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Given a compact convex planar domain � with non-empty interior, the classical Neumann’s con-
figuration constant cR(�) is the norm of the Neumann–Poincaré operator K� acting on the space of
continuous real-valued functions on the boundary ∂�, modulo constants. We investigate the related
operator norm cC(�) of K� on the corresponding space of complex-valued functions, and the norm
a(�) on the subspace of analytic functions. This change requires introduction of techniques much
different from the ones used in the classical setting. We prove the equality cR(�) = cC(�), the analytic
Neumann-type inequality a(�) < 1, and provide various estimates for these quantities expressed in
terms of the geometry of �. We apply our results to estimates for the holomorphic functional calculus
of operators on Hilbert space of the type ‖p(T)‖ ≤ K supz∈� |p(z)|, where p is a polynomial and � is a
domain containing the numerical range of the operator T. Among other results, we show that the well-
known Crouzeix–Palencia bound K ≤ 1 + √

2 can be improved to K ≤ 1 + √
1 + a(�). In the case that � is

an ellipse, this leads to an estimate of K in terms of the eccentricity of the ellipse.

1 Introduction
1.1 Double-layer potential
Throughout this article,� will denote a compact convex planar domain with non-empty interior. If C(∂�)

is the space of continuous functions on the boundary ∂� and f ∈ C(∂�), then its double-layer potential u
is the harmonic function

u(z) = 1
π

∫
∂�

f (σ ) d arg(σ − z) = 1
π

∫
∂�

f (σ ) Re
(

N(σ )

σ − z

)
ds, z ∈ �o. (1)

Here ds = |dσ | is the arclength measure on the rectifiable curve ∂�, �o is the interior of �, and N(σ ) is the
outer-pointing normal at the boundary point σ . The equality between the two expressions for u(z) above
follows from an elementary computation in the case that ∂� is sufficiently smooth. In the general case,
we interpret N(σ )(σ − z)−1 as a Borel measurable function on ∂�. By convexity of the domain, both the
tangent T(σ ) and the normal N(σ ) exist and are continuous at all but a countable number of points σ ,
which we will call corners, at which the discontinuity of T and N amounts to a jump in the argument.
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2 | B. Malman et al.

Fig. 1. Example domain � with corner of angle θζ ′ at ζ ′, and a circle of radius Rζ ,σ with center m, tangent to ∂� at σ

and passing through ζ .

In Appendix A we include more details regarding boundaries of planar convex domains, and other facts
mentioned below.

The Neumann–Poincaré operator appears in connection with the study of boundary behaviour of the
double-layer potential. It is known that u given by (1) has a continuous extension to ∂�, and we have
the representation

u(ζ ) = f (ζ ) + K�f (ζ ), ζ ∈ ∂� (2)

where K� denotes the Neumann–Poincaré integral operator

K�f (ζ ) := 1
π

∫
∂�

f (σ ) dμζ (σ ), ζ ∈ ∂�.

Here μζ is the probability measure

dμζ = (1 − θζ /π)dδζ + ρζ ds (3)

where θζ can be interpreted as the angle of the aperture at the possible corner at ζ of ∂�, δζ is a unit
mass at the point ζ , and ρζ is the Radon–Nikodym derivative

ρζ (σ ) := dμζ

ds
(σ ) := 1

π
Re

(
N(σ )

σ − ζ

)
= 1

π
Im

(
T(σ )

σ − ζ

)
. (4)

It is natural to use the convention that θζ = π if ζ is not a corner. This occurs precisely when μζ assigns
no mass to the singleton {ζ }. We will say that the collection of measures {μζ }ζ∈∂� is the Neumann–Poincaré
kernel of �.

The density ρζ has the following useful geometric interpretation. If σ ∈ ∂� \ {ζ } is not a corner, and
Rζ ,σ is the radius of the unique circle passing through ζ that is tangent to ∂� at σ , then the equality

ρζ (σ ) = 1
2πRζ ,σ

(5)

holds. The radius Rζ ,σ may degenerate to ∞ if ζ is contained in the tangent line to ∂� passing through σ .
In that case we see easily that ρζ (σ ) = 0, so (5) still holds. To establish the formula, note that the center
m of the circle in question is of the form m = σ − RN(σ ), where the radius R = Rζ ,σ > 0 of the circle
satisfies |m − ζ |2 = |(σ − ζ ) − RN(σ )|2 = R2. Expanding the squares and solving for R leads to (5).
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1.2 Neumann’s configuration constant
1.2.1 Real configuration constant
Historically, the Neumann–Poincaré operator has been used to solve the Dirichlet problem of finding a
harmonic extension to �o of a given continuous function u on ∂�. The extension can be obtained by
finding f ∈ C(∂�), which solves (2). Indeed, if such an f is found, then the extension of u to �o is given
by the double-layer potential in (1). This naturally leads to questions of invertibility of the operator
I + K� appearing on the right-hand side of (2), and consequently to the introduction of the Neumann’s
configuration constant, which we shall soon define as the operator norm of K� acting on an appropriate
space. Note that if 1 is the constant function, then we have that K�1 = 1, since each μζ is a probability
measure. Thus K� can be naturally defined as a linear mapping on the quotient space C(∂�)/C1. The
classical approach is to instead consider K� as acting on the space of real-valued continuous functions
CR(∂�), in which case the corresponding quotient space CR(∂�)/R1 is endowed with the norm

‖g + R1‖∂� := max
ζ ,ζ ′∈∂�

|g(ζ ) − g(ζ ′)|
2

= min
r∈R

max
ζ∈∂�

|g(ζ ) − r|. (6)

It is not hard to see that the two above expressions for the norm of the coset g + R1 are equivalent:
they are both equal to half of the length of the interval g(∂�) := {g(∂�) : ζ ∈ ∂�}, the image of g. The
right-most expression is minimized by choosing r to be the mid-point of the image interval. Neumann’s
(real) configuration constant cR(�) is defined as the operator norm of K� acting on the quotient space
CR(∂�)/R1:

cR(�) := ‖K� : CR(∂�)/R1 → CR(∂�)/R1‖. (7)

It is not hard to see that we may let K� instead act from CR(∂�) into the quotient CR(∂�)/R1 without
affecting the operator norm. Since each measure μζ is of unit mass, we have 0 ≤ cR(�) ≤ 1. If

‖f‖∂� := sup
ζ∈∂�

|f (ζ )| ≤ 1,

then

|K�f (ζ ) − K�f (ζ ′)| ≤ ‖μζ − μζ ′ ‖,

where we use the total variation norm (functional norm) on the right-hand side. By varying f over the
unit ball of CR(∂�) and ζ , ζ ′ over ∂�, we obtain the important relation

cR(�) := sup
ζ ,ζ ′∈∂�

‖μζ − μζ ′ ‖
2

. (8)

This expression for cR(�) will play a fundamental role in our study.

1.2.2 Neumann’s lemma
From (8) we can immediately deduce that cR(�) = 1 in the case that � is a triangle or a convex
quadrilateral. Indeed, in those cases one sees from (3) and (4) that if ζ1 and ζ2 are corners of � (opposing,
in the case of the quadrilateral) then μζ1 and μζ2 are mutually singular, and so ‖μζ1 − μζ2 ‖ = 2, implying
cR(�) = 1. Neumann’s lemma, which appears initially in Neumann’s book [14], states that the cases of the
triangle and quadrilateral are exceptional. For any other type of domain we have the strict inequality
cR(�) < 1. See [17] for a proof of this claim by Schober, and the curious history of incomplete attempts
at a valid proof in full generality. Neumann’s lemma implies the invertibility of I + K� on CR(∂�)/R1,
and thus the solvability of the Dirichlet problem on a convex domain �, which is not one of the two
exceptional cases. The remaining cases can be handled by considering instead powers of K�. See, for
instance, [13, Theorem 3.8], [6, Proposition 7], or the article [16], which contains also an exposition of
the double-layer potential and Neumann’s lemma.

At the other extreme, we have cR(�) = 0 if and only if � is a disk. This result will be proved in Section 5.
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4 | B. Malman et al.

1.3 Complex and analytic configuration constants
1.3.1 Two new configuration constants
In the present article we will discuss certain applications of the double-layer potential to operator
theory, which motivate the definition of the complex configuration constant

cC(�) := ‖K� : C(∂�)/C1 → C(∂�)/C1‖. (9)

The difference between (7) and (9) is that the latter is the norm of K� on the larger space of complex-
valued functions. As a consequence, we have cR(�) ≤ cC(�) ≤ 1. There is a principal difference between
the geometric interpretations of the norms in the quotient spaces CR(∂�)/R1 and C(∂�)/C1. In the
former case, as we have already noted, the norm (6) of the coset represented by the real-valued function
g is equal to half of the length of the image of g, this image being an interval on the real line R. In the
case of complex-valued g, the quotient norm

‖g + C1‖∂� := min
λ∈C

max
ζ∈∂�

|g(ζ ) − λ| (10)

can instead be interpreted as the radius of the smallest disk containing the image of g. A crucial difference is
that we lose the ability to estimate the norm of the coset g+C1 by considering the quantities |g(ζ )−g(ζ ′)|
only. This is the essence of why new tools are required to treat this case.

We will also study an analogous analytic constant, which is the norm of the operator K� restricted to
the subspace of analytic functions in C(∂�). More precisely, we let A(�) be the space of functions that
are continuous in � and analytic in �o. Each function in A(�) has a unique restriction to ∂�, and thus
A(�) can be naturally identified with a subspace of C(∂�). We define the analytic configuration constant as

a(�) := ‖K� : A(�)/C1 → C(∂�)/C1‖. (11)

The space A(�) is not invariant under K�, but we do have that K�f is the complex conjugate of a
function in A(�) (in [5, proof of Lemma 2.1] this claim is established for � with smooth boundary, but
the same argument works in general). Clearly, we have the inequality a(�) ≤ cC(�). We note also that
if �̃ is the image of � under an affine transformation of the plane, then the configuration constants of
the two domains are equal. We shall verify this claim in Section 6.

1.3.2 An application to functional calculi
Given an operator T on a Hilbert space H with numerical range

W(T) := {〈Tx, x〉H : x ∈ H, ‖x‖H = 1},

we are interested in the optimal constant K > 0 in the inequality

‖p(T)‖ ≤ K · sup
z∈W(T)

|p(z)| = K‖p‖W(T), (12)

where p is an analytic polynomial, and the left-hand side is the operator norm of p(T) acting on H. More
generally, if W(T) in (12) is replaced by an arbitrary domain �, and if the corresponding inequality holds
for some K, then we say that � is a K-spectral set for T. Von Neumann’s inequality says that the unit
disk is a 1-spectral set for any contraction T, and a result of Okubo–Ando from [15] says that any disk
containing W(T) is a 2-spectral set for T.

The numerical range W(T) is a bounded convex subset of the plane, its closure W(T) contains the
spectrum σ(T) of T, and it has non-empty interior in the case that T is not a normal operator (see, for
instance, [10, Chapter 1]). For normal operators, the bound (12) with constant K = 1 is a consequence of
the spectral theorem, and it suffices to take the supremum on the right-hand side over the smaller set
σ(T). For general T, even establishing the existence of a bound as in (12) is a non-trivial task. A result
of Delyon–Delyon from [6, Theorem 3] establishes the existence of the bound, and shows that K can be
chosen depending only on the area and the diameter of W(T). The remarkable work of Crouzeix in [3]
establishes that (12) holds with K ≤ 11.08. A subsequent work of Crouzeix and Palencia in [5] improves
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Double-Layer Potentials, Configuration Constants, and Applications | 5

Fig. 2. A triangular image of a complex-valued function g contained in a disk of radius 1, with three points on the
boundary of a disk.

the estimate to K ≤ 1 + √
2. The Neumann–Poincaré operator appears as an essential tool in all of the

mentioned works. The standing conjecture of Crouzeix from [2] is that the bound holds with K = 2.
This bound is presently known to hold in the case H being of dimension 2, and has been established by
Crouzeix in [2].

Our interest in the new notions of configuration constants is inspired by a recent work of Schwen-
ninger and de Vries in [18], where bounds for general homomorphisms between uniform algebras and
the algebras of bounded linear operators are studied. In Section 6 we will combine their arguments with
the methods of Crouzeix–Palencia to obtain the following estimate:

‖p(T)‖ ≤
(

1 + √
1 + a(W)

)
‖p‖W, W := W(T). (13)

For instance, if W is a disk, then a(W) = 0, which gives the Okubo–Ando result mentioned above.
In [18], Schwenninger and de Vries recovered this result also. The estimate (13) is our motivation
for the following investigation of the configuration constants cR(�), cC(�), and a(�), and the relations
between them.

1.4 Main results
1.4.1 Relation between the real and complex constants
Consider the situation in Figure 2, where the triangular image of the complex-valued function g : ∂� →
C is contained in a disk of radius 1, and intersects the boundary circle of the disk in three distinct
points. The three-point set {g(ζ1), g(ζ2), g(ζ3)} is not contained in any open half-circle of the boundary,
and it follows from a simple geometric argument (which we shall present in the proofs below) that
‖g +C1‖∂� = 1. However, the sides of the triangular image of g are all of lengths strictly less than 2, and
this implies that

‖g + C1‖∂� = 1 > max
ζ ,ζ ′∈∂�

|g(ζ ) − g(ζ ′)|
2

.

If such a function g lies in the image of the unit ball of C(∂�) under the Neumann–Poincaré operator
K� for some domain � that satisfies cR(�) < 1, then a strict inequality cR(�) < cC(�) occurs. Our first
main result excludes this possibility, and so establishes the simplest possible relation between the real
and complex configuration constants.

Theorem 1. The equality

cR(�) = cC(�)

holds for every compact convex domain � with non-empty interior.
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6 | B. Malman et al.

It follows that every considered domain has a well-defined configuration constant c(�), which is equal
to the operator norm of K� on C(∂�)/C1, and which can be computed according to the right-hand side
of (8). An important consequence of this result is the inequality

a(�) ≤ c(�) = sup
ζ ,ζ ′∈∂�

‖μζ − μζ ′ ‖
2

, (14)

which, as we shall soon see, has some interesting consequences.
Theorem 1 doesn’t appear nearly as straightforward to prove as it is to state, and the proof takes

up a large portion of the article. However, the only property of the Neumann–Poincaré operator used
in the proof is that its integral kernel {μζ }ζ∈∂� consists of real-valued measures. In fact, the theorem
will be deduced as a corollary of a result, which we call the Three-measures theorem, and which is a
general statement regarding the geometry of the space C(X) of continuous functions on a compact
Hausdorff space X. This result, which we discuss and prove in Section 2, puts a restriction on the possible
configurations of point sets in the plane, which arise as values of a collection of real-valued functionals
on C(X).

1.4.2 Analytic Neumann’s lemma
Note that the above estimate in (14), together with Neumann’s lemma, implies that a(�) < 1 whenever �

is not a triangle or a quadrilateral. This can be improved, for we have an analytic version of Neumann’s
lemma, in which no exceptional cases occur.

Theorem 2. The strict inequality

a(�) < 1

holds for every compact convex domain � with non-empty interior.

Our proof of Theorem 2 is much different from the one given by Schober in his proof of the real
Neumann’s lemma in [17], but it works also in the real context. At the end of Section 4 we show how
our technique leads to a different proof of Neumann’s lemma.

1.4.3 Functional calculus bounds
The following result has already been mentioned above.

Theorem 3. Let T : H → H be a bounded linear operator on a Hilbert space H with numerical
range W(T), which has non-empty interior. Then, for every polynomial p, we have

‖p(T)‖ ≤
(
1 + √

1 + a(W)
)
‖p‖W(T).

Recall that if the numerical range of an operator has empty interior, then the operator is normal, and
so (12) holds with K = 1. From this observation and Theorem 2 we obtain that for any fixed operator
T : H → H, the optimal constant K in (12) is always strictly smaller than 1+√

2. In fact, we deduce from
our results that we have the inequality

‖p(T)‖ ≤ KW‖p‖W

with a constant

KW < 1 + √
2,

which depends only on the shape of W = W(T), and not on the operator T itself. We show in Section 5
that no better universal bound can be obtained by means of the analytic configuration constant: for any
ε > 0 there exists a “thin” quadrilateral �ε for which we have a(�ε) > 1−ε. However, fixing the dimension
of the Hilbert space H, one may combine earlier results of Crouzeix to obtain a uniform improvement.
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Double-Layer Potentials, Configuration Constants, and Applications | 7

The optimal constant K in (12) varies with T, and we may consider the supremum of these quantities
among all operators T on a Hilbert space H of a fixed dimension N. In [4, Theorem 2.2], Crouzeix proved
that there exists an operator realizing this supremum. An immediate corollary of his result, Theorem 2
and Theorem 3 is the following.

Corollary 4. For every positive integer N, there exists a constant CN < 1 + √
2 for which we have

‖p(T)‖ ≤ CN‖p‖W(T)

whenever T is an operator on an N-dimensional Hilbert space, and p is a polynomial.

This improves the Crouzeix–Palencia bound, although by an indefinite amount.

1.4.4 Estimates for the configuration constants
In Section 5 we present also other computations and estimates for the configuration constants.
Surprisingly, in the case of an elliptical domain, the configuration constant is computable exactly, and
we obtain

c(�a,b) = 2
π

arctan
( 1

2

∣∣∣ b
a

− a
b

∣∣∣) = 2
π

arctan
( 1

2
e2

√
1 − e2

)

where a and b are lengths of the semi-axes of the ellipse �a,b, and e is the eccentricity of the ellipse,
given by e := √

1 − b2/a2 in case that a ≥ b. This fact, together with Theorem 1, estimate (13), and the
inequality a(�) ≤ c(�), has the following consequence.

Corollary 5. Let T : H → H be a bounded linear operator on a Hilbert space H with numerical
range contained in (or equal to) the ellipse �a,b. Then, for every polynomial p, we have

‖p(T)‖ ≤ K(a, b)‖p‖�a,b .

where

K(a, b) := 1 +
√

1 + 2
π

arctan
( 1

2

∣∣∣b
a

− a
b

∣∣∣).

Note that the function a �→ K(a, 1) is continuous and increasing for a ≥ 1, and we have

lim
a→∞ K(a, 1) = 1 + √

2, lim
a→1

K(a, 1) = 2.

Hence the estimate in Corollary 5 gets worse as the eccentricity of the ellipse �a,b grows, and approaches
the Crouzeix–Palencia bound in the limit a → ∞. On the other hand, as a → 1, the eccentricity of the
ellipse �a,1 tends to 0. The estimate is then close to the conjectured optimal bound K = 2 and coincides
with the Okubo–Ando bound for a = 1, in which case the domain is a disk. From this perspective,
Corollary 5 may be interpreted as an elliptical generalization of the Okubo–Ando estimate.

For many other types of domains, the exact value of c(�) is inaccessible. To help the situation, we
establish an integral estimate, which gives an upper bound on c(�) in terms of the curvature of ∂�,
roughly speaking. For a fixed σ that is not a corner of ∂�, recall the definition of Rζ ,σ in (5), and consider

R�(σ ) := sup
ζ∈∂�

Rζ ,σ . (15)

If κ(σ ) is the curvature of ∂� at σ , then R�(σ ) is at least as large as the radius of curvature

1/κ(σ ) = lim
ζ→σ

Rζ ,σ , (16)
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8 | B. Malman et al.

which is also the radius of the osculating circle at σ . Geometrically, R�(σ ) is the radius of the smallest
disk tangent to ∂� at σ , which contains �, if such a disk exists, and it is equal to ∞ otherwise. The
latter case occurs, for instance, if σ lies on a straight line segment contained in ∂�. However, if ∂�

is sufficiently curved on a segment of ∂�, then R� will be bounded above there. We obtain in such a
situation a non-trivial upper bound on c(�).

Theorem 6. With the above notation, we have the estimate

c(�) ≤ 1 − 1
2π

∫
∂�

ds
R�

.

The result implies spectral constant estimates similar to the one in Corollary 5 above. It also
generalizes some similar results in the literature. See Section 5 for further details and examples.

1.4.5 An unresolved matter
We have mentioned above that c(�) = 0 if and only if � is a disk. With some additional effort, we will
show in Section 5 that the condition a(�) = 0 also characterizes disks. In this case, we have the equality
a(�) = c(�). It is natural to ask whether other domains exist for which the equality occurs, or if the case
of the disk is exceptional.

Question. Do we always have the strict inequality

a(�) < c(�)

whenever � is not a disk?
As a consequence of Theorem 2 and the exceptional cases of Neumann’s lemma, we see that the

strict inequality holds whenever � is a triangle or a quadrilateral. The authors have not been able to
confirm that the inequality holds in any other examples.

1.5 Notations
Some of our notation has already been introduced above. For a continuous function f defined on a set X,
we denote by ‖f‖X the supremum of |f | over X. For cosets of the form f + C1 we use the convention

‖f + C1‖X := inf
λ∈C

‖f + λ‖X,

with similar convention for real-valued f and cosets f + R1. A norm ‖ · ‖ without a subscript usually
denotes a linear functional norm or a total variation norm of a measure. The distinction will be
unimportant and should anyway be easy to deduce from context. We use boldface letters, such as x, to
denote vectors in R

n, and plain letters, such as xj, to denote the coordinates.

2 The Three-Measures Theorem
2.1 Definitions of relevant spaces and operators
Theorem 1 will be proved as a corollary of our analysis of three-point configurations

(

1(x), 
2(x), 
3(x)

) ∈ C
3,

where x is an element of a given normed space N , and 
1, 
2, 
3 ∈ N ∗ are three bounded linear
functionals on N . A point configuration of this type has to satisfy certain conditions. For instance,
we must have the distance bound

|
j(x) − 
k(x)| ≤ ‖
j − 
k‖N ∗ ‖x‖N , 1 ≤ j, k ≤ 3.

Our principal interest will be in estimating the radius of the smallest disk that contains such a three-
point set.
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Double-Layer Potentials, Configuration Constants, and Applications | 9

In order to use the tools of functional analysis, we will formulate our problem as one of estimating
the norm of an operator between normed spaces. To this end, we use the space C

3 of triples of complex
numbers, and we equip it with the following norm:

‖(a, b, c)‖∞ := max{|a|, |b|, |c|}. (17)

Similarly to our previous notational conventions, we shall set 1 := (1, 1, 1) ∈ C
3. The quotient norm in

the quotient space C
3/C1 satisfies

‖(a, b, c) + C1‖∞ := min
λ∈C

max{|a − λ|, |b − λ|, |c − λ|},

and it has the geometric interpretation adequate to our problem: it is the radius of the smallest disk con-
taining the three point set {a, b, c}. Given a normed space N and three linear functionals 
1, 
2, 
3 ∈ N ∗,
we introduce the linear operator L : N → C

3/C1 defined by

Lx := (

1(x), 
2(x), 
3(x)

) + C1. (18)

With these conventions, each three-point configuration
(

1(x), 
2(x), 
3(x)

)
is contained in a disk of radius

at most ‖L‖N→C3/C1 · ‖x‖N . We want to estimate the operator norm ‖L‖N→C3/C1.

2.2 Statement of the theorem
Without any information regarding the space N or the functionals 
1, 
2, 
3, the optimal estimate is

‖L‖N→C3/C1 ≤ 1√
3

max
j,k

‖
j − 
k‖. (19)

Indeed, we see that we cannot do better by choosing N = C, x = 1, and the functionals (scalars) to be
the vertices of an equilateral triangle inscribed in the unit circle. For instance,


1 = 1, 
2 = −1/2 + i
√

3/2, 
3 = −1/2 − i
√

3/2.

The sides of the triangle have the common length equal to |
i−
j| = √
3, and the smallest disk containing

the three points 
i(x) = 
i is the unit disk itself. Thus, in this case, (19) holds with equality. The estimate
holds in general as a consequence of Jung’s theorem, which appeared first in [11], and which in the
context of the plane says that any set of diameter d is contained in a disk of radius d/

√
3. In our setting

d ≤ maxj,k ‖
j − 
k‖N ∗ , and so the estimate (19) follows from Jung’s theorem.
In our intended application, the role of the space N is played by C(X), the Banach space of continuous

functions on a compact Hausdorff space X, and the functionals are given by integration against real-
valued measures

f �→ μj(f ) :=
∫

X
f dμj.

It turns out that the three-point configurations that arise in this way are contained in disks of radius
smaller than predicted by Jung’s theorem. The main result of the section is the following.

Theorem 7. Let C(X) be the space of continuous functions on a compact Hausdorff space X, and
L : C(X) → C

3/C1 be the operator in (18) defined by three functionals induced by three finite
real-valued Borel measures μ1, μ2, μ3. Then

‖L‖C(X)→C3/C1 = 1
2

max
j,k

‖μj − μk‖. (20)
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10 | B. Malman et al.

It is the “≤” estimate in (20) that is the critical one. The lower bound “≥” follows from the definition
of the functional norm

1
2

‖μj − μk‖ = 1
2

sup
f :‖f‖X=1

|μj(f ) − μk(f )| ≤ ‖L‖C(X)→C3/C1.

We will spend the rest of the section on proving Theorem 7. The outline of the proof is as follows.
We will first use duality to formulate the problem in terms of the adjoint operator L∗ between the dual
spaces. Next, a discretization will help us reduce the dual problem to a finite-dimensional optimization
problem. Finally, we will solve the finite-dimensional problem by the use of techniques of convex
analysis.

Before proceeding, we remark that the natural generalization of the above theorem to an arbitrary
n-tuple of real-valued measures is valid. See Theorem 17 below.

2.3 Dual problem
Let us denote by Y the space C

3/C1 equipped with the norm in (17). Then the dual space Y∗ is the
two-dimensional space of three-tuples (α, β, γ ) of complex numbers that satisfy

α + β + γ = 0,

and the norm on Y∗ is given by

‖(α, β, γ )‖1 := |α| + |β| + |γ |.

In the case N = C(X), the dual space (C(X))∗ is just the space of finite Borel measures on X. The adjoint
operator L∗ : Y∗ → N ∗ is then given by

L∗ : (α, β, γ ) �→ αμ1 + βμ2 + γμ3

and the estimate (20) is equivalent to

‖αμ1 + βμ2 + γμ3‖ ≤ |α| + |β| + |γ |
2

max
j,k

‖μj − μk‖. (21)

Since α + β = −γ and (α + β + γ )μ3 = 0, we may rewrite the above inequality into

‖αν1 + βν2‖ ≤ |α| + |β| + |α + β|
2

max
{
‖ν1‖, ‖ν2‖, ‖ν1 − ν2‖

}
(22)

where

ν1 := μ1 − μ3, ν2 := μ2 − μ3.

Note that ν1 and ν2 are real-valued if μ1, μ2, μ3 are real-valued. Theorem 7 is thus a consequence of the
following slightly more general statement in which the topological structure of X does not play a role.

Proposition 8. Let ν1 and ν2 be two finite real-valued measures on a measurable space X. Then
for any complex numbers α, β we have the inequality

‖αν1 + βν2‖ ≤ |α| + |β| + |α + β|
2

max
{
‖ν1‖, ‖ν2‖, ‖ν1 − ν2‖

}
, (23)

where the norm on the right-hand side is the total variation norm ‖μ‖ := |μ|(X).

In our next step, we shall simplify the problem further, and show that Proposition 8 can be established
by considering finite sets X only.
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Double-Layer Potentials, Configuration Constants, and Applications | 11

2.4 Discretization
With notations as in Proposition 8, set σ := |ν1|+|ν2|. Then σ is a positive finite measure on X, and by the
Radon–Nikodym theorem we have dν1 = f dσ and dν2 = g dσ , where f , g are bounded real measurable
functions on X. For a moment, let ‖ · ‖σ ,1 denote the norm

‖f‖σ ,1 :=
∫

X
|f | dσ .

Then Proposition 8 is equivalent to the inequality

∫
X

|αf + βg| dσ ≤ |α| + |β| + |α + β|
2

max
{
‖f‖σ ,1, ‖g‖σ ,1, ‖f − g‖σ ,1

}
. (24)

We will say that a function is simple if it only takes on a finite number of distinct values. By standard
measure theory, there exist simple measurable real functions fm, gm on X such that fm → f and gm → g
uniformly on X. Clearly ‖αfm + βgm‖σ ,1 → ‖αf + βg‖σ ,1. Likewise ‖fm‖σ ,1 → ‖f‖σ ,1 and ‖gm‖σ ,1 → ‖g‖σ ,1

and ‖fm − gm‖σ ,1 → ‖f − g‖σ ,1. Thus, if the inequality (24) holds for each pair of simple functions, then it
holds for f , g. So it suffices to establish (24) when f , g are simple measurable real functions.

Hence, suppose that f , g are simple measurable real functions on X. We can write them as f =∑n
j=1 aj1Xj and g = ∑n

j=1 bj1Xj , where {X1, . . . , Xn} is a measurable partition of X, and aj, bj ∈ R for all j.
The inequality in (24) becomes

n∑
j=1

|αaj + βbj|σ(Xj) ≤ |α| + |β| + |α + β|
2

max
{ n∑

j=1

|aj|σ(Xj),
n∑

j=1

|bj|σ(Xj),
n∑

j=1

|aj − bj|σ(Xj)
}
.

Writing

xj := ajσ(Xj), x = (x1, . . . , xn)
T ∈ R

n

and

yj := bjσ(Xj), y = (y1, . . . , yn)
T ∈ R

n

we see that this becomes

‖αx + βy‖1 ≤ |α| + |β| + |α + β|
2

max
{
‖x‖1, ‖y‖1, ‖x − y‖1

}
,

where now x, y are vectors in R
n and ‖ · ‖1 denotes the usual 
1-norm on R

n given by

‖x‖1 :=
n∑

j=1

|xj|. (25)

To summarize, to prove Proposition 8 and consequently to prove Theorem 7, it suffices to establish the
following discrete result.

Proposition 9. Let n ≥ 1 and x, y ∈ R
n. Then for all complex numbers α, β we have the inequality

‖αx + βy‖1 ≤ |α| + |β| + |α + β|
2

max
{
‖x‖1, ‖y‖1, ‖x − y‖1

}
. (26)

This reduction of the problem to the finite-dimensional setting allows us to use the tools of convex
analysis.
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12 | B. Malman et al.

2.5 Optimization over a convex set
Consider the set

Cn :=
{
(x, y) ∈ R

n × R
n : ‖x‖1 ≤ 1, ‖y‖1 ≤ 1, ‖x − y‖1 ≤ 1

}
. (27)

Thus Cn is a compact convex polytope in R
n × R

n, and so it has a finite number of extreme points.
That is, points of Cn that do not lie in the interior of any line segment in Cn. A well-known theorem of
Carathéodory says that each point of a compact convex polytope is a convex combination of its extreme
points.

Lemma 10. In order to establish Proposition 9, it suffices to show that the inequality (26) holds
for every extreme point of Cn.

Proof. Let us fix α, β ∈ C and (x, y) ∈ R
n × R

n. By the homogeneity of the inequality in (26), we may
assume that

max
{
‖x‖1, ‖y‖1, ‖x − y‖1

}
= 1. (28)

Then (x, y) ∈ Cn and so we may express it as a convex combination of the extreme points of Cn, namely

x =
m∑

k=1

tkek, y =
m∑

k=1

tkfk

where ek ∈ R
n, fk ∈ R

n, the pairs (ek, fk) are extreme points of Cn, tk > 0, and
∑m

k=1 tk = 1. Note that since
(ek, fk) is an extreme point of Cn, we must have

max
{
‖ek‖1, ‖fk‖1, ‖ek − fk‖1

}
= 1.

Since we are assuming that (26) holds for extreme points, we can estimate

‖αx + βy‖1 ≤
m∑

k=1

tk‖αek + βfk‖1

≤
m∑

k=1

tj
|α| + |β| + |α + β|

2
max

{
‖ek‖1, ‖fk‖1, ‖ek − fk‖1

}

= |α| + |β| + |α + β|
2

m∑
k=1

tk

= |α| + |β| + |α + β|
2

.

Recalling our normalization in (28), this is the desired estimate in (26). �

From the above lemma and our sequence of reductions above, it follows that in order to prove
Theorem 7 it suffices show that the inequality (26) holds at every extreme point of the polytope Cn.
Proposition 11 below characterizes these extreme points by partitioning them into three equivalence
classes.

Note that Cn is invariant under the following linear symmetries:

⎧⎨
⎩x′

j := xπ(j)

y′
j := yπ(j)

(29)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/8/rnaf084/8109682 by guest on 03 February 2026



Double-Layer Potentials, Configuration Constants, and Applications | 13

where π is any permutation of {1, 2, . . . , n},
⎧⎨
⎩x′

j := εjxj

y′
j := εjyj

(30)

for any choice of ε1, . . . , εn ∈ {−1, 1},
⎧⎨
⎩x′ := y

y′ := x
(31)

and

⎧⎨
⎩x′ := x

y′ := x − y
(32)

Denote by Gn the group generated by these symmetries. As these symmetries are linear automorphisms
of Rn×R

n, it is clear that Gn leaves invariant the set of extreme points Cn. We say that two extreme points
of Cn are Gn-equivalent if there is an element of Gn mapping one of them to the other. Thus the action
of Gn on Cn partitions the set of extreme points of Cn into a finite number of equivalence classes. Note
that if the inequality (26) holds for some (x, y) ∈ Cn, then it holds also for any point of Cn in the orbit of
(x, y) under the group action of Gn on Cn.

The extreme points of Cn are identified in the following proposition.

Proposition 11. If n ≥ 3, then every extreme point (x, y) of Cn is Gn-equivalent to one of the pairs

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2
1/2
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2
1/2
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2
0

1/2
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can readily check that each of the three above pairs really is an extreme point of Cn. We omit
the proof, since we do not actually need this fact. In the case that n = 1, the same result holds, but only
the first kind of pair can arise. Likewise, if n = 2, the same result holds, but only the first two types of
pairs can arise.

We will prove Proposition 11 in Section 2.6. For now let us see how Theorem 7 follows. In order to
verify (26) for all extreme points of Cn, it suffices to verify the inequality for the three pairs of vectors
appearing in Proposition 11. This is an easy task. For instance, if (x, y) is the second pair in Proposition 11,
then we have

‖αx + βy‖1 = |α + β/2| + |β|/2

= |α/2 + α/2 + β/2| + |β|/2

≤ |α + β|/2 + |α|/2 + |β|/2.

The inequality for the other two pairs is verified similarly. Then from Lemma 10 we conclude that
Proposition 9 holds, from which Theorem 7 follows by the earlier reduction.

It remains to prove Proposition 11.

2.6 Extreme points of the polytope
In the proof of Proposition 11, the group Gn generated by the symmetries (29)–(32) will be extensively
used. In particular we will use the property that (x, y) is an extreme point of Cn if and only if some
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14 | B. Malman et al.

extreme point of Cn is Gn-equivalent to it. Moreover, the following two observations will be useful to
single out.

Lemma 12. If for a pair (x, y) ∈ Cn there exists two distinct indices j, k such that

xj > 0, yj > 0, xk > 0, yk > 0

then (x, y) is not an extreme point of Cn.
More generally, if for two distinct indices j, k we have that two of the quantities xjxk, yjyk and

(xj − yj)(xk − yk) are non-zero and have the same sign, then (x, y) is not an extreme point of Cn.

Proof. Using the symmetry (29) we may suppose that j = 1, k = 2. Note that x1 < 1, x2 < 1, since ‖x‖1 ≤ 1.
The same is true for the corresponding coordinates of y. Let d = (1, −1, 0, . . . , 0)T ∈ R

n. It is easy to verify
that if t is a real number, and |t| is sufficiently small, then we have

(x, y) + t(d, d) = (x + td, y + td) ∈ Cn.

Thus (x, y) lies on a line segment inside Cn, and so is not an extreme point of Cn.
The more general statement follows by applications of a sequence of symmetries in (29)–(32)

to transform (x, y) satisfying the more general assumption into a point (x′, y′) where the first two
coordinates of the vectors x′ and y′ are positive. �

Lemma 13. If for a pair (x, y) ∈ Cn the vector x or y has at least three non-zero coordinates, then
(x, y) is not an extreme point of Cn.

Proof. By using symmetries (29)–(31) we may suppose that coordinates x1, x2, x3 are non-zero and
positive. If two of the coordinates y1, y2, y3 are positive, then by Lemma 12 we conclude that (x, y) is
not an extreme point of Cn. In the contrary case, two of the coordinates y1, y2, y3 are non-positive. Then
again by Lemma 12 and the symmetry (32) the pair (x, x − y) ∈ Cn is not extreme, and thus neither is
(x, y), since these two pairs are Gn-equivalent. �

We are ready to prove Proposition 11. We denote by 
1
n the space R

n equipped with the norm ‖ · ‖1

given by (25). Recall that the extreme points of the unit ball B := {x ∈ R
n : ‖x‖1 ≤ 1} are the vectors with

precisely one non-zero coordinate, this coordinate being equal to ±1.

Proof of Proposition 11. We will split up the proof into three cases, each case corresponding to one of
the pairs in the statement of the proposition.

Case 1: At least one of the norms ‖x‖1, ‖y‖1, ‖x − y‖1 is strictly less than 1. We will show that in this
case (x, y) is Gn-equivalent to the first pair in the statement of the proposition.

By applying a suitable combination of symmetries (29)–(32), we may suppose that in fact ‖x − y‖1 < 1.
We claim that x must be an extreme point of the unit ball of 
1

n. For if not, then it lies at the midpoint of
a line segment I such that ‖x′‖1 ≤ 1 for all x′ ∈ I. Since ‖x − y‖1 < 1, by shrinking I if necessary, we also
have ‖x′ − y‖1 < 1 for all x′ ∈ I. Thus I×{y} is a line segment in Cn with interior point (x, y), contradicting
the fact that (x, y) is extreme.

Likewise, y is extreme in the unit ball of 
1
n. Applying a suitable symmetry, we may suppose that x1 = 1

and yj = ±1 for some j, all the other entries of x and y being 0. Since we must have ‖x − y‖1 < 1, this
implies that actually j = 1 and y1 = 1. Thus (x, y) is equivalent to the first pair of vectors listed in the
statement of the proposition. This concludes Case 1.

Case 2: We have ‖x‖1 = ‖y‖1 = ‖x − y‖1 = 1, and one of the vectors x, y, or x − y has only one
non-zero coordinate. In this case, (x, y) will be now shown to be Gn-equivalent to the second pair in the
statement of the proposition.

Using our symmetries, we may suppose that x = (1, 0, . . . , 0)T. Note that

‖x − y‖1 = |1 − y1| + |y2| + . . . + |yn| = 1
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and

‖y‖1 = |y1| + |y2| + . . . + |yn| = 1

force

|1 − y1| = |y1|,

the unique real solution y1 to this equation being y1 = 1/2. By Lemma 13, y has only one other non-zero
coordinate, and ‖y‖1 = 1 forces this coordinate to be equal to ±1/2. Applying symmetries (29) and (30)
we conclude that (x, y) is Gn-equivalent to the second pair in the statement. This concludes Case 2.

Case 3: We have ‖x‖1 = ‖y‖1 = ‖x − y‖1 = 1, and all of the vectors x, y and x − y have exactly two
non-zero coordinates. We will show that (x, y) is Gn-equivalent to the third pair in the statement of the
proposition.

This case is slightly more complicated than the previous two. As before, we may suppose that x1 > 0
and x2 > 0. We claim that y1 and y2 cannot both be equal to zero. If they were, then x − y has four
non-zero coordinates, contrary to the assumption. In fact, precisely one of y1 and y2 must be non-zero.
If both were non-zero, then since x − y has exactly two non-zero coordinates, we would have x1 −y1 �= 0
and x2 −y2 �= 0. Then the three quantities x1x2, y1y2 and (x1 −y1)(x2 −y2) would be non-zero, and Lemma
12 would imply that (x, y) is not an extreme point.

By an application of symmetries we may, in addition to x1 > 0 and x2 > 0, suppose that y1 �= 0, y2 = 0
and y3 = s > 0. Since x1 + x2 = 1, we have x1 = t, x2 = 1 − t for some t ∈ (0, 1). Our vectors thus have the
following structure:

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
1 − t

0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

0
s
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x − y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t − y1

1 − t
−s
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Recall that x − y has only two non-zero coordinates. Since 1 − t �= 0 and s �= 0, we conclude from the
above that t = y1. But then ‖x − y‖1 = 1 − t + s = 1, and so t = s. Finally, 1 = ‖y‖1 = t + s = 2s shows that
s = t = 1/2, and so (x, y) is Gn-equivalent to the third pair in the statement of the proposition. �

3 Proof of Theorem 1
In addition to Theorem 7 from Section 2, we will also need some facts from plane geometry in order to
prove Theorem 1. In particular, we will need to discuss the minimum enclosing disk problem appearing in
computational geometry.

3.1 Minimal enclosing disk
Let K be a compact subset of C containing at least two points. Among all closed disks that contain K
there exists a unique one of minimal radius. We will denote this disk by DK and call it the minimal disk
for K. The radius of DK will be denoted by R(K).

If DK is minimal for K, then the intersection K ∩ ∂DK must obviously be non-empty. In fact, this
intersection must contain at least two points, and there is also a restriction on the locations of the
points in K ∩ ∂DK.

Lemma 14. Let K be a compact subset of C, which contains at least two points. Then the
intersection ∂DK ∩ K is not contained in any arc of ∂DK, which has length strictly smaller than
half of the circumference of DK. In particular, if K ∩ ∂DK = {a, b} is a two-point set, then a and b
are antipodal on ∂DK.

Proof. Seeking a contradiction, assume that ∂DK ∩ K is contained in an arc of length strictly less than
half of the circumference of DK. By translation, rescaling, and rotation of the setting, we may assume
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16 | B. Malman et al.

Fig. 3. The initial disk DK is the dashed circle, and we assume that ∂DK ∩ K is contained in the black thick arc. Then
K will be contained in the grey disk, which is obtained from DK by first translating DK in the direction of the
positive real axis, and then slightly shrinking the translated disk. This contradicts the minimality of DK.

Fig. 4. The thick arc J between a and b is the smallest containing the compact set K. It follows that the shorter arc
between the antipodal points ã an b̃ must contain points of K.

that DK is the unit disk, and that ∂DK ∩ K is contained in some half-space

{z ∈ C : Rez > δ}, δ > 0.

By compactness, the distance between the compact sets K and ∂DK ∩ {z ∈ C : Rez ≤ δ/2} is positive. It
follows that we may translate the disk DK in the positive direction of the real axis, and then shrink the
radius of the translated disk slightly, and the resulting disk will still contain K, yet be of strictly smaller
radius than RK. See Figure 3. This contradiction establishes Lemma 14. �

Lemma 15. Let T = {a, b, c} be a three-point set. If D is a closed disk for which T ⊂ ∂D, and T is not
contained in any arc of ∂D, which is strictly smaller than half of the circumference of D, then
D = DT.

Proof. Assume, seeking a contradiction, that D �= DT, and so that R(T) is strictly smaller than the radius
of D. Since ∂D is the unique circle passing through the three points a, b, c, we must have that T ∩ ∂DT

contains precisely two points. Say a, b ∈ ∂DT but c �∈ ∂DT. Lemma 14 implies that a and b are antipodal on
DT. By translation, rescaling, and rotation, we may assume thatDT is the unit disk, a = i, b = −i, c has non-
negative real part and |c| < 1. After these operations, we have that R(T) = 1 and the circumference of D
is larger than 2π . Thus by hypothesis, surely T is not contained in any arc of ∂D of length strictly smaller
than π . But the shorter of the arcs of ∂D that contains T is then contained in {z ∈ C : 0 ≤ Rez, |z| ≤ 1},
and so this arc must have a length smaller than π . This is a contradiction, and the lemma follows. �
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3.2 Reduction to three-point sets
The following simple result on minimal disks makes it possible to apply Theorem 7 to more than three
measures.

Lemma 16. Let K be a compact subset of C containing at least two points. There exists a subset
T ⊂ K, which contains at most three points and for which DK = DT. In particular, R(K) = R(T).

It may be convenient to refer to Figure 4 during the reading of the proof.

Proof. If there are two points in K that are antipodal on ∂DK, then we take T to consist of those two
points. Clearly DK = DT. In the case that no pair of antipodal points of ∂DK are contained in K, let J be
the shortest closed arc of ∂DK, which contains K, and let a, b ∈ J ∩ K be the end-points of J. By Lemma
14, the length of J is strictly larger than half of the circumference of ∂DK, and so J is the longer of the
two arcs between a and b. Let ã and b̃ be points on ∂DK, which are antipodal to a and b, respectively. By
assumption, ã �∈ K, b̃ �∈ K. We claim that the shorter of the two open arcs between ã and b̃ must contain
points of K. If not, then the longer of the two arcs between ã and b̃ would contain K in its interior, and
this arc has the same length as J. A routine compactness argument would lead to a contradiction to the
minimality of J.

Let T = {a, b, c}, where c ∈ K is any point contained in the shorter open arc between ã and b̃. Note that
any arc containing T must contain either ã or b̃. Then such an arc contains two antipodal points on DK,
and so it has a length that is at least half of the circumference of DK. By Lemma 15 we conclude that
DK = DT. �

3.3 Finalizing the proof
We are finally ready to give a proof of the equality cR(�) = cC(�).

Proof. (Proof of Theorem 1) Since cR(�) ≤ cC(�), it will suffice to show the reverse inequality. To this
end, we need to show that given f ∈ C(∂�) satisfying ‖f‖∂� ≤ 1, we have that ‖K�f + C1‖∂� ≤ cR(�).
Since K�f is continuous, the image K = K�f (∂�) is a compact subset of C. If K consists of a single point,
then ‖K�f + C1‖∂� = 0, and the proof is complete. In other case, let DK be the minimal disk for K. We
use Lemma 16 to obtain a three-point set T = {a, b, c} ⊂ K for which R(T) = R(K) (note that if K ∩ ∂DK

contains only two points {a, b}, then we may pick c ∈ K arbitrarily to complete T to a three-point set).
The geometric interpretation of the quotient norm in C(∂�)/C1 implies that ‖K�f +C1‖∂� = R(K) = R(T).
Since T is contained in the image of K�f , there exists ζ1, ζ2, ζ3 ∈ ∂� such that

(a, b, c) = (
K�f (ζ1), K�f (ζ2), K�f (ζ3)

)
.

Since K�f (ζj) = ∫
∂�

f dμζj , we may apply Theorem 7 to X = ∂�, μj = μζj for j = 1, 2, 3, and conclude that
the operator L : C(∂�) → C

3/C1 defined by

L : f �→ (
K�f (ζ1), K�f (ζ2), K�f (ζ3)

) + C1

has a norm satisfying the bound (20). With ‖ · ‖∞ denoting the norm on C
3/C1 given in (17), we obtain

‖K�f + C1‖∂� = R(T) = ‖(a, b, c) + C1‖∞

= ‖Lf‖∞

≤ ‖L‖C(∂�)→C3/C1

≤ 1
2

max
j,k

‖μζj − μζk ‖

≤ 1
2

sup
ζ ,ζ ′∈∂�

‖μζ − μζ ′ ‖

= cR(�).

�
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18 | B. Malman et al.

The earlier mentioned extension of Theorem 7 to an n-measures theorem is obtained by employing the
same argument as in the above proof. The normed space C

n/C1 appearing below is defined analogously
to the case n = 3 treated in Section 2.1.

Theorem 17. Let C(X) be the space of continuous functions on a compact Hausdorff space X,
n ≥ 3 an integer, and L : C(X) → C

n/C1 the operator defined by

Lf = (
μ1(f ), . . . , μn(f )

) + C1

where μ1, . . . , μn are finite real-valued Borel measures on X. Then

‖L‖C(X)→Cn/C1 = 1
2

max
j,k

‖μj − μk‖.

Proof. We use Lemma 16 to pick a three-point subset T of K = {μj(f )}n
j=1 for which we have R(K) = R(T),

and apply Theorem 7 as in the preceding proof. �

4 Proof of Theorem 2
4.1 Exploiting subsequences
We will argue by contradiction in order to prove Theorem 2. That is, we will assume that there exists
a convex domain � with a(�) = 1, and so that there exists a sequence of functions (fn) in A(�), which
satisfy

‖fn + C1‖� = 1

and

lim
n→∞ ‖K�fn + C1‖� = 1. (33)

We shall see that this leads to a contradiction. The proof technique below is different from the one
employed by Schober in [17] in his proof of Neumann’s lemma, and analyticity is used only at the very
end of the proof. In fact, we shall remark at the end of the section how our arguments lead to a new
proof of Neumann’s lemma that is different from the one in [17].

Thus, for now, we assume merely that fn ∈ C(∂�), and we will derive certain consequences of (33).
In the course of the proof we shall replace the sequence (fn) by a subsequence multiple times, and for
convenience we will not be changing the subscripts. We may suppose that ‖fn‖� = 1, and consequently
that the images

K�fn(∂�) := {K�fn(ζ ) : ζ ∈ ∂�}

are contained in a closed disk of radius 1 centred at the origin. For large n, this observation and (33)
forces there to be points of the image of K�fn outside of any disk centred at the origin of radius strictly
less than 1. By exchanging fn for a unimodular multiple of itself, we may thus assume that there exists
a sequence of points (ζn) in ∂� for which we have

lim
n→∞ K�fn(ζn) = lim

n→∞

∫
∂�

fn dμζn = 1. (34)
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Using that the functions fn are bounded by 1 in modulus, and the positive measures dμζ are of unit
mass, we obtain

lim
n→∞

∫
∂�

|fn − 1|2dμζn = lim
n→∞

∫
∂�

(|fn|2 − 2Refn + 1
)
dμζn

≤ lim
n→∞

(
2 − 2Re

∫
∂�

fn dμζn

)
= 0.

Recall from (3) that ρζn denotes the ds-absolutely continuous part of μζn . The above computation implies
that

lim
n→∞

∫
∂�

|fn − 1|2ρζn ds = 0. (35)

Compactness of the boundary ∂� implies that we may assume convergence of the sequence (ζn) to
some points ζ ∈ ∂�. The following lemma shows that we may replace in (35) the densities ρζn with the
density ρζ .

Lemma 18. With notations as above, we have

lim
n→∞

∫
∂�

|fn − 1|2ρζ ds = 0. (36)

Consequently, after passing to a subsequence, we can ensure that

lim
n→∞ fn(σ ) = 1

for almost every σ ∈ ∂� with respect to the measure ρζ ds.

Proof. Note that whenever σ is not a corner of ∂� or any of the points ζn or ζ , we have

ρζn (σ ) − ρζ (σ ) = Re
(ζn − ζ )N(σ )

π(σ − ζ )(σ − ζn)
.

If B = B(ζ , δ) is a disk around ζ of small radius δ > 0, then for large enough n the denominator on the
right-hand side above is uniformly bounded from below for σ ∈ ∂� \ B, with exception of a countable
set. This shows uniform convergence of ρζn (σ ) to ρζ (σ ) for σ ∈ ∂� \ B, again with exception of an at most
countable set. Since |fn − 1|2 ≤ 4, we obtain from (35) that

lim sup
n→∞

∫
∂�

|fn − 1|2ρζ ds ≤ lim sup
n→∞

∫
∂�∩B

|fn − 1|2ρζ ds

+ lim sup
n→∞

∫
∂�\B

|fn − 1|2ρζ ds

≤ 4
∫

∂�∩B
ρζ ds.

Since ∂�∩B is an arc of length that tends to 0 as the radius δ of B tends to 0, the last quantity above can
be made arbitrarily small by choosing δ small enough. This establishes (36). Basic measure theory now
implies that we may pass again to a subsequence and ensure the pointwise convergence fn → 1 almost
everywhere with respect to ρζ ds. �

Out next observation extracts more information from (33). Consider the strips

Sδ = {z = reit : 1 − δ < r < 1, |t| ∈ [π/4, π ]}, δ > 0.
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20 | B. Malman et al.

Fig. 5. The unit disk in dark grey with the strip Sδ removed. The dotted circle containing the dark grey area has a
radius slightly smaller than 1.

These strips have a fixed large “length” but shrinking “width”. One such strip is marked in Figure 5.
We claim that each one of the strips Sδ intersects the images K�fn(�) non-trivially for infinitely many
indices n. For if not, then for some fixed δ > 0, we would have that Sδ ∩ K�fn(∂�) = ∅ for all sufficiently
large n, which means that the images K�fn(∂�) are entirely contained in B(0, 1)\Sδ , where B(0, 1) denotes
the closed disk of radius 1 centred at the origin. But if ε1 and ε2 are sufficiently small positive numbers,
then B(0, 1) \ Sδ ⊂ B(ε1, 1 − ε2), a disk of radius 1 − ε2 centred at the point ε1 ∈ R. See Figure 5. Recalling
the geometric interpretation of the norm ‖K�fn + C1‖∂� as the radius of the smallest disk containing
the image of K�fn, we would arrive at a contradiction to (33). Thus every strip Sδ contains points in the
image of K�fn for infinitely many n.

Lemma 19. With notations as above, we may pass to a subsequence again, and obtain a new
sequence (ζ ′

n) that converges to some point ζ ′ ∈ ∂�, and such that

lim
n→∞ fn(σ ) = α

for some unimodular constant α �= 1 and for almost every σ ∈ ∂� with respect to the measure
ρζ ′ ds.

Proof. Since each strip Sδ intersects the images of K�fn for infinitely many n, passing to a subsequence
and a routine compactness argument produces a sequence (ζ ′

n) convergent to some ζ ′ ∈ ∂�, for which
K�fn(ζ

′
n) → α, with α unimodular and lying in the closure of each of the strips Sδ . Thus α �= 1. We therefore

merely need to repeat the previous arguments to see that, after passing to a subsequence, we will have
fn(σ ) → α for almost every σ with respect to the measure ρζ ′ ds. �

4.2 Proof of Theorem 2
The above arguments are valid for fn ∈ C(∂�). However, under the assumption of analyticity, the
sequence (fn) cannot converge to two different constants on two different sets of positive arclength
measure. To make this statement precise, we appeal to the classical theory of analytic functions in the
(open) unit disk D = {z ∈ C : |z| < 1}. Here [8, Chapter II] is an excellent reference for the claims made
in the following proof.

Proof of Theorem 2. Let H∞ = H∞(D) be the space of bounded analytic functions in D, identified as usual
through boundary function correspondence with a weak-star closed subspace of the space L∞(∂D) =
(L1(∂D)∗ of bounded measurable functions on ∂D, the dual of the Lebesgue space L1(∂D) of functions
integrable on ∂D with respect to the Lebesgue measure (arclength measure) on ∂D. It is well known that
a function f̃ ∈ H∞ that vanishes on a subset of positive Lebesgue measure on ∂D must vanish identically.
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Fix some conformal mapping φ : D → �. Under the assumption that fn ∈ A(�), ‖fn‖� ≤ 1, the
functions

f̃n := fn ◦ φ ∈ H∞, n ≥ 1

are bounded in modulus by 1 in D. By Carathéodory’s classical theorem (see, for instance, [9, Chapter
I.3]), φ extends to a homeomorphism between ∂D and ∂�. If ‖K�fn + C1‖� → 1, then Lemmas 18 and 19
show that there exist two sets E, E′ ⊂ ∂� that have positive arclength measure, such that

lim
n→∞ f̃n(λ) = 1, λ ∈ φ−1(E)

and

lim
n→∞ f̃n(λ) = α, λ ∈ φ−1(E′).

Since � is convex, the curve ∂� is rectifiable, and general theory of harmonic measures tells us that the
sets φ−1(E) and φ−1(E′) have positive Lebesgue measure (see [9, Chapter VI]). Since L1(∂D) is separable
and the functions f̃n are uniformly bounded by 1 in modulus, the usual Helly-type selection process will
produce a subsequence of (f̃n), which converges in the weak-star topology to some function f̃ ∈ H∞. By
the above pointwise convergence, we must have f̃ ≡ 1 on φ−1(E) and f̃ ≡ α on φ−1(E′). Then the non-zero
function f̃ −1 vanishes on the subset φ−1(E) of positive Lebesgue measure on ∂D. This is a contradiction,
which shows that our assumption ‖K�fn + C1‖� → 1 must be false. Theorem 2 follows. �

4.3 A proof of Neumann’s lemma
We indicate how one may proceed to use our above arguments to obtain a proof of Neumann’s lemma,
stating that c(�) = 1 if and only if � is a triangle or a quadrilateral. We need only the following simple
geometric observation regarding the densities ρζ .

Lemma 20. Fix ζ ∈ ∂�. Any σ ∈ ∂� \ {ζ } that is not a corner of ∂� and that satisfies ρζ (σ ) = 0 is
contained in the union of at most two line segments of ∂� containing ζ .

Proof. It will suffice to show that all σ satisfying the above conditions are contained in at most two
different tangent lines to �. To see this, recall formula (5). The condition ρζ (σ ) = (2πRζ ,σ )−1 = 0 gives
Rζ ,σ = ∞, and so ζ is contained in the tangent line to � at σ . The tangent line divides the plane C into
two half-planes, one of which contains �. Assume that two different tangent lines, at σ and σ ′, intersect
at ζ . They divide the plane C into four sectors, and by convexity precisely one of those sectors contains
�. Now, any line that passes through ζ and the open sector containing � must separate σ , σ ′ ∈ ∂�.
Therefore, it is not a tangent to �. �

Neumann’s lemma is established as follows. Assume that c(�) = 1. From Lemmas 18 and 19 we see
that two points ζ , ζ ′ exist for which the measures ρζ ds and ρζ ′ ds are mutually singular. From Lemma 20
we deduce that the support of ρζ ds is the union of at most two line segments containing ζ ′, and the
complement of the support of ρζ ds is also a union of at most two line segments. Thus ∂� is the union
of at most four line segments.

5 Examples
In this section, we compute and estimate the configuration constants for some types of domains.

5.1 Configuration constant of an ellipse
For a, b > 0, let

�a,b :=
{
x + iy ∈ C :

x2

a2
+ y2

b2
≤ 1

}

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/8/rnaf084/8109682 by guest on 03 February 2026



22 | B. Malman et al.

be the ellipse centred at the origin with semi-axes of lengths a and b, respectively. It is quite remarkable
that the configuration constant can in this case be computed explicitly.

Proposition 21. With the above notation, we have

c(�a,b) = 2
π

arctan
( 1

2

∣∣∣ b
a

− a
b

∣∣∣).

In order to prove the proposition, our first step is to derive an expression for the density of the
Neumann–Poincaré kernel of �a,b. The boundary ∂�a,b is parametrized by

γ (t) := a cos t + ib sin t, t ∈ [0, 2π ]. (37)

Here [0, 2π ] can be replaced by any interval of length 2π . Recalling formula (4) for μζ and setting ζ = γ (s),
σ = γ (t), we obtain

dμγ(s)(γ (t)) = ργ (s)(γ (t)) ds(γ (t)) (38)

= 1
π

Im
(

T(γ (t))
γ (t) − γ (s)

)
|γ ′(t)| dt

= 1
π

Im
γ ′(t)

γ (t) − γ (s)
dt.

Using (37), this formula can be greatly simplified.

Lemma 22. With the notation above, we have

dμγ(s)(γ (t)) = 1
2π

A
1 + B cos(t + s)

dt, s, t ∈ [0, 2π ], (39)

where

A := 2ab
a2 + b2

and B := b2 − a2

b2 + a2
.

The lemma is established by combining (37) and (38), and then using elementary trigonometric
identities to simplify the resulting expression.

With this formula in hand, we now evaluate the configuration constant of the ellipse �a,b.

Proof of Proposition 21. Using the formulas (8) and (39), we obtain

c(�a,b) = sup
s1,s2∈[0,2π ]

1
2

1
2π

∫
[−π ,π ]

∣∣∣ A
1 + B cos(t + s1)

− A
1 + B cos(t + s2)

∣∣∣ dt.

By the periodicity of cos, this last expression simplifies to

c(�a,b) = sup
s∈(0,2π)

1
2

1
2π

∫
[−π ,π ]

∣∣∣ A
1 + B cos(t + s)

− A
1 + B cos(t)

∣∣∣ dt.

For the time being, let us assume that b ≥ a, so B ≥ 0. Using the fact that (39) is the density of a
probability measure for each s ∈ [0, 2π ], we have

1
2

1
2π

∫
[−π ,π ]

∣∣∣ A
1 + B cos(t + s)

− A
1 + B cos(t)

∣∣∣ dt

= 1
2π

∫
{t:cos t≥cos(t+s)}

( A
1 + B cos(t + s)

− A
1 + B cos(t)

)
dt.
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We readily verify that cos(t) ≥ cos(t + s) if and only if t ∈ [−s/2, π − s/2]. Therefore

1
2

1
2π

∫
[−π ,π ]

∣∣∣ A
1 + B cos(t + s)

− A
1 + B cos(t)

∣∣∣ dt

= 1
2π

∫ π−s/2

−s/2

( A
1 + B cos(t + s)

− A
1 + B cos(t)

)
dt

= 1
2π

∫ π+s/2

s/2

A
1 + B cos(t)

dt − 1
2π

∫ π−s/2

−s/2

A
1 + B cos(t)

dt

= 1
2π

∫ π+s/2

π−s/2

A
1 + B cos(t)

dt − 1
2π

∫ s/2

−s/2

A
1 + B cos(t)

dt

= 1
2π

∫ s/2

−s/2

A
1 − B cos(t)

dt − 1
2π

∫ s/2

−s/2

A
1 + B cos(t)

dt

= 1
2π

∫ s/2

−s/2

2AB cos(t)
1 − B2 cos2(t)

dt.

It is clear that this last integral is maximized over s ∈ [0, 2π ] when s = π . Putting everything together,
we deduce that, if b ≥ a, then

c(�a,b) = 1
2π

∫ π/2

−π/2

2AB cos(t)
1 − B2 cos2(t)

dt.

All that remains is to evaluate the integral. Making the substitution x = sin t, and exploiting the fact
that A2 + B2 = 1, we have

1
2π

∫ π/2

−π/2

2AB cos(t)
1 − B2 cos2(t)

dt = 1
2π

∫ 1

−1

2AB
1 − B2(1 − x2)

dx

= 1
π

∫ 1

−1

AB
A2 + B2x2

dx

= 2
π

arctan
( B

A

)

= 2
π

arctan
( 1

2

( b
a

− a
b

))
.

This proves the result in the case when b ≥ a. The remaining case is obtained by exchanging the roles
of a and b. �

5.2 Integral estimates
For a general domain, the exact value of c(�) is often inaccessible. In this section, we will present a
simple estimate that is applicable to domains � with a non-flat part of the boundary that leads to an
upper bound on c(�).

Assume that we find a Borel measure ν on ∂� such that

kν
� := sup{‖μζ − ν‖ : ζ ∈ ∂�} < 1.

If so, then, for every φ ∈ C(∂�) with ‖φ‖∂� ≤ 1, we have

∣∣∣K�φ(ζ ) −
∫

∂�

φ dν

∣∣∣ ≤ kν
�, ζ ∈ ∂�,

which shows that the image of K�φ is contained in a disk of radius kν
� centred at

∫
∂�

φ dν. Thus,

cR(�) = cC(�) = ‖K� : C(∂�)/C1 → C(∂�)/C1‖ ≤ kν
�.
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Fig. 6. A domain � with two circles corresponding to values R�(σ) and R�(σ ′)

One approach is to seek a positive measure ν on ∂� satisfying μζ ≥ ν for all ζ ∈ ∂�. Then

‖μζ − ν‖ = (μζ − ν)(∂�) = 1 − ν(∂�),

and so kν
� = 1 − ν(∂�).

We will construct the largest non-negative Borel measure ν on ∂�, which satisfies μζ − ν ≥ 0.
The construction is based on the geometric interpretation of the density ρζ (σ ) in (5) and the quantity
R� appearing in (15). In order to avoid the need to establish Borel measurability of R� defined as a
supremum of an uncountable family as in (15), we proceed to define it in a slightly different but
equivalent way. Namely, it is easy to see that, given σ ∈ ∂�, if there exists a closed disk � such that
� ⊂ � and σ ∈ ∂�, then there exists one of smallest radius. We denote this radius by R�(σ ). Note that
if σ is not a corner of ∂�, then the corresponding disk must be tangent to ∂� at σ . If no disk passing
through σ exists that contains �, then we set R�(σ ) := ∞. This happens, for instance, if σ is contained
in the interior of a line segment in ∂�. In particular, R�(σ ) = ∞ for all but a finite number of points of
any polygonal domain.

Lemma 23. The function R� : ∂� → (0, ∞] is lower semicontinuous. In particular, it is Borel
measurable.

Proof. Let σ ∈ ∂� and let (σn) be a sequence in ∂� such that σn → σ . We need to show that
lim infn→∞ R�(σn) ≥ R�(σ ). We can suppose that L := lim infn→∞ R�(σn) < ∞, otherwise there is nothing
to prove. Let L′ > L. Then, replacing (σn) by a subsequence, we can suppose that R�(σn) < L′ for all n.
Thus, for each n, there exists a closed disk �n of radius L′ such that � ⊂ �n and σn ∈ ∂�n. The sequence
of centres (cn) of the disks �n is bounded, so there exists a convergent subsequence cnj → c. Let � be the
closed disk with centre c and radius L′. Then we have � ⊂ � and σ ∈ ∂�. It follows that R�(σ ) ≤ L′. As
this last inequality holds for all L′ > L, we deduce that R�(σ ) ≤ L. This completes the proof. �

We set

dν := ds
2πR�

. (40)

By the above lemma, ν is a non-negative Borel measure on ∂�. For any ζ ∈ ∂�, we have

μζ ≥ ν. (41)

To see this, note that if σ is not a corner and Rζ ,σ is the radius of the unique circle tangent to ∂� at σ

and passing through ζ , then R�(σ ) ≥ Rζ ,σ . Therefore, according to (5),

1
2πR�(σ )

≤ 1
2πRζ ,σ

= ρζ (σ )

for almost every σ with respect to arclength measure on ∂�. Inequality (41) follows. Although we shall
skip a formal proof, we mention also that ν is in fact the largest measure satisfying μζ ≥ ν for all ζ ∈ ∂�.
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Fig. 7. A quadrilateral domain �ε with a(�ε) > 1 − (4/π)ε.

This maximality property of ν is to be interpreted in the following sense: if ν ′ is any measure satisfying
μζ ≥ ν ′ for all ζ , then ν ≥ ν ′.

By our earlier discussion, we obtain the following upper estimate for the configuration constant:

c(�) ≤ 1 − 1
2π

∫
∂�

ds
R�

.

Note that this is precisely the assertion of Theorem 6 stated in Section 1.
We will now mention some consequences. Recall that if γ is a plane curve of class C2, then the radius

of curvature of γ is the reciprocal of its curvature.

Corollary 24. If � has a C2-boundary of length L, whose radius of curvature is everywhere at most
ρ, then

c(�) ≤ 1 − L
2πρ

.

Proof. In this case, one sees from (15) and (16) that R�(σ ) ≤ ρ for all σ ∈ ∂�, from which the result
follows. �

This last result was already known. See for example [7, pp. 45–46] and [12, pp. 128–129]. However the
proofs in these references are quite different from the one above.

Corollary 25. Consider a convex circular sector

� = {z ∈ C : 0 ≤ |z| ≤ r, 0 ≤ arg(z) ≤ θ},

where r > 0 and 0 < θ ≤ π . Then

c(�) ≤ 1 − θ

2π
.

Proof. It is obvious that R�(σ ) = r for σ in the curved part of ∂�, and that R�(σ ) = ∞ elsewhere. Hence

1
2π

∫
∂�

ds
R�

= 1
2π

rθ
r

= θ

2π
.

The result now follows from Theorem 6. �

5.3 Analytic configuration constants of quadrilaterals
Theorem 2 shows that a(�) < 1 for every �. Here we show by example that a(�) may be arbitrarily close
to 1. Figure 7 shows a narrow quadrilateral domain for which this phenomenon occurs.
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Proposition 26. For ε > 0, let �ε be the convex hull of {±1, ±εi}. Then

a(�ε) ≥ 1 − (4/π)ε.

Proof. Let f be a conformal mapping of the interior of �ε onto the unit disk D. By Carathéodory’s
theorem, f extends to a homeomorphism of �ε onto D, and so clearly f ∈ A(�). Post-composing with a
suitable automorphism of D, we may further suppose that f (1) = 1 and f (−1) = −1.

Consider ζ = 1. Recalling (3), we have μ1 = (1− θ1/π)δ1 + (θ1/π)ν, where θ1 is the angle of the aperture
of ∂�ε at 1, and ν is a probability measure on ∂�ε \ {1}. It follows that

Re(K�ε
f )(1) =

∫
∂�ε

(Ref ) dμ1

= (1 − θ1/π)Ref (1) + (θ1/π)

∫
∂�ε\{1}

(Ref ) dν

≥ (1 − θ1/π)(1) + (θ1/π)(−1)

= 1 − 2θ1/π .

Likewise

Re(K�ε
f )(−1) ≤ −(1 − 2θ1/π).

It follows that the diameter of (K�ε
f )(�) is at least 2(1 − 2θ1/π), whence a(�) ≥ (1 − 2θ1/π).

Finally, by trigonometry, θ1 is related to ε by tan(θ1/2) = ε, whence θ1 = 2 arctan ε ≤ 2ε. The result
follows. �

5.4 Configuration constants equal to zero
Recall the estimate (13) from Section 1, which will be proved in the next section. The estimate is
strongest if a(W) = 0, and in this case we reach the conjectured bound K = 2. Unfortunately, the only
domain W for which we have a(W) = 0 is a disk, and in this case (13) reduces to the well-known Okubo–
Ando bound from [15]. For completeness we give a proof of the statement that a(�) = 0 if and only if �

is a disk. More precisely, we have the following.

Proposition 27. Let � be a compact convex domain with non-empty interior. The following are
equivalent:

(i) � is a disk,
(ii) c(�) = 0,

(iii) a(�) = 0.

Proof. In the case that � is a disk, then (5) implies readily that ρζ (σ ) is a constant independent of ζ , and
so for every ζ ∈ ∂�, the measure μζ is a normalized arclength measure on the circular boundary ∂�.
Then it follows from the definition that K�f is a constant function, and consequently ‖K�f +C1‖C(∂� = 0,
so c(�) = a(�) = 0. This shows that the implications (i) ⇒ (ii) and (ii) ⇒ (iii) hold.

It remains to prove (iii) ⇒ (i). Fix a conformal mapping φ : D → �o, where D is the open unit disk
and �o is the interior of �. The mapping φ extends to a homeomorphism of ∂D and ∂�, and so it makes
sense to define the probability measures μ

φ
ζ on ∂D by the equation

μ
φ
ζ (E) := μζ (φ(E))

where E is a Borel subset of ∂D, and {μζ }ζ∈∂� is the double-layer potential of �. Since a(�) = 0, it follows
that for every f ∈ A(�) and every pair of points ζ , ζ ′ ∈ ∂� we have, by the change of variables formula,
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that

0 =
∫

∂�

f dμζ −
∫

∂�

f dμζ ′

=
∫

∂D

f ◦ φ dμ
φ
ζ −

∫
∂D

f ◦ φ dμ
φ

ζ ′ .

As f varies over A(�), f ◦ φ varies over A(D) := A(D), and it follows that μ
φ
ζ − μ

φ

ζ ′ annihilates A(D). Then
the theorem of brothers Riesz (see, for instance, [8, Exercise 1, Chapter III]) implies that

μ
φ
ζ − μ

φ

ζ ′ = h · s∂D

where h is a function with vanishing non-positive Fourier coefficients. Note that h is real-valued, so the
positive Fourier coefficients also vanish, and consequently h ≡ 0. Since ζ , ζ ′ were arbitrary, we conclude
that the hypothesis a(�) = 0 implies that all the measures μζ are equal.

The conclusion that � is a disk is now a consequence of the geometric formula for ρζ (σ ) in (5). Fix
any σ ∈ ∂�, which is not a corner. Since the measures μζ are all equal, so are their densities ρζ (σ ). Then
the circles passing through ζ ∈ ∂� and tangential to ∂� at σ all have the same radius, and so they all
coincide with each other. Thus one circle passes through all points ζ ∈ ∂�. Consequently ∂� is a circle,
and so � is a disk. �

6 Application to Numerical Ranges
6.1 Spectral constant estimate
Our principal motivation for the introduction of the analytic configuration constant is the following
result that was mentioned in the Section 1 and that we will now prove.

Theorem 28. Let T be a bounded linear operator on a Hilbert space H, and W = W(T) the closure
of the numerical range of T. If W has non-empty interior, then for every f ∈ A(W) we have

‖f (T)‖ ≤
(
1 + √

1 + a(W)
)
‖f‖W,

where a(W) is the analytic configuration constant in (11), and A(W) is the space of continuous
functions on W, which are analytic in the interior of W.

Of course, if W has no interior, then its convexity forces it to be a line segment. In that case T is a
normal operator, and the spectral theorem gives us the better estimate ‖f (T)‖ ≤ ‖f‖σ(T), where f may
be any Borel measurable function on the spectrum σ(T). Thus Theorem 28 implies Theorem 3. In what
follows, we will assume that W has non-empty interior.

Let us make some initial remarks before going into the proof of Theorem 28. In the case σ(T) is
contained in the interior of W, then f (T) is defined, as usual, through the Dunford–Riesz holomorphic
functional calculus. If ∂W∩σ(T) �= ∅, then this definition does not work. Nevertheless, if f ∈ A(W), then it
is a standard result of approximation theory that a sequence of analytic polynomials (pn) exists, which
converges to f uniformly on W. In the presence of any uniform bound of the form ‖p(T)‖ ≤ K‖p(T)‖W for
polynomials p, we may then define f (T) as the limit of the sequence (pn(T)) in the operator norm. Such
bounds are known to exists, the strongest known bound K ≤ 1 +√

2 being due to Crouzeix and Palencia.
Theorem 28 improves this estimate given information about the numerical range of T.

Our proof of Theorem 28 combines the argument of Crouzeix and Palencia from [5] with ideas of
Schwenninger and de Vries from [18], where bounds for various functional calculi are derived as a
consequence of the existence of extremal functions and extremal vectors. Let U be an open set in the plane,
and H∞(U) be the algebra of bounded holomorphic functions on U. Given an operator T : H → H with
σ(T) contained in U, it is elementary that the quantity

sup
{
‖f (T)‖ : f ∈ H∞(U), ‖f‖U ≤ 1

}
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is finite. A normal-families argument shows that an f ∈ H∞(U) exists with ‖f‖U = 1 for which the
supremum above is attained. Any such f will be called for an extremal function. If, moreover, a vector
x ∈ H with ‖x‖H = 1 exists for which

sup
{
‖f (T)‖ : f ∈ H∞(U), ‖f‖U ≤ 1

}
= ‖f (T)x‖H

then we will say that x is an extremal vector, and (f , x) is an extremal pair. Unless dimH < ∞, an extremal
vector might not exist, but we will be able to reduce the proof to the finite-dimensional case. The
importance of the concept of extremal pairs (f , x) stems from the following result. We refer the reader
to [1, Theorem 4.5] for a proof (see also [18, Proposition 3]).

Lemma 29. Let T : H → H be a bounded linear operator, and U be an open neighbourhood of σ(T).
Let (f , x) be a corresponding extremal pair. If ‖f (T)‖ > 1, then f (T)x is orthogonal to x in H:

〈f (T)x, x〉H = 0.

The next two lemmas will reduce our task to consideration of finite-dimensional Hilbert spaces, in
which extremal vectors exist, and will dispose of the problematic set σ(T) ∩ ∂W. The first observation is
essentially contained in [18, Proposition 9].

Lemma 30. Let � be a compact convex domain with non-empty interior. If for some K > 0 the
estimate

‖p(T)‖ ≤ K‖p‖�

holds for every polynomial p and every operator T on a finite-dimensional Hilbert space with
W(T) contained in the interior of �, then the same estimate with the same constant K holds
also for operators T on infinite-dimensional Hilbert spaces with W(T) contained in the interior
of �.

Proof. Let T : H → H be as above, with dimH = ∞. It suffices to show that

‖p(T)x‖H ≤ K‖p‖�‖x‖H

holds for every analytic polynomial p and every x ∈ H. Note that p(T)x is contained in the finite-
dimensional subspace K spanned by {x, Tx, . . . , Tdx}, where d is the degree of the polynomial p. If
� : H → K is the orthogonal projection, then p(T)x = �p(T)x = p(�T)x, where �T : K → K is an
operator on a finite-dimensional Hilbert space. Since W(�T) ⊂ W(T), our hypothesis implies

‖p(T)x‖H = ‖p(�T)x‖K ≤ K‖p‖�‖x‖K = K‖p‖�‖x‖H.

The lemma follows. �

The proof of the next lemma will use affine invariance of the configuration constants. Let us fix
α, β ∈ C, α �= 0, and an affine mapping A(z) := αz + β. Then A is a conformal transformation of C with
the additional property of taking a line segment of length L to a line segment of length |α|L, and a circle
of radius R to a circle of radius |α|R. Let �̃ = A(�) be the affine image of � under A, and recall the
formula for the Neumann–Poincaré kernel in (3) and its geometric interpretation. If ζ , σ ∈ ∂�, E is a
Borel subset of ∂�, and s, s̃ are the arclength measures on ∂� and ∂�̃, respectively, then it follows from
the properties of A listed above that

(i) θζ = θA(ζ ),
(ii) |α|s(E) = s̃(A(E)),

(iii) |α|Rζ ,σ = RA(ζ ),A(σ ).
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A consequence is that the Neumann–Poincaré kernels {μζ }ζ∈∂� and {μ̃A(ζ )}A(ζ )∈∂� of the respective
domains satisfy

μ̃A(ζ )(A(E)) = μζ (E), E a Borel subset of ∂�.

Then a change of variables shows that K�(̃f ◦ A) = K�̃̃f for any f̃ ∈ C(∂�̃), and it follows that

a(�) = a(�̃), c(�) = c(�̃).

Armed with these equalities, we make our second observation.

Lemma 31. Assume that the estimate

‖p(T)‖ ≤
(
1 + √

1 + a(�)
)
‖p‖� (42)

holds for every polynomial, every compact convex domain �, and every operator T for which
W(T) is contained in the interior of �. Then Theorem 28 holds.

Proof. Replacing T by an operator T + βI for some β ∈ C, we may assume that 0 lies in the interior of
W(T). Let W = W(T), and

Wr = {rz : z ∈ W}, r > 1.

Then Wr is a convex domain that contains W in its interior. By our assumption, for any analytic
polynomial p we have

‖p(T)‖ ≤
(
1 + √

1 + a(Wr)
)
‖p‖Wr .

Since Wr is an affine image of W, we have a(Wr) = a(W). Since this holds for all r > 1, and since
limr→1 ‖p‖Wr = ‖p‖W, we may let r → 1 to obtain the desired estimate whenever p is an analytic
polynomial. The estimate for f ∈ A(W) follows by density of polynomials in A(W). �

Proof of Theorem 28. By Lemma 31, it will be sufficient to establish the estimate (42) whenever �

contains W(T) in its interior �o. Moreover, by Lemma 30, we may assume that T is an operator on a
finite-dimensional Hilbert space H. Let U = �o and (f , x) be an extremal pair corresponding to U and
the operator T. If ‖f (T)‖ ≤ 1, then (42) certainly holds, so we may assume that ‖f (T)‖ > 1.

Let (fn) be a sequence in A(�) such that ‖fn‖� ≤ 1 and fn → f locally uniformly in �. Then fn(T) → f (T)

in operator norm. Set gn := K�f n. It is shown in [5, Lemmas 2.1 and 2.3] that gn ∈ A(�) and

‖fn(T) + gn(T)∗‖ ≤ 2. (43)

For each n, we may choose λn ∈ C such that

‖gn + λn1‖� = inf
λ∈C

‖gn + λ1‖� ≤ a(�).

We now have the following identity:

〈fn(T)x, fn(T)x〉H =〈fn(T)x, (fn(T) + gn(T)∗)x〉H (44)

− 〈fn(T)x, (gn + λn1)(T)∗x〉H
+ λn〈fn(T)x, x〉H.
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Let us consider each of the terms in this identity. By the choice of x, we have

〈fn(T)x, fn(T)x〉H = ‖fn(T)x‖2 −→
n→∞ ‖f (T)x‖2 = ‖f (T)‖2.

Also, from (43) and the Cauchy–Schwarz inequality,

∣∣〈fn(T)x, (fn(T) + gn(T)∗)x〉H
∣∣ ≤ 2‖fn(T)‖ −→

n→∞ 2‖f (T)‖.

By Lemma 29, we have

∣∣〈fn(T)x, (gn + λn1)(T)∗x〉∣∣ = ∣∣〈(fn(gn + λn1))(T)x, x〉∣∣
≤ ‖fn(gn + λn1)‖�

≤ ‖gn + λn1‖�

≤ a(�).

By Lemma 29 again, 〈f (T)x, x〉H = 0. Since the sequence (λn) is certainly bounded (indeed |λn| ≤ 2), we
deduce that

λn〈fn(T)x, x〉H −→
n→∞ 0.

Thus, letting n → ∞ in (44), we deduce that

‖f (T)‖2 ≤ 2‖f (T)‖ + a(�).

Hence

‖f (T)‖ ≤ 1 + √
1 + a(�).

In particular, for every polynomial p with ‖p‖� = 1 we have

‖p(T)‖ ≤ ‖f (T)‖ ≤ 1 + √
1 + a(�),

since f is extremal. This is equivalent to (42), and so the proof is complete. �
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A Double-Layer Potential on a General Convex Domain

A.1. Convex domains
Let � be a compact convex domain in the plane C with non-empty interior �o. We will be making no
assumptions regarding smoothness of the boundary ∂�. However, convexity itself implies that ∂� is a
rectifiable simple closed curve with some additional properties.

The orientation of ∂� is to be counter-clockwise (i.e., positive), and we use σ ′ ↑ σ and σ ′ ↓ σ to
denote, respectively, the counter-clockwise and clockwise one-sided convergence of σ ′ to σ within ∂�.
As a consequence of convexity of �, the one-sided tangent angles exist at every point σ ∈ ∂�, are locally
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given by

α+(σ ) := lim
σ ′↓σ

arg(σ ′ − σ), α−(σ ) := lim
σ ′↑σ

arg(σ − σ ′),

and satisfy

α−(σ ) ≤ α+(σ ).

Strict inequality may occur at most at a countable subset of ∂�. If it occurs at σ , then we say that ∂�

has a corner at σ . At any point that is not a corner, the tangent angle

α(σ) := α+(σ ) = α−(σ )

is well-defined, and so is the tangent T(σ ) := eiα(σ) itself. If t �→ γ (t) is any (positively-oriented)
parametrization of ∂�, and we set α(σ) = α+(σ ) at the corners, then the locally defined function α(γ (t))
is increasing in t, and consequently the tangent T is continuous at every point that is not a corner of ∂�.
At a corner, the discontinuity of T amounts to a jump of the argument of T. We denote by N(σ ) := −iT(σ )

the outward-pointing normal at σ ∈ ∂�.

A.2. Double-layer potential
Let �o denote the interior of �. To each z ∈ �o we associate the measure μz on ∂�, which for any arc
J ⊂ ∂� satisfies

μz(J) = 1
π

∫
J
d arg(σ − z) = 1

π

(
angle subtended at z by J

)
. (A.1)

Here arg(σ −z) is any locally defined continuous determination of the argument function on ∂�. Non-
negativity of μz follows from convexity of � and our choice of positive orientation of ∂�. With respect
to this orientation, every arc J = (a, b) ⊂ ∂� has a start-point a and an end-point b, and it is easy to see
that

μz(J) = arg(b − z) − arg(a − z)
π

.

In particular, μz(∂�) = 2.
The measure μz is absolutely continuous with respect to arclength s on ∂�. Indeed, if σ0 ∈ ∂�, Jn =

(an, bn) is a sequence of arcs of ∂� that are shrinking to σ0, and |Jn| are the corresponding arclengths,
then

πμz(Jn)
|Jn| = 1

|Jn|
∫

Jn
d arg(σ − z)

= arg(bn − z) − arg(an − z)
|Jn|

= Im
(

log(bn − z) − log(an − z)
bn − an

· bn − an

|Jn|
)

.

We use above an appropriate locally defined holomorphic branch of the logarithm. As n → ∞, the first
factor inside the brackets satisfies

lim
n→∞

log(bn − z) − log(an − z)
bn − an

= 1
σ0 − z

,
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while the second factor stays bounded as a consequence of the inequality |bn − an| ≤ |Jn|. Thus

lim sup
n→∞

μz(Jn)
|Jn| < ∞

and from elementary measure theory we obtain that μz is absolutely continuous with respect to s. If
moreover σ0 is not a corner, then it can be shown that

lim
n→∞

|Jn|
|bn − an| = 1,

and so in additional to boundedness we even have the convergence

lim
n→∞

bn − an

|Jn| = lim
n→∞

bn − an

|bn − an| = T(σ0) = iN(σ0).

Thus the Radon–Nikodym derivative satisfies

ρz(σ ) := dμz

ds
(σ ) = 1

π
Im

(
T(σ )

σ − z

)
= 1

π
Re

(
N(σ )

σ − z

)
(A.2)

at every σ ∈ ∂�, which is not a corner.

A.3. Boundary kernel
The Neumann–Poincaré kernel is the boundary version of the family of measures {μz}z∈�o introduced
above. To each point ζ ∈ ∂� we associate the Borel probability measure on ∂� defined by (A.1) for arcs
J ⊂ ∂� not containing the point ζ . Because ζ ∈ ∂�, this definition implies that μζ (∂� \ {ζ }) = θζ /π , where
θζ = π − α+(ζ ) + α−(ζ ) can be interpreted as the angle of the aperture at ζ . Indeed, θζ is equal to the
increase in the argument of σ − ζ as we traverse one loop around ∂� starting and ending at the point ζ ,
and since μζ is a probability measure, we must have

μζ ({ζ }) = 1 − θζ

π
.

With the exception of this possible point mass, μζ is otherwise absolutely continuous with respect to
arclength. The corresponding Radon–Nikodym derivative is given by

ρζ (σ ) := dμζ

ds
(σ ) = 1

π
Im

(
T(σ )

σ − ζ

)
= 1

π
Re

(
N(σ )

σ − ζ

)
. (A.3)

The formula (A.3) is established analogously to (A.2). All in all, the measure μζ can be decomposed as

dμζ = (1 − θζ /π)dδζ + ρζ ds,

where δζ is a unit mass at ζ ∈ ∂�, θζ is the angle of the aperture at ζ (with the convention that θζ = π if
ζ is not a corner), and where the density ρζ is given by (A.3).

A.4. Weak-star convergence
We establish now that

lim
z→ζ

μz = δζ + μζ
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in the sense of the weak-star topology on measures. Note that if B = B(ζ , δ) is a ball of radius δ > 0
centred at ζ ∈ ∂�, then expressions (A.2) and (A.3) for the densities of μz and μζ show that

lim
z→ζ

∫
∂�\B

f dμz =
∫

∂�\B
f dμζ (A.4)

for every f ∈ C(∂�). In particular, choosing f = 1, we obtain

2 = μζ (∂� \ B) + lim
z→ζ

μz(B).

Since

lim
δ→0

μζ (∂� \ B) = μζ (∂� \ {ζ }) = θζ /π

we see that given ε > 0 for all sufficiently small δ > 0 we will have

lim sup
z→ζ

|μz(B) − 2 + θζ /π | ≤ ε.

Returning to general f ∈ C(∂�), we have

∫
∂�

f dμz −
∫

∂�

f d[δζ + μζ ] =
∫

∂�\B
f dμz −

∫
∂�\B

f dμζ

+
∫

B

(
f − f (ζ )

)
dμz

+ f (ζ )
(
μz(B) − 2 + θζ /π

)
−

∫
B\{ζ }

f dμζ .

On the right-hand side, the first term tends to zero as z → ζ , the second can be made arbitrarily small
by continuity of f , the crude estimate μz(B) ≤ 2 and choice of sufficiently small δ, the third is dominated
in modulus by ‖f‖∂� ·ε for z sufficiently close to ζ , and the fourth is dominated by ‖f‖∂� ·μζ (B\{ζ }), which
also can be made arbitrarily small by choice of sufficiently small δ. The desired weak-star convergence
follows.
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