Advanced Cancer Environment) autopsy study were analyzed using
whole genome sequencing (WGS) and histological analysis (CS1, Additional File 1
and 2). Metastatic disease was widespread and present in the liver, lung, nerve, bone,

uterus, and ilium.

Histology and immunohistochemistry

Four-micrometer sections were cut from formalin-fixed paraffin-embedded (FFPE)
tissue blocks and histology assessed by AMEF, RT, and FA. Immunohistochemistry was
performed on cases in which an /DH1 R132H mutation was detected on genotyping
using the anti-IDH1 R132H (HO09) antibody (Dianova; Hamburg, Germany; DIA-H09)
on the Leica bond platform (1:100, 20 min ER1). All DNA from FFPE sources were
UDG-treated prior to the IDH1 R132 assay to remove false positives caused by the
deamination of nucleotides from the formalin fixation process.

DNA extraction

5 pm diameter punches (Integra Miltex; NJ, USA) were obtained from FFPE tumor
and matched normal tissue blocks from each patient. DNA was extracted from FFPE
tissue using the truXTRAC FFPE total NA Plus Kit (Covaris; MA, USA; 520,252) and
quantified using Nanodrop (Thermofisher; MA, USA), Qubit (Invitrogen; MA, USA;
Q32851), and Tapestation (Agilent; CA, USA). DNA was extracted from frozen tumor
samples and blood as recommended by manufacturers.

Genotyping and bioinformatic analysis

We performed ddPCR for the IDH1 R132 and IDH2 R172 mutations as described pre-
viously [10]. In brief, we utilized non-template and negative controls to determine the
background noise of the assay. This was less than 1/10,000 generated droplets, which
corresponds to 0.01%. Samples with a minimum number of 10,000 droplets were
included in the study, and samples with a minimum of 100 droplets with mutations
were considered to harbor the mutation, as previously described [21]. We considered
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a droplet percentage of < 1% but above the background level to represent a near-com-
plete loss of IDHI mutations, while a percentage between 1 and 10% represented a
partial loss, meaning a lowering of the expected variant allele frequency. WES was
performed using the Twist Exome library preparation kit, followed by paired-end
sequencing on the Illumina NovaSeq 6000 platform, obtaining an average depth of
250 x (50 x for matched normal samples). WGS was performed using the TruSeq
DNA PCR-Free library construction and the Illumina NovaSeq 6000 platform, using
150 bp paired-end sequencing and 100 x sequencing depth. Both the library prepa-
ration and sequencing for the WES and WGS were conducted by Macrogen (Seoul,
South Korea).

Single nucleotide variants (SN'Vs) and indels were called on both WES and WGS data
via Mutect2 (4.1.2.0), following GATK best practices. Somatic copy number alterations
were called using Sequenza [22] (WES). Structural variants (SVs) were called using
GRIDSS [23]. Visual inspections of driver alterations were performed using the Integra-
tive Genomics Viewer (IGV).

Phylogenetic analysis

We performed evolutionary and metastatic dissemination analysis of the CS1 tumor
by applying a collection of existing methods to the bulk whole-genome sequencing
data of multiple samples from primary and metastatic sites. Through this analysis, we
aimed to (1) reconstruct the tumor phylogeny and investigate the presence of mutation
losses, (2) reconstruct the evolution of copy number alterations to orthogonally assess
whether parallel losses occurred at the IDHI locus, and (3) infer the metastatic migra-
tion patterns.

Firstly, we reconstruct the tumor evolution of distinct tumor clones using the
CONIPHER algorithm [14]. Specifically, CONIPHER was executed with default param-
eters. We have also applied the DeCiFer algorithm [13] to investigate the possible
presence of mutation losses at the IDH1 locus. DeCiFer was run on the inferred sin-
gle-nucleotide variant (SNV) data excluding low-confidence SNVs such as SNVs with
no copy-number information at the variant location, low variant allele frequency (<0.2)
in all samples, or low sequencing depth (<30 reads) in any sample. Moreover, the called
CNAs were provided as input to DeCiFer. DeCiFer was run using default parameters and
generating state trees for mutations with maximum allele-specific copy number up to 3,
maximum total copy number up to 5, and with at most 22 mutation clusters.

Secondly, we reconstructed the evolution of the inferred clone-specific CNAs using
the MEDICC?2 algorithm [16] with default parameters. We obtained the clone-specific
input for MEDICC2 by using the HATCHet algorithm [15] to infer clone copy number
profiles for each of the tumor samples. HATCHet was run on each sample individually
due to the presence of different WGDs in different samples (a feature not supported by
HATCHet when executed in multi-sample mode). HATCHet was run with a value of 50
genomic bin clusters, a minimum clone proportion threshold of 0.2, a maximum diploid
copy number value of 12, and with the possible number of identified clones between 2
and 8 (including a diploid, normal clone).

Lastly, we reconstructed the metastatic migrations for tumor CS1 by applying the
MACHINA algorithm [17] to the inferred phylogenetic tree from CONIPHER. We
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applied MACHINA using the default polytomy resolution mode and allowing all pos-
sible seeding patterns of increasing complexity: primary seeding only, single-source
metastasis-to-metastases seeding, multi-source metastasis-to-metastases seeding,
and reseeding of the primary tumor. The most parsimonious solution was chosen,
corresponding to a single-source metastasis-to-metastasis seeding pattern being
inferred.

Statistical analysis

Statistical comparisons were performed using Wilcoxon tests and Fisher exact tests in
the R programming language. For the allelic dropout statistics, we used binomial statis-
tics and reported values of sequencing depth of each sample (range: 61-93X). Cancer
cell fractions (CCF) of mutations were inferred from VAFs, accounting for tumor purity
and copy number status, as previously described [24].

Supplementary Information
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