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Loss of IDH1 and IDH2 mutations 
during the evolution of metastatic 
chondrosarcoma
William Cross1, Iben Lyskjær2, Christopher Davies3,4, Abigail Bunkum5,6,7, Ana Maia Rocha3,4, 
Tom Lesluyes8, Fernanda Amary3, Roberto Tirabosco3, Cristina Naceur‑Lombardelli6,7,9, PEACE 
consortium, Mariam Jamal‑Hanjani6,7,9, Charles Swanton7,9,10, Nischalan Pillay3,4, Simone Zaccaria5,7, 
Adrienne M. Flanagan3,4*† and Peter Van Loo8,11,12† 

Abstract 

Driver mutations in IDH1 and IDH2 are initiating events in the evolution of chondro‑
sarcoma and several other cancer types. Here, we present evidence that mutant IDH1 
is recurrently lost in metastatic central chondrosarcoma. This may reflect either relaxed 
positive selection for the mutant IDH1 locus, or negative selection for the hypermeth‑
ylation phenotype later in tumor evolution. This finding highlights the challenge 
for therapeutic intervention by mutant IDH1 inhibitors in chondrosarcoma.
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Background
Driver mutations in IDH1 and IDH2 have been implicated in several cancer types [1], 
including central chondrosarcoma [2, 3], acute myeloid leukemia, and glioblastoma. In 
chondrosarcoma, the evidence that IDH1 mutations are initiating events is supported 
by a causative relationship with the early postzygotic conditions, Ollier disease and Maf-
fucci syndrome [4, 5], and by mouse models [6].

There is a clear need for new treatment options for metastatic chondrosarcoma [7], as 
patients rarely survive beyond two years [8] and recent trials of IDH1 inhibitors report 
variable responses [9]. Nevertheless, emerging data suggest that IDH1/2 mutation status 
has an overall impact on outcome in metastatic disease [3, 10]. To gain a deeper under-
standing of the role of IDH1/2 in chondrosarcoma metastasis, we performed detailed 
genomic profiling of metastatic central chondrosarcoma, with a specific focus on IDH1 
and IDH2 mutations.
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Results and discussion
Our index case, CS1, is a 73-year-old patient who died of metastatic central chondro-
sarcoma and donated her body to research through the Cancer Research UK PEACE 
research autopsy study [11, 12]. We performed whole-genome sequencing on three pri-
mary tumor samples and 10 metastatic lesions to a median coverage of 120X. We called 
6090 SNVs, 2718 indels, and 810 structural variants (averages: SNV: 1.9/Mb, indels: 0.76/
Mb, SVs: 537/genome, Fig. 1A). The tumor’s genome was highly rearranged, had under-
gone whole-genome doubling, and contained driver mutations in TP53, COL2A1, and 
IDH1 (Fig. 1A). While the genome doubling event was specific to metastatic tissues, we 
have previously reported that this alteration was not uncommon in primary high-grade 
chondrosarcoma [10]. No putative driver mutations specific to metastasis samples were 
identified. However, most strikingly, IDH1 mutations, while present in all primary tumor 
samples, were absent in two metastatic samples (liver 2 and anterior uterus, both show-
ing no mutant reads) and near-absent in a third metastatic sample (lower uterine seg-
ment, 1 mutant read, VAF = 0.01). These losses of IDH1 mutations were associated with 
three different copy number losses of the IDH1 locus on 2q (liver 2: 28.2 Mb, anterior 
uterus: 18.9 Mb, lower uterine segment: 18.8 Mb, Fig. 1B, Additional file 1: Table S1), 
suggesting the IDH1 deletions may have occurred multiple times in parallel.

To gain deeper insight into how IDH1 mutation losses evolved, we performed detailed 
subclonal reconstruction and metastatic seeding analysis, using a combination of bio-
informatics tools. Subclonal reconstruction using DeCiFer [13] revealed five distinct 
copy number states observed at the IDH1 locus (Fig.  1C). We combined this analysis 
with the phylogenetic reconstruction of SNVs using CONIPHER [14], which resulted in 
a single optimal phylogenetic tree, where eight distinct tumor clones were inferred and 
then expanded (black dotted lines) to reflect clones with different copy number states at 
the IDH1 locus (Fig. 1D). This confirmed that IDH1 mutations were lost through mul-
tiple parallel copy number losses: one in the clone present in “liver 2”, another in the 
clone present in the “lower uterine segment”, and another in the “anterior uterus” sam-
ple. To build further support for these results and assess the clonal relationships using 
an orthogonal approach, we next examined the evolution of copy number alterations by 
inferring clone-specific copy numbers with HATCHet [15] and reconstructing the evo-
lutionary history of these clones using MEDICC2 [16]. This approach confirmed distinct 
loss of the IDH1 locus (Fig.  1E) in each of the three samples in which IDH1 loss was 
observed. To examine the seeding pattern of these clones, we used MACHINA [17], 
providing as input the phylogenetic tree inferred by CONIPHER for the inferred tumor 
clones (Fig. 1F). A single-source metastasis-to-metastasis seeding pattern was identified, 
suggesting that the pattern of dissemination was first to the liver, then other anatomical 
sites, followed by reseeding to the liver. These combined results suggest parallel evolu-
tion of IDH1 mutation loss in this tumor.

We next performed whole exome sequencing of an additional 10 tumor samples from 
four patients who had developed metastatic chondrosarcoma (CS2, CS3, CS6, and CS7, 
Fig. 2A, Additional file 1: Table S1 and Additional file 2: Table S2) to determine if IDH1 
mutation loss was a recurrent event in chondrosarcoma evolution. We identified no 
putative driver mutations specific to metastasis samples. We found that the primary 
tumor sample of patient CS2 showed a heterozygous IDH1 R132G mutation, whereas 
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Fig. 1  The evolution of IDH1 mutant loss in a case of metastatic chondrosarcoma. A Mutational burden 
summary for index case CS1. B Driver mutation summary. The IDH1 mutation is clonal in primary tumor 
samples, but absent or near absent in three metastatic sites. All metastatic sites are genome doubled. C 
Copy number states of the IDH1 locus across sites with IDH1 mutation loss. D The presence of eight clones 
detected are indicated in the body map. Multiple parallel losses of IDH1 (red branches) were observed. E 
The evolutionary history of the tumor inferred via HATCHet and MEDICC2. F Seeding pattern determined via 
MACHINA suggests the liver was the first metastatic site
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both metastatic samples had lost this mutation due to copy neutral LOH of part of chro-
mosome 2 (Fig. 2B). In CS3, the IDH1 R132C mutation present in the primary tumor 
showed a subclonal loss in the metastasis sample (VAF = 0.073, cancer cell fraction: 
21%, Fig. 2A). In patient CS6, the IDH1 mutation was retained in the sampled metastasis 
(VAF = 0.23, consistent with one out of four IDH1 copies mutated in all tumor cells). 
In CS7, only primary tumor samples were sequenced, and all were IDH1 mutant. These 
results support our finding above that IDH1 mutations may be recurrently lost in chon-
drosarcoma metastases.

To explore our findings of IDH1 mutation losses in a larger number of samples, we 
used ddPCR to evaluate IDH1 (and IDH2) hotspot mutation status across 78 samples 

Fig. 2  Exploration of IDH1 and IDH2 loss in ddPCR and immunohistochemistry. A Driver mutation summary 
of four cases subjected to exome sequencing, identified as harboring mutant IDH1 loss. B Copy neutral 
LOH of the IDH1 loci in CS2. C ddPCR frequency of IDH1/2 mutant droplets for 19 cases of metastatic 
chondrosarcoma. Partial loss defined as frequencies > 1% and < 10%. Near-complete loss frequencies 
are defined as < 1% but higher than the background (Methods). Samples assayed for IDH1 R132H 
immunostaining included in panel D are marked. D Tumor content distribution, as measured by sequencing 
and histological estimation. E Immunostaining for IDH1 R132H. Loss of immunoreactivity confirmed the 
genetic findings in CS6_Met and CS7_Pri_1 (which had a low droplet count)
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from 19 patients (including 24 samples from CS1, 28 samples from CS2, CS3, CS6, 
CS7, and 26 samples from 14 other patients, Fig. 2C, Additional file 2: Table S3). Four 
out of the 19 cases had IDH2 R172 mutations, and the remaining 15 harbored IDH1 
R132 mutations. Our results confirmed loss or near-complete loss in six metastasis 
samples from CS1 and two samples from CS2. We defined near-complete loss as a 
mutant droplet percentage < 1% but above the level of the background false positive 
noise of the assay (see the “Methods” section, Additional file 2: Table S3). While no 
additional cases showed a mutant droplet percentage < 1%, nine other cases, includ-
ing three IDH2 cases, showed mutant droplet frequencies < 10% (henceforth termed 
partial loss). Together, these IDH1/2 (partial) loss events were found in 24/78 (31%) 
samples in 11/19 (58%) cases. These events were strongly enriched in metastasis sam-
ples compared to the primary tumor samples (24/62 vs. 1/16, p = 0.009).

The significance of partial loss events of IDH1/2 mutations remains unclear. To 
formally exclude low tumor content as a possible explanation, we next evaluated 
tumor purity using both copy number inference from WGS/WES data and histologi-
cal assessment. All samples contained a high percentage of tumor cells (mean purity 
from WGS/WES: 56%; mean purity from histological assessment: 74%, Fig. 2D, Addi-
tional File 2). Based on this, we hypothesize that some of these IDH1/2 partial loss 
events represent subclonal mutation losses in chondrosarcoma metastases.

To provide support for the IDH1 mutation loss detected by ddPCR at a protein 
level, we performed immunohistochemistry using an IDH1 R132H mutation-specific 
antibody on the relevant tumors with this specific alteration in primary tumor and 
metastasis samples from cases CS6 and CS7. CS6 showed IDH1 immunoreactivity 
in the primary tumor but not in the metastasis sample (Fig. 2E). The low number of 
IDH1 mutant molecules detected by ddPCR in the corresponding samples (marked 
on Fig.  2C) likely reflects the sensitivity of the assay in detecting a minor popula-
tion of mutant cells [18]. CS7 also revealed the absence of IDH1 immunoreactivity 
in a single region from the primary tumor (Fig. 2E). The ddPCR result from the same 
region revealed a low IDH1 R132H droplet count (13%, Fig.  1C, Additional File 2) 
compared to the other regions analyzed. We hypothesize that the absence of mutant 
IDH1 expression may in some cases result from a combination of allelic imbalance 
between normal and mutant copies, and possibly clonal mixing within the sample.

In summary, by exploring the clonality of IDH1 mutations in metastatic chondro-
sarcoma, we found that, despite the initiating role of IDH1 and IDH2 in this disease, 
these mutations can be recurrently lost later in tumor evolution. We note that this 
phenomenon has been previously observed in glioma [19] where IDH1/2 driver muta-
tions are also commonly observed. We hypothesize that IDH1 and IDH2 mutations, 
known to block differentiation [6], become disadvantageous later in chondrosar-
coma evolution and may be subject to negative selection. Alternatively, selection for 
IDH1/2 mutations may become relaxed later in chondrosarcoma evolution, and losses 
of mutant IDH1/2 may occur as a product of mutational drift in these chromosomally 
instable genomes. Both models could explain the relatively high frequency of IDH1 or 
IDH2 mutation loss or partial loss in our cohort and the observation of parallel evolu-
tion for losses across multiple samples within CS1.
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Conclusions
Our study posits that initiating driver mutations in IDH1 or IDH2 in cartilaginous 
tumors are not required for the persistence of chondrosarcoma. These data support 
emerging evidence that IDH1 inhibition does not consistently control disease in met-
astatic chondrosarcoma [20].

Methods
Patients and samples

We obtained archived tumor samples from 19 patients with metastatic central chon-
drosarcoma and IDH1/2 mutations from the Royal National Orthopaedic Hospital. 
Samples from multiple tumor sites (mean 4) were available for analysis from nine of 
these patients, targeted digital droplet PCR (ddPCR, n = 19), whole exome sequenc-
ing (WES, n = 4), histological analysis, or a combination thereof (Additional file  1: 
Table  S1 and Additional file  2: Table  S2). In addition, fresh frozen pre- (n = 3) and 
post-mortem (n = 10) samples from a patient enrolled in the PEACE (Posthumous 
Evaluation of Advanced Cancer Environment) autopsy study were analyzed using 
whole genome sequencing (WGS) and histological analysis (CS1, Additional File 1 
and 2). Metastatic disease was widespread and present in the liver, lung, nerve, bone, 
uterus, and ilium.

Histology and immunohistochemistry

Four-micrometer sections were cut from formalin-fixed paraffin-embedded (FFPE) 
tissue blocks and histology assessed by AMF, RT, and FA. Immunohistochemistry was 
performed on cases in which an IDH1 R132H mutation was detected on genotyping 
using the anti-IDH1 R132H (H09) antibody (Dianova; Hamburg, Germany; DIA-H09) 
on the Leica bond platform (1:100, 20 min ER1). All DNA from FFPE sources were 
UDG-treated prior to the IDH1 R132 assay to remove false positives caused by the 
deamination of nucleotides from the formalin fixation process.

DNA extraction

5  µm diameter punches (Integra Miltex; NJ, USA) were obtained from FFPE tumor 
and matched normal tissue blocks from each patient. DNA was extracted from FFPE 
tissue using the truXTRAC FFPE total NA Plus Kit (Covaris; MA, USA; 520,252) and 
quantified using Nanodrop (Thermofisher; MA, USA), Qubit (Invitrogen; MA, USA; 
Q32851), and Tapestation (Agilent; CA, USA). DNA was extracted from frozen tumor 
samples and blood as recommended by manufacturers.

Genotyping and bioinformatic analysis

We performed ddPCR for the IDH1 R132 and IDH2 R172 mutations as described pre-
viously [10]. In brief, we utilized non-template and negative controls to determine the 
background noise of the assay. This was less than 1/10,000 generated droplets, which 
corresponds to 0.01%. Samples with a minimum number of 10,000 droplets were 
included in the study, and samples with a minimum of 100 droplets with mutations 
were considered to harbor the mutation, as previously described [21]. We considered 
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a droplet percentage of < 1% but above the background level to represent a near-com-
plete loss of IDH1 mutations, while a percentage between 1 and 10% represented a 
partial loss, meaning a lowering of the expected variant allele frequency. WES was 
performed using the Twist Exome library preparation kit, followed by paired-end 
sequencing on the Illumina NovaSeq 6000 platform, obtaining an average depth of 
250 × (50 × for matched normal samples). WGS was performed using the TruSeq 
DNA PCR-Free library construction and the Illumina NovaSeq 6000 platform, using 
150  bp paired-end sequencing and 100 × sequencing depth. Both the library prepa-
ration and sequencing for the WES and WGS were conducted by Macrogen (Seoul, 
South Korea).

Single nucleotide variants (SNVs) and indels were called on both WES and WGS data 
via Mutect2 (4.1.2.0), following GATK best practices. Somatic copy number alterations 
were called using Sequenza [22] (WES). Structural variants (SVs) were called using 
GRIDSS [23]. Visual inspections of driver alterations were performed using the Integra-
tive Genomics Viewer (IGV).

Phylogenetic analysis

We performed evolutionary and metastatic dissemination analysis of the CS1 tumor 
by applying a collection of existing methods to the bulk whole-genome sequencing 
data of multiple samples from primary and metastatic sites. Through this analysis, we 
aimed to (1) reconstruct the tumor phylogeny and investigate the presence of mutation 
losses, (2) reconstruct the evolution of copy number alterations to orthogonally assess 
whether parallel losses occurred at the IDH1 locus, and (3) infer the metastatic migra-
tion patterns.

Firstly, we reconstruct the tumor evolution of distinct tumor clones using the 
CONIPHER algorithm [14]. Specifically, CONIPHER was executed with default param-
eters. We have also applied the DeCiFer algorithm [13] to investigate the possible 
presence of mutation losses at the IDH1 locus. DeCiFer was run on the inferred sin-
gle-nucleotide variant (SNV) data excluding low-confidence SNVs such as SNVs with 
no copy-number information at the variant location, low variant allele frequency (< 0.2) 
in all samples, or low sequencing depth (< 30 reads) in any sample. Moreover, the called 
CNAs were provided as input to DeCiFer. DeCiFer was run using default parameters and 
generating state trees for mutations with maximum allele-specific copy number up to 3, 
maximum total copy number up to 5, and with at most 22 mutation clusters.

Secondly, we reconstructed the evolution of the inferred clone-specific CNAs using 
the MEDICC2 algorithm [16] with default parameters. We obtained the clone-specific 
input for MEDICC2 by using the HATCHet algorithm [15] to infer clone copy number 
profiles for each of the tumor samples. HATCHet was run on each sample individually 
due to the presence of different WGDs in different samples (a feature not supported by 
HATCHet when executed in multi-sample mode). HATCHet was run with a value of 50 
genomic bin clusters, a minimum clone proportion threshold of 0.2, a maximum diploid 
copy number value of 12, and with the possible number of identified clones between 2 
and 8 (including a diploid, normal clone).

Lastly, we reconstructed the metastatic migrations for tumor CS1 by applying the 
MACHINA algorithm [17] to the inferred phylogenetic tree from CONIPHER. We 
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applied MACHINA using the default polytomy resolution mode and allowing all pos-
sible seeding patterns of increasing complexity: primary seeding only, single-source 
metastasis-to-metastases seeding, multi-source metastasis-to-metastases seeding, 
and reseeding of the primary tumor. The most parsimonious solution was chosen, 
corresponding to a single-source metastasis-to-metastasis seeding pattern being 
inferred.

Statistical analysis

Statistical comparisons were performed using Wilcoxon tests and Fisher exact tests in 
the R programming language. For the allelic dropout statistics, we used binomial statis-
tics and reported values of sequencing depth of each sample (range: 61–93X). Cancer 
cell fractions (CCF) of mutations were inferred from VAFs, accounting for tumor purity 
and copy number status, as previously described [24].

Supplementary Information
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