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Given a compact convex planar domain © with non-empty interior, the classical Neumann’s con-
figuration constant cg(Q2) is the norm of the Neumann-Poincaré operator Kq acting on the space of
continuous real-valued functions on the boundary 92, modulo constants. We investigate the related
operator norm cc(2) of Ko on the corresponding space of complex-valued functions, and the norm
a(2) on the subspace of analytic functions. This change requires introduction of techniques much
different from the ones used in the classical setting. We prove the equality cr(Q2) = cc (), the analytic
Neumann-type inequality a(Q2) < 1, and provide various estimates for these quantities expressed in
terms of the geometry of Q. We apply our results to estimates for the holomorphic functional calculus
of operators on Hilbert space of the type |[p(T)|| < Ksup,.q, Ip(z)|, where p is a polynomial and  is a
domain containing the numerical range of the operator T. Among other results, we show that the well-
known Crouzeix-Palencia bound K < 1+ +/2 can be improved to K < 1+ /1 + a(®). In the case that Q is
an ellipse, this leads to an estimate of K in terms of the eccentricity of the ellipse.

1 Introduction
1.1 Double-layer potential

Throughout this article, @ will denote a compact convex planar domain with non-empty interior. If C(92)
is the space of continuous functions on the boundary Q2 and f € C(3<), then its double-layer potential u
is the harmonic function

N(o)
o—zZ

1 1
ue) = - /mf(o)darg(a—z): ;/agf(a)Re( )ds, Zeq. (1)

Here ds = |do| is the arclength measure on the rectifiable curve 92, Q° is the interior of 2, and N(o) is the
outer-pointing normal at the boundary point o. The equality between the two expressions for u(z) above
follows from an elementary computation in the case that 92 is sufficiently smooth. In the general case,
we interpret N(o)(c — z)~! as a Borel measurable function on 8. By convexity of the domain, both the
tangent T(o) and the normal N(o) exist and are continuous at all but a countable number of points o,
which we will call corners, at which the discontinuity of T and N amounts to a jump in the argument.
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Fig. 1. Example domain Q with corner of angle 6,- at ¢/, and a circle of radius R, , with center m, tangent to 9Q at o
and passing through ¢.

In Appendix A we include more details regarding boundaries of planar convex domains, and other facts
mentioned below.

The Neumann-Poincaré operator appears in connection with the study of boundary behaviour of the
double-layer potential. It is known that u given by (1) has a continuous extension to 32, and we have
the representation

u@) =f(©) +Kaf (©), ¢ eoQ @)
where Ko denotes the Neumann—Poincaré integral operator
1
Kaf©) 1= 7 [ f@)ducto), ceon
T Jaq
Here p. is the probability measure
due = (1 =0, /7)dé; + pcds (3)

where 6, can be interpreted as the angle of the aperture at the possible corner at ¢ of 9%, §; is a unit
mass at the point ¢, and p, is the Radon-Nikodym derivative

pe(0) = dd%(a) ~ 1Re(N(")) - llm( @) ) @)

T o—¢ i o—¢

It is natural to use the convention that 6, = = if ¢ is not a corner. This occurs precisely when u, assigns
no mass to the singleton {¢}. We will say that the collection of measures {iu;};csq 1s the Neumann-Poincaré
kernel of €.

The density p, has the following useful geometric interpretation. If o € 322\ {¢} is not a corner, and
R; . 1s the radius of the unique circle passing through ¢ that is tangent to 9Q at o, then the equality

()

pe(0) = TnR,

holds. The radius R, , may degenerate to oo if ¢ is contained in the tangent line to 9Q passing through o.
In that case we see easily that p; (o) = 0, so (5) still holds. To establish the formula, note that the center
m of the circle in question is of the form m = ¢ — RN(o0), where the radius R = R;, > 0 of the circle
satisfies [m — ¢|> = |(o — ¢) — RN(0)|? = R?. Expanding the squares and solving for R leads to (5).
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1.2 Neumann’s configuration constant
1.2.1 Real configuration constant

Historically, the Neumann-Poincaré operator has been used to solve the Dirichlet problem of finding a
harmonic extension to Q° of a given continuous function u on 9. The extension can be obtained by
finding f € C(3%), which solves (2). Indeed, if such an f is found, then the extension of u to Q° is given
by the double-layer potential in (1). This naturally leads to questions of invertibility of the operator
I+ Kq appearing on the right-hand side of (2), and consequently to the introduction of the Neumann'’s
configuration constant, which we shall soon define as the operator norm of Kq acting on an appropriate
space. Note that if 1 is the constant function, then we have that Ko1 = 1, since each u, is a probability
measure. Thus Ko can be naturally defined as a linear mapping on the quotient space C(3€2)/C1. The
classical approach is to instead consider Kq as acting on the space of real-valued continuous functions
Cr(9€2), in which case the corresponding quotient space Cg(9€2)/R1 is endowed with the norm

- 19¢) —g@Hl _ . _
19 +Rlllaq := max =—— = min max|g() -7l ©)

It is not hard to see that the two above expressions for the norm of the coset g + R1 are equivalent:
they are both equal to half of the length of the interval g(dQ) = {g(3RQ) : ¢ € 9}, the image of g. The
right-most expression is minimized by choosing r to be the mid-point of the image interval. Neumann's
(real) configuration constant cg(R2) is defined as the operator norm of Kq acting on the quotient space
Cr(3Q)/R1:

=(Q) = IKq : Cr(3Q)/R1 — Cr(3Q2)/R1]. )

It is not hard to see that we may let K instead act from Cg(9€2) into the quotient Cgr(9%2)/R1 without
affecting the operator norm. Since each measure yu, is of unit mass, we have 0 < cg(Q) < 1. If

Ifllae :==sup|f ()l <1,
141191

then

[Kaf (¢£) = Kaf €N = lpe — perl,

where we use the total variation norm (functional norm) on the right-hand side. By varying f over the
unit ball of Cg(82) and ¢, ¢’ over 92, we obtain the important relation

Cr(R) = sup M 8)
£,0'ed

This expression for cg(€2) will play a fundamental role in our study.

1.2.2 Neumann’s lemma

From (8) we can immediately deduce that cg(2) = 1 in the case that Q is a triangle or a convex
quadrilateral. Indeed, in those cases one sees from (3) and (4) that if ¢; and ¢, are corners of Q (opposing,
in the case of the quadrilateral) then ., and ., are mutually singular, and so [|u., — ue, | = 2, implying
cr(2) = 1. Neumann’s lemma, which appears initially in Neumann's book [14], states that the cases of the
triangle and quadrilateral are exceptional. For any other type of domain we have the strict inequality
cr(RQ) < 1. See [17] for a proof of this claim by Schober, and the curious history of incomplete attempts
at a valid proof in full generality. Neumann'’s lemma implies the invertibility of I + Kq on Cg(3€2)/R1,
and thus the solvability of the Dirichlet problem on a convex domain €, which is not one of the two
exceptional cases. The remaining cases can be handled by considering instead powers of Kq. See, for
instance, [13, Theorem 3.8], [6, Proposition 7], or the article [16], which contains also an exposition of
the double-layer potential and Neumann's lemma.

At the other extreme, we have cg(2) = 0if and onlyif Qis a disk. This result will be proved in Section 5.
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4 | B.Malman etal.

1.3 Complex and analytic configuration constants
1.3.1 Two new configuration constants

In the present article we will discuss certain applications of the double-layer potential to operator
theory, which motivate the definition of the complex configuration constant

ce(Q) = |Keq : C(3Q)/C1 — C(3Q)/C1]. ©)

The difference between (7) and (9) is that the latter is the norm of Kq on the larger space of complex-
valued functions. As a consequence, we have cg(Q) < cc(2) < 1. There is a principal difference between
the geometric interpretations of the norms in the quotient spaces Cr(32)/R1 and C(32)/C1. In the
former case, as we have already noted, the norm (6) of the coset represented by the real-valued function
g is equal to half of the length of the image of g, this image being an interval on the real line R. In the
case of complex-valued g, the quotient norm

llg + Clllsq = minmax g(¢) — Al (10)

can instead be interpreted as the radius of the smallest disk containing the image of g. A crucial difference is
that we lose the ability to estimate the norm of the coset g+C1 by considering the quantities |g(¢)—g(¢")|
only. This is the essence of why new tools are required to treat this case.

We will also study an analogous analytic constant, which is the norm of the operator K restricted to
the subspace of analytic functions in C(2€2). More precisely, we let A(€2) be the space of functions that
are continuous in € and analytic in Q°. Each function in A(€2) has a unique restriction to 9%, and thus
A(Q) can be naturally identified with a subspace of C(9Q). We define the analytic configuration constant as

a(Q) := |Kq : A(R)/C1 — C(3K)/C1]. (11)

The space A(Q) is not invariant under Kgq, but we do have that Kqf is the complex conjugate of a
function in A(Q) (in [5, proof of Lemma 2.1] this claim is established for © with smooth boundary, but
the same argument works in general). Clearly, we have the inequality a(2) < cc(€2). We note also that
if § is the image of ©2 under an affine transformation of the plane, then the configuration constants of
the two domains are equal. We shall verify this claim in Section 6.

1.3.2 An application to functional calculi
Given an operator T on a Hilbert space H with numerical range

W(T) = {{Tx, X)3 1 X € H, X[l = 1},
we are interested in the optimal constant K > 0 in the inequality

(DI =K- sup |p@)| =Klplwm, (12)
zeW(T)

where p is an analytic polynomial, and the left-hand side is the operator norm of p(T) acting on . More
generally, if W(T) in (12) is replaced by an arbitrary domain €, and if the corresponding inequality holds
for some K, then we say that Q is a K-spectral set for T. Von Neumann's inequality says that the unit
disk is a 1-spectral set for any contraction T, and a result of Okubo-Ando from [15] says that any disk
containing W(T) is a 2-spectral set for T.

The numerical range W(T) is a bounded convex subset of the plane, its closure W(T) contains the
spectrum o (T) of T, and it has non-empty interior in the case that T is not a normal operator (see, for
instance, [10, Chapter 1]). For normal operators, the bound (12) with constant K = 1 is a consequence of
the spectral theorem, and it suffices to take the supremum on the right-hand side over the smaller set
o (T). For general T, even establishing the existence of a bound as in (12) is a non-trivial task. A result
of Delyon-Delyon from [6, Theorem 3] establishes the existence of the bound, and shows that K can be
chosen depending only on the area and the diameter of W(T). The remarkable work of Crouzeix in [3]
establishes that (12) holds with K < 11.08. A subsequent work of Crouzeix and Palencia in [5] improves
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Fig. 2. A triangular image of a complex-valued function g contained in a disk of radius 1, with three points on the
boundary of a disk.

the estimate to K < 1 + +/2. The Neumann-Poincaré operator appears as an essential tool in all of the
mentioned works. The standing conjecture of Crouzeix from [2] is that the bound holds with K = 2.
This bound is presently known to hold in the case H being of dimension 2, and has been established by
Crouzeix in [2].

Our interest in the new notions of configuration constants is inspired by a recent work of Schwen-
ninger and de Vries in [18], where bounds for general homomorphisms between uniform algebras and
the algebras of bounded linear operators are studied. In Section 6 we will combine their arguments with
the methods of Crouzeix-Palencia to obtain the following estimate:

Ilp(DIl = (1 +V1+ a(W)) Ipllw, W :=W(D). (13)

For instance, if W is a disk, then a(W) = 0, which gives the Okubo-Ando result mentioned above.
In [18], Schwenninger and de Vries recovered this result also. The estimate (13) is our motivation
for the following investigation of the configuration constants cg(R), cc(2), and a(), and the relations
between them.

1.4 Main results
1.4.1 Relation between the real and complex constants

Consider the situation in Figure 2, where the triangular image of the complex-valued function g : 9Q —
C is contained in a disk of radius 1, and intersects the boundary circle of the disk in three distinct
points. The three-point set {g(¢1), g(¢2), g(£3)} is not contained in any open half-circle of the boundary,
and it follows from a simple geometric argument (which we shall present in the proofs below) that
llg + C1|l5e = 1. However, the sides of the triangular image of g are all of lengths strictly less than 2, and
this implies that

lg+Cllye =1 > max M
=t 2

If such a function g lies in the image of the unit ball of C(9€2) under the Neumann-Poincaré operator
Kq for some domain € that satisfies cg(R2) < 1, then a strict inequality cr(R2) < cc(S2) occurs. Our first
main result excludes this possibility, and so establishes the simplest possible relation between the real
and complex configuration constants.

Theorem 1. The equality

R (L) = cc(€2)

holds for every compact convex domain € with non-empty interior.
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6 | B.Malman etal.

It follows that every considered domain has a well-defined configuration constant c(€2), which is equal
to the operator norm of Kq on C(32)/C1, and which can be computed according to the right-hand side
of (8). An important consequence of this result is the inequality

a(2) <c(2) = sup
£,0'€d

lpee — perll
— (14)
which, as we shall soon see, has some interesting consequences.

Theorem 1 doesn’t appear nearly as straightforward to prove as it is to state, and the proof takes
up a large portion of the article. However, the only property of the Neumann-Poincaré operator used
in the proof is that its integral kernel {u,};cso consists of real-valued measures. In fact, the theorem
will be deduced as a corollary of a result, which we call the Three-measures theorem, and which is a
general statement regarding the geometry of the space C(X) of continuous functions on a compact
Hausdorff space X. This result, which we discuss and prove in Section 2, puts a restriction on the possible
configurations of point sets in the plane, which arise as values of a collection of real-valued functionals
on C(X).

1.4.2 Analytic Neumann’s lemma

Note that the above estimate in (14), together with Neumann’s lemma, implies that a(Q) < 1 whenever Q
is not a triangle or a quadrilateral. This can be improved, for we have an analytic version of Neumann's
lemma, in which no exceptional cases occur.

Theorem 2. The strict inequality
aQ) <1
holds for every compact convex domain € with non-empty interior.
Our proof of Theorem 2 is much different from the one given by Schober in his proof of the real
Neumann'’s lemma in [17], but it works also in the real context. At the end of Section 4 we show how
our technique leads to a different proof of Neumann'’s lemma.

1.4.3 Functional calculus bounds
The following result has already been mentioned above.

Theorem 3. Let T : H — H be a bounded linear operator on a Hilbert space H with numerical
range W(T), which has non-empty interior. Then, for every polynomial p, we have

IPDI < (1+v1+aW) Ipllwen.

Recall thatif the numerical range of an operator has empty interior, then the operator is normal, and
so (12) holds with K = 1. From this observation and Theorem 2 we obtain that for any fixed operator
T:H — H, the optimal constant K in (12) is always strictly smaller than 14 +/2. In fact, we deduce from
our results that we have the inequality

Ip(DI < Kwlipllw
with a constant
Kw < 14++/2,
which depends only on the shape of W = W(T), and not on the operator T itself. We show in Section 5
that no better universal bound can be obtained by means of the analytic configuration constant: for any

€ > 0 there exists a “thin” quadrilateral Q. for which we have a(Q.) > 1—e. However, fixing the dimension
of the Hilbert space H, one may combine earlier results of Crouzeix to obtain a uniform improvement.
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The optimal constant K in (12) varies with T, and we may consider the supremum of these quantities
among all operators T on a Hilbert space # of a fixed dimension N. In [4, Theorem 2.2], Crouzeix proved
that there exists an operator realizing this supremum. An immediate corollary of his result, Theorem 2
and Theorem 3 is the following.

Corollary 4. For every positive integer N, there exists a constant Cy < 1 + +/2 for which we have

Ip(DIl < Cnlipllwr
whenever T is an operator on an N-dimensional Hilbert space, and p is a polynomial.

This improves the Crouzeix-Palencia bound, although by an indefinite amount.

1.4.4 Estimates for the configuration constants

In Section 5 we present also other computations and estimates for the configuration constants.
Surprisingly, in the case of an elliptical domain, the configuration constant is computable exactly, and
we obtain

c(Qap) = %arctan(%‘g - %D = %arctan(%%)

where a and b are lengths of the semi-axes of the ellipse Q,1, and e is the eccentricity of the ellipse,
given by e := /1 —b?/a? in case that a > b. This fact, together with Theorem 1, estimate (13), and the

inequality a(Q) < c(Q), has the following consequence.

Corollary 5. Let T : X — H be a bounded linear operator on a Hilbert space H with numerical
range contained in (or equal to) the ellipse .. Then, for every polynomial p, we have

Ip(DIl < K@, bylplle,,-

where

K(a, b) ::1+\/1+§arctan(%‘g— %D

Note that the function a — K(a, 1) is continuous and increasing for a > 1, and we have
limK(@, 1) =1++2, limK(@, 1) =2.
a—00 a—>1

Hence the estimate in Corollary 5 gets worse as the eccentricity of the ellipse @, grows, and approaches
the Crouzeix-Palencia bound in the limit a — oo. On the other hand, as a — 1, the eccentricity of the
ellipse €41 tends to 0. The estimate is then close to the conjectured optimal bound K = 2 and coincides
with the Okubo-Ando bound for a = 1, in which case the domain is a disk. From this perspective,
Corollary 5 may be interpreted as an elliptical generalization of the Okubo-Ando estimate.

For many other types of domains, the exact value of ¢(f) is inaccessible. To help the situation, we
establish an integral estimate, which gives an upper bound on ¢(Q) in terms of the curvature of 3<,
roughly speaking. For a fixed o that is not a corner of 32, recall the definition of R, , in (5), and consider

Rq(o) :==supR;,. (15)
;ed

If k(o) is the curvature of 9Q at o, then Rq(o) is at least as large as the radius of curvature

1/k (o) :yme’ (16)
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8 | B.Malman etal.

which is also the radius of the osculating circle at o. Geometrically, Ro (o) is the radius of the smallest
disk tangent to 9 at o, which contains €, if such a disk exists, and it is equal to co otherwise. The
latter case occurs, for instance, if o lies on a straight line segment contained in dQ. However, if 9Q
is sufficiently curved on a segment of 9, then Rq will be bounded above there. We obtain in such a
situation a non-trivial upper bound on c(2).

Theorem 6. With the above notation, we have the estimate

(@) <1 1 ds
N 27 Jaq R’

The result implies spectral constant estimates similar to the one in Corollary 5 above. It also
generalizes some similar results in the literature. See Section 5 for further details and examples.

1.4.5 An unresolved matter

We have mentioned above that c(2) = 0 if and only if @ is a disk. With some additional effort, we will
show in Section 5 that the condition a(€2) = 0 also characterizes disks. In this case, we have the equality
a() = c(Q). [tis natural to ask whether other domains exist for which the equality occurs, or if the case
of the disk is exceptional.

Question. Do we always have the strict inequality

a(2) < c(2)

whenever € is not a disk?

As a consequence of Theorem 2 and the exceptional cases of Neumann’s lemma, we see that the
strict inequality holds whenever Q is a triangle or a quadrilateral. The authors have not been able to
confirm that the inequality holds in any other examples.

1.5 Notations

Some of our notation has already been introduced above. For a continuous function f defined on a set X,
we denote by ||f |x the supremum of |f| over X. For cosets of the form f + C1 we use the convention

If + Clllx :=inf |If + Alx,
reC

with similar convention for real-valued f and cosets f + R1. A norm || - || without a subscript usually
denotes a linear functional norm or a total variation norm of a measure. The distinction will be
unimportant and should anyway be easy to deduce from context. We use boldface letters, such as x, to
denote vectors in R", and plain letters, such as x;, to denote the coordinates.

2 The Three-Measures Theorem
2.1 Definitions of relevant spaces and operators
Theorem 1 will be proved as a corollary of our analysis of three-point configurations

(L1(2), £2(%), 3(x)) € C?,

where x is an element of a given normed space N, and ¢1,€,,¢3 € N* are three bounded linear
functionals on N. A point configuration of this type has to satisfy certain conditions. For instance,
we must have the distance bound

[6(X) = L) < 16 — Cella Xl 1<) k<3

Our principal interest will be in estimating the radius of the smallest disk that contains such a three-
point set.
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Double-Layer Potentials, Configuration Constants, and Applications | 9

In order to use the tools of functional analysis, we will formulate our problem as one of estimating
the norm of an operator between normed spaces. To this end, we use the space C? of triples of complex
numbers, and we equip it with the following norm:

(@b, 0l := max{lal, b, |cl}. (17)

Similarly to our previous notational conventions, we shall set 1 := (1,1, 1) € C3. The quotient norm in
the quotient space C*/C1 satisfies

(@, b,c) + Clly = migl max{|a — A, |b — Al, [c — Al},
AE

and it has the geometric interpretation adequate to our problem: it is the radius of the smallest disk con-
taining the three point set {a, b, c}. Given a normed space N and three linear functionals ¢1, £5, £5 € N*,
we introduce the linear operator £ : N' — C3/C1 defined by

L£x = (61(2), £2(%), £3(x)) + C1. (18)

With these conventions, each three-point configuration (¢1(x), £2(x), £3(x)) is contained in a disk of radius
at most || £l x—c3jc1 - 1Xlla. We want to estimate the operator norm || £l xr—c3/c1-

2.2 Statement of the theorem
Without any information regarding the space N or the functionals ¢4, £,, £3, the optimal estimate is

1
1L —cser £ 7 TT}%X 1€ — Lell. (19)

Indeed, we see that we cannot do better by choosing ' = C, x = 1, and the functionals (scalars) to be
the vertices of an equilateral triangle inscribed in the unit circle. For instance,

=1, 6=-1/241iv3/2, t3=-1/2—iV3/2.

The sides of the triangle have the common length equal to |¢;—¢;| = +/3, and the smallest disk containing
the three points ¢;(x) = ¢; is the unit disk itself. Thus, in this case, (19) holds with equality. The estimate
holds in general as a consequence of jung’s theorem, which appeared first in [11], and which in the
context of the plane says that any set of diameter d is contained in a disk of radius d/+/3. In our setting
d < max;jy |4 — Lkllw+, and so the estimate (19) follows from Jung’s theorem.

In our intended application, the role of the space N is played by C(X), the Banach space of continuous
functions on a compact Hausdorff space X, and the functionals are given by integration against real-
valued measures

Fo w() = /dew

It turns out that the three-point configurations that arise in this way are contained in disks of radius
smaller than predicted by Jung's theorem. The main result of the section is the following.

Theorem 7. Let C(X) be the space of continuous functions on a compact Hausdorff space X, and

L : C(X) — C3/C1 be the operator in (18) defined by three functionals induced by three finite
real-valued Borel measures 1, 1y, 3. Then

1
ILllcon—cojc1 = 5 U}%X leej — perell- (20)
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It is the “<” estimate in (20) that is the critical one. The lower bound “>” follows from the definition

of the functional norm

1 1
E”Mj — el = ifmlple'(f) — (N < ILlcay-ci/c1-
k=

We will spend the rest of the section on proving Theorem 7. The outline of the proof is as follows.
We will first use duality to formulate the problem in terms of the adjoint operator £* between the dual
spaces. Next, a discretization will help us reduce the dual problem to a finite-dimensional optimization
problem. Finally, we will solve the finite-dimensional problem by the use of techniques of convex
analysis.

Before proceeding, we remark that the natural generalization of the above theorem to an arbitrary
n-tuple of real-valued measures is valid. See Theorem 17 below.

2.3 Dual problem

Let us denote by Y the space C*/C1 equipped with the norm in (17). Then the dual space Y* is the
two-dimensional space of three-tuples (e, 8, y) of complex numbers that satisfy

a+p+y=0,
and the norm on Y* is given by

(e, B, )ll1 = le| + 18] + [y].

In the case N' = C(X), the dual space (C(X))* is just the space of finite Borel measures on X. The adjoint
operator £* : Y* — N* is then given by

L5 (o, B,y) = apr + Buo +yus

and the estimate (20) is equivalent to

l| + 181+ Iy

laps + Bura +yusl < 5

max | — el (21)

Since o + B = —y and (a + B + y)us = 0, we may rewrite the above inequality into

o] + Bl + |o + B|

[levr + Bzl < 5

max{ [, [vzll, vr = vall} (22)
where

V1= 1 — M3, V2 = Mo — U3

Note that v1 and v, are real-valued if w1, no, us are real-valued. Theorem 7 is thus a consequence of the
following slightly more general statement in which the topological structure of X does not play a role.

Proposition 8. Let v; and v, be two finite real-valued measures on a measurable space X. Then
for any complex numbers «, 8 we have the inequality

la| + 18]+ la + Bl

levs + Bro|l < 5

max{ v, vzl vr = vall, (23)

where the norm on the right-hand side is the total variation norm || := |u|(X).

In our next step, we shall simplify the problem further, and show that Proposition 8 can be established
by considering finite sets X only.
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2.4 Discretization

With notations as in Proposition 8, set o := |v1|+|vz|. Then o is a positive finite measure on X, and by the
Radon-Nikodym theorem we have dv; = f do and dv, = gdo, where f, g are bounded real measurable
functions on X. For a moment, let | - ||,,1 denote the norm

Ifllo = /X|f| do.

Then Proposition 8 is equivalent to the inequality

[ taf + poida < EEE L P (i1, g, I - g1 ). (24)

We will say that a function is simple if it only takes on a finite number of distinct values. By standard
measure theory, there exist simple measurable real functions f,,, gm on X such that f, - f and gn — g
uniformly on X. Clearly |lafm + Bgmllo1 = llaf + Bglls 1. Likewise [fmllo,r = Ifllo,1 @and Igmlle,r = 19101
and |[fm — gmller = IIf — gllo1- Thus, if the inequality (24) holds for each pair of simple functions, then it
holds for f, g. So it suffices to establish (24) when f, g are simple measurable real functions.

Hence, suppose that f,g are simple measurable real functions on X. We can write them as f =
Zj”:l a1l and g = Z}-”:l bj1lx,, where (X1, ..., Xn} is a measurable partition of X, and a;,b; € R for all j.
The inequality in (24) becomes

S lag; + Bbjlo (X)) < w max{z laslo (%), > Ibilo (X)), > la; — bﬂa(Xj)}.
=1 =1 =1 =1

Writing

X = ao(X), X=(X1,...,%) eR"
and

Vi =boX), y=QG1,....y0) eR"

we see that this becomes

lal 4+ 18] + lo + Bl

llax + Byll1 < 5

max{|xll1, Iylls, 1% =yl },

where now x,y are vectors in R" and | - ||; denotes the usual ¢*-norm on R" given by
n
1%l = > 1%l (25)
j=1

To summarize, to prove Proposition 8 and consequently to prove Theorem 7, it suffices to establish the
following discrete result.

Proposition 9. Let n > 1 and x,y € R". Then for all complex numbers «, 8 we have the inequality

la| + 18] + lo + BI

llaex + Byll1 < 5

max (], Iyls, 1% =yl }. (26)

This reduction of the problem to the finite-dimensional setting allows us to use the tools of convex
analysis.
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12 | B.Malman etal.

2.5 Optimization over a convex set
Consider the set

Coi= @ y) e R xR Ixl = LIyl < 1, Ix — ylls = 1}. (27)

Thus C, is a compact convex polytope in R" x R", and so it has a finite number of extreme points.
That is, points of C, that do not lie in the interior of any line segment in C,. A well-known theorem of
Carathéodory says that each point of a compact convex polytope is a convex combination of its extreme
points.

Lemma 10. In order to establish Proposition 9, it suffices to show that the inequality (26) holds

for every extreme point of Cy.

Proof. Let us fix ¢, 8 € C and (%x,y) € R" x R". By the homogeneity of the inequality in (26), we may
assume that

max{|xl11, Iyll, [x -yl } = 1. (28)

Then (x,y) € C, and so we may express it as a convex combination of the extreme points of C,, namely

m m
x=2tkek, y=ztkfk
k=1 k=1

where e¥ € R", f¥ € R", the pairs (e¥, f¥) are extreme points of Cp, t; > 0, and -, t = 1. Note that since
(e, f¥) is an extreme point of C,, we must have

max{ e, s, ek — £ } = 1.

Since we are assuming that (26) holds for extreme points, we can estimate
m
lex + Byl < > tillae® + B

: max{ e l1, I£¥]:, le¥ — ;|

k=1

m
sztj'“'“ﬁ'*'“*’g‘

k=1

loe] + 8] + lor + Bl ~
= —Ztk

2 k=1

_ el + 18]+ la + B
= 5 .

Recalling our normalization in (28), this is the desired estimate in (26). |

From the above lemma and our sequence of reductions above, it follows that in order to prove
Theorem 7 it suffices show that the inequality (26) holds at every extreme point of the polytope C,.
Proposition 11 below characterizes these extreme points by partitioning them into three equivalence
classes.

Note that C, is invariant under the following linear symmetries:

X

=Xy ) (2 9)

=Yg
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where 7 is any permutation of {1,2,...,n},

X)’ iZEjX}' (30)
y}f = €Y;

for any choice of €1, ...,€;, € {—1,1},
[X -7 (31)
y =x

and
X =X (32)
y =x-y

Denote by G, the group generated by these symmetries. As these symmetries are linear automorphisms
of R"xR", it is clear that G, leaves invariant the set of extreme points C,. We say that two extreme points
of C, are Gp-equivalent if there is an element of G, mapping one of them to the other. Thus the action
of G, on C, partitions the set of extreme points of C, into a finite number of equivalence classes. Note
that if the inequality (26) holds for some (x,y) € Cy, then it holds also for any point of C, in the orbit of
(x,y) under the group action of G, on C,.

The extreme points of C, are identified in the following proposition.

Proposition 11. If n > 3, then every extreme point (x,y) of C, is G,-equivalent to one of the pairs

1\ /1 1\ /172 1/2\ [(1/2
of| (o o| 12 1/2 0
of [o 0 0 0 1/2
of-lo| and Jo|.] o and | o [.|o
o/ \o 0 0 0 0

One can readily check that each of the three above pairs really is an extreme point of C,. We omit
the proof, since we do not actually need this fact. In the case that n = 1, the same result holds, but only
the first kind of pair can arise. Likewise, if n = 2, the same result holds, but only the first two types of
pairs can arise.

We will prove Proposition 11 in Section 2.6. For now let us see how Theorem 7 follows. In order to
verify (26) for all extreme points of Cy, it suffices to verify the inequality for the three pairs of vectors
appearing in Proposition 11. This is an easy task. For instance, if (x,y) is the second pair in Proposition 11,
then we have

lox + Byllr = la + B/2| + |B1/2
=la/2+a/2+B/2|+1B1/2
Sla+Bl/24+ |al/2+181/2.
The inequality for the other two pairs is verified similarly. Then from Lemma 10 we conclude that

Proposition 9 holds, from which Theorem 7 follows by the earlier reduction.
It remains to prove Proposition 11.

2.6 Extreme points of the polytope

In the proof of Proposition 11, the group G, generated by the symmetries (29)-(32) will be extensively
used. In particular we will use the property that (x,y) is an extreme point of C, if and only if some
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14 | B.Malman etal.

extreme point of C, is Gy-equivalent to it. Moreover, the following two observations will be useful to
single out.

Lemma 12. If for a pair (%,y) € C, there exists two distinct indices j, k such that
x>0, y>0, x>0, y>0

then (x,y) is not an extreme point of C,.
More generally, if for two distinct indices j,k we have that two of the quantities x;x, y;yx and
(X; — ¥;)(xx — yr) are non-zero and have the same sign, then (x,y) is not an extreme point of C,.

Proof. Using the symmetry (29) we may suppose thatj = 1,k = 2. Note thatx; < 1,x, < 1,since [|x]; < 1.
The same is true for the corresponding coordinates of y. Letd = (1,-1,0,...,0)T € R". It is easy to verify
thatif tis a real number, and |t| is sufficiently small, then we have

%y) +td,d) =x+td,y+td) € Cp.

Thus (%,y) lies on a line segment inside Cy, and so is not an extreme point of C,.

The more general statement follows by applications of a sequence of symmetries in (29)—(32)
to transform (x,y) satisfying the more general assumption into a point (x/,y’) where the first two
coordinates of the vectors x’ and y’ are positive. |

Lemma 13. If for a pair (x,y) € C, the vector x or y has at least three non-zero coordinates, then
(x,y) is not an extreme point of Cy.

Proof. By using symmetries (29)-(31) we may suppose that coordinates x;,x,,x3 are non-zero and
positive. If two of the coordinates y1,y,,ys are positive, then by Lemma 12 we conclude that (x,y) is
not an extreme point of Cy. In the contrary case, two of the coordinates y1, y,, y3 are non-positive. Then
again by Lemma 12 and the symmetry (32) the pair (x,x —y) € C, is not extreme, and thus neither is
(%,Y), since these two pairs are G,-equivalent. |

We are ready to prove Proposition 11. We denote by ¢} the space R" equipped with the norm || - |1
given by (25). Recall that the extreme points of the unit ball B := {x € R" : |x||; < 1} are the vectors with
precisely one non-zero coordinate, this coordinate being equal to 1.

Proof of Proposition 11. We will split up the proof into three cases, each case corresponding to one of
the pairs in the statement of the proposition.

Case 1: At least one of the norms ||X||1, |y, lIXx — ¥l is strictly less than 1. We will show that in this
case (x,y) is G,-equivalent to the first pair in the statement of the proposition.

By applying a suitable combination of symmetries (29)—(32), we may suppose thatin fact |x —y[1 < 1.
We claim that x must be an extreme point of the unit ball of ¢}. For if not, then it lies at the midpoint of
a line segment I such that ||x/||; < 1 for all X’ € L. Since ||x — y|l1 < 1, by shrinking I if necessary, we also
have |x’ —y|l1 < 1forallx’ € I. Thus I x{y}is a line segment in C, with interior point (x,y), contradicting
the fact that (x,y) is extreme.

Likewise, y is extreme in the unit ball of ¢}. Applying a suitable symmetry, we may suppose thatx; = 1
and y; = +1 for some j, all the other entries of x and y being 0. Since we must have |x —y|1 < 1, this
implies that actually j = 1 and y; = 1. Thus (x,y) is equivalent to the first pair of vectors listed in the
statement of the proposition. This concludes Case 1.

Case 2: We have ||x]1 = |yllh = IIx—yl:1 = 1, and one of the vectors x, y, or x —y has only one
non-zero coordinate. In this case, (x,y) will be now shown to be G,-equivalent to the second pair in the
statement of the proposition.

Using our symmetries, we may suppose that x = (1,0, ...,0)T. Note that

Ix=yli=11=yil+1y2l +...+Iynl =1
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and

Iylle = lysl+1y2l+...+ Iyl =1

force

11 =y1l=Iyal,

the unique real solution y; to this equation being y; = 1/2. By Lemma 13, y has only one other non-zero
coordinate, and |ly|l; = 1 forces this coordinate to be equal to £1/2. Applying symmetries (29) and (30)
we conclude that (x,y) is Gy-equivalent to the second pair in the statement. This concludes Case 2.

Case 3: We have [|x[; = |lyll. = X —yl1 = 1, and all of the vectors %, y and x —y have exactly two
non-zero coordinates. We will show that (x,y) is Gy-equivalent to the third pair in the statement of the
proposition.

This case is slightly more complicated than the previous two. As before, we may suppose that x; > 0
and x; > 0. We claim that y; and y, cannot both be equal to zero. If they were, then x —y has four
non-zero coordinates, contrary to the assumption. In fact, precisely one of y; and y, must be non-zero.
If both were non-zero, then since x — y has exactly two non-zero coordinates, we would have x; —y; # 0
and xp —ys # 0. Then the three quantities x1X,, y1y» and (x1 —y1)(X2 —y»2) would be non-zero, and Lemma
12 would imply that (x,y) is not an extreme point.

By an application of symmetries we may, in addition to x; > 0 and x, > 0, suppose thaty, # 0,y, =0
andys =s > 0.Since x; + x, = 1, we have X1 =t,x; = 1 —t for some t € (0, 1). Our vectors thus have the
following structure:

t Y1 t—yi

1-t 0 1-t
0 S —s
x= 0 Y=o X—Y¥y= 0
0 0 0

Recall that x — y has only two non-zero coordinates. Since 1 —t # 0 and s # 0, we conclude from the
above thatt=y;.Butthen |[x—y|l1 =1—-t+s=1,and sot=s. Finally, 1 = ||y|1 = t +s = 2s shows that
s=t=1/2,and so (x,y) is Gy-equivalent to the third pair in the statement of the proposition. |

3 Proof of Theorem 1

In addition to Theorem 7 from Section 2, we will also need some facts from plane geometry in order to
prove Theorem 1. In particular, we will need to discuss the minimum enclosing disk problem appearing in
computational geometry.

3.1 Minimal enclosing disk
Let K be a compact subset of C containing at least two points. Among all closed disks that contain K
there exists a unique one of minimal radius. We will denote this disk by Dy and call it the minimal disk
for K. The radius of Dk will be denoted by R(K).

If Dk is minimal for K, then the intersection K N 9Dx must obviously be non-empty. In fact, this
intersection must contain at least two points, and there is also a restriction on the locations of the
points in K N aDx.

Lemma 14. Let K be a compact subset of C, which contains at least two points. Then the
intersection dDx N K is not contained in any arc of aDk, which has length strictly smaller than
half of the circumference of Dx. In particular, if KN dDg = {a, b} is a two-point set, then a and b
are antipodal on aDx.

Proof. Seeking a contradiction, assume that 8D N K is contained in an arc of length strictly less than
half of the circumference of Dx. By translation, rescaling, and rotation of the setting, we may assume
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Fig. 3. The initial disk Dx is the dashed circle, and we assume that dDx NK is contained in the black thick arc. Then
K will be contained in the grey disk, which is obtained from Dx by first translating Dx in the direction of the
positive real axis, and then slightly shrinking the translated disk. This contradicts the minimality of Dk.

Fig. 4. The thick arc] between a and b is the smallest containing the compact set K. It follows that the shorter arc
between the antipodal points d an b must contain points of K.

that Dx is the unit disk, and that 9Dg N K is contained in some half-space
{zeC:Rez> 34§}, &§>0.

By compactness, the distance between the compact sets K and aDx N {z € C : Rez < §/2} is positive. It
follows that we may translate the disk Dy in the positive direction of the real axis, and then shrink the
radius of the translated disk slightly, and the resulting disk will still contain K, yet be of strictly smaller
radius than Rg. See Figure 3. This contradiction establishes Lemma 14. [ |

Lemma 15. Let T = {a, b, ¢} be a three-point set. If D is a closed disk for which T ¢ 9D, and T is not
contained in any arc of 9D, which is strictly smaller than half of the circumference of D, then
D =Dr.

Proof. Assume, seeking a contradiction, that D # Dr, and so that R(T) is strictly smaller than the radius
of D. Since 9D is the unique circle passing through the three points a, b, ¢, we must have that TN dDr
contains precisely two points. Say a, b € dDr but ¢ ¢ 9Dr. Lemma 14 implies that a and b are antipodal on
Dr. By translation, rescaling, and rotation, we may assume that Dris the unitdisk,a = i,b = —i,chasnon-
negative real part and |c| < 1. After these operations, we have that R(T) = 1 and the circumference of D
is larger than 2x. Thus by hypothesis, surely T is not contained in any arc of 8D of length strictly smaller
than 7. But the shorter of the arcs of D that contains T is then contained in {z € C : 0 < Rez, |z| < 1},
and so this arc must have a length smaller than #. This is a contradiction, and the lemma follows. Wl
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3.2 Reduction to three-point sets

The following simple result on minimal disks makes it possible to apply Theorem 7 to more than three
measures.

Lemma 16. Let K be a compact subset of C containing at least two points. There exists a subset
T c K, which contains at most three points and for which Dg = Dr. In particular, R(K) = R(T).

It may be convenient to refer to Figure 4 during the reading of the proof.

Proof. If there are two points in K that are antipodal on 9Dy, then we take T to consist of those two
points. Clearly Dy = Dr. In the case that no pair of antipodal points of 9Dk are contained in K, let ] be
the shortest closed arc of 9Dg, which contains K, and let a,b € J N K be the end-points of J. By Lemma
14, the length of ] is strictly larger than half of the circumference of dDx, and so J is the longer of the
two arcs between a and b. Let G and b be points on 8D, which are antipodal to a and b, respectively. By
assumption, @ ¢ K, b ¢ K. We claim that the shorter of the two open arcs between & and b must contain
points of K. If not, then the longer of the two arcs between & and b would contain K in its interior, and
this arc has the same length as J. A routine compactness argument would lead to a contradiction to the
minimality of J.

Let T = {a,b,c}, where c € Kis any point contained in the shorter open arc between d and b. Note that
any arc containing T must contain either & or b. Then such an arc contains two antipodal points on Dy,
and so it has a length that is at least half of the circumference of Dg. By Lemma 15 we conclude that
Dy = Dr. u

3.3 Finalizing the proof
We are finally ready to give a proof of the equality cr () = cc(S).

Proof. (Proof of Theorem 1) Since cr(2) < cc (), it will suffice to show the reverse inequality. To this
end, we need to show that given f € C(32) satisfying |fllse < 1, we have that |Kof + Cllye < Cr().
Since Kqf is continuous, the image K = Kof (9Q2) is a compact subset of C. If K consists of a single point,
then [|Kof + Clllse = 0, and the proof is complete. In other case, let Dg be the minimal disk for K. We
use Lemma 16 to obtain a three-point set T = {a,b,c} c K for which R(T) = R(K) (note that if K n aDg
contains only two points {a, b}, then we may pick c¢ € K arbitrarily to complete T to a three-point set).
The geometric interpretation of the quotient norm in C(9Q)/C1 implies that ||[Kof + C1|3e = R(K) = R(T).
Since T is contained in the image of Kof, there exists ¢1, ¢, {3 € 92 such that

(@,b,0) = (Kaf (¢1), Kaf (£2), Kaf (£3)).

Since Kof (§) = [, f du, we may apply Theorem 7 to X = 8%, uj = i for j = 1,2, 3, and conclude that
the operator £ : C(3Q) — C3/C1 defined by

L:f > (Kaf (61), Kaf (52), Kaf (¢3)) + C1
has a norm satisfying the bound (20). With | - |l denoting the norm on C3/C1 given in (17), we obtain
IKaf + Clllao = R(T) = [I(a,b,0) + Cl|l

= 1Lfll

IA

I£llcoo)—c3/c1

IA

1
— max —
25 ||M;] Mg, I

A

1
=3 sup llue — pell
,0'€dQ

= Cr(R2).
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The earlier mentioned extension of Theorem 7 to an n-measures theorem is obtained by employing the
same argument as in the above proof. The normed space C"/C1 appearing below is defined analogously
to the case n = 3 treated in Section 2.1.

Theorem 17. Let C(X) be the space of continuous functions on a compact Hausdorff space X,
n > 3 an integer, and £ : C(X) — C"/C1 the operator defined by

£f = (ma(f), ..., ua () + C1

where w1, ..., uy are finite real-valued Borel measures on X. Then

1
I£llcey—crcr = 5 nr}lgx iy — peell.

Proof. We use Lemma 16 to pick a three-point subset T of K = {[Aj(f)}}’l:,l for which we have R(K) = R(T),
and apply Theorem 7 as in the preceding proof. ]

4 Proof of Theorem 2
4.1 Exploiting subsequences

We will argue by contradiction in order to prove Theorem 2. That is, we will assume that there exists
a convex domain © with a() = 1, and so that there exists a sequence of functions (f,) in .A(Q), which
satisfy

Ifn +Cllle =1
and
lim Kofy + Clllg = 1. (33)

We shall see that this leads to a contradiction. The proof technique below is different from the one
employed by Schober in [17] in his proof of Neumann's lemma, and analyticity is used only at the very
end of the proof. In fact, we shall remark at the end of the section how our arguments lead to a new
proof of Neumann's lemma that is different from the one in [17].

Thus, for now, we assume merely that f, € C(9R), and we will derive certain consequences of (33).
In the course of the proof we shall replace the sequence (f,) by a subsequence multiple times, and for
convenience we will not be changing the subscripts. We may suppose that ||flle = 1, and consequently
that the images

Kafn(3Q) := {Kafn(¢) : ¢ € 92}

are contained in a closed disk of radius 1 centred at the origin. For large n, this observation and (33)
forces there to be points of the image of Kqf,, outside of any disk centred at the origin of radius strictly
less than 1. By exchanging f, for a unimodular multiple of itself, we may thus assume that there exists
a sequence of points (¢,) in 32 for which we have

lim Kofy (¢0) = lim / fodue, = 1. (34)
n—oo n—oo Q.
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Using that the functions f, are bounded by 1 in modulus, and the positive measures du, are of unit
mass, we obtain

lim/ Ifn — 112due, = lim/ (Ifnl* — 2Refn + 1)dp,
n—oo Fle) n—oo Fle}

< lim (2 - 2Re/mfn d;m) =0.

n—o0

Recall from (3) that p,, denotes the ds-absolutely continuous part of u.,. The above computation implies
that

lim [ |fy— 1120, ds = O. (35)

n—oo [50

Compactness of the boundary 9@ implies that we may assume convergence of the sequence (,) to
some points ¢ € 3. The following lemma shows that we may replace in (35) the densities p,, with the
density p¢.

Lemma 18. With notations as above, we have

lim [ |y — 1/2pcds = 0. (36)

n—oo [50

Consequently, after passing to a subsequence, we can ensure that
lim fy(o0) =1
Nn—o00

for almost every o € 32 with respect to the measure p,ds.

Proof. Note that whenever o is not a corner of 9 or any of the points ¢, or ¢, we have

pe 6= ON@)
PO =) =R e —

If B = B(¢,$) is a disk around ¢ of small radius § > 0, then for large enough n the denominator on the
right-hand side above is uniformly bounded from below for o € a2\ B, with exception of a countable
set. This shows uniform convergence of p, (¢') to p; (¢') for o € 9Q\ B, again with exception of an at most
countable set. Since |f, — 1? < 4, we obtain from (35) that

limsup | |fs — 11%0,ds < limsup Ifn — 11%pcds
n—oo Q2 n—o0 9QNB

+lim sup Ifn — 1120 ds
n—o00 IQ\B

<4 / peds.
9QnB

Since dQNB1is an arc of length that tends to 0 as the radius § of B tends to 0, the last quantity above can
be made arbitrarily small by choosing § small enough. This establishes (36). Basic measure theory now
implies that we may pass again to a subsequence and ensure the pointwise convergence f, — 1 almost
everywhere with respect to p.ds. |

Out next observation extracts more information from (33). Consider the strips

Ss={z=re':1-8<r<1|t|e[r/4,n]}, §>0.
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Fig. 5. The unit disk in dark grey with the strip S; removed. The dotted circle containing the dark grey area has a
radius slightly smaller than 1.

These strips have a fixed large “length” but shrinking “width”. One such strip is marked in Figure 5.
We claim that each one of the strips S; intersects the images Kqfa(2) non-trivially for infinitely many
indices n. For if not, then for some fixed § > 0, we would have that S5 N Kof,(3Q2) = @ for all sufficiently
large n, which means that the images Kqf,,(9€2) are entirely contained in B(0, 1)\ S5, where B(0, 1) denotes
the closed disk of radius 1 centred at the origin. But if ; and e, are sufficiently small positive numbers,
then B(0,1) \ S; C B(e1, 1 — €2), a disk of radius 1 — €, centred at the point €1 € R. See Figure 5. Recalling
the geometric interpretation of the norm [Kqf, + C1|lye as the radius of the smallest disk containing
the image of Kof,, we would arrive at a contradiction to (33). Thus every strip S; contains points in the
image of Kof, for infinitely many n.

Lemma 19. With notations as above, we may pass to a subsequence again, and obtain a new
sequence (¢}) that converges to some point ¢’ € 9, and such that

lim fo(0) =«

for some unimodular constant « # 1 and for almost every o € 32 with respect to the measure
P ds.

Proof. Since each strip S; intersects the images of Kqf, for infinitely many n, passing to a subsequence
and a routine compactness argument produces a sequence (¢;,) convergent to some ¢’ € 3%, for which
Kofn(¢)) — «, with e unimodular and lyingin the closure of each of the strips Ss. Thus « # 1. We therefore
merely need to repeat the previous arguments to see that, after passing to a subsequence, we will have
fn(o) = « for almost every o with respect to the measure p.ds. |

4.2 Proof of Theorem 2

The above arguments are valid for f, € C(3€). However, under the assumption of analyticity, the
sequence (f,) cannot converge to two different constants on two different sets of positive arclength
measure. To make this statement precise, we appeal to the classical theory of analytic functions in the
(open) unit disk D = {z € C : |z| < 1}. Here [8, Chapter II] is an excellent reference for the claims made
in the following proof.

Proof of Theorem 2. Let H® = H*(D) be the space of bounded analytic functions in D, identified as usual
through boundary function correspondence with a weak-star closed subspace of the space L*(dD) =
(L*(dD)* of bounded measurable functions on aD, the dual of the Lebesgue space L'(dD) of functions
integrable on 9D with respect to the Lebesgue measure (arclength measure) on aD. It is well known that
a function f e H® that vanishes on a subset of positive Lebesgue measure on 9D must vanish identically.
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Fix some conformal mapping ¢ : D — €. Under the assumption that f, € A(Q), lIfalle < 1, the
functions

ﬁ;:fno¢eHw, n>1

are bounded in modulus by 1 in D. By Carathéodory’s classical theorem (see, for instance, [9, Chapter
1.3]), ¢ extends to a homeomorphism between aD and Q. If |[Kqf, + Cl|le — 1, then Lemmas 18 and 19
show that there exist two sets E,E’ C 32 that have positive arclength measure, such that

nlimfn(,\) =1, re¢ YE)
and
girgcfn(x) =a, reo NE).

Since Q is convex, the curve 9Q is rectifiable, and general theory of harmonic measures tells us that the
sets ¢~1(E) and ¢*1(E/) have positive Lebesgue measure (see [9, Chapter VI]). Since L*(aD) is separable
and the functlonsﬁ1 are uniformly bounded by 1 in modulus, the usual Helly-type selection process will
produce a subsequence of (f,), which converges in the weak-star topology to some function f e H®. By
the above pointwise convergence, we must havef =1on¢ *E) andf =« on ¢~ 1(E'). Then the non-zero
functionff 1 vanishes on the subset ¢~ (E) of positive Lebesgue measure on dD. This is a contradiction,
which shows that our assumption |Kgfs + Cl|le — 1 must be false. Theorem 2 follows. [ ]

4.3 A proof of Neumann’s lemma

We indicate how one may proceed to use our above arguments to obtain a proof of Neumann's lemma,
stating that ¢(Q) = 1if and only if Q is a triangle or a quadrilateral. We need only the following simple
geometric observation regarding the densities p;.

Lemma 20. Fix ¢ € Q. Any o € 92\ {¢} that is not a corner of 92 and that satisfies p,(¢) = 01is
contained in the union of at most two line segments of 32 containing ¢.

Proof. It will suffice to show that all o satisfying the above conditions are contained in at most two
different tangent lines to Q. To see this, recall formula (5). The condition p,(0) = (27R;,)~* = 0 gives
R;» = o0, and so ¢ is contained in the tangent line to @ at o. The tangent line divides the plane C into
two half-planes, one of which contains ©. Assume that two different tangent lines, at o and o’, intersect
at ¢. They divide the plane C into four sectors, and by convexity precisely one of those sectors contains
Q. Now, any line that passes through ¢ and the open sector containing © must separate 0,0’ € 9.
Therefore, it is not a tangent to Q. |

Neumann's lemma is established as follows. Assume that c¢(R2) = 1. From Lemmas 18 and 19 we see
that two points ¢, ¢’ exist for which the measures p,ds and p,-ds are mutually singular. From Lemma 20
we deduce that the support of p,ds is the union of at most two line segments containing ¢’, and the
complement of the support of p,ds is also a union of at most two line segments. Thus 9Q is the union
of at most four line segments.

5 Examples

In this section, we compute and estimate the configuration constants for some types of domains.

5.1 Configuration constant of an ellipse
Fora,b > 0, let

2 2
Qa,b1={X+iy€C¢%+iﬁfl}
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be the ellipse centred at the origin with semi-axes of lengths a and b, respectively. It is quite remarkable
that the configuration constant can in this case be computed explicitly.

Proposition 21. With the above notation, we have

(Qup) = %arctan(% Z - %D.

In order to prove the proposition, our first step is to derive an expression for the density of the
Neumann-Poincaré kernel of Q,. The boundary 99, is parametrized by

y(t) :==acost+ibsint, te|0,2x]. (37)

Here [0, 27r] can be replaced by any interval of length 2. Recalling formula (4) for 4, and setting ¢ = y(s),
o = y(t), we obtain
Ay (¥ (D) = oy (v (©) ds(y () (38)

_1 Im( T(y ()
4 y(® —y(s)

1 y'(®

T y®-y©

)\V'(t)ldt

Using (37), this formula can be greatly simplified.

Lemma 22. With the notation above, we have

A

dpy s (v () = P m dt, s,te][0,2x], (39)
where
2ab b? —a?
= oy and B:= @

The lemma is established by combining (37) and (38), and then using elementary trigonometric
identities to simplify the resulting expression.
With this formula in hand, we now evaluate the configuration constant of the ellipse €.

Proof of Proposition 21. Using the formulas (8) and (39), we obtain

A A
14+ Bcos(t+s1) 1+ Bcos(t+sy)

(Qup)= sup - / ‘dt
b) = 5= :
’ 1227 Jicaz)

51,52€[0,2m
By the periodicity of cos, this last expression simplifies to

A A
1+Bcos(t+s) 1+ Bcos(t)

C(Qqp) = sup 11 / ‘ dt
b) = P .
¢ s€(0,27) 2 2m [=m,7]

For the time being, let us assume that b > a, so B > 0. Using the fact that (39) is the density of a
probability measure for each s € [0, 2], we have

1 1/
227 Ji—nn)

1 ( A A ) at
2 {t:cos t>cos(t+s)} 1+ Bcos(t+s) 14 Bcos(t)

A A
1+ Bcos(t+s) 1+ Bcos(t)

’dt
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We readily verify that cos(t) > cos(t+s) if and only if t € [-s/2, = — s/2]. Therefore

1 1/
227 Ji—nx]

T—! 5/2 A
= / ) dt
1 +B cos(t +3) T 1+B cos(t)

A A
1+ Bcos(t+s) 1+ Bcos(t)

1 7+s/2 1 T—5/2 A
=— t— — —_dt
2 /S/Q 1+ Bcos(t) cos(t) 2w /,S/z 1+ Bcos(t)

B

1 w+s/2 1 s/2 A
=— t— — —dt
2 /,, s/2 1+Bcos(t) 2w /,s/g 14 Bcos(t)

1 [5? A d
t— — —dt
2 /3/2 1 —Bcos(t) 2w /,5/2 1+ Bcos(t)

/5/2 2AB cos(t)
2 _s/2 1 —B?cos?(t)

It is clear that this last integral is maximized over s € [0, 2x] when s = 7. Putting everything together,
we deduce that, if b > a, then
(ap) = /”/2 2AB cos(t)
o) = on 22 1 —B2cos2(t)

All that remains is to evaluate the integral. Making the substitution x = sint, and exploiting the fact
that A% + B2 = 1, we have

1 /”/2 2ABcos(t) _ 1 /1 2AB dx
21 J_z/p 1 —B?cos?(t) 2 J_11—-B2(1—-x2)
1
-2 /,1 % dx
= garctan(g)
= Zarctan(1 (2 - 7)),

This proves the result in the case when b > a. The remaining case is obtained by exchanging the roles
of a and b.

5.2 Integral estimates
For a general domain, the exact value of ¢(Q) is often inaccessible. In this section, we will present a
simple estimate that is applicable to domains Q with a non-flat part of the boundary that leads to an
upper bound on c(2).

Assume that we find a Borel measure v on 9% such that

kY, = sup{[lue — vl : ¢ € 9Q} < 1.

If so, then, for every ¢ € C(9Q) with [¢llsq < 1, we have
ket~ [ sar| <ki ceom,
9]

which shows that the image of Kq¢ is contained in a disk of radius ky, centred at f;, ¢ dv. Thus,

cr(Q) = cc(R) = ||[Kq : C(02)/C1 — C(3R)/C1|| < kg.
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Fig. 6. A domain Q with two circles corresponding to values Rq (o) and Re(s’)

One approach is to seek a positive measure v on 92 satisfying u, > v for all ¢ € 3Q2. Then
e = vil = (ue —v)(OR) =1 - v(08),

and so kg =1 —v(0Q).

We will construct the largest non-negative Borel measure v on 9%, which satisfies u, — v > 0.
The construction is based on the geometric interpretation of the density p. (o) in (5) and the quantity
Rq appearing in (15). In order to avoid the need to establish Borel measurability of Rq defined as a
supremum of an uncountable family as in (15), we proceed to define it in a slightly different but
equivalent way. Namely, it is easy to see that, given o € 9%, if there exists a closed disk A such that
Q2 C A and o € 9A, then there exists one of smallest radius. We denote this radius by Rq(o). Note that
if o is not a corner of 9Q, then the corresponding disk must be tangent to 9Q at o. If no disk passing
through o exists that contains €, then we set Rq(0) := oo. This happens, for instance, if ¢ is contained
in the interior of a line segment in 9. In particular, Ra(c) = oo for all but a finite number of points of
any polygonal domain.

Lemma 23. The function Rq : 9Q — (0,00] is lower semicontinuous. In particular, it is Borel
measurable.

Proof. Let 0 € 9Q and let (oy) be a sequence in 92 such that o, — o. We need to show that
liminf,_, + Ra(on) > Re(o). We can suppose that L := liminf,_ . Rq(on) < oo, otherwise there is nothing
to prove. Let L’ > L. Then, replacing (o,) by a subsequence, we can suppose that Rq(s,) < L' for all n.
Thus, for each n, there exists a closed disk A, of radius L’ such that  C A, and oy, € dA,. The sequence
of centres (c,) of the disks A, is bounded, so there exists a convergent subsequence ¢, — c. Let A be the
closed disk with centre ¢ and radius L. Then we have Q C A and o € dA. It follows that Ro(o) < L'. As

this last inequality holds for all L' > L, we deduce that Rq(c) < L. This completes the proof. |
We set
ds
dv = xRy (40)

By the above lemma, v is a non-negative Borel measure on 2. For any ¢ € 92, we have

e > . (41)
To see this, note that if o is not a corner and R, , is the radius of the unique circle tangent to 9Q at o
and passing through ¢, then Rq(0) > R, .. Therefore, according to (5),

1

1
27 R (o) = 27R; & =rc(o)

for almost every o with respect to arclength measure on 9. Inequality (41) follows. Although we shall
skip a formal proof, we mention also that v is in fact the largest measure satisfying u, > v forall ¢ € 9Q.
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€l

—€i

Fig. 7. A quadrilateral domain Q¢ with a(Q¢) > 1 — (4/n)e.

This maximality property of v is to be interpreted in the following sense: if v’ is any measure satisfying
wue > forall ¢, thenv > ',
By our earlier discussion, we obtain the following upper estimate for the configuration constant:

1 ds
Q 1—— —.
= 27 Jya Re

Note that this is precisely the assertion of Theorem 6 stated in Section 1.
We will now mention some consequences. Recall that if y is a plane curve of class C?, then the radius
of curvature of y is the reciprocal of its curvature.

Corollary 24. If @ has a C2-boundary of length L, whose radius of curvature is everywhere at most
p, then

Q) <1- L
27 p

Proof. In this case, one sees from (15) and (16) that Re(o) < p for all o € 9Q, from which the result
follows. .

This last result was already known. See for example [7, pp. 45-46] and [12, pp. 128-129]. However the
proofs in these references are quite different from the one above.

Corollary 25. Consider a convex circular sector
Q={zeC:0<z| <71, 0 <arg(z) <0},
wherer > 0and 0 <6 < x. Then

0
Q) <1-—.
() < 7

Proof. It is obvious that Ro(o) = r for o in the curved part of 4, and that Rq(o) = oo elsewhere. Hence

1 ds 119 0

2t JsgRe 27T 27

The result now follows from Theorem 6. [ |

5.3 Analytic configuration constants of quadrilaterals

Theorem 2 shows that a(2) < 1 for every Q. Here we show by example that a(Q) may be arbitrarily close
to 1. Figure 7 shows a narrow quadrilateral domain for which this phenomenon occurs.
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Proposition 26. For € > 0, let Q. be the convex hull of {+1, +ei}. Then

a(Re) > 1 — (4/m)e.

Proof. Let f be a conformal mapping of the interior of Q. onto the unit disk D. By Carathéodory’s
theorem, f extends to a homeomorphism of Q. onto D, and so clearly f € A(R). Post-composing with a
suitable automorphism of D, we may further suppose that f(1) = 1 and f(-1) = —1.

Consider ¢ = 1. Recalling (3), we have u1 = (1 -6, /)81 + (61 /7)v, where 6, is the angle of the aperture
of Q¢ at 1, and v is a probability measure on 92, \ {1}. It follows that

Rea N1 = [ (Refrdm
Q2

= (1-61/m)Ref(1) + (61/7) /)Q \(1}(R6f) dv

= (1=601/m) (D) + 61/m)(=D)
=1- 291/71.

Likewise
Re(Kg f)(=1) < —(1 — 261/7).

It follows that the diameter of (Kgq, f)(S2) is at least 2(1 — 26, /), whence a(R2) > (1 — 261 /n).
Finally, by trigonometry, 61 is related to € by tan(61/2) = ¢, whence ¢§; = 2arctane < 2¢. The result
follows. |

5.4 Configuration constants equal to zero

Recall the estimate (13) from Section 1, which will be proved in the next section. The estimate is
strongest if a(W) = 0, and in this case we reach the conjectured bound K = 2. Unfortunately, the only
domain W for which we have a(W) = 0is a disk, and in this case (13) reduces to the well-known Okubo-
Ando bound from [15]. For completeness we give a proof of the statement that a(®2) = 0if and only if @
is a disk. More precisely, we have the following.

Proposition 27. Let @ be a compact convex domain with non-empty interior. The following are
equivalent:

(i) Qis a disk,
(ii) c(2) = 0,
(iil) a() = 0.

Proof. In the case that Q is a disk, then (5) implies readily that p, (¢) is a constant independent of ¢, and
so for every ¢ € 39, the measure u, is a normalized arclength measure on the circular boundary 4.
Then it follows from the definition that Kof is a constant function, and consequently |[Kof +C1l|lcpe = 0,
so ¢(R2) = a(R) = 0. This shows that the implications (i) = (i) and (ii) = (iii) hold.

It remains to prove (iii) = (i). Fix a conformal mapping ¢ : D — Q°, where D is the open unit disk
and Q° is the interior of Q. The mapping ¢ extends to a homeomorphism of 9D and 9<2, and so it makes
sense to define the probability measures M? on aD by the equation

1 (E) = pe ($(E))

where E is a Borel subset of dD, and {u, };esq 1s the double-layer potential of . Since a() = 0, it follows
that for every f € A(Q) and every pair of points ¢, ¢’ € 9Q we have, by the change of variables formula,

920z Arenigad €0 uo 1sanb Aq 28960 | 8/804EUI/8/SZ0Z/3I21HE/UII/WO0"dNO"0jWapedk//:sdny Wwoly papeojumoq



Double-Layer Potentials, Configuration Constants, and Applications | 27

that

0= [ fdu- [ faue

19 1Y)

:/ fo¢du?—/ fo¢d,u,?h
k) oD

As f varies over A(Q), f o ¢ varies over A(D) := A(D), and it follows that uf — u¢, annihilates A(D). Then
the theorem of brothers Riesz (see, for instance, [8, Exercise 1, Chapter III]) implies that

M?—M?Zh‘sam

where h is a function with vanishing non-positive Fourier coefficients. Note that h is real-valued, so the
positive Fourier coefficients also vanish, and consequently h = 0. Since ¢, ¢’ were arbitrary, we conclude
that the hypothesis a(2) = 0 implies that all the measures u, are equal.

The conclusion that € is a disk is now a consequence of the geometric formula for p, (o) in (5). Fix
any o € 92, which is not a corner. Since the measures u, are all equal, so are their densities p (o). Then
the circles passing through ¢ € 92 and tangential to Q2 at o all have the same radius, and so they all
coincide with each other. Thus one circle passes through all points ¢ € 9Q. Consequently 9 is a circle,
and so Q is a disk. ]

6 Application to Numerical Ranges
6.1 Spectral constant estimate

Our principal motivation for the introduction of the analytic configuration constant is the following
result that was mentioned in the Section 1 and that we will now prove.

Theorem 28. Let T be a bounded linear operator on a Hilbert space H, and W = W(T) the closure
of the numerical range of T. If W has non-empty interior, then for every f € A(W) we have

IFDI = (14 VT+aW) I,

where a(W) is the analytic configuration constant in (11), and .A(W) is the space of continuous
functions on W, which are analytic in the interior of W.

Of course, if W has no interior, then its convexity forces it to be a line segment. In that case T'is a
normal operator, and the spectral theorem gives us the better estimate ||f(T)|l < |/fllo(r), Where f may
be any Borel measurable function on the spectrum o (T). Thus Theorem 28 implies Theorem 3. In what
follows, we will assume that W has non-empty interior.

Let us make some initial remarks before going into the proof of Theorem 28. In the case o (T) is
contained in the interior of W, then f(T) is defined, as usual, through the Dunford-Riesz holomorphic
functional calculus. If sWnNo (T) # @, then this definition does not work. Nevertheless, if f € A(W), then it
is a standard result of approximation theory that a sequence of analytic polynomials (p,) exists, which
converges to f uniformly on W. In the presence of any uniform bound of the form ||p(T)|| < K||p(T)|lw for
polynomials p, we may then define f(T) as the limit of the sequence (p,(T)) in the operator norm. Such
bounds are known to exists, the strongest known bound K < 14 +/2 being due to Crouzeix and Palencia.
Theorem 28 improves this estimate given information about the numerical range of T.

Our proof of Theorem 28 combines the argument of Crouzeix and Palencia from [5] with ideas of
Schwenninger and de Vries from [18], where bounds for various functional calculi are derived as a
consequence of the existence of extremal functions and extremal vectors. Let U be an open set in the plane,
and H*(U) be the algebra of bounded holomorphic functions on U. Given an operator T : H — H with
o (T) contained in U, it is elementary that the quantity

sup {If(DI - f € H¥(U), I v = 1}
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is finite. A normal-families argument shows that an f € H>®(U) exists with |flly = 1 for which the
supremum above is attained. Any such f will be called for an extremal function. If, moreover, a vector
x € H with ||x||% = 1 exists for which

sup {If(DIl :f € H*U), If lu = 1} = IfDxle

then we will say that x is an extremal vector, and (f, X) is an extremal pair. Unless dim H < oo, an extremal
vector might not exist, but we will be able to reduce the proof to the finite-dimensional case. The
importance of the concept of extremal pairs (f, x) stems from the following result. We refer the reader
to [1, Theorem 4.5] for a proof (see also [18, Proposition 3]).

Lemma 29. Let T: H — H be a bounded linear operator, and U be an open neighbourhood of o (T).
Let (f, x) be a corresponding extremal pair. If |f(T)|| > 1, then f(T)x is orthogonal to x in H:

(f(Dx,x)5 =0.

The next two lemmas will reduce our task to consideration of finite-dimensional Hilbert spaces, in
which extremal vectors exist, and will dispose of the problematic set o (T) N dW. The first observation is
essentially contained in [18, Proposition 9].

Lemma 30. Let Q be a compact convex domain with non-empty interior. If for some K > 0 the
estimate

Ip(DI < Klplle

holds for every polynomial p and every operator T on a finite-dimensional Hilbert space with
W(T) contained in the interior of @, then the same estimate with the same constant K holds
also for operators T on infinite-dimensional Hilbert spaces with W(T) contained in the interior
of Q.

Proof. Let T : H — H be as above, with dim H = oo. It suffices to show that

IP(Dxll3 = Klipllalixllx

holds for every analytic polynomial p and every x € H. Note that p(T)x is contained in the finite-
dimensional subspace K spanned by {x,Tx,..., T}, where d is the degree of the polynomial p. If
I1 : H — K is the orthogonal projection, then p(T)x = Mp(T)x = p(IIT)x, where IT : K - K is an
operator on a finite-dimensional Hilbert space. Since W(I1T) ¢ W(T), our hypothesis implies

lp(Mxll = IpMDxlx < Klplalxlx = Klplalxll4-
The lemma follows. |

The proof of the next lemma will use affine invariance of the configuration constants. Let us fix
a,B € C,a # 0, and an affine mapping A(z) := ez + B. Then A is a conformal transformation of C with
the additional property of taking a line segment of length L to a line segment of length |«|L, and a circle
of radius R to a circle of radius |«|R. Let 2 = A(RQ) be the affine image of @ under A, and recall the
formula for the Neumann-Poincaré kernel in (3) and its geometric interpretation. If ¢,0 € 9, E is a
Borel subset of 8L, and s, 5 are the arclength measures on 92 and 0%, respectively, then it follows from
the properties of A listed above that

() 6: = Oac),
(ii) lee|s(E) =S(A(E)),
(i) la|R¢ o = Ra() Aw)-
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A consequence is that the Neumann-Poincaré kernels {u;}rese and {{iae)taciesn Of the respective
domains satisfy

Rae)(AE)) = ne(E), EaBorel subset of 9Q.
Then a change of variables shows that Kq (}:o A) = Kﬁf for anyf € C(0€), and it follows that
a(@) =a(@), o) =c).
Armed with these equalities, we make our second observation.

Lemma 31. Assume that the estimate
IpDI =< (1+V1+a@)lplla (42)

holds for every polynomial, every compact convex domain 2, and every operator T for which
W(T) is contained in the interior of . Then Theorem 28 holds.

Proof. Replacing T by an operator T + gI for some g € C, we may assume that 0 lies in the interior of
W(T). Let W = W(T), and

W,={rz:zeW}, r>1.

Then W, is a convex domain that contains W in its interior. By our assumption, for any analytic
polynomial p we have

IPDI < (1+ T+ atW)) Il

Since W, is an affine image of W, we have a(W,) = a(W). Since this holds for all r > 1, and since
lim,1 |Ipllw, = llpllw, we may let r — 1 to obtain the desired estimate whenever p is an analytic
polynomial. The estimate for f € A(W) follows by density of polynomials in A(W). |

Proof of Theorem 28. By Lemma 31, it will be sufficient to establish the estimate (42) whenever Q
contains W(T) in its interior Q°. Moreover, by Lemma 30, we may assume that T is an operator on a
finite-dimensional Hilbert space H. Let U = Q° and (f,x) be an extremal pair corresponding to U and
the operator T.If ||f(T)| < 1, then (42) certainly holds, so we may assume that ||f(T)|| > 1.

Let (fn) be a sequence in A(€) such that ||f,lle < 1 and f, — f locally uniformly in Q. Then f,(T) — f(T)
in operator norm. Set g, := Kgfn. It is shown in [5, Lemmas 2.1 and 2.3] that g, € A(R) and

If(T) + gn (DIl < 2. (43)
For each n, we may choose 1, € C such that
Ilgn + 21l = infllgn + A1lle < a().
We now have the following identity:

(DX, fr(Mx)a = (DX, Fa(D) + gn (DR3¢ (44)
= (DX, (Gn + DD X) 3

+ A (fn (DX, X) 5.
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Let us consider each of the terms in this identity. By the choice of x, we have
(DX, fo(DX)3 = lIfa(Dx e If DI = If (DI
Also, from (43) and the Cauchy-Schwarz inequality,
[ (DX, (2(T) + ga (D)X 5| < 21 (DI — 21 (DI
By Lemma 29, we have
(2 (D%, @n + 2 DDX)| = [((Fa(Gn + A D)D), X))
< Ifa(@n + mDlle
=< lIgn + Anllle
< a().

By Lemma 29 again, (f(T)x, x)» = 0. Since the sequence (A,) is certainly bounded (indeed || < 2), we
deduce that

I (fn (DX, X) 3¢ Y:Q 0.
Thus, letting n — oo in (44), we deduce that

IF DI < 2If (DIl + a(€).

Hence

IFDI <1+ V1+a®).

In particular, for every polynomial p with [|p|lq = 1 we have

eI < If DI <1+ v1+a),

since f is extremal. This is equivalent to (42), and so the proof is complete. |
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A Double-Layer Potential on a General Convex Domain

A.1. Convex domains

Let © be a compact convex domain in the plane C with non-empty interior ©°. We will be making no
assumptions regarding smoothness of the boundary 9. However, convexity itself implies that Q2 is a
rectifiable simple closed curve with some additional properties.

The orientation of 3Q is to be counter-clockwise (i.e., positive), and we use ¢’ 1+ ¢ and o’ | o to
denote, respectively, the counter-clockwise and clockwise one-sided convergence of ¢’ to o within 9<.
As a consequence of convexity of , the one-sided tangent angles exist at every point o € 9, are locally
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given by
ay (o) = illll["l arg(oc’ — o), a_(o):= }71?(} arg(o — o),
and satisfy
a_(o) <ay(o).

Strict inequality may occur at most at a countable subset of 9. If it occurs at o, then we say that 9
has a corner at o. At any point that is not a corner, the tangent angle

a(0) =ai(o) =a_(0)

is well-defined, and so is the tangent T(o) := €%@ itself. If t — y(t) is any (positively-oriented)
parametrization of 92, and we set a(o) = a4 (o) at the corners, then the locally defined function a(y (t))
isincreasingin t, and consequently the tangent T is continuous at every point that is not a corner of 9<2.
At a corner, the discontinuity of T amounts to a jump of the argument of T. We denote by N(o) := —iT(0)
the outward-pointing normal at o € 9.

A.2. Double-layer potential

Let ©° denote the interior of Q. To each z € Q° we associate the measure p, on 32, which for any arc
] C 9 satisfies

w() = % /d arg(o —z) = ! (angle subtended at z by J). (A1)
Jy

g

Here arg(c —z) is any locally defined continuous determination of the argument function on 8. Non-
negativity of u, follows from convexity of Q@ and our choice of positive orientation of 9§2. With respect
to this orientation, every arc J = (a,b) C 9Q has a start-point a and an end-point b, and it is easy to see
that

arg(b — z) — arg(a — z)

T

uz(J) =

In particular, p,(3Q) = 2.

The measure u, is absolutely continuous with respect to arclength s on 9Q. Indeed, if o9 € 9Q, J, =
(an, by) is a sequence of arcs of 9Q2 that are shrinking to oy, and |J,| are the corresponding arclengths,
then

7wz (Jn) 1
=—/d -
TN A
_ arg(b, — z) — arg(an — z)
N Unl
B log(b, — z) — log(an —2z) by —an
,Im( P . N )

We use above an appropriate locally defined holomorphic branch of the logarithm. As n — oo, the first
factor inside the brackets satisfies

lim log(by, — z) —log(an — 2) _ 1

n—o0 b, — an Uofzy
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while the second factor stays bounded as a consequence of the inequality |b, — as| < s|. Thus

lim sup el _
n—oo I]n‘

and from elementary measure theory we obtain that u, is absolutely continuous with respect to s. If
MOoreover oy is not a corner, then it can be shown that

Unl

m =
n—co |by — ay|

)

and so in additional to boundedness we even have the convergence

im 227 % _im 22T M 160 = iNGoo).

n—>oo || n-00 |by — ap|

Thus the Radon-Nikodym derivative satisfies

poto) = P2 ) = EIm( T ) = lRe(N(")) (A.2)
ds T

o —7Z T o—Z

at every o € 92, which is not a corner.

A.3. Boundary kernel

The Neumann-Poincaré kernel is the boundary version of the family of measures {u,};cq introduced
above. To each point ¢ € 9Q we associate the Borel probability measure on 92 defined by (A.1) for arcs
J C 9 not containing the point ¢. Because ¢ € 9%, this definition implies that u, (822 \ {¢}) = 6, /7, where
0, = 7 — a4 () + «—(¢) can be interpreted as the angle of the aperture at ¢. Indeed, 6, is equal to the
increase in the argument of o — ¢ as we traverse one loop around 9<2 starting and ending at the point ¢,
and since pu, is a probability measure, we must have

[7)
nedeh=1-=.
T

With the exception of this possible point mass, i, is otherwise absolutely continuous with respect to
arclength. The corresponding Radon-Nikodym derivative is given by

o) = B = L 12) - L (12 3

7T e 7 o—¢
The formula (A.3) is established analogously to (A.2). All in all, the measure u, can be decomposed as
d[l,{ = (1 — Qg/ﬂ)dtst + p;ds,

where §, is a unit mass at ¢ € 92, 6, is the angle of the aperture at ¢ (with the convention that 6, = 7 if
¢ is not a corner), and where the density p, is given by (A.3).

A.4. Weak-star convergence
We establish now that

lim =34
P Mz ¢+ e

920z Arenigad €0 uo 1sanb Aq 28960 | 8/804EUI/8/SZ0Z/3I21HE/UII/WO0"dNO"0jWapedk//:sdny Wwoly papeojumoq



Double-Layer Potentials, Configuration Constants, and Applications | 33

in the sense of the weak-star topology on measures. Note that if B = B(¢,§) is a ball of radius § > 0
centred at ¢ € 9%, then expressions (A.2) and (A.3) for the densities of u, and u, show that

lim [ fdu = / Fdue (A.4)
aQ\B

=8 Ja\B

for every f € C(8€). In particular, choosing f = 1, we obtain
2=p (0Q\B) + 121_{151#2(3)4
Since
151301!&;(39 \B) = u; 0\ {¢h) = 0, /7
we see that given e > 0 for all sufficiently small § > 0 we will have

limsup |u:(B) — 2 + 6, /7| <e.
z—>¢

Returning to general f € C(9Q), we have

[ san— [ gapcrnd= [ LTS / LS
+/B (f —f@)du,

+ (@) (1z(B) — 2+ 6, /)

- [ fduc
B\{¢}

On the right-hand side, the first term tends to zero as z — ¢, the second can be made arbitrarily small
by continuity of f, the crude estimate u,(B) < 2 and choice of sufficiently small §, the third is dominated
in modulus by ||f lse - € for z sufficiently close to ¢, and the fourth is dominated by ||f s - 1. (B\{¢}), Which
also can be made arbitrarily small by choice of sufficiently small §. The desired weak-star convergence
follows.
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