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Abstract—The rapid advancement of Industry 5.0 has accel-
erated the adoption of the Industrial Internet of Things (IIoT).
However, challenges such as data privacy breaches, malicious
attacks, and the absence of trustworthy mechanisms continue to
hinder its secure and efficient operation. To overcome these issues,
this paper proposes an enhanced blockchain-based data storage
framework and systematically improves the Delegated Proof of
Stake (DPoS) consensus mechanism. A four-party evolutionary
game model is developed, involving agent nodes, voting nodes,
malicious nodes, and supervisory nodes, to comprehensively
analyze the dynamic effects of key factors—including bribery
intensity, malicious costs, supervision, and reputation mecha-
nisms—on system stability. Furthermore, novel incentive and
punishment strategies are introduced to foster node collabora-
tion and suppress malicious behaviors. The simulation results
show that the improved DPoS mechanism achieves significant
enhancements across multiple performance dimensions. Under
high-load conditions, the system increases transaction throughput
by approximately 5%, reduces consensus latency, and maintains
stable operation even as the network scale expands. In adversarial
scenarios, the double-spending attack success rate decreases to
about 2.6%, indicating strengthened security resilience. In addi-
tion, the convergence of strategy evolution is notably accelerated,
enabling the system to reach cooperative and stable states more
efficiently. These results demonstrate that the proposed mecha-
nism effectively improves the efficiency, security, and dynamic
stability of IIoT data storage systems, providing strong support
for reliable operation in complex industrial environments.

Index Terms—Industrial Internet of Things(IIoT), Blockchain,
Data storage, Delegated Proof of Stake (DPoS), Consensus
mechanism.

I. INTRODUCTION

THE rapid development of Industry 5.0 is driving the
industrial sector towards higher levels of intelligence,

personalization, and human-machine collaboration [1]. As
a crucial pillar of Industry 5.0, the Industrial Internet of
Things (IIoT) significantly enhances productivity and resource
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utilization through large-scale device connectivity and data
interaction [2]. However, the widespread adoption of IIoT has
revealed critical challenges, including inadequate data privacy
protection, frequent malicious attacks, and the absence of trust
mechanisms [3]. A single point of failure in the traditional cen-
tralized IIoT system can result in system paralysis, extensive
sensitive data leakage, or data tampering [4]. These issues not
only hinder the broader adoption of IIoT technologies but also
impede the realization of Industry 5.0’s vision.

In recent years, blockchain technology has gained substan-
tial attention from both academia and industry due to its
decentralization, data immutability, and traceability features.
It is widely regarded as a revolutionary solution to the data
security issues in IIoT [5]–[7]. By integrating distributed
ledger and smart contracts, blockchain effectively mitigates
the security risks of centralized architectures and offers a
transparent, efficient, and trustworthy data storage environment
for IIoT systems [8]. Despite its potential, the application of
blockchain in IIoT faces several challenges, including low
consensus efficiency, complex interactions among nodes, and
the threat posed by malicious nodes [9], [10]. Specifically,
the widely used Delegated Proof of Stake (DPoS) consensus
algorithm is prone to inefficiencies and security risks, such as
bribery-induced vote manipulation and attacks from malicious
nodes [11]. These challenges compromise the fairness and
security of blockchain systems, posing significant obstacles
to their large-scale deployment in IIoT scenarios.

To address these challenges, this paper presents an inno-
vative optimization framework based on a four-party evolu-
tionary game model, which comprehensively considers the in-
teractions among agent nodes, voting nodes, malicious nodes,
and supervisory nodes. Unlike traditional two-party or three-
party game models, the four-party model simulates multi-
agent behavior in real-world applications, providing deeper
insights into the dynamic impacts of strategic choices on
system stability. Furthermore, this study examines the effects
of key factors such as bribery intensity, costs associated with
malicious behavior, reputation value, and punitive measures on
system performance. By exploring the evolutionary dynamics
of malicious node behavior, this research enriches the theoret-
ical framework of blockchain game theory and provides prac-
tical guidance for optimizing the DPoS consensus mechanism.
The primary contributions of this paper are as follows:

(i) A blockchain-based IIoT data storage framework is
proposed, integrating a game model to analyze node
interactions and their impact on system stability and
efficiency.

(ii) The impact of bribery intensity, punishment mecha-
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nisms, and reputation mechanisms on the system’s evo-
lutionary stability is systematically analyzed.

(iii) A comparative analysis with two-party and three-party
game models demonstrates the proposed model’s superi-
ority in accelerating strategy convergence and enhancing
system stability.

(iv) Building on the research findings, policy recommen-
dations are proposed to optimize the DPoS consensus
mechanism, strengthening blockchain’s secure storage
capabilities in IIoT and offering guidance for complex
application scenarios.

The rest of the paper is organized as follows: Section II
reviews related work. Section III analyzes the core challenges
of IIoT and proposes a blockchain-based storage framework.
Section IV details the proposed four-party evolutionary game
model. Section V presents simulation and comparative anal-
ysis. Section VI discusses the research results and outlines
future research directions. Section VII concludes the paper.

II. RELATED WORKS

A. Blockchain Integration with IIoT

As a subset of IoT, IIoT promotes industrial transformation
through data interaction among smart devices [12], enhancing
efficiency and reducing costs. However, traditional centralized
architectures struggle with privacy risks, single points of
failure, and weak security. Blockchain, with its decentralized,
tamperproof, and traceable features, offers a promising solu-
tion for secure IIoT data management.

In recent years, blockchain applications in IIoT have at-
tracted widespread attention across various domains. For ex-
ample, in supply chain management, Dutta et al. [13] proposed
a blockchain-based parametric transportation insurance to im-
prove efficiency and transparency. In smart manufacturing, Lin
et al. [14] developed a blockchain-enabled knowledge sharing
platform to safeguard private knowledge while supporting edge
intelligence. In the energy sector, Abegaz et al. [15] designed
a blockchain-based resource transaction framework with deep
reinforcement learning to ensure security and privacy. In
the context of smart cities, Wang et al. [16] introduced a
blockchain-based electronic toll collection system to reduce
evasion and enhance transparency.

Blockchain technology offers innovative solutions for IIoT,
yet faces two key challenges in practical applications: effi-
ciency bottlenecks and security risks. The consensus mech-
anism, as the core of blockchain, directly impacts system
security, scalability, and decentralization. Specifically, the
DPoS mechanism encounters issues like node strategy con-
flicts and vulnerabilities to malicious attacks, affecting both
consensus efficiency and blockchain’s industrial applicability.
Thus, exploring the evolution and dynamic optimization of
node behaviors is crucial for both theoretical and practical
advancements.

B. Application of Game Theory in Blockchain DPoS Consen-
sus Mechanism

Game theory serves as a powerful tool for analyzing
the behavior of blockchain nodes, particularly in the design

of incentive structures, the distribution of benefits, and the
defense against attacks within consensus mechanisms. This
approach plays a pivotal role in enhancing system efficiency
and security. Recent studies have therefore explored the DPoS
consensus mechanism through the lens of game theory.

From the perspective of incentive and efficiency optimiza-
tion, Wang et al. [17] developed a DPoS consensus mechanism
based on the Stackelberg game, leveraging a reputation model
to enhance the utility and efficiency of validation nodes.
Focusing on behavioral supervision, Ren et al. [18] proposed a
monitoring mechanism with a reward–punishment system and
constructed a three-party evolutionary game model involving
agent nodes, voting nodes, and supervisory nodes to analyze
strategic changes before and after consensus scheme improve-
ments. In terms of energy efficiency, Liu et al. [19] formulated
a cooperative game model that balances the interests of block
nodes and the system, achieving dual optimization through
Nash equilibrium.

Overall, existing research on the DPoS consensus mecha-
nism often employs two- or three-party game models, which
cannot fully capture the complexity of real-world applications
and the dynamic interactions among multiple stakeholders.
Malicious actors can severely compromise system security and
stability. Therefore, the introduction of a multi-party game
model is essential to better represent these interactions and
further optimize the DPoS consensus mechanism.

C. Research on Preferential Delegated Proof of Stake
(PDPoS)

To address the shortcomings of traditional DPoS in terms
of fairness in node selection, decentralization tendencies, and
resistance to attacks, many scholars proposed improved mech-
anisms based on the concept of priority delegation. In terms
of PDPoS mechanisms optimized for reputation, Wang et al.
[20] quantified node battery levels, computational resources,
and trust levels to construct a multi-dimensional reputation
score, granting nodes with higher reputation a higher priority
for selection as validators. Zhu et al. [21] introduced a rep-
utation adjustment factor to modify voting weights, making
it easier for high-reputation nodes to be selected into the
candidate miner set. Li et al. [11] calculated base station
reputation values based on historical performance, enabling
high-reputation base stations to prioritize becoming core nodes
in the blockchain for block production and validation. In
terms of PDPoS mechanisms based on weight and voting
optimization, You et al. [22] improved the fuzzy set conversion
formula to allocate voting weights, enhancing the influence
of high-weight nodes in the consensus process. Lin et al.
[23] employed the SP-DEWOA algorithm to optimize witness
node elections, making the results more consistent with the
preference rankings of the majority of stakeholders.

In existing PDPoS studies, incentive, punishment, and rep-
utation mechanisms are typically designed as independent
components. Reputation mainly serves for node prioritization
or voting-weight adjustment and does not interact with bribery
incentives, behavioral deviations, or reputation backlash. Fur-
thermore, malicious nodes are often treated as exogenous
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disturbances without strategic evolution, limiting the ability to
capture dynamic coupling among malicious behavior, super-
visory strength, and incentives. These characteristics hinder
PDPoS models from characterizing stability evolution under
multi-mechanism coupling in complex IIoT scenarios.

D. Study of Malicious Nodes in DPoS Consensus Mechanism

Malicious nodes pose severe threats to the security and
stability of the DPoS consensus mechanism. As blockchain
technology evolves, mitigating their impact has become a
central research focus, with existing studies exploring diverse
defense strategies such as voting optimization, credit scoring,
and enhanced consensus protocols.

To address these challenges, scholars have proposed a series
of methods with increasing sophistication. Xu et al. [24] first
improved the voting process by designing a fuzzy set-based
method to enhance fairness and efficiency, thereby reducing
the likelihood of malicious nodes being elected. Building on
system-level security, Wang et al. [25] introduced a credit
scoring and malicious behavior disclosure mechanism in a
blockchain-based carpooling scheme to strengthen reliability.
To further resist sophisticated attacks, Li et al. [26] developed
an enhanced DPoS algorithm resistant to long-range attacks,
which addressed centralization risks through node sharding
and reporting mechanisms for witness nodes. Extending to
intelligent detection, Misic et al. [27] proposed a DL-DPoS
mechanism that employs credit scoring and responsibility re-
assignment to identify and manage malicious nodes effectively.

Most defense strategies rely on single-dimensional penalties
or isolation and lack mechanisms that link malicious behavior
with reputation recovery or compliance incentives. Malicious
nodes are rarely incorporated as strategic agents in a multi-
party evolutionary framework, resulting in insufficient rep-
resentation of mechanism coupling and cross-party feedback
effects.

E. Comparative Analysis of Existing Methods

To systematically review the advances and limitations of
optimization studies on DPoS and PDPoS consensus mecha-
nisms, this paper presents a comparative analysis of represen-
tative methods, as summarized in Table I.

The existing methods suffer from three main shortcomings:
the game models are oversimplified and fail to systematically
capture malicious behaviors; most mechanisms are static and
cannot adapt to dynamic strategy evolution; and incentive,
punishment, and reputation schemes are often studied in
isolation without coordinated optimization. To overcome these
limitations, this paper proposes a four-party evolutionary game
model involving agent nodes, voting nodes, malicious nodes,
and supervisory nodes. It integrates incentive, punishment, and
reputation mechanisms that dynamically adjust to evolving
strategies, and employs replicator dynamics to quantify strat-
egy evolution, thereby offering a more practical foundation
for enhancing the security and efficiency of DPoS in IIoT
scenarios.

III. CORE CHALLENGES OF IIOT AND BLOCKCHAIN
STORAGE FRAMEWORK

A. Core Challenges of the IIoT
The rapid development of Industry 5.0 has brought about

transformative technological advancements, establishing intel-
ligent production systems where humans and machines collab-
orate as the new standard in the industrial sector [1]. However,
this intelligent transformation is inevitably accompanied by
significant challenges related to data security and system
reliability, as illustrated in Figure 1.

IIoT

Challenges

Security and

privacy issuesLimited resource

support

Data management is

inefficient
Heterogeneity of

IIoTdevices

Interoperability

Fig. 1. IIoT challenges

First, the lack of trust remains a core issue hindering the
advancement of IIoT. IIoT systems require seamless sharing
of critical data across multiple devices and organizations,
but the absence of a robust trust mechanism often results in
risks of data leakage or misuse. This not only compromises
data authenticity but also reduces the efficiency of inter-
organizational collaboration.

Second, the risk of data tampering adds complexity to indus-
trial operations. If an attacker manipulates critical parameters
or production data, it can disrupt industrial processes and
potentially trigger serious security incidents.

Moreover, the limitations of centralized storage present a
major bottleneck for current systems. A single point of failure
can compromise the entire network, and centralized server-
based models lack the resilience needed to adapt to dynamic
network changes. Additionally, interoperability issues among
IIoT devices from different vendors and protocols create data
silos, thereby restricting broader adoption.

Lastly, the challenge of balancing data privacy and sharing
remains unresolved. Industrial data often contains sensitive
information, and traditional data-sharing mechanisms lack
comprehensive consideration of privacy and compliance, lim-
iting system efficiency.

Addressing these challenges requires designing an innova-
tive technological framework that ensures data security, system
reliability, and efficient sharing—a critical step toward the
comprehensive upgrade of IIoT.

B. Blockchain-based IIoT Data Storage Framework
1) Storage framework: To address the core challenges faced

by IIoT, this paper proposes a blockchain-based data storage
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TABLE I
COMPARATIVE ANALYSIS OF REPRESENTATIVE STUDIES ON DPOS AND PDPOS OPTIMIZATION

Research
focus

Representative
literature

Research objects /
game model

Malicious
nodes

considered
Core mechanism Main advantages Main limitations Relevance to this

work

Incentive
mechanism

Wang et al.
[17]

Validator nodes;
Stackelberg game

based on reputation
No

Reputation +
incentive

mechanism

Optimizes validator
utility and efficiency

Mechanisms
analyzed

independently;
no dynamic

co-evolution; no
malicious-node

interaction

Extended to
four-party dynamic
game with coupled

mechanisms and
malicious-node

strategies

Behavioral
strategy

Ren et al.
[18]

Delegate/voter/supervisor
nodes; three-party
evolutionary game

No
Incentive +
punishment
mechanism

Constructs a three-party
interaction model,

clarifying
reward–punishment

constraints

No malicious
nodes; no

multi-mechanism
coupling

Adds malicious-node
evolution and incen-

tive–punishment–
reputation coupling

Reputation
mechanism
(PDPoS)

Zhu et al.
[21]

Node reputation and
voting weights;

preferential
delegation

No

Reputation
adjustment factor
modifies voting

weights

High-reputation nodes are
more likely to be

selected, improving
fairness and reliability

Static reputation;
no penalty

integration; no
stability analysis

Couples reputation
loss with penalties
within replicator

dynamics

Weight
Optimiza-

tion
(PDPoS)

You et al.
[22]

Node voting weights;
fuzzy set

optimization
No

Improved voting
weight allocation

formula

Enhances the influence of
high-weight nodes in

consensus

Ignores bribery
and malicious

behavior;
isolated

mechanisms

Integrates weight and
incentives into

dynamic evolutionary
framework

Voting Op-
timization
(PDPoS)

Lin et al.
[23]

Witness node
election; SP-DEWOA

algorithm
No

Preference-
consistency
optimization

Improves alignment of
election outcomes with
stakeholder preferences

No dynamic
defense; no
mechanism

coupling

Introduces
malicious-node
dynamics and

cross-mechanism
interaction

Malicious
node

defense
Li et al. [26]

Witness/malicious
nodes; enhanced

DPoS
Yes

Sharding +
reporting

mechanism

Resists long-range
attacks, reduces

centralization risk

Penalty static; no
four-party
evolution

Includes dynamic
supervisory

cost–benefit balance

Integrated
mechanism

Misic et al.
[27]

Multiple nodes;
credit scoring and

liability redistribution
Yes

Credit and
responsibility
redistribution

Strengthens system
security

No dynamic
coupling; penalty

not adaptive

Uses adaptive
penalty in coupled

evolutionary system

This work

agent/voter/malicious/
supervisor nodes;

four-party
evolutionary game

Yes

Dynamic incentives
+ dynamic penalties

+ reputation
mechanism

High integrity of
participants, dynamic
mechanism coupling,

quantified evolutionary
path, accelerated

convergence

Higher model
complexity,

requires
parameter
calibration

Provides
fundamentally new

equilibrium and
stability via fully
coupled dynamic

mechanisms

framework that leverages the DPoS consensus mechanism as
its core and integrates distributed storage and smart contracts
to ensure data security, reliability, and efficient sharing.

As shown in Figure 2, the proposed framework integrates
a distributed ledger, smart contracts, and the DPoS consensus
mechanism to achieve secure data storage and efficient man-
agement through the following functional modules:

Data Collection and Encryption: Sensors and devices in IIoT
collect multidimensional data (e.g., temperature, humidity,
pressure, energy consumption, etc.) in real time. After data
collection, the raw data is encrypted, and a unique data
identifier is generated using a hash algorithm to ensure data
integrity and prevent tampering.

Data Block Construction and Signature: The encrypted data
and its corresponding hash value are encapsulated into a data
block. Each block contains a timestamp, device identifier,
hash value of the data content, and a digital signature. The
device uses its private key to sign the data block, enhancing
trustworthiness and traceability.

Data Broadcasting and Validation: Data blocks are broadcast
to distributed nodes through the blockchain network. Under
the DPoS consensus mechanism, agent nodes validate the

smart contract

blockchain network

data storage

IIoT devices

data owner

data user

Fig. 2. Blockchain-based IIoT data storage framework
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data blocks by checking their signatures and data integrity.
This verification process is efficient and mitigates the risks
associated with centralization.

DPoS Consensus mechanism and Block Generation: The
DPoS consensus mechanism elects a set of agent nodes
through voting. These nodes reach consensus on the data
block and generate a new block. The agent nodes verify the
legitimacy of the data block and record it onto the blockchain,
ensuring secure and consistent distributed data storage. Reward
tokens are issued to the block-generating nodes, incentivizing
active participation.

Smart Contract Driven Data Sharing: During data storage,
smart contracts define strict access rules and conditions. For
instance, data requestors must meet specific permissions to
access sensitive information. When conditions are satisfied, the
smart contract automatically verifies identity and permissions,
authorizing access to ensure secure and efficient data sharing.

Data Access and Feedback: Data owners dynamically man-
age access requests through smart contracts. These contracts
not only execute permission verification, but also adjust access
conditions based on the behavior and authority of the request-
ing party, ensuring compliance and data usage security.

2) Technical Advantages of the Framework: Decentraliza-
tion Enhances Reliability: By utilizing the DPoS consensus
mechanism and distributed storage architecture, the framework
eliminates the risk of single-point failure in traditional central-
ized storage, significantly enhancing system reliability.

Efficient Consensus Mechanism: The low latency and high
throughput of the DPoS consensus mechanism enable the
blockchain to handle large-scale IIoT data storage require-
ments while maintaining low energy consumption.

Anti-tampering and Traceability: The combination of data
hash values, digital signatures, and distributed ledgers ensures
data integrity, anti-tampering capabilities, and traceability,
providing robust security for industrial applications.

Smart Contracts Optimize Data Sharing: The automated
execution of smart contracts improves data-sharing efficiency
and protects sensitive data privacy through strict access control
rules.

Flexibility and Scalability: The framework is adaptable to
various IIoT application scenarios, including smart manufac-
turing, supply chain management, energy monitoring, and
other fields, supporting in-depth applications across multiple
industries.

IV. MODELING OF THE FOUR-PARTY GAME

Although blockchain technology has been widely adopted
in IIoT, its core consensus mechanism continues to face
dual challenges of security and efficiency. Under the DPoS
consensus mechanism, the presence of malicious nodes not
only threatens system security but also jeopardizes the fairness
and effectiveness of the consensus process through methods
such as bribery. Therefore, this section focuses on the DpoS
consensus mechanism and introduces a four-party game model
based on evolutionary game theory. The objective is to quan-
tify and optimize the behavioral strategy choices among agent
nodes, voting nodes, malicious nodes, and supervisory nodes.

A. Description of the Game Problem

In the DPoS consensus mechanism, different types of nodes
interact with one another through complex strategies that
influence consensus efficiency and system security:

Agent Nodes: To secure more votes, an agent node may
enhance its likelihood of being selected as a representative
node through either legitimate or illegitimate means (e.g.,
bribing voting nodes).

Voting Nodes: Voting nodes decide to support specific agent
nodes based on their own interests and may accept bribes or
engage in malicious activities.

Malicious Nodes: Malicious nodes seek to attack other
nodes or manipulate data to gain undue advantages, disrupting
the normal functioning of the system.

Supervisory Nodes: Supervisory nodes are tasked with
monitoring system behavior and maintaining network security
by punishing bribery or malicious actions; however, these
supervisory activities incur costs.

The behavioral strategies adopted by these subjects directly
impact the stability and consensus efficiency of the system. To
analyze these interactions, this paper constructs a four-party
game model, as illustrated in Figure 3, to depict the dynamic
relationships among the participants.
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supervisory node
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vote and delegate
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petition, profit, bribery
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supervision punishm
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Fig. 3. Subject game relationships

B. Underlying Assumptions

In the DPoS consensus mechanism, the behavioral decisions
of participating subjects are diverse and complex. Interactions
and strategic games occur between agent nodes, voting nodes,
malicious nodes, and supervisory nodes. These interactions
influence not only the system’s consensus efficiency but also
its security and stability. Due to the real-time nature of
data circulation and the system’s scale complexity in IIoT
scenarios, agents cannot make fully rational decisions. In-
stead, they optimize their gains and adjust strategies based
on limited information. This bounded rationality aligns with
the assumptions of evolutionary game theory, providing a
theoretical foundation for studying the dynamic evolution of
node behavior.

To construct a game model, analyze the stability of equilib-
rium points for each party’s strategy, and evaluate the impact
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of various factors on participants’ benefits, this paper builds
upon the fundamentals of the DPoS consensus mechanism
[28], the theoretical framework of evolutionary game theory
[29], and insights from prior studies [18], [30]. By considering
key factors influencing the strategic choices of agent nodes,
voting nodes, malicious nodes, and supervisory nodes, the
following assumptions are proposed. These assumptions aim
to explore the impact of strategy evolution on system stability
and efficiency, providing theoretical support for optimizing the
DPoS consensus mechanism.

(1) Bounded Rationality and Evolutionary Strategy Opti-
mization: Evolutionary game theory posits that participants
are not fully rational in decision-making but gradually adjust
their behavior based on limited information to optimize gains.
In the complex IIoT environment, agent nodes, voting nodes,
malicious nodes, and supervisory nodes adopt an evolutionary
strategy optimization process. This assumption underpins the
evolutionary game models commonly used to analyze dynamic
interactions in complex systems.

(2) Competitive Behavior of Agent Nodes: In the DPoS con-
sensus mechanism, agent nodes aim to maximize their chances
of being selected as representative nodes by securing more
votes. These nodes perform critical tasks such as verifying
transactions, generating blocks, and maintaining blockchain
network functionality. However, due to intense competition,
agent nodes may resort to illegal means (e.g., bribing voting
nodes) to improve their election prospects. Malicious nodes
may further exacerbate this competition by colluding with
agent nodes to manipulate election outcomes.

For the agent node, obtaining the block bookkeeping right
through normal voting and completing the block generation
task is profitable as P1, obtaining the block bookkeeping
right through bribing the voting node requires bribery cost
C1, and the bribery strength is a1; and obtaining the block
bookkeeping right through bribing the malicious node requires
bribery cost C2, and the bribery strength is a2. Bribing the
voting node is successful and profitable P2, and bribing the
malicious node is successful and profitable P3. In the case
of regulation by supervisory nodes, both bribery behavior and
bribery intention of agent nodes will be punished with fines
F1, F2, and reputation loss L1, L2; in case of non-supervisory
by supervisory nodes, agent nodes collude to profit P2, P3.

(3) Economic Interests of Voting Nodes: Voting nodes play
a pivotal role in the DPoS consensus mechanism, with their
voting behavior directly influencing the selection of agent
nodes. Typically, voting nodes allocate votes based on the
contributions and reputation of agent nodes. However, eco-
nomic incentives may drive voting nodes to accept bribes from
agent or malicious nodes, leading to abnormal voting behavior.
Such actions undermine blockchain fairness and could allow
unqualified nodes to gain representation, threatening system
security. The costs (e.g., computational overhead) and potential
benefits associated with voting also significantly influence
voting nodes’ decisions.

When malevolent nodes operate evilly, voting nodes’ normal
voting profits P4, bribed participation in voting earnings P5,
abnormal voting profits P6, and voting nodes’ voting expenses
are all C3. Voting nodes that accept agent nodes’ bribed voting

behaviors will be penalized with fines F3 and reputational
losses L3; voting nodes that accept malicious nodes’ bribes
in voting behaviors will be penalized with fines F4 and
reputational losses L4; and voting nodes that do not have
supervisory nodes monitoring will benefit from bribed voting
P5 and P6.

(4) Strategies and Impact of Malicious Nodes: Malicious
nodes pose a significant threat to the DPoS consensus mech-
anism, interfering with the consensus process through various
means, such as network attacks, data manipulation, or bribery.
These nodes may target agent and voting nodes, influencing
the election process through coercion or bribery. The behavior
of malicious nodes is constrained by costs and benefits, such
as resource consumption for attacks or penalties for detected
violations. Understanding the strategies of malicious nodes and
their systemic impact is crucial for improving security.

For the malicious node, the malicious node profits P7 when
it acts maliciously against the agent node, which requires evil
cost C4 and evil intensity m1; the malicious node profits
P8 when it acts maliciously against the voting node, which
requires evil cost C5 and evil intensity m2; and its profits by
adopting the cooperative strategy P9. In the case of supervision
by the supervisory node, the malicious node’s evil behavior
and evil intention will be punished by the fines F5, F6, and
reputation loss L5, L6; when the supervisory node does not
supervise, the malicious node profits P7, P8. reputation loss
L5, L6; when the supervisory node does not supervise, the
malicious node profits from doing evil P7, P8.

(5) Cost-Benefit Trade-Off for Supervisory Nodes: Super-
visory nodes monitor and penalize improper behavior in the
DPoS mechanism, ensuring system functionality and maintain-
ing blockchain network security. However, regulatory actions
involve a trade-off between benefits and costs. Excessive
supervision may increase system burden, while insufficient su-
pervision could permit malicious behavior. Supervisory nodes
derive benefits from penalizing violations but face supervi-
sory costs (e.g., data analysis and decision-making overhead),
which may limit their efforts. Inactive supervisory nodes risk
reputational damage or external penalties for tolerating bribery
or malicious behavior.

For the supervisory node, the cost of supervision is C6, the
profit of supervision is P10, and the supervisory node profits
F1, F2, F3, F4, F5, F6 when it discovers bribery, passive
bribery and malpractice; b is the penalty for the inaction of the
supervisory node, and the supervisory node is not supervised
by a fine of F7 when it fails to supervise bribery, passive
bribery and malpractice and a fine of bF7 when it turns a
blind eye to bribery, passive bribery, and malpractice. bF7

is the penalty for failure to supervise. Profit P11 when not
supervised.

Based on the above assumptions, the strategy set of each
agent is as follows:

The four parties of the game are agent nodes, voting nodes,
malicious nodes, and supervisory nodes. And all four subjects
are finite rationality. The strategy set A ={non-briberyA1, bri-
beryA2} of agent nodes, the strategy set V = {normal voting
V1, abnormal votingV2} of voting nodes, the strategy set
M = {cooperateM1, doevilM2} of malicious nodes, and



JOURNAL OF LATEX CLASS FILES, VOL. ××, NO. ××, ×× ×××× 7

TABLE II
SYMBOL SETTING AND MEANING OF FOUR-PARTY GAME MODELS

Symbol Implication Symbol Implication

A1 Agent nodes adopt a non-bribery strategy P9 Malicious nodes profit from cooperative strategies
A2 Agent nodes adopt a bribery strategy P10 Supervisory nodes supervisory profitability
V1 Voting nodes adopt a normal voting strategy C1 Bribery cost of bribing voting nodes by agent nodes
V2 Voting nodes adopt abnormal voting strategies P11 Profit when supervisory nodes are non-supervisory
M1 Malicious nodes adopt cooperative strategies C2 Cost of bribing malicious nodes by agent nodes
M2 Malicious nodes adopt evil strategy C3 Voting node voting costs
S1 Supervisory nodes adopt supervisory strategies C4 Cost of malicious node’s evil against agent node
S2 Supervisory nodes adopt a non-supervisory strategy C5 Cost of malicious node’s evil against voting node

P1
Agent nodes gain block bookkeeping rights through normal voting
and profit from completing block-generation tasks C6 Supervisory nodes supervisory costs

P2 Agent nodes successfully bribe voting nodes for profits F1 Bribery fines for agent nodes
a1 Bribery strength of agent nodes to bribe voting nodes F2 Intent to bribe fines for agent nodes

a2 Bribery effort of agent nodes to bribe malicious nodes F3
Fine for voting nodes accepting bribes from agent nodes for
voting behavior

m1
Evil strength when malicious nodes behave maliciously towards
agent nodes F4

Voting nodes accepting bribes from malicious nodes for malicious
behavior voting behavior fines

m2
Evil strength when malicious nodes behave maliciously towards
voting nodes F5 Fines for malicious node misdeeds

P8
Malicious nodes profit when they behave maliciously towards
voting nodes F6 Malicious nodes with evil intent fine

bF7
Fines for turning a blind eye to bribery, passive bribery and
nefarious acts F7

Failure of supervisory nodes to supervise fines for bribery, passive
bribery and misdemeanors

P3 Agent nodes successfully bribe malicious nodes for profit L1 Loss of reputation for bribery of agent nodes
P4 Voting nodes profit from normal voting L2 Loss of reputation of agent node for intent to bribe

P5 Voting nodes are bribed to participate in voting for profit L3
Voting nodes accept bribes from agent nodes for voting behavior
reputation loss

P6 Voting nodes are abnormally involved in voting for profit L4
Voting nodes accept bribes from malicious nodes for malicious
behavior Voting behavior reputation loss

P7
Malicious nodes profit when they behave maliciously towards
agent nodes L5 Reputational damage from malicious node misdeeds

b Penalties for inaction at supervisory nodes L6 Reputational damage from malicious nodes with evil intent

x Probability of the agent node to choose the bribery strategy EV 2
Expected revenue of voting nodes selecting an anomalous voting
strategy.

y Probability of voting nodes selecting a normal voting strategy EV Average expected revenue from voting node strategy selection

m Probability of malicious nodes choosing a cooperative strategy EM1
Expected revenue from malicious node selection cooperation
strategies

z Probability of supervisory node selection of supervisory strategy EM2 Expected revenue of malicious nodes choosing an evil strategy.

EA1
Expected revenue when selecting agent nodes for non-bribery
strategies EM Average expected revenue from malicious node strategy selection

EA2 Expected revenue from agent node selection bribery strategy ES1
Expected revenue of supervisory nodes choosing a supervisory
strategy.

EA Average expected revenue from agent node strategy selection ES2
Expected revenue of supervisory nodes choosing a non-
supervisory strategy.

EV 1 Expected revenue of voting node selection normal voting strategy ES
Average expected revenue of supervisory nodes’ strategy selec-
tion.

the strategy set S = {supervisoryS1, non-supervisoryS2} of
supervisory nodes.

Based on the above analysis, the symbol settings and their
meanings in this section are shown in Table II.

C. Benefits Matrix Construction

In the four-party evolutionary game model, the four parties
make strategic choices according to their wishes. Suppose the
probability of the agent node to choose the bribery strategy
is x, x ∈ [0, 1], and the probability of the non-bribery
strategy is 1− x; The probability that a voting node selects a
normal voting strategy is y, y ∈ [0, 1], and the probability
of an abnormal voting strategy is 1 − y; The probability
that the malicious node chooses the cooperation strategy is
m, m ∈ [0, 1], and The probability of the evil strategy is
1−m; the probability of the supervisory node to choose the
supervisory strategy is z, z ∈ [0, 1], and the probability of
the non-supervisory strategy is 1 − z. Based on the above

assumptions and analysis, the four-party game benefit matrix
of the DPoS consensus mechanism can be obtained as shown
in Table III.

D. Four-party Evolutionary Game Model Analysis

Through the four-party game revenue matrix [31] and re-
lated analysis, it is evident that the expected revenue for an
agent node choosing the non-bribery strategy during the game
is:

EA1 = zmyP1 + zm(1− y)P1 + z(1−m)yP1

+ z(1−m)(1− y)P1 + (1− z)myP1

+ (1− z)m(1− y)P1 + (1− z)(1−m)yP1

+ (1− z)(1−m)(1− y)P1

(1)

The expected revenue for an agent node adopting a bribery
strategy is:

EA2 = zmy(P1 − a1C1 − a2C2 − a1F1 − a1L1
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TABLE III
THE PAYOFF MATRIX FOR THE FOUR-PARTY EVOLUTIONARY GAME

Agent Node, Voting Node

Non-bribery x Bribery 1− x

Normal voting Abnormal voting Normal voting Abnormal voting
y 1− y y 1− y

Supervisory

Supervisory z

Cooperative m

P10 − C6 P10 − C6 + F3 + F4 P10 − C6 + a1F1 + a2F2 P10 − C6 + a1F1 + F3

nodes,

P9 P9 P9 P9

Malicious

P1 P1

P1 − a1C1 − a2C2

−a1F1 − a1L1−
a2F2 − a2L2

a1P2 − a1C1−
a1F1 − a1L1

nodes

P4 − C3
P4 − F3 − F4−
L3 − L4 − 2C3

P4 − C3 P5 − C3 − F3 − L3

Evil m

P10 − C6 +m1F5

+m2

P10 − C6 + F4

+m2F6

P10 − C6 +m1F5

+a2F2

P10 − C6 +m1F5

+m2F6 + a1F1+
a2F2 + F3 + F4

P7 −m1C4 −m2C5

−m1F5 −m2F6−
m1L5 −m2L6

m2P8 −m2C5−
m2F6 −m2L6

m1P7 −m1C4

−m1F5 −m1L5

m1P7 −m1C4 +m2P8

−m2C5 −m1F5−
m1L5 −m2F6 −m2L6

P1 P1
a2P3 − a2C2

−a2F2 − a2L2

a1P2 − a1C1 + a2P3

−a2C2 − a1F1−
a1L1 − a2F2 − a2L2

P4 − C3
P6 − C3 − F4

−L4
P4 − C3

P5 + P6

−2C3 − F3

−F4 − L3 − L4

Non-supervisory

Cooperative m

P11 P11 − bF7 P11 − bF7 P11 − bF7

1− z

P9 P9 P9 P9

P1 P1 P1 a1P2 − a1C1

P4 − C3 P4 − C3 P4 − C3 P5 − C3

Evil m

P11 − bF7 P11 − bF7 P11 − bF7 P11 − bF7

P7 m2P8 −m2C5 m1P7 −m1C4
m1P7 −m1C4 +m2P8

−m

P1 P1 a2P3 − a2C2
a1P2 − a1C1 + a2P3

−a2C
P4 − C3 P6 − C3 P4 − C3 P5 + P6 − 2C3

− a2F2 − a2L2)

+ zm(1− y)(a1P2 − a1C1 − a1F1 − a1L1)

+ z(1−m)y(a2P3 − a2C2 − a2F2 − a2L2)

+ z(1−m)(1− y)(a1P2 − a1C1 + a2P3 − a2C2 (2)
− a1F1 − a1L1 − a2F2 − a2L2)

+ (1− z)myP1 + (1− z)m(1− y)(a1P2 − a1C1)

+ (1− z)(1−m)y(a2P3 − a2C2)

+ (1− z)(1−m)(1− y)(a1P2 − a1C1

+ a2P3 − a2C2)

The average revenue for the agent node’s strategic choice
is:

EA = xEA1 + (1− x)EA2 (3)

Similarly, the expected revenues for voting nodes adopting
normal and abnormal voting strategies can be determined as
follows:

EV 1 = zmx(P4 − C3) + zm(1− x)(P4 − C3)

+ z(1−m)x(P4 − C3) + z(1−m)(1− x)

× (P4 − C3) + (1− z)mx(P4 − C3)

+ (1− z)m(1− x)(P4 − C3)

+ (1− z)(1−m)x(P4 − C3)

+ (1− z)(1−m)(1− x)(P4 − C3)

(4)

EV 2 = zmx(P4 − F3 − F4 − L3 − L4 − 2C3)

+ zm(1− x)(P5 − C3 − F3 − L3) + z(1−m)

× x(P6 − C3 − F4 − L4) + z(1−m)(1− x)

× (P5 + P6 − 2C3 − F3 − F4 − L3 − L4) (5)
+ (1− z)mx(P4 − C3) + (1− z)m(1− x)

× (P5 − C3) + (1− z)(1−m)x(P6 − C3)

+ (1− z)(1−m)(1− x)(P5 + P6 − 2C3)

EV = yEV 1 + (1− y)EV 2 (6)

The expected revenues for malicious nodes choosing coop-
erative and evil strategies are respectively:

EM1 = zxyP9 + zx(1− y)P9 + z(1− x)yP9

+ z(1− x)(1− y)P9 + (1− z)xyP9

+ (1− z)x(1− y)P9 + (1− z)(1− x)yP9

+ (1− z)(1− x)(1− y)P9

(7)

EM2 = zxy(P7 −m1C4 −m2C5 −m1F5 −m2F6

−m1L5 −m2L6)

+ zx(1− y)(m2P8 −m2C5 −m2F6 −m2L6)

+ z(1− x)y(m1P7 −m1C4 −m1F5 −m1L5)

+ z(1− x)(1− y)(m1P7 −m1C4 +m2P8 (8)
−m2C5 −m1F5 −m1L5 −m2F6 −m2L6)
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+ (1−z)xyP7 + (1− z)x(1− y)(m2P8 −m2C5)

+ (1− z)(1− x)y(m1P7 −m1C4)

+ (1− z)(1− x)(1− y)(m1P7 −m1C4

+m2P8 −m2C5)

EM = mEM1 + (1−m)EM2 (9)

The expected revenues for supervisory nodes adopting su-
pervisory and non-supervisory strategies are, respectively:

ES1 = mxy(P10 − C6) +mx(1− y)(P10 − C6

+ F3 + F4)

+m(1− x)y(P10 − C6 + a1F1 + a2F2)

+m(1− x)(1− y)(P10 − C6 + a1F1 + F3)

+ (1−m)xy(P10 − C6 +m1F5 +m2F6)

+ (1−m)x(1− y)(P10 − C6 + F4 +m2F6)

+ (1−m)(1− x)y(P10 − C6 +m1F5 + a2F2)

+ (1−m)(1− x)(1− y)(P10 − C6 +m1F5

+m2F6 + a1F1 + a2F2 + F3 + F4)

(10)

ES2 = mxyP11 +mx(1− y)(P11 − bF7)

+m(1− x)y(P11 − bF7) +m(1− x)(1− y)

× (P11 − bF7) + (1−m)xy(P11 − bF7)

+ (1−m)x(1− y)(P11 − bF7) + (1−m)

× (1− x)y(P11 − bF7) + (1−m)

× (1− x)(1− y)(P11 − bF7)

(11)

ES = zES1 + (1− z)ES2 (12)

E. Evolutionary Stabilization Strategy Solving

To analyze the evolutionary stability of each subject’s strat-
egy, we derive the replicator dynamic equations for the four
types of nodes under different strategy combinations, based on
the four-party game payoff matrix presented in Table III.

The dynamic evolution of the agent node’s choice of the
“non-bribery” strategy is influenced by its expected revenue,
and the replication dynamic equation is:

F (x) =
dx

dt
= x(EA1 − EA) = x(1− x)(EA1 − EA2)

= −x(x− 1)(P1 + a1C1 + a2C2 − a1P2

− a2P3 −ma2C2 − ya1C1 +ma2P3 + za1F1

+ za2F2 + za1L1 + za2L2 + ya1P2 −myP1

−mza2F2 −mza2L2 − yza1F1 − yza1L1

+myza1C1 +myza2C2 +myza1F1

+myza2F2 +myza1L1 +myza2L2)

(13)

The replication dynamics equation for a voting node choos-
ing the “normal voting” strategy is:

F (y) =
dy

dt
= y(EV 1 − EV ) = y(1− y)(EV 1 − EV 2)

= −y(y−1)(C3 + P4 − P5 − P6 −mC3 − xC3

+mP6 + zF3 + zF4 + zL3 + zL4 + xP5 (14)
+ xmC3 −mzF4 −mzL4 −mxP4 − xzF3

− xzL3 + xmzC3 + xmzF3

+ xmzF4 + xmzL3 + xmzL4)

The replication dynamics equation for a malicious node
choosing a “cooperative” strategy is:

F (m) =
dm

dt
= m(EM1 − EM )

= m(1−m)(EM1 − EM2)

= −m(m− 1)(P9 +m1C4 +m2C5 −m1P7

−m2P8 − xm1C4 − ym2C5 + zm1F5

+ zm2F6 + zm1L5 + zm2L6 + xm1P7 (15)
+ ym2P8 − xyP7 − xzm1F5 − yzm2F6

− xzm1L5 − yzm2L6 + xyzm1C4

+ xyzm2C5 + xyzm1F5 + xyzm2F6

+ xyzm1L5 + xyzm2L6)

The replication dynamics equation for the supervisory node
choosing the “supervisory” strategy is:

F (z) =
dz

dt
= z(ES1 − ES) = z(1− z)(ES1 − ES2)

= z(z − 1)(C6 − F3 − F4 − P10 + P11 − a1F1

− a2F2 − bF7 +mF4 −m1F5 −m2F6 + xF3

+ yF3 + yF4 +ma2F2 + xa1F1 + xa2F2

+ ya1F1 +mm1F5 +mm2F6 −mxF3

−mxF4 + xm1F5 −myF4 + ym2F6 − xyF3 (16)
+mxyF3 +mxyF4 − xym1F5 − xym2F6

−mxa2F2 −mya1F1 −mya2F2 − xya1F1

− xmm1F5 −mym2F6 +mxya1F1

+mxya2F2 +mxybF7 +mxym1F5

+mxym2F6)

In order to seek the system evolutionary stable equilibrium
solution, the above four equations will be associated, according
to the stability theorem of differential equations, so that
F (x) = F (y) = F (m) = F (z) = 0 can be obtained by
the 16 pure strategy solution of the system: E1(0, 0, 0, 0),
E1(0, 0, 0, 1), E1(0, 0, 1, 0), E1(0, 0, 1, 1), E1(0, 1, 0, 0), E1

(0, 1, 0, 1), E1(0, 1, 1, 0), E1(0, 1, 1, 1), E1(1, 0, 0, 0), E1(1,
0, 0, 1), E1(1, 0, 1, 0), E1(1, 0, 1, 1), E1(1, 1, 0, 0), E1(1, 1, 0,
1), E1(1, 1, 1, 0), E1(1, 1, 1, 1).

In the asymmetric game, the evolutionary stable equilibrium
must be the strict Nash equilibrium, and the strict Nash equi-
librium must be the pure strategy equilibrium [32]. Therefore,
we only discuss the stability of the pure strategy equilibrium
point, and the analysis of the eigenvalues and equilibrium
stability of the E1 ∼ E16 eigenvalues and the equilibrium
points are shown in Table IV.

F. Equilibrium Point Stability Analysis

From Table IV, it can be seen that there are eigenvalues
equal to or greater than zero in the Jacobi matrices of
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TABLE IV
STABILITY ANALYSIS OF PURE STRATEGY EQUILIBRIUM POINTS

Balance Point Eigenvalue Positive or Negative Stability Scene

(0,0,0,0)
P1 + a1C1 − a1P2 + a2C2 − a2P3, C3 + P4 − P5 − P6,

P9 +m1C4 +m2C5 −m1P7 −m2P8,
−C6 + F3 + F4 + P10 − P11 + a1F1 + a2F2 + bF7 +m1F5 +m2F6

N,N,N,N ESS (1)

(0,0,0,1)

P1 + a1C1 − a1P2 − a2P3 + a2C2 + a1F1 + a2F2 + a1L1 + a2L2,
C3 + P4 − P5 − P6 + F3 + F4 + L3 + L4,

P9 +m1C4 +m2C5 −m1P7 −m2P8 +m1F5 +m2F6 +m1L5 +m2L6,
C6 − F3 − F4 − P10 + P11 − a1F1 − a2F2 − bF7 −m1F5 −m2F6

N,N,N,N ESS (2)

(0,0,1,0) P1 + a1C1 − a1P2,P4 − P5, − P9 −m1C4 −m2C5 +m1P7 +m2P8 ,
−C6 + F3 + P10 − P11 + a1F1 + bF7

N,N,N,N ESS (3)

(0,0,1,1)
P1 + a1C1 + a1F1 + a1L1 − a1P2, C4 + P4 − P5 − C3 + F3 + L3,

−P9 −m1C4 −m2C5 +m1P7 +m2P8 −m1F5 −m2F6 −m1L5 −m2L6,
C6 − F3 − P10 + P11 − a1F1 − bF7

N,N,N,N ESS (4)

(0,1,0,0) P1 − a2P3 + a2C2, − C3 − P4 + P5 + P6,P9 +m1C4 −m1P7 ,
−C6 + P10 − P11 + a2F2 + bF7 +m1F5

N,N,N,N ESS (5)

(0,1,0,1)

P1 − a2P3 + a2C2 + a2F2 + a2L2,
−C6 − P4 + P5 + P6 − F3 − F4 − L3 − L4,

P9 +m1C4 −m1P7 +m1F5 +m1L5,
C6 − P10 + P11 − a2F2 − bF7 −m1F5

N,N,N,N ESS (6)

(0,1,1,0) 0, − P4 + P5, − P9 −m1C4 +m1P7 ,
−C6 + P10 − P11 + a1F1 + a2F2 + bF7

0,N,N,N Saddle Point \

(0,1,1,1)
a1F1 + a1L1 + a2L2 + a1C1 + a2C2 + a2F2, − P4 + P5 − P6 − L3,

−P9 −m1C4 +m1P7 −m1F5 −m1L5,
C6 − P10 + P11 − a1F1 − a2F2 − bF5

+,N,N,N Unstable \

(1,0,0,0) −P1 − a1C1 + a1P2 − a2C2 + a2P3, P4 − P6, P9 +m2C5 −m2P8,
−C6 + F4 + P10 − P11 + bF7 +m1F5

N,N,N,N ESS (7)

(1,0,0,1)
−P1 − a1C1 + a1P2 + a2P3 − a2C2 − a1F1 − a2F2 − a1L1 − a2L2,

P4 − P6 + F4 + L4, − P9 −m2C5 +m2P8 −m2F6 −m2L6,
C6 − F4 − P10 + P11 − bF7 −m1F5

N,N,N,N ESS (8)

(1,0,1,0) −P1 − a1C1 + a1P2 ,0, P9 +m2C5 −m2P8 ,
−C6 + P10 − P11 + bF7 − F3 + F4

N,0,N,N Saddle Point \

(1,0,1,1)
−P1 − a1C1 + a1P2 − a1F1 − a1L1,C3 + F3 + F4 + L3 + L4,

−P9 −m2C5 +m2P8 −m2F6 −m2L6,
C6 − F3 − F4 − P10 + P11 − bF7

N,+,N,N Unstable \

(1,1,0,0) −P1 + a2P3 − a2C2, − P4 + P6,0,
−C6 + P10 − P11 + a2F2 + bF7 +m1F5 + 2m2F6 − F6

N,N,0,N Saddle Point \

(1,1,0,1)
−P1 + a2P3 − a2C2 − a2F2 − a2L2, − P4 + P6 − F4 − L4,

m1F5 +m2L6 +m1L5 +m1C4 +m2C5 +m2F6,
C6 − P10 + P11 − bF7 −m1F5 −m2F6

N,N,+,N Unstable \

(1,1,1,0) 0, 0, 0,−C6 + P10 − P11 0,0,0,N Saddle Point \

(1,1,1,1)
−(a1C1 + a1L1 + a2L2 + a2C2 + a1F1 + a2F2),

−(F3 + L3 + C3 + F4 + L4),
−(m1L5 +m1C4 +m2C5 +m1F5 +m2F6 +m2L6), C6 − P10 + P11

-,-,-,N ESS (9)

Note: N indicates that the positivity or negativity of the eigenvalue could not be determined; ESS indicates Evolutionary Stabilization Strategy.

the E1(0, 1, 1, 0), E1(0, 1, 1, 1), E1(1, 0, 1, 0), E1(1, 0, 1, 1),
E1(1, 1, 0, 0), E1(1, 1, 0, 1), E1(1, 1, 1, 0) equilibrium points,
and the above equilibrium points are not evolutionary stable
points. Evolutionary stabilization points may exist in the
following scenarios (1)-(9):

(1) E1(0, 0, 0, 0): λ1 = P1 + a1C1 − a1P2 + a2C2 − a2P3,
λ2 = C3+P4−P5−P6, λ3 = P9+m1C4+m2C5−m1P7−
m2P8, λ4 = −C6 + F3 + F4 + P10 − P11 + a1F1 + a2F2 +
bF5 + m1F5 + m2F6, Decide on the symbol of λ1, λ2, λ3,
λ4.

If P1 < a1P2 − a1C1 + a2P3 − a2C2, P4 < P5 +P6 −C3,
P9 < m1P7 − m1C4 + m2P8 − m2C5 and P10 − C6 +
F3 + F4 + a1F1 + a2F2 + m1F5 + m2F < P11 − bF7.
Under these conditions, the revenue for an agent node ob-
taining block bookkeeping rights through normal voting is
lower than the revenue from successful bribery. Similarly,
the revenue for a voting node participating in normal voting
is less than that from abnormal voting, the revenue for a
malicious node adopting cooperative strategies is lower than

that from engaging in malicious behavior, and the revenue for
a supervisory node from supervision is less than that from
non-supervision. Additionally, all eigenvalues of the corre-
sponding Jacobian matrices are negative, indicating a stable
evolutionary point. In this scenario, the stable evolutionary
strategy is (bribery, abnormal voting, evil, non-supervision).
Consequently, the presence of malicious behavior combined
with the lack of supervision poses significant security risks
for consensus nodes in the blockchain network, undermining
secure and efficient consensus. This outcome clearly deviates
from the intended improvement goals of the system.

To mitigate this issue, the system can escape this dis-
advantageous stable point by increasing penalties for agent
node bribery and rewarding supervisory nodes for taking
supervisory actions. These adjustments can drive the system
toward a more secure and efficient operating state.

(2) E1(0, 0, 0, 1): λ1 = P1+a1C1−a1P2−a2P3+a2C2+
a1F1+a2F2+a1L1+a2L2, λ2 = C3+P4−P5−P6+F3+
F4 + L3 + L4,λ3 = P9 +m1C4 +m2C5 −m1P7 −m2P8 +
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m1F5 +m2F6 +m1L5 +m2L6, λ4 = C6 −F3 −F4 −P10 +
P11 − a1F1 − a2F2 − bF7 − m1F5 − m2F6, Decide on the
symbol of λ1, λ2, λ3, λ4.

If P1 < a1P2+a2P3−a2C2−a1C1−a1F1−a2F2−a1L1−
a2L2, P4 < P5+P6−C3−F3−F4−L3−L4, P9 < m1P7+
m2P8−m1C4−m2C5−m1F5−m2F6−m1L5−m2L6 and
P11 < P10−C6+F3+F4+α1F1+α2F2+bF7+m1F5+m2F6.
If the agent node’s revenue from normal voting is less than the
difference between the revenue from successful bribery and the
supervisory penalty; if the voting node’s revenue from normal
voting is less than the difference between the revenue from
abnormal voting and the supervisory penalty; if the malicious
node’s revenue from a cooperative strategy is less than the
difference between the revenue from malicious actions and
the supervisory penalty; and if the supervisory node’s revenue
from failing to supervise is less than the gain from supervi-
sory actions and imposing penalties, the system’s eigenvalues
remain negative, indicating a stable equilibrium point. The
corresponding strategies are (bribery, abnormal voting, evil,
supervisory). Although supervision is implemented, bribery
and malicious behaviors persist, posing security risks.

To overcome this, the system should increase the incentives
for positive behavior among agent nodes, voting nodes, and
malicious nodes, while intensifying supervision and penalties
to suppress bribery, abnormal voting, and malicious activities.
These measures promote a more secure and efficient evolution-
ary stable point, ensuring robust blockchain network operation.

(3) E1(0, 0, 1, 0): λ1 = P1 + a1C1 − a1P2, λ2 = P4 − P5,
λ3 = −P9 −m1C4 −m2C5 +m1P7 +m2P8, λ4 = −C6 +
F3 + P10 − P11 + a1F1 + bF7, Decide on the symbol of λ1,
λ2, λ3, λ4.

If P1 < a1P2 − a1C1, P4 < P5, m1P7 +m2P8 −m1C4 −
m2C5 < P9, P10 − C6 + a1F1 + F3 < P11 − bF7. Under the
above conditions, the revenue of an agent node in obtaining
block bookkeeping rights through normal voting is less than
the revenue obtained by successfully bribing a voting node; the
revenue of a voting node through normal voting is less than its
revenue from participating in abnormal voting due to bribery;
the revenue of a malicious node from adopting a malicious
behavior is more than its revenue from choosing a cooperative
strategy; and the revenue of a supervisory node in enforcing
supervision is less than its revenue in failing to enforce
supervision, then the system The eigenvalues of the Jacobi
matrix are all less than zero, indicating that the system reaches
a stable equilibrium point at this time. The corresponding
stable evolutionary strategies are (bribery, abnormal voting,
cooperation, non-supervisory). At this stable point, bribery and
abnormal voting exist in the system while the supervisory
nodes choose not to supervise. This state poses a serious
threat to the security and efficiency of the consensus nodes
in the blockchain network, which is clearly contrary to the
improvement goal of the design scheme.

To improve this disadvantageous situation, the following
measures should be taken: appropriately increase the benefits
of choosing positive behaviors by agent nodes and voting
nodes in order to enhance their compliance incentives; at
the same time, increase the supervisory efforts and elevate
the penalties for improper behaviors, such as bribery and

abnormal voting, so as to significantly increase the cost of
non-compliance. These improvements will steer the system
away from the current inferior stability point and towards a
more secure and efficient equilibrium state, ensuring the robust
operation of the blockchain network in complex environments.

(4) E1(0, 0, 1, 1): λ1 = P1 + a1C1 + a1F1 + a1L1 − a1P2,
λ2 = C4 + P4 − P5 − C3 + F3 + L3, λ3 = −P9 −m1C4 −
m2C5 + m1P7 + m2P8 − m1F5 − m2F6 − m1L5 − m2L6,
λ4 = C6−F3−P10+P11−a1F1−bF7, Decide on the symbol
of λ1, λ2, λ3, λ4.

If P1 < a1P2−a1C1−a1F1−a1L1, P4−C3 < P5−C4−
F3−L3, −m1C4−m2C5+m1P7+m2P8−m1F5−m2F6−
m1L5−m2L6 < P9 and P11− bF7 < P10−C6+a1F1+F3.
Under the above conditions, if the revenue of an agent node
through normal voting is lower than the revenue from bribing
a voting node; the revenue of a voting node from bribing
a node to participate in anomalous voting plus the negative
effect of supervisory penalties is greater than its revenue from
voting through normal voting; the revenue of a malicious node
from choosing a malicious behavior is lower than that of a
cooperative strategy; and the revenue of a supervisory node for
failing to implement supervision is lower than that of its taking
supervisory action, the Jacobian matrix’s eigenvalues are all
negative and the system will reach an evolutionary stability
point. The stable evolutionary strategies at this point are
(bribery, abnormal voting, cooperation, supervisory). Despite
the supervision implemented by the supervisory nodes, bribery
and abnormal voting still exist in the system, which poses a
serious threat to the security and efficiency of the consensus
nodes in the blockchain network, and is clearly not in line
with the improvement goal of the scheme.

In order to optimize the evolution path of the system, the
punishment for bribery of agent nodes should be strengthened,
and the punishment for abnormal voting behavior of voting
nodes should be increased, so as to enhance the cost of
violations and weaken their revenue advantage. These mea-
sures will help guide the system to jump out of the current
unfavorable stability point and develop towards a more secure
and efficient state, and ultimately achieve a robust guarantee
for the consensus mechanism of the blockchain network.

(5) E1(0, 1, 0, 0): λ1 = P1 − a2P3 + a2C2, λ2 = −C3 −
P4 +P5 +P6, λ3 = P9 +m1C4 −m1P7, λ4 = −C6 +P10 −
P11 + a2F2 + bF7 +m1F5, Decide on the symbol of λ1, λ2,
λ3, λ4.

If P1 < a2P3 − a2C2, P5 + P6 − C3 < P4, P9 < m1P7 −
m1C4 and P10−C6+a2F2+m1F5 < P11− bF7. If an agent
node’s revenue from normal voting is less than from bribing
a malicious node; if a voting node’s revenue from abnormal
voting is lower than from normal voting; if a malicious node’s
revenue from malicious behavior exceeds that of cooperation;
and if a supervisory node’s revenue from supervision is lower
than from non-supervisory, the system stabilizes at (bribery,
normal voting, evil, non-supervisory). This state, where both
bribery and malicious behavior persist without supervision,
undermines the security and efficiency of consensus nodes,
violating the design scheme’s goals.

To optimize the system’s evolution, increase supervisory in-
tensity and impose stricter penalties for bribery and malicious
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behaviors to raise violation costs and reduce their advantages.
These measures guide the system toward a secure and efficient
evolutionary direction, achieving robust consensus mechanism
operation in complex environments.

(6) E1(0, 1, 0, 1): λ1 = P1 − a2P3 + a2C2 + a2F2 + a2L2,
λ2 = −C6 − P4 + P5 + P6 − F3 − F4 − L3 − L4, λ3 =
P9+m1C4−m1P7+m1F5+m1L5, λ4 = C6−P10+P11−
a2F2− bF7−m1F5, Decide on the symbol of λ1, λ2, λ3, λ4.

If P1 < a2P3−a2C2−a2F2−a2L2, P5+P6−C6−F3−
F4 − L3 − L4 < P4, P9 < m1P7 −m1C4 −m1F5 −m1L5

and P11 − bF7 < P10 − C6 + a2F2 + m1F5. If an agent
node’s revenue from normal voting is less than from bribing a
malicious node adjusted for supervisory penalties; if a voting
node’s normal voting revenue exceeds abnormal voting minus
penalties; if a malicious node’s gain from cooperation is less
than from malicious behavior adjusted for penalties; and if
a supervisory node’s revenue from supervision exceeds non-
supervision, the system stabilizes at (bribery, normal voting,
evil, supervisory). Despite supervision, bribery and malicious
behavior persist, posing risks to consensus node security and
efficiency.

To address this, strengthen penalties for bribery and abnor-
mal voting to increase non-compliance costs and guide the
system toward a secure and efficient equilibrium.

(7) E1(1, 0, 0, 0): λ1 = −P1−a1C1+a1P2−a2C2+a2P3,
λ2 = P4 − P6, λ3 = P9 +m2C5 −m2P8, λ4 = −C6 + F4 +
P10 − P11 + bF7 + m1F5, Decide on the symbol of λ1, λ2,
λ3, λ4.

If a1P2−a1C1+a2P3−a2C2 < P1, P4 < P6, P9 < m2P8−
m2C5 and P10 − C6 + F4 +m1F5 < P11 − bF7. If an agent
node’s revenue from normal voting exceeds that of bribery,
but a voting node’s revenue from abnormal voting exceeds
that of normal voting, and a malicious node’s revenue from
malicious behavior surpasses cooperation, while a supervisory
node’s gain from non-supervision exceeds that of supervision,
the system stabilizes at (non-bribery, abnormal voting, evil,
non-supervision). This state, despite the absence of bribery,
retains abnormal voting and malicious behavior, undermining
security and efficiency.

To improve, increase penalties for abnormal voting and re-
inforce supervisory incentives to ensure effective supervision.
These measures steer the system toward secure and efficient
operation.

(8) E1(1, 0, 0, 1): λ1 = −P1 − a1C1 + a1P2 + a2P3 −
a2C2−a1F1−a2F2−a1L1−a2L2, λ2 = P4−P6+F4+L4,
λ3 = −P9−m2C5+m2P8−m2F6−m2L6, λ4 = C6−F4−
P10 + P11 − bF7 − m1F5, Decide on the symbol of λ1, λ2,
λ3, λ4.

If a1P2−a1C1+a2P3−a2C2−a1F1−a2F2−a1L1−a2L2 <
P1, P4 < P6 − F4 − L4, m2P8 −m2C5 −m2F6 −m2L6 <
P9 and P11 − bF7 < P10 − C6 + F4 + m1F5. If an agent
node’s revenue from normal voting exceeds that of bribery
adjusted for penalties, and a malicious node’s revenue from
cooperation exceeds malicious behavior, the system stabilizes
at (non-bribery, abnormal voting, evil, supervisory). Even with
supervision, abnormal voting and malicious behavior persist,
threatening system security and efficiency.

To optimize, impose stricter penalties for abnormal voting
and enhance supervisory rewards to ensure active supervision.
These steps promote secure and efficient evolution.

(9) E1(1, 1, 1, 1): λ1, λ2, λ3 < 0 , λ4 = C6 − P10 + P11,
Decide on the symbol of λ4.

If P11 < P10 − C6. In the ideal state, agent nodes secure
block generation rights through normal voting; voting nodes
objectively vote based on performance; malicious nodes adopt
cooperative strategies; and supervisory nodes actively monitor.
This state aligns with the design goal of a secure, efficient, and
trustworthy blockchain consensus system.

This optimized blockchain system effectively balances the
interests of agent, voting, malicious, and supervisory nodes,
ensuring operational efficiency while minimizing security
risks. Through dynamic evolution, the system converges to
an ideal state, providing a robust foundation for blockchain
networks in complex environments.

Because the incentive, punishment, and reputation mecha-
nisms simultaneously enter the four-party replicator dynamic
equations, the evolutionary outcome is determined not by
a single mechanism but by the joint coupling thresholds
formed by their interaction. Adjusting one mechanism alone is
insufficient to alter the system’s stability; only when the joint
threshold is exceeded will the system transition among multi-
ple equilibrium candidates. This leads to a multi-equilibrium
and multi-stability structure that fundamentally differs from
the single-path selection typically observed in PDPoS models.

In particular, within certain coupling intervals, multiple
local ESSs may coexist, and their attraction domains depend
on both initial strategies and the direction of mechanism ad-
justments. Such phenomena— including equilibrium switching
and basin-of-attraction shifts—do not occur in static PDPoS
frameworks. These results demonstrate that the dynamic
coupling of the incentive–punishment–reputation mechanisms
fundamentally reshapes the stability landscape, providing the
theoretical foundation for the parameter-coupling analysis pre-
sented in Section IV-D.

G. Theoretical Proof of Parameter Coupling Effects

Building on the previous analysis of equilibrium stability,
this section further provides a theoretical demonstration of the
coupling effects among key parameters, highlighting their pro-
found influence on evolutionary trajectories and equilibrium
stability.

First, consider the replicator dynamics equation (13) for
agent nodes. The payoff difference not only involves bribery
intensities a1, a2 and cost terms C1, C2, but also incorporates
punishment terms F1, F2 and reputation loss terms L1, L2.
Equation (13) shows that the evolutionary behavior of agent
nodes is not determined by any single factor, but rather by the
joint effects of (ai, Fi, Li). When bribery intensity rises while
penalties and reputation losses remain insufficient, agent nodes
are more likely to adopt the bribery strategy; conversely, when
both punishment and reputation costs increase, the stability of
non-bribery strategies is nonlinearly reinforced.

Second, in the dynamic equation (14) for voting nodes,
supervisory intensity z and reputation losses L3, L4 do not
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act independently but are coupled with fines F3, F4 through
product terms. When z is low, abnormal voting behavior is
barely constrained; as z increases, the effects of fines and
reputation losses are amplified, gradually destabilizing the
abnormal voting strategy.

For malicious nodes, the dynamic equation (15) also ex-
hibits parameter coupling. Malicious intensities m1, m2, to-
gether with cost terms C4, C5 and penalties F5, F6, L5, L6,
jointly shape the payoff function, producing interaction terms
such as (zm1F5, zm2F6, zm1L5, zm1L6). Thus, the evolu-
tion of malicious behavior depends not only on attack costs
and benefits but also on the coupled effects of supervisory
intensity and reputation losses. Insufficient regulation allows
malicious behavior to persist, whereas stronger supervisory
and reputation constraints lead malicious strategies to converge
toward cooperation.

Finally, the dynamic equation (16) for supervisory nodes
shows that their supervisory choices are jointly influenced
by fines, supervisory costs, and the parameter bF7. When
fines F1 − F7 and reputation loss coefficients increase syn-
ergistically, the marginal benefits of supervisory behavior rise,
thereby reinforcing overall system compliance.

In summary, within the four-party evolutionary game frame-
work, the stability of the system’s equilibrium is shaped
not by isolated parameters but by the nonlinear coupling of
bribery intensity, punishment severity, and reputation loss.
This explains why, in simulation experiments, simultaneously
increasing punishment and reputation loss accelerates conver-
gence to the ideal equilibrium of “non-bribery—normal vot-
ing—cooperation—supervision,” providing a solid theoretical
foundation for optimizing the DPoS consensus mechanism.

V. SIMULATION RESULTS AND ANALYSIS

A. Simulation Setup

This section aims to validate the dynamic evolution charac-
teristics and stability of the improved DPoS four-party game
model through numerical simulations, while further exploring
how variations in key parameters influence the evolutionary
trajectories of system strategies. The analysis primarily fo-
cuses on comparing the time-dependent changes in strategy
selection among agent nodes, voting nodes, malicious nodes,
and supervisory nodes under different mechanisms and initial
conditions, thereby verifying the stability conclusions obtained
from theoretical analysis.

The simulations were implemented using Python 3.8 and
MATLAB R2017b within a unified hardware environment,
configured with an Intel Core i7 processor, 32 GB of memory,
and Windows 11 as the operating system. The evolutionary
process was examined over a finite time interval of {0, 2}. The
initial probabilities for strategy selection across the four node
types were set as {0.5, 0.3, 0.2, 0.3}. Parameter configurations
were determined based on the characteristics of practical DPoS
consensus mechanisms, informed by prior studies [18], [28],
[30], and aligned with the replicator dynamic equations and
constraints introduced in Section IV to ensure consistency
between theoretical assumptions and experimental design.

To enhance real-world relevance and external validity, the
Edge-IIoTset industrial IoT dataset was incorporated, leverag-
ing its multi-dimensional device attributes and representative
attack behaviors to drive simulation inputs. Detailed parameter
configurations are provided in Table V. For scientific rigor
and reproducibility, all experiments were performed with a
fixed random seed and repeated 20 times under each parameter
setting. The averaged results were then reported to reduce
the impact of randomness and ensure the robustness of the
experimental conclusions.

TABLE V
PARAMETER SETTINGS

Parameter Value Parameter Value Parameter Value

P1 8 P2 12 P3 11
P4 13 P5 12 P6 10
P7 7 P8 16 P9 9
P10 18 P11 8 F1 1
F2 2 F3 5 F4 6
F5 8 F6 4 F7 7
L1 0.6 L2 0.3 L3 0.5
L4 0.9 L5 1 L6 2
C1 3 C2 6 C3 4
C4 5 C5 6 C6 7
a1 0.4 a2 0.8 m1 0.7
m2 0.9 b 0.5

B. Impact of Malicious Nodes on the Evolution of Parties’
Strategies

The strategy choice of malicious nodes significantly affects
overall system stability. Through simulation, this section in-
vestigates how different strategies adopted by malicious nodes
(“evil” or “cooperation”) impact the system’s stability, as
shown in Figure 4. The results reveal the following:

When a malicious node adopts the “evil” strategy, its high
gains incentivize agent and voting nodes to adopt abnormal
strategies, while suppressing the effectiveness of supervisory
nodes. This leads to a reduction in system stability.

Conversely, when a malicious node adopts the “cooperation”
strategy, its revenue aligns with positive strategies, resulting in
a significant increase in the proportion of positive behaviors
from agent and voting nodes. Additionally, the supervisory
node’s monitoring capability is strengthened, leading to a rapid
stabilization of the system.

These findings demonstrate that when malicious nodes
choose the “cooperation” strategy, the system’s strategy evo-
lution rate accelerates, quickly converging to the ideal stable
point. In contrast, the “evil” strategy hinders system evolution
and negatively impacts overall efficiency.

C. Influence of Initial Participation Intentions

The initial participation intentions of the four types of
nodes were set to {0.5, 0.3, 0.2, 0.3}, corresponding to agent
nodes, voting nodes, malicious nodes, and supervisory nodes,
respectively. As shown in the simulation results in Figure 5,
the system eventually evolves into a stable equilibrium state of
(1, 1, 1, 1), where the agent node adopts a non-bribery strategy,
the voting node adopts a normal voting strategy, the malicious
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Fig. 4. Impact of malicious nodes on the evolution of the parties’ strategies

node adopts a cooperative strategy, and the supervisory node
adopts a supervisory strategy. At this equilibrium, all four
parties achieve optimal or near-ideal payoffs.

Fig. 5. Evolution results of four-party game

To further investigate the impact of initial intentions on the
system’s evolutionary dynamics, the non-bribery probability of
the agent node was treated as a variable, with values of 0.1,
0.5, and 0.9 representing low, medium, and high intention lev-

els, respectively. Figure 6 depicts the evolutionary trajectories
of the game system under these different initial conditions.
The results reveal that as the initial non-bribery willingness
of agent nodes increases, the system converges more rapidly
toward the cooperative equilibrium state (1, 1, 1, 1). This
demonstrates that stronger initial non-bribery intentions among
agent nodes not only accelerate their own transition to the non-
bribery strategy but also significantly reinforce the inclination
of voting nodes to engage in normal voting, enhance the coop-
erative willingness of malicious nodes, and gradually reduce
the supervisory intensity of supervisory nodes. Ultimately, this
process fosters a virtuous cycle of multi-party collaboration
and mutual benefit.

Fig. 6. The influence of agent nodes’ initial willingness on evolution results

D. The Effect of Different Bribe Strengths of Agent Nodes on
the Subject’s Strategy Choice

The existence of bribery behavior in the agent nodes of
the DPoS consensus mechanism should be taken into account.
To assess the impact of bribery behavior on model evolution,
the bribery strength is set at values of {0, 0.4, 1.5} and
{0, 0.8, 1.8}. Figure 7 illustrates the evolution process of the
strategies and the outcomes of the four-party game.

As can be observed in Figure 7, the cost of the bribe
required steadily grows as the bribe strength of the agent
nodes increasingly increases. This has essentially no effect on
malicious and voting nodes but instead leads to a progressive
increase in the willingness of supervisory nodes to regulate.
Consequently, the counteracting agent nodes themselves take
on an ever-greater reluctance to accept bribes. It is possible
to minimize both agent node bribery and poor node behavior
by introducing an appropriate amount of bribery strength into
the DPoS consensus process, as may be discovered through
the examination of behavioral decisions made by nodes.
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Fig. 7. Effect of different bribe strengths of agent nodes on subject’s strategy
choice

E. The Effect of Different Evil Strengths of Malicious Nodes
on the Subject’s Strategy Choice

In the DPoS consensus mechanism, the malicious behavior
of nodes poses a significant threat to system security and
efficiency. To analyze the impact of evil strength on the
strategy selection of each subject, the simulation sets the evil
strength of malicious nodes to {0, 0.7, 2.2} and {0, 0.9, 2.8}.
The strategy evolution process of the four-party game is
illustrated in Figure 8.

Fig. 8. Impact of different evil strengths of malicious nodes on the subject’s
strategy choice

According to Figure 8, as the evil strength increases, the
benefits of malicious nodes exhibit a non-linear growth. How-
ever, their evil costs also rise proportionally. The simulation
results show that higher evil strength significantly enhances
the supervisory node’s inclination to adopt the “supervisory”
strategy, increasing its probability of doing so. Additionally,

the likelihood of agent nodes refraining from bribery and
malicious nodes adopting cooperative strategies increases as
supervisory strength intensifies.

The findings suggest that incorporating the evil strength
parameter helps establish an inhibitory mechanism against ma-
licious behaviors in the system, thereby encouraging malicious
nodes to adopt cooperative strategies.

F. Impact of Different Evil Costs of Malicious Nodes on
Strategy Choice

The cost of evil directly influences the decision-making of
malicious nodes, and higher evil costs can effectively limit
malicious behaviors. To examine the effect of evil cost on
system evolution, the evil cost of malicious nodes is set to
{0, 5, 10} and {0, 6, 18}. The strategy evolution process of
the four-party game is depicted in Figure 9.

Fig. 9. Impact of different evil costs of malicious nodes on subject’s strategy
choice

Figure 9 shows that as the cost of evil increases, the
probability of malicious nodes adopting the “cooperation”
strategy rises significantly. Simultaneously, the probability of
agent nodes refraining from bribery and voting nodes voting
normally also increases. Additionally, the supervisory strength
of supervisory nodes shows a clear upward trend with higher
evil costs. These findings suggest that increased evil costs can
promote positive behavioral evolution within the system.

The results demonstrate that a well-designed evil cost
parameter in the DPoS consensus mechanism can effectively
constrain malicious node behaviors and enhance overall sys-
tem stability.

G. Impact of Punishment Mechanisms on Subjects’ Strategy
Choices

The penalty mechanism, as a crucial constraint in the DPoS
consensus mechanism, directly inhibits malicious behavior. To
analyze the impact of penalty strength on the strategies of
each subject, the penalty values are set to {0, 1, 5}, {0, 2, 8},
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{0, 5, 12}, {0, 6, 15}, {0, 8, 16}, and {0, 4, 13}. The strategy
evolution process of the four-party game is depicted in Figure
10.

Fig. 10. Impact of different fines on subject’s strategy choice

Figure 10 shows that when penalty strength is low, abnormal
voting by voting nodes and harmful behaviors by agent and
malicious nodes increase significantly. As penalty strength
rises, the probability of voting nodes choosing normal voting
increases rapidly, while the willingness of agent nodes to
avoid bribery and malicious nodes to cooperate also increases
substantially. Additionally, the supervisory intensity of super-
visory nodes grows significantly with stronger penalties.

The simulation results confirm the effectiveness of the
penalty mechanism in curbing malicious behaviors and en-
hancing system security. Properly setting penalty values can
balance node behaviors and improve system stability.

H. Impact of Reputation Mechanisms on Subject’s Strategy
Choice

In the DPoS consensus mechanism, the reputation mech-
anism enhances positive incentives by penalizing violations
through reputation loss. To examine the impact of reputation
loss on subjects’ strategies, reputation loss values are set
to {0, 2, 6}, {0, 2.5, 6.5}, {0, 3, 7}, {0, 2.8, 6.8}, {0, 3.4, 7.5},
and {0, 3.5, 7.8}. The strategy evolution process of the four-
party game is depicted in Figure 11.

Figure 11 shows that as the reputation loss for bribery and
collusion by voting nodes increases, the likelihood of voting
nodes adopting normal voting rises significantly. Similarly,
the probability of agent nodes refraining from bribery also
increases. Under higher reputation loss, malicious nodes are
more inclined to choose the “cooperation” strategy, while the
supervisory intensity of regulatory nodes gradually decreases.
These findings indicate that the reputation mechanism posi-
tively influences the reduction of bad behaviors and optimizes
system evolution.

The results demonstrate that integrating a well-designed
reputation mechanism into the DPoS consensus mechanism

Fig. 11. Impact of loss of reputational value due to supervision

enhances node motivation for compliance and effectively lim-
its the occurrence of malicious behaviors.

I. The Effect of Different Levels of Punishment on Subject’s
Strategy Choice

To ensure that the blockchain system reaches consensus
safely and efficiently with minimal computational overhead
while completing transaction recording, it is essential to ad-
just penalty strength at different stages of node population
evolution. The penalty strength is set to b = 0, 0.5, 3. The
simulation results are shown in Figure 12.

Fig. 12. Effect of different penalty levels on subject’s strategy choice

Figure 12 demonstrates that as the punishment for supervi-
sory nodes’ inaction increases, the willingness of supervisory
nodes to enforce supervision rises significantly. Concurrently,
the voting nodes show a higher inclination toward normal
voting, and the probabilities of agent nodes refraining from
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bribery and malicious nodes adopting cooperative strategies
also increase.

The results indicate that dynamically adjusting the punish-
ment factor at different stages of node population evolution
enhances supervisory behavior, thereby improving the overall
efficiency and security of the system.

J. Performance Comparison of Consensus Mechanisms

To comprehensively assess the overall performance of the
proposed optimized DPoS consensus mechanism in an in-
dustrial IoT environment, this section introduces the tra-
ditional PoS and PDPoS mechanisms as baselines, while
retaining the fundamental parameters summarized in Table
V. Comparative simulation experiments are conducted along
three key dimensions: efficiency, scalability, and security. The
corresponding quantitative evaluation metrics include system
throughput, average transaction latency, and the success rate
of double-spending attacks. The experimental environment is
implemented in Python 3.8 and leverages the publicly available
industrial IoT dataset Edge-IIoTset to ensure data authenticity
and representativeness. For scalability testing, the number of
nodes is varied from 100 to 1000 in increments of 100,
resulting in 10 test scenarios. The proportion of malicious
nodes is fixed at 10%, the merchant transaction confirmation
threshold is set to k = 3, the average transaction data size
is 500 B, the block capacity is 1 MB, the block generation
interval is 2 s, and the number of validators is 21. The
success rate of double-spending attacks is estimated using
the Monte Carlo method over multiple rounds of independent
simulations to enhance the robustness and reliability of the
statistical outcomes. These settings enable a comprehensive
comparison of the performance differences and advantages of
the three consensus mechanisms under consistent experimental
conditions.

As illustrated in Figure 13, the TPS of all three consensus
mechanisms shows a gradual decline as the number of nodes
increases. This degradation can be attributed to higher net-
work propagation latency and greater consensus coordination
overhead associated with larger node scales. Nevertheless, the
optimized DPoS consistently outperforms PoS and PDPoS in
terms of TPS across all scales, with its advantage becoming
increasingly evident in large-scale networks. This superior
performance primarily stems from the incorporation of fairness
constraints and reputation-weighted strategies in the validator
selection process, which effectively lower the likelihood of
inefficient nodes being elected, thereby improving block pro-
duction efficiency and enhancing overall TPS.

As illustrated in Figure 14, the average latency of all three
consensus mechanisms increases with the number of nodes.
However, the rate of latency growth for the optimized DPoS
is significantly lower than that of PoS and PDPoS, indicating
superior scalability. This improvement arises from the ability
of the optimized DPoS to sustain a high-quality validator set
even in large-scale network environments, while simultane-
ously reducing redundant verification overhead during block
propagation and confirmation, thereby shortening transaction
confirmation time.

Fig. 13. Comparison of TPS under different numbers of nodes

Fig. 14. Comparison of average transaction latency under different numbers
of nodes

As illustrated in Figure 15, under the conditions of a con-
firmation threshold of and a malicious node ratio of 10%, the
improved DPoS achieves the lowest double-spending attack
success rate, reducing it by approximately 40% compared
with PoS and by about 30% compared with PDPoS. As the
number of nodes increases, the attack success rates of all three
mechanisms exhibit a downward trend, with the improved
DPoS demonstrating the most substantial reduction. These
results highlight the significant advantages of the proposed
mechanism in enhancing transaction finality and resisting
double-spending attacks, thereby making it more suitable for
high-security industrial IoT scenarios.

K. Performance Comparison of Game Models

To validate the advantages of the proposed four-party
game model in capturing real-world dynamics and enhanc-
ing system robustness, we constructed two baseline models:
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Fig. 15. Comparison of double-spending attack success rate under different
numbers of nodes

a two-party model (agent–voting) and a three-party model
(agent–voting–supervisor), while keeping all parameters and
initial conditions identical. These two baseline models were
derived through role ablation from the four-party model, with
all parameters maintained consistently except for the removal
of the corresponding entities.

As illustrated in Figure 16, the strategy convergence curves
of the three models under identical initial conditions are
presented. The four-party model converges to the ideal stable
strategy (i.e., non-bribery, normal voting, cooperation, and
supervisory behavior) at approximately t ≈ 1.25, achieving
a convergence time that is roughly 15% shorter than that of
the three-party model and about 25% shorter than that of the
two-party model.

Fig. 16. Comparison of double-spending attack success rate under different
numbers of nodes

As illustrated in Figure 17, the four-party model integrates
a dynamic game mechanism between malicious nodes and

supervisory nodes. Upon reaching a stable state, the proportion
of malicious nodes is reduced to below 5%. In contrast, the
stable-state proportion of malicious nodes in the three-party
model is approximately 12%, while that in the two-party model
is around 18%.

Fig. 17. Comparison of double-spending attack success rate under different
numbers of nodes

VI. DISCUSSION

A. Comparison with Existing Studies

To further validate the effectiveness of the proposed mech-
anism, we conduct a comparative analysis with existing con-
sensus mechanisms and game models, and the results are
presented in Table VI and Table VII.

TABLE VI
PERFORMANCE COMPARISON OF POS, PDPOS, AND THE PROPOSED DPOS

Consensus
mechanism TPS (↑) Average

latency s (↓)
Double-spending attack

success rate % (↓)

PoS 458.78 1.68 4.6
PDPoS [21] 462.38 1.63 3.7

Proposed method 483.58 1.59 2.6

TABLE VII
PERFORMANCE COMPARISON OF GAME MODELS

Performance metric Two-party
model

Three-party
model

Proposed
method

Convergence time 1.65 1.45 1.25
Stable proportion of malicious

nodes 18% 12% <5%

Multi-party interaction
modeling capability Low Medium High

As shown in Table VI,the comparison results demonstrate
that the improved DPoS mechanism proposed in this paper
consistently outperforms PoS and PDPoS across the dimen-
sions of efficiency, scalability, and security. With respect to
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efficiency, when the number of nodes reaches 1,000, the
improved DPoS achieves a TPS increase of approximately
5.4% compared with PoS and about 4.6% compared with
PDPoS. In terms of scalability, it exhibits the lowest latency
growth rate, indicating that the mechanism can sustain fast
response times even in large-scale network environments.
Regarding security, the double-spending attack success rate
is reduced to 2.6%, representing a decrease of approximately
43.5% compared with PoS and around 29.7% compared with
PDPoS. These findings clearly highlight the superiority of the
improved mechanism in resisting attacks and demonstrate its
potential to significantly enhance the overall performance of
blockchain systems in high-security, high-concurrency appli-
cation scenarios such as industrial IoT.

As shown in Table VII, the four-party evolutionary game
model substantially outperforms the two-party and three-party
models in terms of convergence speed and mitigation of
malicious behavior, while demonstrating clear advantages in
capturing multi-agent interactions and adapting to complex
IIoT application scenarios.

B. Policy Recommendations
Based on the research results, the following policy rec-

ommendations are proposed to further optimize the DPoS
consensus mechanism and enhance its practical application in
IIoT:

Implementation of Dynamic Incentive and Penalty Mecha-
nism: A flexible incentive and punishment mechanism should
be established to dynamically adjust fines, rewards, and repu-
tation parameters according to different application scenarios.
For instance, in systems with frequent malicious behaviors,
stronger penalties and higher mischief costs can curb negative
actions. Conversely, in scenarios where node motivation is
low, increasing incentives for positive behaviors can enhance
system efficiency.

Introduction of Multi-Level Supervisory Architecture: A
hierarchical supervision strategy is recommended, categoriz-
ing supervisory nodes into basic and advanced levels. Basic
supervisory nodes focus on real-time monitoring of malicious
behaviors, while advanced nodes analyze abnormal behavior
patterns and formulate precise punitive measures. This layered
approach enhances system security and response speed.

Early Warning System for Malicious Node Behavior: A
dynamic monitoring and early warning system for malicious
node behavior should be developed. By analyzing node be-
havior data in real time through machine learning algorithms,
potential threats can be identified in advance. This mechanism
enables the system to implement preventive measures before
malicious behaviors occur, minimizing their impact.

Deep Integration of Reputation Mechanism and Economic:
Incentives Long-term node reputation should be closely tied to
the economic incentive mechanism to create a sustainable node
behavior management framework. Specific measures include
dynamically adjusting nodes’ revenue distribution based on
their reputation and restricting low-reputation nodes from
participating in voting or candidacy.

Adaptive Model Extension To ensure practical applicability
across different IIoT scenarios (e.g., smart manufacturing, sup-

ply chain management, energy monitoring), the game model
should be extended with scenario-specific parameters such
as data sharing sensitivity and node computing power. This
approach enhances the operational viability of the proposed
optimization scheme.

C. Practical Implementation Pathways in IIoT

The improved DPoS consensus mechanism proposed in this
manuscript offers a clear implementation pathway in existing
IIoT environments, as outlined below:

First, at the architectural mapping level, the blockchain
storage framework introduced in Section III can be integrated
with real-world IIoT platforms. For instance, in a smart
manufacturing production line, multi-dimensional sensor data
from edge devices can be transmitted to the blockchain net-
work via industrial gateways. Agent and voting nodes can be
deployed on enterprise servers or edge computing nodes, while
supervisory nodes can be realized through trusted third parties
or internal audit modules, thereby completing the mapping
from the conceptual framework to the operational system.

Second, at the mechanism integration level, the four-party
game–based incentive and punishment mechanisms can be
embedded into the blockchain system via smart contracts.
On platforms such as Hyperledger Fabric or EOSIO, chain
codes can dynamically update node reputations and, combined
with optimal parameter settings (e.g., penalty coefficients and
reputation decay rates) derived from game-theoretic analysis,
automatically detect and mitigate abnormal behaviors.

Third, at the incremental deployment level, implementation
should begin with small-scale pilots in enterprise private
blockchain environments to validate performance in terms of
throughput, latency, and security. Subsequently, deployment
can be gradually expanded to consortium blockchains or cross-
enterprise IIoT applications, such as supply chain traceability
and smart energy trading. Operational data collected during
this process can be used to iteratively optimize parameters,
ensuring evolutionary stability and security in real-world en-
vironments.

Finally, at the operations and supervision level, a repu-
tation model combined with behavior-tracking mechanisms
can monitor and dynamically isolate malicious nodes. By
integrating with enterprise IT/OT security systems, game-
theoretic blockchain governance strategies can be embedded
into daily operations and compliance management, supporting
the long-term sustainable operation of the mechanism.

In summary, this implementation pathway provides a practi-
cal blueprint for deploying the improved DPoS mechanism in
IIoT scenarios, thereby enhancing the real-world applicability
and value of the research.

D. Discussion on Practical Deployment Constraints

Although the simulation results demonstrate that the im-
proved DPoS outperforms in terms of efficiency, security, and
scalability, several challenges remain in real-world industrial
IoT deployments. First, terminal devices typically have limited
computing and storage capabilities, making it impractical for
them to directly participate in the full consensus process;



JOURNAL OF LATEX CLASS FILES, VOL. ××, NO. ××, ×× ×××× 20

this highlights the need for lightweight consensus solutions.
Second, heterogeneous network environments may introduce
latency and packet loss, which can hinder block propagation
and synchronization efficiency. Third, many edge devices
are highly sensitive to energy consumption, necessitating
strategies to reduce the energy cost of consensus without
compromising security. Finally, large-scale node participation
increases both storage and communication overhead, requiring
optimization approaches such as sharding, sidechains, or cross-
chain mechanisms to improve scalability. In summary, the
practical deployment of the improved DPoS still calls for fur-
ther refinement in areas including lightweight design, network
adaptability, energy efficiency, and cross-chain scalability to
enable secure and efficient large-scale applications.

E. Limitations

Although the four-party game model proposed in this study
demonstrates good robustness and adaptability in simulations,
its effectiveness in large-scale real industrial scenarios requires
further verification.

VII. CONCLUSIONS

This paper presents an improved DPoS consensus mech-
anism tailored for IIoT scenarios. By constructing a four-
party evolutionary game model, it systematically captures
the dynamic interactions among different types of nodes
and introduces incentive and penalty strategies to reinforce
system stability. Simulation results confirm that the proposed
mechanism delivers superior performance in efficiency, scal-
ability, and security, thereby strengthening blockchain-based
data management in complex IIoT environments. The findings
offer both solid theoretical support and practical guidance for
advancing secure and efficient industrial applications. Future
research will focus on extending the modeling of diverse
types of malicious behaviors and examining their empirical
applications in cross-industry IIoT scenarios, with the aim of
enhancing the adaptability and generalizability of the proposed
model.
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